51
|
Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. Int J Biol Macromol 2019; 122:425-451. [DOI: 10.1016/j.ijbiomac.2018.10.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
|
52
|
Cochet F, Facchini FA, Zaffaroni L, Billod JM, Coelho H, Holgado A, Braun H, Beyaert R, Jerala R, Jimenez-Barbero J, Martin-Santamaria S, Peri F. Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties. Sci Rep 2019; 9:919. [PMID: 30696900 PMCID: PMC6351529 DOI: 10.1038/s41598-018-37421-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
New monosaccharide-based lipid A analogues were rationally designed through MD-2 docking studies. A panel of compounds with two carboxylate groups as phosphates bioisosteres, was synthesized with the same glucosamine-bis-succinyl core linked to different unsaturated and saturated fatty acid chains. The binding of the synthetic compounds to purified, functional recombinant human MD-2 was studied by four independent methods. All compounds bound to MD-2 with similar affinities and inhibited in a concentration-dependent manner the LPS-stimulated TLR4 signaling in human and murine cells, while being inactive as TLR4 agonists when provided alone. A compound of the panel was tested in vivo and was not able to inhibit the production of proinflammatory cytokines in animals. This lack of activity is probably due to strong binding to serum albumin, as suggested by cell experiments in the presence of the serum. The interesting self-assembly property in solution of this type of compounds was investigated by computational methods and microscopy, and formation of large vesicles was observed by cryo-TEM microscopy.
Collapse
Affiliation(s)
- Florent Cochet
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Lenny Zaffaroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Jean-Marc Billod
- Department of Structural and Chemical Biology, Centro de Investigaciones Biologicas, CIB-CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Helena Coelho
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801 A, 48170, Derio, Spain.,UCIBIO, REQUIMTE, Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain
| | - Aurora Holgado
- Unit for Molecular Signal Transduction in Inflammation VIB-UGent Center for Inflammation Research, VIB Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Harald Braun
- Unit for Molecular Signal Transduction in Inflammation VIB-UGent Center for Inflammation Research, VIB Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Rudi Beyaert
- Unit for Molecular Signal Transduction in Inflammation VIB-UGent Center for Inflammation Research, VIB Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Roman Jerala
- Department of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Jesus Jimenez-Barbero
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801 A, 48170, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain
| | - Sonsoles Martin-Santamaria
- Department of Structural and Chemical Biology, Centro de Investigaciones Biologicas, CIB-CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy.
| |
Collapse
|
53
|
Eslami M, Nezafat N, Negahdaripour M, Ghasemi Y. Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer’s disease. J Biomol Struct Dyn 2019; 37:4825-4839. [DOI: 10.1080/07391102.2018.1564701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
54
|
Awasthi S, Singh B, Ramani V, Xie J, Kosanke S. TLR4-interacting SPA4 peptide improves host defense and alleviates tissue injury in a mouse model of Pseudomonas aeruginosa lung infection. PLoS One 2019; 14:e0210979. [PMID: 30689633 PMCID: PMC6349318 DOI: 10.1371/journal.pone.0210979] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/04/2019] [Indexed: 11/18/2022] Open
Abstract
Interaction between surfactant protein-A (SP-A) and toll-like receptor (TLR)4 plays a critical role in host defense. In this work, we studied the host defense function of SPA4 peptide (amino acids GDFRYSDGTPVNYTNWYRGE), derived from the TLR4-interacting region of SP-A, against Pseudomonas aeruginosa. We determined the binding of SPA4 peptide to live bacteria, and its direct antibacterial activity against P. aeruginosa. Pro-phagocytic and anti-inflammatory effects were investigated in JAWS II dendritic cells and primary alveolar macrophages. The biological relevance of SPA4 peptide was evaluated in a mouse model of acute lung infection induced by intratracheal challenge with P. aeruginosa. Our results demonstrate that the SPA4 peptide does not interact with or kill P. aeruginosa when cultured outside the host. The SPA4 peptide treatment induces the uptake and localization of bacteria in the phagolysosomes of immune cells. At the same time, the secreted amounts of TNF-α are significantly reduced in cell-free supernatants of SPA4 peptide-treated cells. In cells overexpressing TLR4, the TLR4-induced phagocytic response is maintained, but the levels of TLR4-stimulated TNF-α are reduced. Furthermore, our results demonstrate that the therapeutic administration of SPA4 peptide reduces bacterial burden, inflammatory cytokines and chemokines, intracellular signaling, and lactate levels, and alleviates lung edema and tissue damage in P. aeruginosa-infected mice. Together, our results suggest that the treatment with SPA4 peptide can help control the bacterial burden, inflammation, and tissue injury in a P. aeruginosa lung infection model.
Collapse
Affiliation(s)
- Shanjana Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Bhupinder Singh
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Vijay Ramani
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Jun Xie
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma, United States of America
| | - Stanley Kosanke
- Department of Pathology, OUHSC, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
55
|
Zhu W, Xu R, Du J, Fu Y, Li S, Zhang P, Liu L, Jiang H. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw. FASEB J 2019; 33:5208-5219. [PMID: 30624969 DOI: 10.1096/fj.201801791rr] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a detrimental side effect of the long-term administration of bisphosphonates. Although macrophages were reported to be an important mediator of BRONJ, the detailed potential mechanism of BRONJ remains unclear. Here, we reported an elevated TLR-4 expression in macrophages under action of zoledronic acid (ZA), resulting in enhanced M1 macrophage polarization and decreased M2 macrophage polarization both in vitro and in vivo. After inhibiting the TLR-4 signaling pathway, the activation of the TLR-4/NF-κB signaling pathway and the induction of NF-κB nuclear translocation and production of proinflammatory cytokines by ZA were suppressed in macrophages, thereby inhibiting M1 macrophage polarization. By utilizing the TLR-4-/- mice, development of BRONJ was markedly ameliorated, and M1 macrophages were significantly attenuated in the extraction socket tissues in the TLR-4-/- mice. Importantly, the systemic administration of the TLR-4 inhibitor TAK-242 improved the wound healing of the extraction socket and decreased the incidence rate of BRONJ. Taken together, our findings suggest that TLR-4-mediated macrophage polarization participates in the pathogenesis of BRONJ in mice, and TLR-4 may be a potential target for the prevention and therapeutic treatment of BRONJ.-Zhu, W., Xu, R., Du, J., Fu, Y., Li, S., Zhang, P., Liu, L., Jiang, H. Zoledronic acid promotes TLR-4-mediated M1 macrophage polarization in bisphosphonate-related osteonecrosis of the jaw.
