51
|
Cannon RJ, Ho CT. Volatile sulfur compounds in tropical fruits. J Food Drug Anal 2018; 26:445-468. [PMID: 29567214 PMCID: PMC9322215 DOI: 10.1016/j.jfda.2018.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 11/17/2022] Open
Abstract
Global production and demand for tropical fruits continues to grow each year as consumers are enticed by the exotic flavors and potential health benefits that these fruits possess. Volatile sulfur compounds (VSCs) are often responsible for the juicy, fresh aroma of tropical fruits. This poses a challenge for analytical chemists to identify these compounds as most often VSCs are found at low concentrations in most tropical fruits. The aim of this review is to discuss the extraction methods, enrichment techniques, and instrumentation utilized to identify and quantify VSCs in natural products. This will be followed by a discussion of the VSCs reported in tropical and subtropical fruits, with particular attention to the odor and taste attributes of each compound. Finally, the biogenesis and enzymatic formation of specific VSCs in tropical fruits will be highlighted along with the contribution each possesses to the aroma of their respective fruit.
Collapse
Affiliation(s)
- Robert J. Cannon
- International Flavors & Fragrances Inc., Research & Development, 1515 State Highway 36, Union Beach, NJ 07735,
USA
- Corresponding author. E-mail address: (R.J. Cannon)
| | - Chi-Tang Ho
- Rutgers University, Food Science Department, 65 Dudley Road, New Brunswick, NJ 08901,
USA
| |
Collapse
|
52
|
Jing L, Li J, Song Y, Zhang J, Chen Q, Han Q. Characterization of a Potential Ripening Regulator, SlNAC3, from Solanum Lycopersicum. Open Life Sci 2018; 13:518-526. [PMID: 33817122 PMCID: PMC7874718 DOI: 10.1515/biol-2018-0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
NAC (for NAM, ATAF1-2, and CUC2) proteins are one of the largest transcription factor families in plants. They have various functions and are closely related to developmental processes of fruits. Tomato (Solanum lycopersicum) is a model plant for studies of fruit growth patterns. In this study, the functional characteristics and action mechanisms of a new NAC-type transcription factor, SlNAC3 (SGN-U568609), were examined to determine its role in tomato development and ripening. The SlNAC3 protein was produced by prokaryotic expression and used to immunize New Zealand white rabbits to obtain a specific polyclonal antibody against SlNAC3. By co-immunoprecipitation and MALDI-TOF-MS assays, we showed that there was an interaction between the SlNAC3 protein and Polygalacturonase-2 (PG-2), which is related to the ripening and softening of fruit. Chromatin immunoprecipitation assays revealed the genome of the highly stress-tolerant Solanum pennellii chromosome 10 (sequence ID, HG975449.1), further demonstrating that SlNAC3 is a negative regulator of drought and salinity stress resistance in tomato, consistent with previous reports. These results indicate that SlNAC3 is not only involved in abiotic stress, but also plays a necessary role in mediating tomato ripening.
Collapse
Affiliation(s)
- Le Jing
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Jie Li
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Qiang Chen
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming650500, Yunnan, People’s Republic of China
| |
Collapse
|
53
|
Ramírez-Sánchez M, Huber DJ, Vallejos CE, Kelley K. Physiological, molecular and ultrastructural analyses during ripening and over-ripening of banana (Musa spp., AAA group, Cavendish sub-group) fruit suggest characteristics of programmed cell death. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:609-617. [PMID: 28665023 DOI: 10.1002/jsfa.8505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Programmed cell death (PCD) is a part of plant development that has been studied for petal senescence and vegetative tissue but has not been thoroughly investigated for fleshy fruits. The purpose of this research was to examine ripening and over-ripening in banana fruit to determine if there were processes in common to previously described PCD. RESULTS Loss of cellular integrity (over 40%) and development of senescence related dark spot (SRDS) occurred after day 8 in banana peel. Nuclease and protease activity in the peel increased during ripening starting from day 2, and decreased during over-ripening. The highest activity was for proteases and nucleases with apparent molecular weights of 86 kDa and 27 kDa, respectively. Images of SRDS showed shrinkage of the upper layers of cells, visually suggesting cell death. Decrease of electron dense areas was evident in TEM micrographs of nuclei. CONCLUSION This study shows for the first time that ripening and over-ripening of banana peel share physiological and molecular processes previously described in plant PCD. SRDS could represent a morphotype of PCD that characterizes a structural and biochemical failure in the upper layers of the peel, thereafter spreading to lower and adjacent layers of cells. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Donald J Huber
- Horticultural Sciences Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - C Eduardo Vallejos
- Horticultural Sciences Department, IFAS, University of Florida, Gainesville, Florida, USA
| | - Karen Kelley
- Electron Microscopy and Bio-imaging Core, ICBR, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
54
|
Pathak N, Caleb OJ, Wegner G, Rolleczek C, Rauh C, Mahajan PV. Impacts of mixed fruit loading on postharvest physiological responses and quality of horticultural produce. Food Packag Shelf Life 2017. [DOI: 10.1016/j.fpsl.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
55
|
Nham NT, Macnish AJ, Zakharov F, Mitcham EJ. 'Bartlett' pear fruit (Pyrus communis L.) ripening regulation by low temperatures involves genes associated with jasmonic acid, cold response, and transcription factors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:8-18. [PMID: 28554478 DOI: 10.1016/j.plantsci.2017.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/15/2017] [Accepted: 03/18/2017] [Indexed: 05/03/2023]
Abstract
Low temperature (LT) treatments enhance ethylene production and ripening rate in the European pear (Pyrus communis L.). However, the underlying molecular mechanisms are not well understood. This study aims to identify genes responsible for ripening enhancement by LT. To this end, the transcriptome of 'Bartlett' pears treated with LT (0°C or 10°C for up to 14 d), which results in faster ripening, and control pears without conditioning treatment was analyzed. LT conditioned pears reached eating firmness (18N) in 6 d while control pears took about 12 d when left to ripen at 20°C. We identified 8,536 differentially expressed (DE) genes between the 0°C-treated and control fruit, and 7,938 DE genes between the 10°C-treated and control fruit. In an attempt to differentiate temperature-induced vs. ethylene-responsive pathways, we also monitored gene expression in fruit sequentially treated with 1-MCP then exposed to low temperature. This analysis revealed that genes associated with jasmonic acid biosynthesis and signaling, as well as the transcription factors TCP9a, TCP9b, CBF1, CBF4, AGL24, MYB1R1, and HsfB2b could be involved in the LT-mediated enhancement of ripening independently or upstream of ethylene.
Collapse
Affiliation(s)
- Ngoc T Nham
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | - Andrew J Macnish
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Florence Zakharov
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Elizabeth J Mitcham
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
56
|
Tranbarger TJ, Fooyontphanich K, Roongsattham P, Pizot M, Collin M, Jantasuriyarat C, Suraninpong P, Tragoonrung S, Dussert S, Verdeil JL, Morcillo F. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages. FRONTIERS IN PLANT SCIENCE 2017; 8:603. [PMID: 28487710 PMCID: PMC5404384 DOI: 10.3389/fpls.2017.00603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 05/13/2023]
Abstract
The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are regulated by evolutionarily conserved molecular physiological processes.