Collapse
Affiliation(s)
- Weiwen Zhu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| | - Jinying Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| | - Yu Fu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
56
|
Saenger T, Vordenbäumen S, Genich S, Haidar S, Schulte M, Nienberg C, Bleck E, Schneider M, Jose J. Human α S1-casein induces IL-8 secretion by binding to the ecto-domain of the TLR4/MD2 receptor complex. Biochim Biophys Acta Gen Subj 2018; 1863:632-643. [PMID: 30553868 DOI: 10.1016/j.bbagen.2018.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/22/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The milk protein αS1-casein was recently reported to induce secretion of proinflammatory cytokines via Toll-like receptor 4 (TLR4). In this study, αS1-casein was identified as binder of theTLR4 ecto domain. METHODS IL-8 secretion after stimulation of TLR4/MD2 (myeloid differentiation factor 2)/CD14 (cluster of differentiation 14)-transfected HEK293 cells (TLR4+) and Mono Mac 6 cells (MM6) with recombinant αS1-casein, or LPS as control was monitored. Binding of αS1-casein to TLR4 was quantified by microscale thermophoresis (MST). RESULTS αS1-casein induced secretion of IL-8 in TLR4+ cells and in MM6 cells with a six-times higher final IL-8 concentration in supernatants. IL-8 secretion was inhibited by intracellular TLR4-domain antagonist TAK-242 with an IC50-value of 259.6 nM, by ecto-domain TLR4 antagonistic mianserin with 10-51 μM and by anti-CD14-IgA. The binding constants (KD) of αS1-casein to the TLR4, MD2, and CD14 were 2.8 μM, 0.3 μM and 2.7 μM, respectively. Finally, αS1-casein showed a higher affinity to TLR4/MD2 (KD: 2.2 μM) compared to LPS (KD: 8.2 μM). CONCLUSION Human αS1-casein induced proinflammatory effects are dependent upon binding to the TLR4 ectodomain and the presence of CD14. αS1-casein displayed stronger TLR4 agonistic activity than LPS via a different mode of action. GENERAL SIGNIFICANCE Breast milk protein αS1-casein is a proinflammatory cytokine.
Collapse
Affiliation(s)
- Thorsten Saenger
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstr. 48, 48149 Münster, Germany.
| | - Stefan Vordenbäumen
- Medical Faculty, Department of Rheumatology, Hiller Research Unit Rheumatology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Swetlana Genich
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstr. 48, 48149 Münster, Germany.
| | - Samer Haidar
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstr. 48, 48149 Münster, Germany.
| | - Marten Schulte
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstr. 48, 48149 Münster, Germany.
| | - Christian Nienberg
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstr. 48, 48149 Münster, Germany.
| | - Ellen Bleck
- Medical Faculty, Department of Rheumatology, Hiller Research Unit Rheumatology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Matthias Schneider
- Medical Faculty, Department of Rheumatology, Hiller Research Unit Rheumatology, Heinrich-Heine-University Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany.
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstr. 48, 48149 Münster, Germany.
| |
Collapse
|
57
|
Xing F, Zhang W, Wen J, Bai L, Gu H, Li Z, Zhang J, Tao YX, Xu JT. TLR4/NF-κB signaling activation in plantar tissue and dorsal root ganglion involves in the development of postoperative pain. Mol Pain 2018; 14:1744806918807050. [PMID: 30270727 PMCID: PMC6196615 DOI: 10.1177/1744806918807050] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Severe postoperative pain remains a clinical problem that impacts patient’s rehabilitation. The present work aims to investigate the role of Toll-like receptor-4 (TLR4) activation in wounded plantar tissue and dorsal root ganglion (DRG) in the genesis of postoperative pain and its underlying mechanisms. Results Postoperative pain was induced by plantar incision in rat hind paw. Plantar incision led to increased expression of TLR4 in ipsilateral lumbar 4–5 (L4/L5) DRGs, which occurred at 2 h and was persistent to the third day after surgery. Similar to the change in TLR4 expression, there was also significant increase in phosphorylated nuclear factor-kappa B p65 (p-p65) in DRGs after surgery. Immunofluorescence staining revealed that the increased expressions of TLR4 and p-p65 not only in neuronal cells but also in satellite glial cells in DRG. Furthermore, the enhanced expressions of TLR4 and p-p65 were also detected in plantar tissues around the incision, which was observed starting at 2 h and lasting until the third day after surgery. Prior intrathecal (i.t.) injections of TAK-242 (a TLR4-specific antagonist) or 4',6-diamidino-2-phenylindole-dihydrochloride (PDTC, a nuclear factor-kappa B activation inhibitor) dose dependently alleviated plantar incision-induced mechanical allodynia and thermal hyperalgesia and inhibited the increased expressions of p-p65, tumor necrosis factor-alpha, and interleukin-1 beta in DRG. Prior subcutaneous (s.c.) plantar injection of TAK-242 or PDTC also ameliorated pain-related hypersensitivity following plantar incision. Moreover, the plantar s.c. injection of TAK-242 or PDTC inhibited the increased expressions of p-p65, tumor necrosis factor-alpha, and interleukin-1 beta not only in local wounded plantar tissue but also dramatically in ipsilateral lumbar 4–5 DRGs. Conclusion TLR4/ nuclear factor-kappa B signaling activation in local injured tissue and DRG contribute to the development of postoperative pain via regulating pro-inflammatory cytokines release. Targeting TLR4/ nuclear factor-kappa B signaling in local tissue at early stage of surgery may be an effective strategy for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Fei Xing
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,2 Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,3 Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wen
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Liying Bai
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Hanwen Gu
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,2 Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,3 Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Zhang
- 2 Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuan-Xiang Tao
- 3 Neuroscience Research Institute, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ji-Tian Xu
- 1 Department of Anesthesiology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,2 Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
58
|
Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in Cancer: A Review of the Achievements and Shortcomings. Mol Pharm 2018; 15:4777-4800. [DOI: 10.1021/acs.molpharmaceut.8b00691] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, D-53121 Bonn, Germany
- PEPITE EA4267, Univ. Bourgonge Franch-Comte, 25030 Besançon, France
| |
Collapse
|
59
|
Vakili B, Eslami M, Hatam GR, Zare B, Erfani N, Nezafat N, Ghasemi Y. Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. Int J Biol Macromol 2018; 120:1127-1139. [PMID: 30172806 DOI: 10.1016/j.ijbiomac.2018.08.125] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/16/2018] [Accepted: 08/25/2018] [Indexed: 12/29/2022]
Abstract
Visceral leishmaniasis (VL) or kala-azar, the most severe form of the disease, is endemic in more than eighty countries across the world. To date, there is no approved vaccine against VL in the market. Recent advances in reverse vaccinology could be promising approach in designing the efficient vaccine for VL treatment. In this study, an efficient multi-epitope vaccine against Leishmania infantum, the causative agent of VL, was designed using various computational vaccinology methods. Potential immunodominant epitopes were selected from four antigenic proteins, including histone H1, sterol 24-c-methyltransferase (SMT), Leishmania-specific hypothetical protein (LiHy), and Leishmania-specific antigenic protein (LSAP). To enhance vaccine immunogenicity, two resuscitation-promoting factor of Mycobacterium tuberculosis, RpfE and RpfB, were employed as adjuvants. All the aforesaid segments were joined using proper linkers. Homology modeling, followed by refinement and validation was performed to obtain a high-quality 3D structure of designed vaccine. Docking analyses and molecular dynamics (MD) studies indicated vaccine/TLR4 complex was in the stable form during simulation time. In sum, we expect our designed vaccine is able to induce humoral and cellular immune responses against L. infantum, and may be promising medication for VL, after in vitro and in vivo immunological assays.
Collapse
Affiliation(s)
- Bahareh Vakili
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bijan Zare
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrollah Erfani
- Institute for Cancer Research (ICR), School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
60
|
Osthole Protects against Acute Lung Injury by Suppressing NF- κB-Dependent Inflammation. Mediators Inflamm 2018; 2018:4934592. [PMID: 30057486 PMCID: PMC6051001 DOI: 10.1155/2018/4934592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 04/13/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022] Open
Abstract
Inflammation is a key factor in the pathogenesis of ALI. Therefore, suppression of inflammatory response could be a potential strategy to treat LPS-induced lung injury. Osthole, a natural coumarin extract, has been reported to protect against acute kidney injury through an anti-inflammatory mechanism, but its effect on ALI is poorly understood. In this study, we investigated whether osthole ameliorates inflammatory sepsis-related ALI. Results from in vitro studies indicated that osthole treatment inhibited the LPS-induced inflammatory response in mouse peritoneal macrophages through blocking the nuclear translocation of NF-κB. Consistently, the in vivo studies indicated that osthole significantly prolonged the survival of septic mice which was accompanied by inflammation suppression. In the ALI mouse model, osthole effectively inhibited the development of lung tissue injury, leukocytic recruitment, and cytokine productions, which was associated with inhibition of NF-κB nuclear translocation. These findings provide evidence that osthole was a potent inhibitor of NF-κB and inflammatory injury and suggest that it could be a promising anti-inflammatory agent for therapy of septic shock and acute lung injury.
Collapse
|
61
|
Lasselin J, Lekander M, Axelsson J, Karshikoff B. Sex differences in how inflammation affects behavior: What we can learn from experimental inflammatory models in humans. Front Neuroendocrinol 2018; 50:91-106. [PMID: 29935190 DOI: 10.1016/j.yfrne.2018.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Human models demonstrate that experimental activation of the innate immune system has profound effects on brain activation and behavior, inducing fatigue, worsened mood and pain sensitivity. It has been proposed that inflammation is a mechanism involved in the etiology and maintenance of depression, chronic pain and long-term fatigue. These diseases show a strong female overrepresentation, suggesting that a better understanding of sex differences in how inflammation drives behavior could help the development of individualized treatment interventions. For this purpose, we here review sex differences in studies using experimental inflammatory models to investigate changes in brain activity and behavior. We suggest a model in which inflammation accentuates sex differences in brain networks and pre-existing vulnerability factors. This effect could render women more vulnerable to the detrimental effects of immune-to-brain communication over time. We call for systematic and large scale investigations of vulnerability factors for women in the behavioral response to inflammation.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, USA.