Collapse
Affiliation(s)
| | - Kim Fooyontphanich
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | | | - Maxime Pizot
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | - Myriam Collin
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | | | - Potjamarn Suraninpong
- Department of Plant Science, Institute of Agricultural Technology, Walailak UniversityNakhon Si Thammarat, Thailand
| | - Somvong Tragoonrung
- Genome Institute, National Center for Genetic Engineering and BiotechnologyPathumthani, Thailand
| | - Stéphane Dussert
- Institut de Recherche pour le Développement, IRD, UMR DIADEMontpellier, France
| | - Jean-Luc Verdeil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR AGAPMontpellier, France
| | - Fabienne Morcillo
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR DIADEMontpellier, France
| |
Collapse
|
57
|
Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H. Biotechnological Advancements for Improving Floral Attributes in Ornamental Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:530. [PMID: 28473834 PMCID: PMC5397496 DOI: 10.3389/fpls.2017.00530] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
Developing new ornamental cultivars with improved floral attributes is a major goal in floriculture. Biotechnological approach together with classical breeding methods has been used to modify floral color, appearance as well as for increasing disease resistance. Transgenic strategies possess immense potential to produce novel flower phenotypes that are not found in nature. Adoption of Genetic engineering has supported the idea of floral trait modification. Ornamental plant attributes like floral color, fragrance, disease resistance, and vase life can be improved by means of genetic manipulation. Therefore, we witness transgenic plant varieties of high aesthetic and commercial value. This review focuses on biotechnological advancements in manipulating key floral traits that contribute in development of diverse ornamental plant lines. Data clearly reveals that regulation of biosynthetic pathways related to characteristics like pigment production, flower morphology and fragrance is both possible and predictable. In spite of their great significance, small number of genetically engineered varieties of ornamental plants has been field tested. Today, novel flower colors production is regarded as chief commercial benefit obtained from transgenic plants. But certain other floral traits are much more important and have high commercial potential. Other than achievements such as novel architecture, modified flower color, etc., very few reports are available regarding successful transformation of other valuable horticultural characteristics. Our review also summarized biotechnological efforts related to enhancement of fragrance and induction of early flowering along with changes in floral anatomy and morphology.
Collapse
Affiliation(s)
- Ali Noman
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- Department of Botany, Government College UniversityFaisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Science, Lanzhou UniversityLanzhou, China
| | - Noreen Khalid
- Department of Botany, Government College Women University SialkotSialkot, Pakistan
| | | | - He Shuilin
- College of Crop Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
58
|
Li J, Li F, Qian M, Han M, Liu H, Zhang D, Ma J, Zhao C. Characteristics and regulatory pathway of the PrupeSEP1 SEPALLATA gene during ripening and softening in peach fruits. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:63-73. [PMID: 28224919 DOI: 10.1016/j.plantsci.2017.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/01/2017] [Accepted: 01/04/2017] [Indexed: 05/11/2023]
Abstract
SEPALLATA genes are members of a subfamily of MADS-box transcription factors, and have essential roles in floral organ development and fruit ripening. In this study, the PrupeSEP1 gene was cloned from peach flesh. Its deduced amino acid sequence was very similar to that of MdMADS8 and MdMADS9 in apple and MADS-RIN-like in strawberry. During storage of melting flesh (MF) peach, the pattern of SEP1 expression was similar to that of ethylene biosynthesis and ethylene signal transduction-related gene expression (EIN2 and ETR2). The SEP1 expression level was correlated with that of EIN2 and ETR2. Furthermore, in MF, cell wall modification-related genes (Endo-PG3, EXP2 and PME3), N-glycan processing genes (β-Hex2 and α-Man) and Lox1 exhibited similar expression patterns to that of SEP1. However, in non-melting flesh (NMF) peach, the SEP1 expression pattern was different from that of MF peach. Moreover, in NMF, only EXP2, LOX1, and α-Man expression patterns were similar to that of SEP1. After SEP1 expression was inhibited by virus-induced gene silencing technique (VIGS) in MF peach, compared with the control, the fruit remained firm and fruit softening was delayed. While expression levels of the ripening and softening related genes, ACS2, EIN2, PME1, Endo-PG3, ACO1, ETR2,β-Hex2 and Lox1, were significantly decreased in SEP1-silenced peach, the transcription of EXP2 and PME3 were significantly enhanced except at the harvest stage. Yeast one-hybrid verification showed SEP1 can interact with promoter of target genes PGs. Our results indicate SEP1 may regulate fruit ripening and softening of MF peaches, while this regulation may be lost in the NMF peaches.
Collapse
Affiliation(s)
- Jinjin Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Fang Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ming Qian
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Hangkong Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Juanjuan Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
59
|
Kuang JF, Chen JY, Liu XC, Han YC, Xiao YY, Shan W, Tang Y, Wu KQ, He JX, Lu WJ. The transcriptional regulatory network mediated by banana (Musa acuminata) dehydration-responsive element binding (MaDREB) transcription factors in fruit ripening. THE NEW PHYTOLOGIST 2017; 214:762-781. [PMID: 28044313 DOI: 10.1111/nph.14389] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/16/2016] [Indexed: 05/24/2023]
Abstract
Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established significance of dehydration-responsive element binding (DREB) TFs in plant abiotic stress responses, the involvement of DREBs in fruit ripening is yet to be determined. Here, we identified four genes encoding ripening-regulated DREB TFs in banana (Musa acuminata), MaDREB1, MaDREB2, MaDREB3, and MaDREB4, and demonstrated that they play regulatory roles in fruit ripening. We showed that MaDREB1-MaDREB4 are nucleus-localized, induced by ethylene and encompass transcriptional activation activities. We performed a genome-wide chromatin immunoprecipitation and high-throughput sequencing (ChIP-Seq) experiment for MaDREB2 and identified 697 genomic regions as potential targets of MaDREB2. MaDREB2 binds to hundreds of loci with diverse functions and its binding sites are distributed in the promoter regions proximal to the transcriptional start site (TSS). Most of the MaDREB2-binding targets contain the conserved (A/G)CC(G/C)AC motif and MaDREB2 appears to directly regulate the expression of a number of genes involved in fruit ripening. In combination with transcriptome profiling (RNA sequencing) data, our results indicate that MaDREB2 may serve as both transcriptional activator and repressor during banana fruit ripening. In conclusion, our study suggests a hierarchical regulatory model of fruit ripening in banana and that the MaDREB TFs may act as transcriptional regulators in the regulatory network.
Collapse
Affiliation(s)
- Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xun-Cheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yan-Chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yun-Yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ke-Qiang Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
60
|
Exploring the Functions of 9-Lipoxygenase (DkLOX3) in Ultrastructural Changes and Hormonal Stress Response during Persimmon Fruit Storage. Int J Mol Sci 2017; 18:ijms18030589. [PMID: 28294971 PMCID: PMC5372605 DOI: 10.3390/ijms18030589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/28/2022] Open
Abstract
Lipoxygenase (LOX) initiates the hydroperoxidation of polyunsaturated fatty acids and is involved in multiple physiological processes. In this study, investigation of various microscopic techniques showed that the fruit peel cellular microstructure of the two persimmon cultivars differed after 12 days of storage, resulting in fruit weight loss and an increased number and depth of microcracks. Analysis of subcellular localization revealed that greater amounts of DkLOX3-immunolabelled gold particles accumulated in “Fupingjianshi” than in “Ganmaokui” during storage. In addition, the expression of DkLOX3 was positively up-regulated by abscisic acid (ABA), concomitant with the promotion of ethylene synthesis and loss of firmness, and was suppressed by salicylic acid (SA), concomitant with the maintenance of fruit firmness, inhibition of ethylene production and weight loss. In particular, the expression of DkLOX3 differed from the ethylene trajectory after methyl jasmonate (MeJA) treatment. Furthermore, we isolated a 1105 bp 5′ flanking region of DkLOX3 and the activity of promoter deletion derivatives was induced through various hormonal treatments. Promoter sequence cis-regulatory elements were analysed, and two conserved hormone-responsive elements were found to be essential for responsiveness to hormonal stress. Overall, these results will provide us with new clues for exploring the functions of DkLOX3 in fruit ripening and hormonal stress response.
Collapse
|
61
|
Chidley HG, Deshpande AB, Oak PS, Pujari KH, Giri AP, Gupta VS. Effect of postharvest ethylene treatment on sugar content, glycosidase activity and its gene expression in mango fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1624-1633. [PMID: 27433929 DOI: 10.1002/jsfa.7912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Ripening-associated softening is one of the important attributes that largely determines the shelf-life of mango (Mangifera indica Linn.) fruits. To reveal the effect of pre-climacteric ethylene treatment on ripening-related softening of Alphonso mango, ethylene treatment was given to mature, raw Alphonso fruits. Changes in the pool of reducing and non-reducing sugars, enzymatic activity of three glycosidases: β-d-galactosidase, α-d-mannosidase and β-d-glucosidase and their relative transcript abundance were analysed for control and ethylene treated fruits during ripening. RESULTS Early activity of all the three glycosidases and accelerated accumulation of reducing and non-reducing sugars on ethylene treatment was evident. β-d-Galactosidase showed the highest activity among three glycosidases in control fruits and marked increase in activity upon ethylene treatment. This was confirmed by the histochemical assay of its activity in control and ethylene treated ripe fruits. Relative transcript abundance revealed high transcript levels of β-d-galactosidase in control fruits. Ethylene-treated fruits showed early and remarkable increase in the β-d-galactosidase transcripts while α-d-mannosidase transcript variants displayed early accumulation. CONCLUSION The findings suggest reduction in the shelf-life of Alphonso mango upon pre-climacteric ethylene treatment, a significant role of β-d-galactosidase and α-d-mannosidase in the ripening related softening of Alphonso fruits and transcriptional regulation of their expression by ethylene. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hemangi G Chidley
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune 411 008, India
| | - Ashish B Deshpande
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune 411 008, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune 411 008, India
| | - Keshav H Pujari
- Dr Balasaheb Sawant Konkan Agriculture University, Dapoli 415712, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune 411 008, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR - National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
62
|
Photocatalytic and Photochemical Oxidation of Ethylene: Potential for Storage of Fresh Produce—a Review. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1889-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
63
|
Qian M, Zhang Y, Yan X, Han M, Li J, Li F, Li F, Zhang D, Zhao C. Identification and Expression Analysis of Polygalacturonase Family Members during Peach Fruit Softening. Int J Mol Sci 2016; 17:E1933. [PMID: 27869753 PMCID: PMC5133928 DOI: 10.3390/ijms17111933] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 01/01/2023] Open
Abstract
Polygalacturonase (PG) is an important hydrolytic enzyme involved in pectin degradation during fruit softening. However, the roles of PG family members in fruit softening remain unclear. We identified 45 PpPG genes in the peach genome which are clustered into six subclasses. PpPGs consist of four to nine exons and three to eight introns, and the exon/intron structure is basically conserved in all but subclass E. Only 16 PpPG genes were expressed in ripening fruit, and their expression profiles were analyzed during storage in two peach cultivars with different softening characteristics. Eight PGs (PpPG1, -10, -12, -13, -15, -23, -21, and -22) in fast-softening "Qian Jian Bai" (QJB) fruit and three PGs (PpPG15, -21, and -22) in slow-softening "Qin Wang" (QW) fruit exhibited softening-associated patterns; which also were affected by ethylene treatment. Our results suggest that the different softening characters in QW and QJB fruit is related to the amount of PG members. While keeping relatively lower levels during QW fruit softening, the expression of six PGs (PpPG1, -10, -12, -11, -14, and -35) rapidly induced by ethylene. PpPG24, -25 and -38 may not be involved in softening of peach fruit.
Collapse
Affiliation(s)
- Ming Qian
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Yike Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Xiangyan Yan
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Jinjin Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Fang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Furui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| | - Caiping Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
64
|
Zhao F, Wang C, Han J, Zhu X, Li X, Wang X, Fang J. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level. Funct Integr Genomics 2016; 17:213-235. [PMID: 27696076 DOI: 10.1007/s10142-016-0514-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.
Collapse
Affiliation(s)
- Fanggui Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
65
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Genetically modified (GM) crops: milestones and new advances in crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1639-55. [PMID: 27381849 DOI: 10.1007/s00122-016-2747-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/25/2016] [Indexed: 05/22/2023]
Abstract
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
66
|
Nordey T, Léchaudel M, Génard M, Joas J. Factors affecting ethylene and carbon dioxide concentrations during ripening: Incidence on final dry matter, total soluble solids content and acidity of mango fruit. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:70-78. [PMID: 27085177 DOI: 10.1016/j.jplph.2016.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 06/05/2023]
Abstract
Ripening of climacteric fruits is associated with pronounced changes in fruit gas composition caused by a concomitant rise in respiration and ethylene production. There is a discrepancy in the literature since some authors reported that changes in fruit gas compositions differ in attached and detached fruits. This study presents for the first time an overview of pre- and post-harvest factors that lead to variations in the climacteric respiration and ethylene production, and attempts to determine their impacts on fruit composition, i.e., dry matter, total soluble solids content and acidity. The impact of growing conditions such as the fruit position in the canopy and the fruit carbon supply; fruit detachment from the tree, including the maturity stage at harvest; and storage conditions after harvest, i.e., relative humidity and temperature were considered as well as changes in fruit skin resistance to gas diffusion during fruit growth and storage. Results showed that fruit gas composition vary with all pre and post-harvest factors studied. Although all mangoes underwent a respiratory climacteric and an autocatalytic ethylene production, whatever pre and post-harvest factors studied, large differences in ethylene production, climacteric respiration and fruit quality were measured. Results suggested that the ripening capacity is not related to the fruit ability to produce great amount of ethylene. In agreement with precedent studies, this work provided several lines of evidence that gas composition of fruit is related to its water balance. Our measurements indicated that skin resistance to gas diffusion increased after the harvest and during storage. It was so suggested that the faster ripening of detached fruit may be explained in part by changes in fruit water balance and skin resistance to gas diffusion caused by fruit detachment.
Collapse
Affiliation(s)
| | | | - Michel Génard
- INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, 84000 Avignon, France
| | | |
Collapse
|
67
|
Shah NN, Vishwasrao C, Singhal RS, Ananthanarayan L. n-Octenyl succinylation of pullulan: Effect on its physico-mechanical and thermal properties and application as an edible coating on fruits. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.11.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
68
|
Feng BH, Han YC, Xiao YY, Kuang JF, Fan ZQ, Chen JY, Lu WJ. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2263-75. [PMID: 26889012 PMCID: PMC4809287 DOI: 10.1093/jxb/erw032] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening.
Collapse
Affiliation(s)
- Bi-hong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China College of Agriculture, GuangXi University, Nanning 530004, PR China
| | - Yan-chao Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yun-yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhong-qi Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
69
|
Meng C, Yang D, Ma X, Zhao W, Liang X, Ma N, Meng Q. Suppression of tomato SlNAC1 transcription factor delays fruit ripening. JOURNAL OF PLANT PHYSIOLOGY 2016; 193:88-96. [PMID: 26962710 DOI: 10.1016/j.jplph.2016.01.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 05/02/2023]
Abstract
Fruit ripening is a complex process involving many physiological and biochemical changes, including those for ethylene, carotenoid, and cell wall metabolism. Tomato (Solanum lycopersicum) serves as a research model for fruit development and ripening because it possesses numerous favorable genetic features. In this study, SlNAC1 was cloned. An antisense (AS) vector was constructed and transferred to tomato to further explore the function of SlNAC1. The results showed that AS fruits exhibited delayed ripening and a deeper red appearance when these fruits were fully ripened. Fully ripened AS fruits also produced higher total carotenoid and lycopene contents than those of the wild-type (WT) line. Ethylene production of AS fruits was delayed but occurred to a higher extent than that of WT fruits. The softening of AS fruits was slower than that of WT fruits. Endogenous abscisic acid (ABA) level in AS-4 fruits was lower than that in WT fruits. Exogenous ABA accelerated the softening of AS fruits. Furthermore, AS fruits demonstrated up-regulated expression of genes related to lycopene and ethylene biosynthesis but down-regulated expression of genes related to cell wall metabolism and ABA synthesis. Therefore, SlNAC1 is likely implicated in fruit ripening.
Collapse
Affiliation(s)
- Chen Meng
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, PR China
| | - Dongyue Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street, Tai'an, Shandong 271018, PR China
| | - Xiaocui Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street, Tai'an, Shandong 271018, PR China
| | - Weiyang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street, Tai'an, Shandong 271018, PR China
| | - Xiaoqing Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street, Tai'an, Shandong 271018, PR China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street, Tai'an, Shandong 271018, PR China.