| |
Collapse
|
62
|
Mai CW, Kang YB, Hamzah AS, Pichika MR. Comparative efficacy of vanilloids in inhibiting toll-like receptor-4 (TLR-4)/myeloid differentiation factor (MD-2) homodimerisation. Food Funct 2018; 9:3344-3350. [PMID: 29808897 DOI: 10.1039/c8fo00136g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vanilloid (4-hydroxy-3-methoxyphenyl benzenoid) containing foods are reported to possess many biological activities including anti-inflammatory properties. Homodimerisation of the Toll-like receptor-4 (TLR-4)/Myeloid differentiation factor 2 (MD-2) complex results in life-threatening complications in inflammatory disorders. In this study, we report activity of vanilloids in inhibition of TLR-4/MD-2 homodimersization and their molecular interactions with the receptor. The inhibitory activities of vanilloids were assessed in vitro by determining their antagonistic actions of lipopolysaccharide from Escherichia coli (LPSEc) in activation of TLR-4/MD-2 homodimerisation in TLR-4/MD-2/CD-14 transfected HEK-293 cells. The in vitro anti-inflammatory activity of vanilloids was also determined using RAW 264.7 cells. All the vanilloids were found to be active in the inhibition of TLR-4/MD-2 homodimersiation and nitric oxide production in RAW 264.7 cells. Rigid and flexible molecular docking studies were performed to gain insight into interactions between vanilloids and the binding site of the TLR-4/MD-2 complex.
Collapse
Affiliation(s)
- Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | | | | | | |
Collapse
|
63
|
Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. Eur J Med Chem 2018; 154:253-266. [DOI: 10.1016/j.ejmech.2018.05.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
|
64
|
Mishra V, Pathak C. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex. J Biomol Struct Dyn 2018; 37:1968-1991. [PMID: 29842849 DOI: 10.1080/07391102.2018.1474804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS-TLR4-MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein-protein interaction (PPI) in TLR4-MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4-MD-2) and dimerization (MD-2-TLR4*) protein-protein interaction interfaces in TLR4-MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4-MD-2 protein-protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4-MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.
Collapse
Affiliation(s)
- Vinita Mishra
- a Department of Cell Biology, School of Biological Sciences & Biotechnology , Indian Institute of Advanced Research, Koba Institutional Area , Gandhinagar , India
| | - Chandramani Pathak
- a Department of Cell Biology, School of Biological Sciences & Biotechnology , Indian Institute of Advanced Research, Koba Institutional Area , Gandhinagar , India
| |
Collapse
|
65
|
Guo J, Chang G, Zhang K, Xu L, Jin D, Bilal MS, Shen X. Rumen-derived lipopolysaccharide provoked inflammatory injury in the liver of dairy cows fed a high-concentrate diet. Oncotarget 2018; 8:46769-46780. [PMID: 28596485 PMCID: PMC5564522 DOI: 10.18632/oncotarget.18151] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022] Open
Abstract
Rumen-derived lipopolysaccharide (LPS) is translocated from the rumen into the bloodstream when subacute ruminal acidosis (SARA) occurs following long-term feeding with a high-concentrate (HC) diet in dairy cows. The objective of this study was to investigate the mechanism of inflammatory responses in the liver caused by HC diet feeding. We found that SARA was induced in dairy cows when rumen pH below 5.6 lasted for at least 3 h/d with HC diet feeding. Also, the LPS levels in the portal and hepatic veins were increased significantly and hepatocytes were impaired as well as the liver function was inhibited during SARA condition. Meanwhile, the mRNA expression of immune genes including TNF receptor associated factor 6 (TRAF6), nuclear factor-kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinases (ERK) MAPK, Interleukin-1 (IL-1) and serum amyloid A (SAA) in the liver were significantly increased in SARA cows. Moreover, the phosphorylation level of NF-κB p65 and p38 MAPK proteins in the liver and the concentration of Tumor Necrosis Factor (TNF-α), Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) in peripheral blood were obviously increased under SARA condition. In conclusion, the inflammatory injury in the liver caused by LPS that traveled from the digestive tract to the liver through the portal vein after feeding with a HC diet.
Collapse
Affiliation(s)
- Junfei Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Kai Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Lei Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Di Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Muhammad Shahid Bilal
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
66
|
Zhang X, Cui F, Chen H, Zhang T, Yang K, Wang Y, Jiang Z, Rice KC, Watkins LR, Hutchinson MR, Li Y, Peng Y, Wang X. Dissecting the Innate Immune Recognition of Opioid Inactive Isomer (+)-Naltrexone Derived Toll-like Receptor 4 (TLR4) Antagonists. J Chem Inf Model 2018. [PMID: 29518316 DOI: 10.1021/acs.jcim.7b00717] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The opioid inactive isomer (+)-naltrexone is one of the rare Toll-like receptor 4 (TLR4) antagonists with good blood-brain barrier (BBB) permeability, which is a lead with promising potential for treating neuropathic pain and drug addiction. (+)-Naltrexone targets the lipopolysaccharides (LPS) binding pocket of myeloid differentiation protein 2 (MD-2) and blocks innate immune TLR4 signaling. However, the details of the molecular interactions of (+)-naltrexone and its derivatives with MD-2 are not fully understood, which hinders the ligand-based drug discovery. Herein, in silico and in vitro assays were performed to elucidate the innate immune recognition of the opioid inactive (+)-isomers. The results showed that the conserved LPS binding pocket of MD-2 accommodated these opioid inactive (+)-isomers. The calculated binding free energies of (+)-naltrexone and its derivatives in complex with MD-2 correlated well with their experimental binding affinities and TLR4 antagonistic activities. Hydrophobic residues in the MD-2 cavity interacted directly with these (+)-naltrexone based TLR4 antagonists and principally participated in ligand binding. Increasing the hydrophobicity of substituted group at N-17 improved its TLR4 antagonistic activity, while charged groups disfavored the binding with MD-2. Molecular dynamics (MD) simulations showed the binding of (+)-naltrexone or its derivatives to MD-2 stabilized the "collapsed" conformation of MD-2, consequently blocking the binding and signaling of TLR4. Thermodynamics and dynamic analysis showed the topology of substituted group at N-17 of (+)-naltrexone affected the binding with MD-2 and TLR4 antagonistic activity. This study provides a molecular insight into the innate immune recognition of opioid inactive (+)-isomers, which would be of great help for the development of next-generation of (+)-opioid based TLR4 antagonists.
Collapse
Affiliation(s)
- Xiaozheng Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China.,University of Chinese Academy of Sciences , Beijing , 100039 , China.,State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , 210009 , China
| | - Fengchao Cui
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Hongqian Chen
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| | - Kecheng Yang
- University of Chinese Academy of Sciences , Beijing , 100039 , China.,Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| | - Zhenyan Jiang
- School of Pharmaceutical Sciences , Jilin University , Changchun , Jilin 130021 , China
| | - Kenner C Rice
- Drug Design and Synthesis Section, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism , National Institutes of Health , Rockville , Maryland 20892 , United States
| | - Linda R Watkins
- Department of Psychology and Neuroscience, and the Center for Neuroscience , University of Colorado at Boulder , Boulder , Colorado 80309 , United States
| | - Mark R Hutchinson
- Discipline of Physiology, Adelaide Medical School and ARC Centre of Excellence for Nanoscale Biophotonics , University of Adelaide , Adelaide , South Australia 5000 , Australia
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Yinghua Peng
- State Key Laboratory for Molecular Biology of Special Economic Animals , Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences , Changchun , Jilin 130112 , China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun , Jilin , 130022 , China
| |
Collapse
|
67
|
Recent advances on Toll-like receptor 4 modulation: new therapeutic perspectives. Future Med Chem 2018; 10:461-476. [PMID: 29380635 DOI: 10.4155/fmc-2017-0172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation or inhibition of TLR4 by small molecules will provide in the next few years a new generation of therapeutics. TLR4 stimulation (agonism) by high-affinity ligands mimicking lipid A gave vaccine adjuvants with improved specificity and efficacy that have been licensed and entered into the market. TLR4 inhibition (antagonism) prevents cytokine production at a very early stage; this is in principle a more efficient method to block inflammatory diseases compared to cytokines neutralization by antibodies. Advances in TLR4 modulation by drug-like small molecules achieved in the last years are reviewed. Recently discovered TLR4 agonists and antagonists of natural and synthetic origin are presented, and their mechanism of action and structure-activity relationship are discussed.
Collapse
|
68
|
Facchini FA, Coelho H, Sestito SE, Delgado S, Minotti A, Andreu D, Jiménez-Barbero J, Peri F. Co-administration of Antimicrobial Peptides Enhances Toll-like Receptor 4 Antagonist Activity of a Synthetic Glycolipid. ChemMedChem 2018; 13:280-287. [PMID: 29265636 PMCID: PMC5900894 DOI: 10.1002/cmdc.201700694] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/02/2017] [Indexed: 12/21/2022]
Abstract
This study examines the effect of co‐administration of antimicrobial peptides and the synthetic glycolipid FP7, which is active in inhibiting inflammatory cytokine production caused by TLR4 activation and signaling. The co‐administration of two lipopolysaccharide (LPS)‐neutralizing peptides (a cecropin A–melittin hybrid peptide and a human cathelicidin) enhances by an order of magnitude the potency of FP7 in blocking the TLR4 signal. Interestingly, this is not an additional effect of LPS neutralization by peptides, because it also occurs if cells are stimulated by the plant lectin phytohemagglutinin, a non‐LPS TLR4 agonist. Our data suggest a dual mechanism of action for the peptides, not exclusively based on LPS binding and neutralization, but also on a direct effect on the LPS‐binding proteins of the TLR4 receptor complex. NMR experiments in solution show that peptide addition changes the aggregation state of FP7, promoting the formation of larger micelles. These results suggest a relationship between the aggregation state of lipid A‐like ligands and the type and intensity of the TLR4 response.
Collapse
Affiliation(s)
- Fabio A Facchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Helena Coelho
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.,UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Stefania E Sestito
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - Sandra Delgado
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain
| | - Alberto Minotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Jesús Jiménez-Barbero
- Molecular Recognition & Host-Pathogen Interactions Programme, CIC bioGUNE, Bizkaia Technology Park, Building 801A, 48170, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, 48940, Leioa, Bizkaia, Spain.,Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 13, 48009, Bilbao, Spain
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milano, Italy
| |
Collapse
|
69
|
Chen L, Fu W, Zheng L, Wang Y, Liang G. Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discov Today 2018; 23:1187-1202. [PMID: 29330126 DOI: 10.1016/j.drudis.2018.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/09/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023]
Abstract
Myeloid differentiation protein 2 (MD2), together with Toll-like receptor 4 (TLR4), binds lipopolysaccharide (LPS) with high affinity, inducing the formation of the activated homodimer LPS-MD2-TLR4. MD2 directly recognizes the Lipid A domain of LPS, leading to the activation of downstream signaling of cytokine and chemokine production, and initiation of inflammatory and immune responses. However, excessive activation and potent host responses generate severe inflammatory syndromes such as acute sepsis and septic shock. MD2 is increasingly being considered as an attractive pharmacological target for the development of potent anti-inflammatory agents. In this Keynote review, we provide a comprehensive overview of the recent advances in the structure and biology of MD2, and present MD2 modulators as promising agents for anti-inflammatory intervention.