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street, Tai'an, Shandong 271018, PR China
| |
Collapse
|
70
|
Genome-wide analysis of the AP2/ERF family in Musa species reveals divergence and neofunctionalisation during evolution. Sci Rep 2016; 6:18878. [PMID: 26733055 PMCID: PMC4702079 DOI: 10.1038/srep18878] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/09/2015] [Indexed: 01/07/2023] Open
Abstract
AP2/ERF domain containing transcription factor super family is one of the important regulators in the plant kingdom. The involvement of AP2/ERF family members has been elucidated in various processes associated with plant growth, development as well as in response to hormones, biotic and abiotic stresses. In this study, we carried out genome-wide analysis to identify members of AP2/ERF family in Musa acuminata (A genome) and Musa balbisiana (B genome) and changes leading to neofunctionalisation of genes. Analysis identified 265 and 318 AP2/ERF encoding genes in M. acuminata and M. balbisiana respectively which were further classified into ERF, DREB, AP2, RAV and Soloist groups. Comparative analysis indicated that AP2/ERF family has undergone duplication, loss and divergence during evolution and speciation of the Musa A and B genomes. We identified nine genes which are up-regulated during fruit ripening and might be components of the regulatory machinery operating during ethylene-dependent ripening in banana. Tissue-specific expression analysis of the genes suggests that different regulatory mechanisms might be involved in peel and pulp ripening process through recruiting specific ERFs in these tissues. Analysis also suggests that MaRAV-6 and MaERF026 have structurally diverged from their M. balbisiana counterparts and have attained new functions during ripening.
Collapse
|
71
|
Pandey A, Misra P, Alok A, Kaur N, Sharma S, Lakhwani D, Asif MH, Tiwari S, Trivedi PK. Genome-Wide Identification and Expression Analysis of Homeodomain Leucine Zipper Subfamily IV (HDZ IV) Gene Family from Musa accuminata. FRONTIERS IN PLANT SCIENCE 2016; 7:20. [PMID: 26870050 PMCID: PMC4740955 DOI: 10.3389/fpls.2016.00020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/08/2016] [Indexed: 05/12/2023]
Abstract
The homeodomain zipper family (HD-ZIP) of transcription factors is present only in plants and plays important role in the regulation of plant-specific processes. The subfamily IV of HDZ transcription factors (HD-ZIP IV) has primarily been implicated in the regulation of epidermal structure development. Though this gene family is present in all lineages of land plants, members of this gene family have not been identified in banana, which is one of the major staple fruit crops. In the present work, we identified 21 HDZIV encoding genes in banana by the computational analysis of banana genome resource. Our analysis suggested that these genes putatively encode proteins having all the characteristic domains of HDZIV transcription factors. The phylogenetic analysis of the banana HDZIV family genes further confirmed that after separation from a common ancestor, the banana, and poales lineages might have followed distinct evolutionary paths. Further, we conclude that segmental duplication played a major role in the evolution of banana HDZIV encoding genes. All the identified banana HDZIV genes expresses in different banana tissue, however at varying levels. The transcript levels of some of the banana HDZIV genes were also detected in banana fruit pulp, suggesting their putative role in fruit attributes. A large number of genes of this family showed modulated expression under drought and salinity stress. Taken together, the present work lays a foundation for elucidation of functional aspects of the banana HDZIV encoding genes and for their possible use in the banana improvement programs.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
- *Correspondence: Ashutosh Pandey
| | - Prashant Misra
- CSIR-National Botanical Research InstituteLucknow, India
| | - Anshu Alok
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Navneet Kaur
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Shivani Sharma
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | | | - Mehar H. Asif
- CSIR-National Botanical Research InstituteLucknow, India
| | - Siddharth Tiwari
- Department of Biotechnology, National Agri-Food Biotechnology InstituteMohali, India
| | - Prabodh K. Trivedi
- CSIR-National Botanical Research InstituteLucknow, India
- Prabodh K. Trivedi ;
| |
Collapse
|
72
|
Bi F, Meng X, Ma C, Yi G. Identification of miRNAs involved in fruit ripening in Cavendish bananas by deep sequencing. BMC Genomics 2015; 16:776. [PMID: 26462563 PMCID: PMC4603801 DOI: 10.1186/s12864-015-1995-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/06/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are a family of non-coding small RNAs that play an important regulatory role in various biological processes. Previous studies have reported that miRNAs are closely related to the ripening process in model plants. However, the miRNAs that are closely involved in the banana fruit ripening process remain unknown. METHODS Here, we investigated the miRNA populations from banana fruits in response to ethylene or 1-MCP treatment using a deep sequencing approach and bioinformatics analysis combined with quantitative RT-PCR validation. RESULTS A total of 125 known miRNAs and 26 novel miRNAs were identified from three libraries. MiRNA profiling of bananas in response to ethylene treatment compared with 1-MCP treatment showed differential expression of 82 miRNAs. Furthermore, the differentially expressed miRNAs were predicted to target a total of 815 target genes. Interestingly, some targets were annotated as transcription factors and other functional proteins closely involved in the development and the ripening process in other plant species. Analysis by qRT-PCR validated the contrasting expression patterns between several miRNAs and their target genes. CONCLUSIONS The miRNAome of the banana fruit in response to ethylene or 1-MCP treatment were identified by high-throughput sequencing. A total of 82 differentially expressed miRNAs were found to be closely associated with the ripening process. The miRNA target genes encode transcription factors and other functional proteins, including SPL, APETALA2, EIN3, E3 ubiquitin ligase, β-galactosidase, and β-glucosidase. These findings provide valuable information for further functional research of the miRNAs involved in banana fruit ripening.
Collapse
Affiliation(s)
- Fangcheng Bi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, 510640, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Xiangchun Meng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, 510640, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| | - Chao Ma
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel.
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, 510640, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China.
| |
Collapse
|
73
|
Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana. Int J Mol Sci 2015; 16:19728-51. [PMID: 26307965 PMCID: PMC4581322 DOI: 10.3390/ijms160819728] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/08/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars.
Collapse
|
74
|
Bonat Celli G, Ghanem A, Su-Ling Brooks M. Influence of freezing process and frozen storage on the quality of fruits and fruit products. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1075212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
75
|
Pandey A, Misra P, Choudhary D, Yadav R, Goel R, Bhambhani S, Sanyal I, Trivedi R, Trivedi PK. AtMYB12 expression in tomato leads to large scale differential modulation in transcriptome and flavonoid content in leaf and fruit tissues. Sci Rep 2015. [PMID: 26206248 PMCID: PMC4513303 DOI: 10.1038/srep12412] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Plants synthesize secondary metabolites, including flavonoids, which play important role during various stresses for their survival. These metabolites are also considered as health-protective components in functional foods. Flavonols, one of the important groups of flavonoids, apart from performing several roles in plants have been recognized as potent phytoceuticals for human health. Tomato fruits are deficient in this group of flavonoids and have been an important target for enhancing the accumulation of flavonols through genetic manipulations. In the present study, AtMYB12 transcription factor of the Arabidopsis has been expressed under constitutive promoter in tomato. Transgenic tomato lines exhibited enhanced accumulation of flavonols and chlorogenic acid (CGA) in leaf and fruit accompanied with elevated expression of phenylpropanoid pathway genes involved in flavonol biosynthesis. In addition, global gene expression analysis in leaf and fruit suggested that AtMYB12 modulates number of molecular processes including aromatic amino acid biosynthesis, phytohormone signaling and stress responses. Besides this, a differential modulation of the genes in fruits and leaves is reported in this study. Taken together, results demonstrate that modulation of primary carbon metabolism and other pathways by AtMYB12 in tomato may lead to sufficient substrate supply for enhanced content of phenolics in general and flavonols in particular.
Collapse
Affiliation(s)
- Ashutosh Pandey
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| | - Prashant Misra
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| | - Dharmendra Choudhary
- CSIR-Central Drug Research Institute (CSIR-CDRI), Endocrinology Division, Jankipuram Extension, Sitapur Road, Lucknow; 226021, INDIA
| | - Reena Yadav
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| | - Ridhi Goel
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| | - Sweta Bhambhani
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| | - Indraneel Sanyal
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| | - Ritu Trivedi
- CSIR-Central Drug Research Institute (CSIR-CDRI), Endocrinology Division, Jankipuram Extension, Sitapur Road, Lucknow; 226021, INDIA
| | - Prabodh Kumar Trivedi
- Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow; 226 001, INDIA
| |
Collapse
|
76
|
Storch TT, Pegoraro C, Finatto T, Quecini V, Rombaldi CV, Girardi CL. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions. PLoS One 2015; 10:e0120599. [PMID: 25774904 PMCID: PMC4361542 DOI: 10.1371/journal.pone.0120599] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/24/2015] [Indexed: 12/13/2022] Open
Abstract
Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.
Collapse
Affiliation(s)
- Tatiane Timm Storch
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
- Universidade Federal de Pelotas, Pelotas, Brazil
| | - Camila Pegoraro
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
| | - Taciane Finatto
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
| | - Vera Quecini
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
| | | | - César Luis Girardi
- Empresa Brasileira de Pesquisa Agropecuária Uva e Vinho, Bento Gonçalves, Brazil
- * E-mail:
| |
Collapse
|
77
|
Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD. Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:657-68. [PMID: 25147270 PMCID: PMC4321535 DOI: 10.1093/jxb/eru332] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this study, the effect of melatonin on the postharvest ripening and quality improvement of tomato fruit was carried out. The tomatoes were immersed in exogenous melatonin for 2h, and then the related physiological indicators and the expression of genes during post-harvest life were evaluated. Compared with control check (CK), the 50 µM melatonin treatment significantly increased lycopene levels by 5.8-fold. Meanwhile, the key genes involved in fruit colour development, including phytoene synthase1 (PSY1) and carotenoid isomerase (CRTISO), showed a 2-fold increase in expression levels. The rate of water loss from tomato fruit also increased 8.3%, and the expression of aquaporin genes, such as SlPIP12Q, SlPIPQ, SlPIP21Q, and SlPIP22, was up-regulated 2- to 3-fold under 50 µM melatonin treatment. In addition, 50 µM melatonin treatment enhanced fruit softening, increased water-soluble pectin by 22.5%, and decreased protopectin by 19.5%. The expression of the cell wall modifying proteins polygalacturonase (PG), pectin esterase1 (PE1), β-galactosidase (TBG4), and expansin1 (Exp1) was up-regulated under 50 µM melatonin treatment. Melatonin increased ethylene production by 27.1%, accelerated the climacteric phase, and influenced the ethylene signalling pathway. Alteration of ethylene production correlated with altered 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS4) expression. The expression of ethylene signal transduction-related genes such as NR, SlETR4, SlEIL1, SlEIL3, and SlERF2, was enhanced by 50 µM melatonin. The effect of melatonin on ethylene biosynthesis, ethylene perception, and ethylene signalling may contribute to fruit ripening and quality improvement in tomato. This research may promote the application of melatonin on postharvest ripening and quality improvement of tomato fruit as well as other horticultural productions in the future.
Collapse
Affiliation(s)
- Qianqian Sun
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Na Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jinfang Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Haijun Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Dianbo Li
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jin Shi
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Ren Li
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Sarah Weeda
- School of Agriculture, Virginia State University, Petersburg, USA
| | - Bing Zhao
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, Petersburg, USA
| | - Yang-Dong Guo
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
78
|
Identification of microRNAs and target genes in the fruit and shoot tip of Lycium chinense: a traditional Chinese medicinal plant. PLoS One 2015; 10:e0116334. [PMID: 25587984 PMCID: PMC4294688 DOI: 10.1371/journal.pone.0116334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/05/2014] [Indexed: 11/19/2022] Open
Abstract
Although Lycium chinense (goji berry) is an important traditional Chinese medicinal plant, little genome information is available for this plant, particularly at the small-RNA level. Recent findings indicate that the evolutionary role of miRNAs is very important for a better understanding of gene regulation in different plant species. To elucidate small RNAs and their potential target genes in fruit and shoot tissues, high-throughput RNA sequencing technology was used followed by qRT-PCR and RLM 5’-RACE experiments. A total of 60 conserved miRNAs belonging to 31 families and 30 putative novel miRNAs were identified. A total of 62 significantly differentially expressed miRNAs were identified, of which 15 (14 known and 1 novel) were shoot-specific, and 12 (7 known and 5 novel) were fruit-specific. Additionally, 28 differentially expressed miRNAs were recorded as up-regulated in fruit tissues. The predicted potential targets were involved in a wide range of metabolic and regulatory pathways. GO (Gene Ontology) enrichment analysis and the KEGG (Kyoto Encyclopedia of Genes and Genomes) database revealed that “metabolic pathways” is the most significant pathway with respect to the rich factor and gene numbers. Moreover, five miRNAs were related to fruit maturation, lycopene biosynthesis and signaling pathways, which might be important for the further study of fruit molecular biology. This study is the first, to detect known and novel miRNAs, and their potential targets, of L. chinense. The data and findings that are presented here might be a good source for the functional genomic study of medicinal plants and for understanding the links among diversified biological pathways.
Collapse
|
79
|
Hu W, Zuo J, Hou X, Yan Y, Wei Y, Liu J, Li M, Xu B, Jin Z. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. FRONTIERS IN PLANT SCIENCE 2015; 6:742. [PMID: 26442055 PMCID: PMC4569978 DOI: 10.3389/fpls.2015.00742] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Jiao Zuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Xiaowan Hou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yunxie Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Juhua Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Meiying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- *Correspondence: Biyu Xu, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua County, Haikou City, Hainan Province 571101, China
| | - Zhiqiang Jin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Key Laboratory of Genetic Improvement of Bananas, Haikou Experimental Station, Chinese Academy of Tropical Agricultural SciencesHaikou, China
- Zhiqiang Jin, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Yilong W Road 2, Longhua County, Haikou City, Hainan Province 570102, China
| |
Collapse
|
80
|
Asif MH, Lakhwani D, Pathak S, Gupta P, Bag SK, Nath P, Trivedi PK. Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process. BMC PLANT BIOLOGY 2014; 14:316. [PMID: 25442405 PMCID: PMC4263013 DOI: 10.1186/s12870-014-0316-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/04/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Banana is one of the most important crop plants grown in the tropics and sub-tropics. It is a climacteric fruit and undergoes ethylene dependent ripening. Once ripening is initiated, it proceeds at a fast rate making postharvest life short, which can result in heavy economic losses. During the fruit ripening process a number of physiological and biochemical changes take place and thousands of genes from various metabolic pathways are recruited to produce a ripe and edible fruit. To better understand the underlying mechanism of ripening, we undertook a study to evaluate global changes in the transcriptome of the fruit during the ripening process. RESULTS We sequenced the transcriptomes of the unripe and ripe stages of banana (Musa accuminata; Dwarf Cavendish) fruit. The transcriptomes were sequenced using a 454 GSFLX-Titanium platform that resulted in more than 7,00,000 high quality (HQ) reads. The assembly of the reads resulted in 19,410 contigs and 92,823 singletons. A large number of the differentially expressed genes identified were linked to ripening dependent processes including ethylene biosynthesis, perception and signalling, cell wall degradation and production of aromatic volatiles. In the banana fruit transcriptomes, we found transcripts included in 120 pathways described in the KEGG database for rice. The members of the expansin and xyloglucan transglycosylase/hydrolase (XTH) gene families were highly up-regulated during ripening, which suggests that they might play important roles in the softening of the fruit. Several genes involved in the synthesis of aromatic volatiles and members of transcription factor families previously reported to be involved in ripening were also identified. CONCLUSIONS A large number of differentially regulated genes were identified during banana fruit ripening. Many of these are associated with cell wall degradation and synthesis of aromatic volatiles. A large number of differentially expressed genes did not align with any of the databases and might be novel genes in banana. These genes can be good candidates for future studies to establish their role in banana fruit ripening. The datasets developed in this study will help in developing strategies to manipulate banana fruit ripening and reduce post harvest losses.