Collapse
Affiliation(s)
- Lingfeng Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Weitao Fu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lulu Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
70
|
Cochet F, Peri F. The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling. Int J Mol Sci 2017; 18:E2318. [PMID: 29099761 PMCID: PMC5713287 DOI: 10.3390/ijms18112318] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
The interactions between sugar-containing molecules from the bacteria cell wall and pattern recognition receptors (PRR) on the plasma membrane or cytosol of specialized host cells are the first molecular events required for the activation of higher animal's immune response and inflammation. This review focuses on the role of carbohydrates of bacterial endotoxin (lipopolysaccharide, LPS, lipooligosaccharide, LOS, and lipid A), in the interaction with the host Toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) complex. The lipid chains and the phosphorylated disaccharide core of lipid A moiety are responsible for the TLR4 agonist action of LPS, and the specific interaction between MD-2, TLR4, and lipid A are key to the formation of the activated complex (TLR4/MD-2/LPS)₂, which starts intracellular signalling leading to nuclear factors activation and to production of inflammatory cytokines. Subtle chemical variations in the lipid and sugar parts of lipid A cause dramatic changes in endotoxin activity and are also responsible for the switch from TLR4 agonism to antagonism. While the lipid A pharmacophore has been studied in detail and its structure-activity relationship is known, the contribution of core saccharides 3-deoxy-d-manno-octulosonic acid (Kdo) and heptosyl-2-keto-3-deoxy-octulosonate (Hep) to TLR4/MD-2 binding and activation by LPS and LOS has been investigated less extensively. This review focuses on the role of lipid A, but also of Kdo and Hep sugars in LPS/TLR4 signalling.
Collapse
Affiliation(s)
- Florent Cochet
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy.
| |
Collapse
|
71
|
Krüger CL, Zeuner MT, Cottrell GS, Widera D, Heilemann M. Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Sci Signal 2017; 10:10/503/eaan1308. [DOI: 10.1126/scisignal.aan1308] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
Chen G, Xiao B, Chen L, Bai B, Zhang Y, Xu Z, Fu L, Liu Z, Li X, Zhao Y, Liang G. Discovery of new MD2-targeted anti-inflammatory compounds for the treatment of sepsis and acute lung injury. Eur J Med Chem 2017; 139:726-740. [DOI: 10.1016/j.ejmech.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/07/2023]
|
73
|
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of worldwide cancer mortality. HCC almost exclusively develops in patients with chronic liver disease, driven by a vicious cycle of liver injury, inflammation and regeneration that typically spans decades. Increasing evidence points towards a key role of the bacterial microbiome in promoting the progression of liver disease and the development of HCC. Here, we will review mechanisms by which the gut microbiota promotes hepatocarcinogenesis, focusing on the leaky gut, bacterial dysbiosis, microbe-associated molecular patterns and bacterial metabolites as key pathways that drive cancer-promoting liver inflammation, fibrosis and genotoxicity. On the basis of accumulating evidence from preclinical studies, we propose the intestinal-microbiota-liver axis as a promising target for the simultaneous prevention of chronic liver disease progression and HCC development in patients with advanced liver disease. We will review in detail therapeutic modalities and discuss clinical settings in which targeting the gut-microbiota-liver axis for the prevention of disease progression and HCC development seems promising.
Collapse
Affiliation(s)
- Le-Xing Yu
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| | - Robert F Schwabe
- Department of Medicine, Columbia University, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
- Institute of Human Nutrition, 1130 St. Nicholas Avenue, Room 926, New York, New York 10032, USA
| |
Collapse
|
74
|
TLR4-Mediated Placental Pathology and Pregnancy Outcome in Experimental Malaria. Sci Rep 2017; 7:8623. [PMID: 28819109 PMCID: PMC5561130 DOI: 10.1038/s41598-017-08299-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
Malaria-associate pregnancy has a significant impact on infant morbidity and mortality. The detrimental effects of malaria infection during pregnancy have been shown to correlate with immune activation in the placental tissue. Herein we sought to evaluate the effect of Toll-like receptors (TLRs) activation on placental malaria (PM) development by using the Plasmodium berghei NK65GFP infection model. We observed that activation of the innate immune system by parasites leads to PM due to local inflammation. We identified TLR4 activation as the main pathway involved in the inflammatory process in the placental tissue since the absence of functional TLR4 in mice leads to a decrease in the pro-inflammatory responses, which resulted in an improved pregnancy outcome. Additionally, a similar result was obtained when infected pregnant mice were treated with IAXO-101, a TLR4/CD14 blocker. Together, this study illustrates the importance of TLR4 signalling for the generation of the severe inflammatory response involved in PM pathogenesis. Therefore, our results implicate that TLR4 blockage could be a potential candidate for therapeutic interventions to reduce malaria-induced pathology both in the mother and the fetus.