Collapse
Affiliation(s)
- Mehar Hasan Asif
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- />Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| | - Deepika Lakhwani
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- />Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| | - Sumya Pathak
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
| | - Parul Gupta
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
| | - Sumit K Bag
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- />Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| | - Pravendra Nath
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
| | - Prabodh Kumar Trivedi
- />CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001 India
- />Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, 110 001 India
| |
Collapse
|
81
|
Switzenberg JA, Beaudry RM, Grumet R. Effect of CRC::etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res 2014; 24:497-507. [PMID: 25416172 DOI: 10.1007/s11248-014-9853-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/18/2014] [Indexed: 12/30/2022]
Abstract
Ethylene is a key factor regulating sex expression in cucurbits. Commercial melons (Cucumis melo L.) are typically andromonoecious, producing male and bisexual flowers. Our prior greenhouse studies of transgenic melon plants expressing the dominant negative ethylene perception mutant gene, etr1-1, under control of the carpel- and nectary-primordia targeted CRAB'S CLAW (CRC) promoter showed increased number and earlier appearance of carpel-bearing flowers. To further investigate this phenomenon which could be potentially useful for earlier fruit production, we observed CRC::etr1-1 plants in the field for sex expression, fruit set, fruit development, and ripening. CRC::etr1-1 melon plants showed increased number of carpel-bearing open flowers on the main stem and earlier onset by 7-10 nodes. Additional phenotypes observed in the greenhouse and field were conversion of approximately 50% of bisexual buds to female, and elongated ovaries and fruits. Earlier and greater fruit set occurred on the transgenic plants. However, CRC::etr1-1 plants had greater abscission of young fruit, and smaller fruit, so that final yield (kg/plot) was equivalent to wild type. Earlier fruit set in line M5 was accompanied by earlier appearance of ripe fruit. Fruit from line M15 frequently did not exhibit external ripening processes of rind color change and abscission, but when cut open, the majority showed a ripe or overripe interior accompanied by elevated internal ethylene. The non-ripening external phenotype in M15 fruit corresponded with elevated etr1-1 transgene expression in the exocarp. These results provide insight into the role of ethylene perception in carpel-bearing flower production, fruit set, and ripening.
Collapse
Affiliation(s)
- Jessica A Switzenberg
- Graduate Program in Genetics, Michigan State University, 1066 Bogue Street, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
82
|
Nordey T, Léchaudel M, Génard M, Joas J. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1555-1563. [PMID: 25151123 DOI: 10.1016/j.jplph.2014.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/17/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Managing fruit quality is complex because many different attributes have to be taken into account, which are themselves subjected to spatial and temporal variations. Heterogeneous fruit quality has been assumed to be partly related to temperature and maturity gradients within the fruit. To test this assumption, we measured the spatial variability of certain mango fruit quality traits: colour of the peel and of the flesh, and sourness and sweetness, at different stages of fruit maturity using destructive methods as well as vis-NIR reflectance. The spatial variability of mango quality traits was compared to internal variations in thermal time, simulated by a physical model, and to internal variations in maturity, using ethylene content as an indicator. All the fruit quality indicators analysed showed significant spatial and temporal variations, regardless of the measurement method used. The heterogeneity of internal fruit quality traits was not correlated with the marked internal temperature gradient we modelled. However, variations in ethylene content revealed a strong internal maturity gradient which was correlated with the spatial variations in measured mango quality traits. Nonetheless, alone, the internal maturity gradient did not explain the variability of fruit quality traits, suggesting that other factors, such as gas, abscisic acid and water gradients, are also involved.
Collapse
Affiliation(s)
| | | | - Michel Génard
- INRA, UR 1115, Plantes et Systèmes de culture Horticoles, 84000 Avignon, France
| | | |
Collapse
|
83
|
Paniagua C, Posé S, Morris VJ, Kirby AR, Quesada MA, Mercado JA. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. ANNALS OF BOTANY 2014; 114:1375-83. [PMID: 25063934 PMCID: PMC4195560 DOI: 10.1093/aob/mcu149] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/28/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND One of the main factors that reduce fruit quality and lead to economically important losses is oversoftening. Textural changes during fruit ripening are mainly due to the dissolution of the middle lamella, the reduction of cell-to-cell adhesion and the weakening of parenchyma cell walls as a result of the action of cell wall modifying enzymes. Pectins, major components of fruit cell walls, are extensively modified during ripening. These changes include solubilization, depolymerization and the loss of neutral side chains. Recent evidence in strawberry and apple, fruits with a soft or crisp texture at ripening, suggests that pectin disassembly is a key factor in textural changes. In both these fruits, softening was reduced as result of antisense downregulation of polygalacturonase genes. Changes in pectic polymer size, composition and structure have traditionally been studied by conventional techniques, most of them relying on bulk analysis of a population of polysaccharides, and studies focusing on modifications at the nanostructural level are scarce. Atomic force microscopy (AFM) allows the study of individual polymers at high magnification and with minimal sample preparation; however, AFM has rarely been employed to analyse pectin disassembly during fruit ripening. SCOPE In this review, the main features of the pectin disassembly process during fruit ripening are first discussed, and then the nanostructural characterization of fruit pectins by AFM and its relationship with texture and postharvest fruit shelf life is reviewed. In general, fruit pectins are visualized under AFM as linear chains, a few of which show long branches, and aggregates. Number- and weight-average values obtained from these images are in good agreement with chromatographic analyses. Most AFM studies indicate reductions in the length of individual pectin chains and the frequency of aggregates as the fruits ripen. Pectins extracted with sodium carbonate, supposedly located within the primary cell wall, are the most affected.
Collapse
Affiliation(s)
- Candelas Paniagua
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Sara Posé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - Victor J Morris
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Andrew R Kirby
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Miguel A Quesada
- Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| | - José A Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' (IHSM-UMA-CSIC), Departamento de Biología Vegetal, Universidad de Málaga, 29071, Málaga, Spain
| |
Collapse
|
84
|
Cherian S, Figueroa CR, Nair H. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4705-22. [PMID: 24994760 DOI: 10.1093/jxb/eru280] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
Collapse
Affiliation(s)
- Sam Cherian
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| | - Carlos R Figueroa
- Faculty of Forest Sciences and Biotechnology Center, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile
| | - Helen Nair
- Faculty of Integrative Sciences and Technology, Quest International University Perak, Jalan Raja Permaisuri Bainun, 30250 Ipoh, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
85
|
Kumar R, Khurana A, Sharma AK. Role of plant hormones and their interplay in development and ripening of fleshy fruits. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4561-75. [PMID: 25028558 DOI: 10.1093/jxb/eru277] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant hormones have been extensively studied for their roles in the regulation of various aspects of plant development. However, in the last decade important new insights have been made into their action during development and ripening, in both dry and fleshy fruits. Emerging evidence suggests that relative functions of plant hormones are not restricted to a particular stage, and a complex network of more than one plant hormone is involved in controlling various aspects of fruit development. Though some areas are extensively covered, considerable gaps in our knowledge and understanding still exist in the control of hormonal networks and crosstalk between different hormones during fruit expansion, maturation, and various other aspects of ripening. Here, we evaluate the new knowledge on their relative roles during tomato fruit development with a view to understand their mechanism of action in fleshy fruits. For a better understanding, pertinent evidences available on hormonal crosstalk during fruit development in other species are also discussed. We envisage that such detailed knowledge will help design new strategies for effective manipulation of fruit ripening.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India. Current address: Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Ashima Khurana
- Zakir Husain Delhi College, University of Delhi, New Delhi 110002, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
86
|
Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA. Transcriptional control of fleshy fruit development and ripening. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4527-41. [PMID: 25080453 DOI: 10.1093/jxb/eru316] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on tomato. While aspects of fruit development are probably conserved throughout the angiosperms, including the model plant Arabidopsis thaliana, it is shown that the likely orthologues of Arabidopsis genes have distinct functions in fleshy fruits. The model for the study of fleshy fruit development is tomato, because of the availability of single gene mutants and transgenic knock-down lines. In other species, our knowledge is often incomplete or absent. Tomato fruit size and shape are co-determined by transcription factors acting during formation of the ovary. Other transcription factors play a role in fruit chloroplast formation, and upon ripening impact quality aspects such as secondary metabolite content. In tomato, the transcription factors NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and RIPENING INHIBITOR (MADS-RIN) in concert with ethylene signalling regulate ripening, possibly in response to a developmental switch. Additional components include TOMATO AGAMOUS-LIKE1 (TAGL1), APETALA2a (AP2a), and FRUITFULL (FUL1 and FUL2). The links between this highly connected regulatory network and downstream effectors modulating colour, texture, and flavour are still relatively poorly understood. Intertwined with this network is post-transcriptional regulation by fruit-expressed microRNAs targeting several of these transcription factors. This important developmental process is also governed by changes in DNA methylation levels and possibly chromatin remodelling.