Collapse
|
75
|
Tsukamoto H, Yamagata Y, Ukai I, Takeuchi S, Okubo M, Kobayashi Y, Kozakai S, Kubota K, Numasaki M, Kanemitsu Y, Matsumoto Y, Tomioka Y. An inhibitory epitope of human Toll-like receptor 4 resides on leucine-rich repeat 13 and is recognized by a monoclonal antibody. FEBS Lett 2017; 591:2406-2416. [PMID: 28741733 DOI: 10.1002/1873-3468.12768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/15/2017] [Accepted: 07/23/2017] [Indexed: 12/16/2022]
Abstract
Lipopolysaccharide (LPS)-induced activation of Toll-like receptor 4 (TLR4) elicits the innate immune response and can trigger septic shock if excessive. Two antibodies (HT4 and HT52) inhibit LPS-induced human TLR4 activation via novel LPS binding-independent mechanisms. The HT52 epitope resides on leucine-rich repeat 2 (LRR2) and is a feature of many inhibitory antibodies; antigen specificity of HT4 does not reside in LRR2. Here, we identified an HT4 epitope on LRR13 located close to the TLR4 dimerization interface that plays a role in NFκB activation. HT4 and HT52 mutually enhanced TLR4 inhibition. LRR13 is a novel inhibitory epitope and may be useful for developing anti-TLR4 antibodies. Combination therapy with LRR2 and LRR13 may effectively inhibit TLR4 activation.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yuki Yamagata
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ippo Ukai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shino Takeuchi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Misaki Okubo
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yohei Kobayashi
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Sao Kozakai
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kanae Kubota
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Muneo Numasaki
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yoshitomi Kanemitsu
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
76
|
Jiang N, Xie F, Guo Q, Li MQ, Xiao J, Sui L. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-κB pathway. Tumour Biol 2017; 39:1010428317710586. [PMID: 28653898 DOI: 10.1177/1010428317710586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.
Collapse
Affiliation(s)
- Ninghong Jiang
- 1 Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Feng Xie
- 1 Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qisang Guo
- 1 Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Ming-Qing Li
- 2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jingjing Xiao
- 1 Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Long Sui
- 1 Medical Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,2 Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
77
|
Di Lorenzo F, Billod JM, Martín-Santamaría S, Silipo A, Molinaro A. Gram-Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Jean-Marc Billod
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Sonsoles Martín-Santamaría
- Department of Chemical and Physical Biology; CIB Centro de Investigaciones Biológicas; Ramiro de Maeztu 9 28040 Madrid Spain
| | - Alba Silipo
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences; University of Naples Federico II; via Cinthia 480126 80126 Naples Italy
| |
Collapse
|
78
|
TLR4/MD2 specific peptides stalled in vivo LPS-induced immune exacerbation. Biomaterials 2017; 126:49-60. [PMID: 28254693 DOI: 10.1016/j.biomaterials.2017.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
Abstract
Negative regulation of Toll-like receptor-4 (TLR4) is anticipated to control the pathogen-induced exaggerated immune response. However, effective TLR4 antagonists with scarce off-target effects are yet to be developed. To fill this void, we sought to design small peptide-inhibitors of the TLR4/MD2-LPS interaction. Here we report novel TLR4-antagonistic peptides (TAP), identified through phage display, endowed with the LPS-induced proinflammation inhibition, and confirmed in mice. TAPs-attributed TLR4-antagonism were initially evaluated through NF-κB inhibition in HEK-blue hTLR4 and RAW264.7 cells, and further reinforced by the downregulation of MAPKs (mitogen-activated protein kinases), NF-κB, interleukin 6, and suppression of the oxidative-stress products and iNOS in macrophages and human peripheral blood mononuclear cells (hPBMCs). Among these, TAP2 specifically halted the TLR4, but not other TLRs signaling, which was further confirmed by the biophysical kinetic assay. Finally, TAP2 diminished LPS-elicited systemic cytokine response in vivo, suggesting that TAPs, specifically TAP2, have the potential to treat TLR4-mediated immune ailments.
Collapse
|
79
|
Jiang D, Yang Y, Li D. Lipopolysaccharide induced vascular smooth muscle cells proliferation: A new potential therapeutic target for proliferative vascular diseases. Cell Prolif 2017; 50. [PMID: 28150467 DOI: 10.1111/cpr.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is involved in vascular atherosclerosis and restenosis. Recent studies have demonstrated that lipopolysaccharide (LPS) promotes VSMCs proliferation, but the signalling pathways which are involved are not completely understood. The purpose of this review was to summarize the existing knowledge of the role and molecular mechanisms involved in controlling VSMCs proliferation stimulated by LPS and mediated by toll-like receptor 4 (TLR4) signalling pathways. Moreover, the potential inhibitors of TLR4 signalling for VSMCs proliferation in proliferative vascular diseases are discussed.
Collapse
Affiliation(s)
- Dehua Jiang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Yang
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
80
|
Liu Y, Gan LN, Qin WY, Sun SY, Zhu GQ, Wu SL, Bao WB. Differential expression of Toll-like receptor 4 signaling pathway genes in Escherichia coli F18-resistant and - sensitive Meishan piglets. Pol J Vet Sci 2017; 19:303-8. [PMID: 27487503 DOI: 10.1515/pjvs-2016-0037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Toll-like receptor 4 (TLR4) signaling pathway is an important inflammatory pathways associated with the progression of numerous diseases. The aim of the present study was to investigate the relationship between TLR4 signaling and resistance to Escherichia coli F18 in locally weaned Meishan piglets. Using a real-time PCR approach, expression profiles were determined for key TLR4 signaling pathway genes TLR4, MyD88, CD14, IFN-α, IL-1β and TNF-α in the spleen, thymus, lymph nodes, duodenum and jejunum of E. coli F18-resistant and -sensitive animals. TLR4 signaling pathway genes were expressed in all the immune organs and intestinal tissues, and the expression was generally higher in the spleen and lymph nodes. TLR4 transcription was higher in the spleen of sensitive piglets (p<0.05), but there was no significant difference in TLR4 mRNA levels in other tissues. Similarly, CD14 transcription was higher in lymph nodes of sensitive animals (p<0.05) but not in other tissues. IL-1β expression was higher in the spleen and in the duodenum of resistant piglets (p<0.05, p<0.01, respectively), and there were no significant differences in other tissues. There were also no significant differences in the expression of MyD88, TNF-α and IFN-α between sensitive and resistant piglets (p>0.05). These results further confirm the involvement of the TLR4 signaling pathway in resistance to E. coli F18 in Meishan weaned piglets. The resistance appeared to be mediated via downregulation of TLR4 and CD14, and upregulation of MyD88 that may promote the release of cytokines TNF-α, IL-1β, IFN-α and other inflammatory mediators which help to fight against E. coli F18 infection.