Collapse
Affiliation(s)
- Rumyana Karlova
- Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands Laboratory of Molecular Biology, Wageningen University, 6700 ET Wageningen, The Netherlands
| | - Natalie Chapman
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Karine David
- University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University, 6700 ET Wageningen, The Netherlands Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands
| | - Graham B Seymour
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Ruud A de Maagd
- Business Unit Bioscience, Plant Research International, 6700 AP Wageningen, The Netherlands Chair group Bioinformatics, Wageningen University, 6700 ET Wageningen, The Netherlands
| |
Collapse
|
87
|
Ságio SA, Barreto HG, Lima AA, Moreira RO, Rezende PM, Paiva LV, Chalfun-Junior A. Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. PLANTA 2014; 239:951-963. [PMID: 24435496 DOI: 10.1007/s00425-014-2026-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
The plant hormone ethylene is involved in the regulation of a multitude of plant processes, ranging from seed germination to organ senescence. Ethylene induces fruit ripening in climacteric fruits, such as coffee, being directly involved in fruit ripening time and synchronization. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, this work aimed to characterize the putative members of the coffee (Coffea arabica) ethylene biosynthesis and signaling pathways, as well as to analyze the expression patterns of these members during fruit ripening of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Reverse Transcription-qPCR analysis of the four biosynthesis genes (CaACS1-like; CaACO1-like; CaACO4-like e CaACO5-like) analyzed in this study showed that CaACO1-like and CaACO4-like displayed an expression pattern typically observed in climacteric fruits, being up-regulated during ripening. CaACS1-like gene expression was also up-regulated during fruit ripening of both cultivars, although in a much lesser extent when compared to the changes in CaACO1-like and CaACO4-like gene expression. CaACO5-like was only induced in raisin fruit and may be related to senescence processes. On the other hand, members of the ethylene signaling pathway (CaETR1-like, CaETR4-like, CaCTR2-like, CaEIN2-like, CaEIN3-like, CaERF1) showed slightly higher expression levels during the initial stages of development (green and yellow-green fruits), except for the ethylene receptors CaETR1-like and CaETR4-like, which were constitutively expressed and induced in cherry fruits, respectively. The higher ethylene production levels in Catucaí 785-15 fruits, indicated by the expression analysis of CaACO1-like and CaACO4-like, suggest that it promotes an enhanced CaETR4-like degradation, leading to an increase in ethylene sensitivity and consequently to an earliness in the ripening process of this cultivar. Ethylene production in Acauã fruits may not be sufficient to inactivate the CaETR4-like levels and thus ripening changes occur in a slower pace. Thus, the expression analysis of the ethylene biosynthesis and signaling genes suggests that ethylene is directly involved in the determination of the ripening time of coffee fruits, and CaACO1-like, CaACO4-like and CaETR4-like may display essential roles during coffee fruit ripening.
Collapse
Affiliation(s)
- Solange A Ságio
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx. P 3037-37200-000, Lavras, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
88
|
Takizawa A, Hyodo H, Wada K, Ishii T, Satoh S, Iwai H. Regulatory specialization of xyloglucan (XG) and glucuronoarabinoxylan (GAX) in pericarp cell walls during fruit ripening in tomato (Solanum lycopersicum). PLoS One 2014; 9:e89871. [PMID: 24587088 PMCID: PMC3935947 DOI: 10.1371/journal.pone.0089871] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Disassembly of cell wall polysaccharides by various cell wall hydrolases during fruit softening causes structural changes in hemicellulose and pectin that affect the physical properties and softening of tomato fruit. In a previous study, we showed that the changes in pectin during tomato fruit ripening were unique in each fruit tissue. In this study, to clarify the changes in hemicellulose in tissues during tomato fruit ripening, we focused on glucuronoarabinoxylan (GAX) and xyloglucan (XG). GAX was detected only in the skin and inner epidermis of the pericarp using LM11 antibodies, whereas a large increase in XG was detected in all fruit tissues using LM15 antibodies. The activity of hemicellulose degradation enzymes, such as β-xylosidase and α-arabinofuranosidase, decreased gradually during fruit ripening, although the tomato fruits continued to soften. In contrast, GAX and XG biosynthesis-related genes were expressed in all tomato fruit tissues even during ripening, indicating that XG was synthesized throughout the fruit and that GAX may be synthesized only in the vascular bundles and the inner epidermis. Our results suggest that changes in the cell wall architecture and tissue-specific distribution of XG and GAX might be required for the regulation of fruit softening and the maintenance of fruit shape.
Collapse
Affiliation(s)
- Ayami Takizawa
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Hiromi Hyodo
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Kanako Wada
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Tadashi Ishii
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Shinobu Satoh
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroaki Iwai
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
89
|
Shangguan L, Wang X, Leng X, Liu D, Ren G, Tao R, Zhang C, Fang J. Identification and bioinformatic analysis of signal responsive/calmodulin-binding transcription activators gene models in Vitis vinifera. Mol Biol Rep 2014; 41:2937-49. [PMID: 24458826 DOI: 10.1007/s11033-014-3150-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
In this study, 10 grapevine (Vitis vinifera) SR/CAMTA (Signal Responsive/Calmodulin-binding Transcription Activators) gene models were identified from three grapevine genome protein datasets. They belong to four gene groups: VvCAMTA1, VvCAMTA3, VvCAMTA4 and VvCAMTA5, which were located on chromosome 5, 7_random, 1 and 5, respectively. Alternative splicing could explain the multiple gene models in one gene group. Subcellular localization using the WoLF tool showed that most of the VvCAMTAs were located in the nucleus, except for VvCAMTA3.1, VvCAMTA3.2 and VvCAMTA5.2, which were located in the chloroplast, chloroplast and cytosol, respectively. Subcellular localization using TargetP showed that most of the VvCAMTAs were not located in the chloroplast, mitochondrion and secretory pathway in cells. VvCAMTA1.1 and VvCAMTA1.2 were located in the mitochondria. The digital gene expression profile showed that VvCAMTAs play important roles in Ca2+ signal transduction. The gene expression patterns of VvCAMTAs were different; for example, VvCAMTA1 was expressed mainly in the bud, while VvCAMTA3 was expressed mainly in fruit and inflorescence, with low expression in the bud. The results of this study make a substantial contribution to our knowledge concerning genes, genome annotation, and cell signal transduction in grapevine.
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Bergougnoux V. The history of tomato: From domestication to biopharming. Biotechnol Adv 2014; 32:170-89. [DOI: 10.1016/j.biotechadv.2013.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
|
91
|
Rai MK, Shekhawat NS. Recent advances in genetic engineering for improvement of fruit crops. PLANT CELL, TISSUE AND ORGAN CULTURE (PCTOC) 2014; 116:1-15. [PMID: 0 DOI: 10.1007/s11240-013-0389-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 09/30/2013] [Indexed: 05/24/2023]
|
92
|
Gayathri T, Nair AS, Sane VA. Polygalacturonase (PG) gene expression in Musa acuminata cultivars from Kerala. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
93
|
Aizat WM, Able JA, Stangoulis JCR, Able AJ. Characterisation of ethylene pathway components in non-climacteric capsicum. BMC PLANT BIOLOGY 2013; 13:191. [PMID: 24286334 PMCID: PMC4219378 DOI: 10.1186/1471-2229-13-191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/25/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the 'Breaker stage'. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. RESULTS The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. CONCLUSIONS ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit.
Collapse
Affiliation(s)
- Wan M Aizat
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond SA 5064, Australia
| | - James CR Stangoulis
- School of Biological Science, Flinders University, Bedford Park SA 5042, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond SA 5064, Australia
| |
Collapse
|
94
|
Asif MH, Lakhwani D, Pathak S, Bhambhani S, Bag SK, Trivedi PK. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening. Funct Integr Genomics 2013; 14:161-75. [PMID: 24275941 DOI: 10.1007/s10142-013-0349-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database.
Collapse
Affiliation(s)
- Mehar Hasan Asif
- National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | | | | | |
Collapse
|
95
|
Hyodo H, Terao A, Furukawa J, Sakamoto N, Yurimoto H, Satoh S, Iwai H. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum). PLoS One 2013; 8:e78949. [PMID: 24236073 PMCID: PMC3827314 DOI: 10.1371/journal.pone.0078949] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2013] [Indexed: 01/04/2023] Open
Abstract
Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.
Collapse
Affiliation(s)
- Hiromi Hyodo
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Azusa Terao
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Jun Furukawa
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Naoya Sakamoto
- Hokkaido University, Creative Research Institution (CRIS), Sapporo, Hokkaido, Japan
| | - Hisayoshi Yurimoto
- Hokkaido University, Creative Research Institution (CRIS), Sapporo, Hokkaido, Japan
- Hokkaido University, Natural History Sciences, Sapporo, Hokkaido, Japan
| | - Shinobu Satoh
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| | - Hiroaki Iwai
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
96
|
Khaira H, Sandhu KS, Singh M. Controlled Ripening and Storage on Physical Characteristics of Tomato. ACTA ACUST UNITED AC 2013. [DOI: 10.1080/19315260.2013.789813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
97
|
Aizat WM, Able JA, Stangoulis JCR, Able AJ. Proteomic analysis during capsicum ripening reveals differential expression of ACC oxidase isoform 4 and other candidates. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1115-1128. [PMID: 32481179 DOI: 10.1071/fp12330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 05/14/2013] [Indexed: 06/11/2023]
Abstract
Capsicum (Capsicum annuum L.) is categorised as a non-climacteric fruit that exhibits limited ethylene production during ripening and the molecular mechanisms associated with this process are poorly understood. A proteomic approach was used to identify the differentially expressed proteins during various ripening stages (Green (G), Breaker Red 1 (BR1) and Light Red (LR)) and the genes associated with their synthesis. From 2D gel electrophoresis (2DGE), seven protein spots were identified as selectively present either in G or BR1 and are involved in carbon metabolism, colour and fruit development, protein synthesis and chaperones or biosynthesis of amino acids and polyamines. One candidate of interest, 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO) is known to be involved in ethylene biosynthesis and was only present in BR1 and is related to the tomato ACO isoform 4 (LeACO4) and hence named CaACO4. CaACO4 RNA expression as well as total ACO protein expression in multiple stages of ripening (G, Breaker (B), BR1, Breaker Red 2 (BR2), LR and Deep Red (DR)) corresponded to the 2DGE protein spot abundance in breaker stages. Our findings highlight the involvement of the ethylene pathway in non-climacteric fruit ripening.
Collapse
Affiliation(s)
- Wan M Aizat
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - Jason A Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Australia
| | - James C R Stangoulis
- School of Biological Science, Flinders University, Bedford Park, SA 5042, Australia
| | - Amanda J Able
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Research Institute, Glen Osmond, SA 5064, Australia
| |
Collapse
|
98
|
Shekhawat UKS, Ganapathi TR. MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses. PLoS One 2013; 8:e75506. [PMID: 24116051 PMCID: PMC3792942 DOI: 10.1371/journal.pone.0075506] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/13/2013] [Indexed: 11/18/2022] Open
Abstract
WRKY transcription factors are specifically involved in the transcriptional reprogramming following incidence of abiotic or biotic stress on plants. We have previously documented a novel WRKY gene from banana, MusaWRKY71, which was inducible in response to a wide array of abiotic or biotic stress stimuli. The present work details the effects of MusaWRKY71 overexpression in transgenic banana plants. Stable integration and overexpression of MusaWRKY71 in transgenic banana plants was proved by Southern blot analysis and quantitative real time PCR. Transgenic banana plants overexpressing MusaWRKY71 displayed enhanced tolerance towards oxidative and salt stress as indicated by better photosynthesis efficiency (Fv/Fm) and lower membrane damage of the assayed leaves. Further, differential regulation of putative downstream genes of MusaWRKY71 was investigated using real-time RT-PCR expression analysis. Out of a total of 122 genes belonging to WRKY, pathogenesis-related (PR) protein genes, non-expressor of pathogenesis-related genes 1 (NPR1) and chitinase families analyzed, 10 genes (six belonging to WRKY family, three belonging to PR proteins family and one belonging to chitinase family) showed significant differential regulation in MusaWRKY71 overexpressing lines. These results indicate that MusaWRKY71 is an important constituent in the transcriptional reprogramming involved in diverse stress responses in banana.
Collapse
Affiliation(s)
- Upendra K. S. Shekhawat
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
99
|
Sreedharan S, Shekhawat UKS, Ganapathi TR. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:942-52. [PMID: 23745761 DOI: 10.1111/pbi.12086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/02/2013] [Accepted: 04/29/2013] [Indexed: 05/21/2023]
Abstract
Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation.
Collapse
Affiliation(s)
- Shareena Sreedharan
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | | | | |
Collapse
|
100
|
Muñoz-Bertomeu J, Miedes E, Lorences EP. Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1194-201. [PMID: 23628624 DOI: 10.1016/j.jplph.2013.03.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151), a xyloglucan modifying enzyme, has been proposed to have a role during tomato and apple fruit ripening by loosening the cell wall. Since the ripening of climacteric fruits is controlled by endogenous ethylene biosynthesis, we wanted to study whether XET activity was ethylene-regulated, and if so, which specific genes encoding ripening-regulated XTH genes were indeed ethylene-regulated. XET specific activity in tomato and apple fruits was significantly increased by the ethylene treatment, as compared with the control fruits, suggesting an increase in the XTH gene expression induced by ethylene. The 25 SlXTH protein sequences of tomato and the 11 sequences MdXTH of apple were phylogenetically analyzed and grouped into three major clades. The SlXTHs genes with highest expression during ripening were SlXTH5 and SlXTH8 from Group III-B, and in apple MdXTH2, from Group II, and MdXTH10, and MdXTH11 from Group III-B. Ethylene was involved in the regulation of the expression of different SlXTH and MdXTH genes during ripening. In tomato fruit fifteen different SlXTH genes showed an increase in expression after ethylene treatment, and the SlXTHs that were ripening associated were also ethylene dependent, and belong to Group III-B (SlXTH5 and SlXTH8). In apple fruit, three MdXTH showed an increase in expression after the ethylene treatment and the only MdXTH that was ripening associated and ethylene dependent was MdXTH10 from Group III-B. The results indicate that XTH may play an important role in fruit ripening and a possible relationship between XTHs from Group III-B and fruit ripening, and ethylene regulation is suggested.
Collapse
Affiliation(s)
- J Muñoz-Bertomeu
- Dpto. Biología Vegetal, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | | | | |
Collapse
|