Collapse
|
81
|
Thakur KK, Saini J, Mahajan K, Singh D, Jayswal DP, Mishra S, Bishayee A, Sethi G, Kunnumakkara AB. Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacol Res 2017; 115:224-232. [DOI: 10.1016/j.phrs.2016.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 11/20/2016] [Indexed: 12/13/2022]
|
82
|
Barr GA, Wang S, Weisshaar CL, Winkelstein BA. Developmental Changes in Pain and Spinal Immune Gene Expression after Radicular Trauma in the Rat. Front Neurol 2016; 7:223. [PMID: 28018284 PMCID: PMC5156703 DOI: 10.3389/fneur.2016.00223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is chronic pain that develops after nerve injury and is less frequent in infants and children than in adults. Likewise, in animal models of neuropathic pain, allodynia and hyperalgesia are non-existent or attenuated in the infant, with a “switch” during development by which acute nerve injury transitions to chronic pain. Concomitant with the delay in neuropathic pain, there is a parallel delay in the ability of nerve injury to activate the immune system. Models of neuropathic pain in the infant have used various ligation methods and find that neuropathic pain does not occur under after postnatal days 21–28 (PN21–PN28), linked to activation of immune processes and developmental regulation of anti-inflammatory cytokines. We applied a model of neuropathic pain in the adult using a transient compression of the cervical nerve or nerve root in infant rats (injured at 10, 14, 21, or 28 days of age) to define transition periods during which injury results in no change in thermal and mechanical pain sensitivity or in short-term changes in pain. There was little to no hyperalgesia when the injury was imposed at PN10, but significant thermal hyperalgesia and mechanical allodynia 1 day after compression injury when performed at PN14, 21, or 28. Thermal withdrawal latencies returned to near baseline by 7 days postsurgery when the injuries were at PN14, and lasted up to 14 days when the injury was imposed at PN28. There was mechanical allodynia following injury at 1 day postinjury and at 14 days after injury at PN14. Measurements of mRNA from spinal cord at 1, 7, and 14 days postinjury at PN14, 21, and 28 showed that both the magnitude and duration of elevated immune markers and chemokines/cytokines were greater in the older animals, corresponding to the development of hyperalgesia. Thus, we confirm the late onset of neuropathic pain but found no evidence of emergent hyperalgesia if the injury was before PN21. This may be due to the use of a transient, and not sustained, compression ligation model.
Collapse
Affiliation(s)
- Gordon A Barr
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Shaoning Wang
- Division of Basic Science Research, Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania , Philadelphia, PA , USA
| | - Christine L Weisshaar
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| | - Beth A Winkelstein
- Spine Pain Research Laboratory, Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
83
|
Zariri A, Pupo E, van Riet E, van Putten JPM, van der Ley P. Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide. Sci Rep 2016; 6:36575. [PMID: 27841285 PMCID: PMC5107901 DOI: 10.1038/srep36575] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Neisseria meningitidis contains a very potent hexa-acylated LPS that is too toxic for therapeutic applications. We used systematic molecular bioengineering of meningococcal LPS through deletion of biosynthetic enzymes in combination with induction of LPS modifying enzymes to yield a variety of novel LPS mutants with changes in both lipid A acylation and phosphorylation. Mass spectrometry was used for detailed compositional determination of the LPS molecular species, and stimulation of immune cells was done to correlate this with endotoxic activity. Removal of phosphethanolamine in lipid A by deletion of lptA slightly reduces activity of hexa-acylated LPS, but this reduction is even more evident in penta-acylated LPS. Surprisingly, expression of PagL deacylase in a penta-acylated lpxL1 mutant increased LPS activity, contradicting the general rule that tetra-acylated LPS is less active than penta-acylated LPS. Further modification included expression of lpxP, an enzyme known to add a secondary 9-hexadecenoic acid to the 2’ acyl chain. The LpxP enzyme is temperature-sensitive, enabling control over the ratio of expressed modified hexa- and penta-acylated LPS by simply changing the growth temperature. These LPS derivatives display a broad range of TLR4 activity and differential cytokine induction, which can be exploited for use as vaccine adjuvant or other TLR4-based therapeutics.
Collapse
Affiliation(s)
- Afshin Zariri
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands.,Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Peter van der Ley
- Institute for Translational Vaccinology (Intravacc), Antonie van Leeuwenhoeklaan 9, 3720 AL Bilthoven, the Netherlands
| |
Collapse
|
84
|
Malgorzata-Miller G, Heinbockel L, Brandenburg K, van der Meer JWM, Netea MG, Joosten LAB. Bartonella quintana lipopolysaccharide (LPS): structure and characteristics of a potent TLR4 antagonist for in-vitro and in-vivo applications. Sci Rep 2016; 6:34221. [PMID: 27670746 PMCID: PMC5037446 DOI: 10.1038/srep34221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
The pattern recognition receptor TLR4 is well known as a crucial receptor during infection and inflammation. Several TLR4 antagonists have been reported to inhibit the function of TLR4. Both natural occurring antagonists, lipopolysaccharide (LPS) from Gram-negative bacteria as well as synthetic compounds based on the lipid A structure of LPS have been described as potent inhibitors of TLR4. Here, we have examined the characteristics of a natural TLR4 antagonist, isolated from Bartonella quintana bacterium by elucidating its chemical primary structure. We have found that this TLR4 antagonist is actually a lipooligosaccharide (LOS) instead of a LPS, and that it acts very effective, with a high inhibitory activity against triggering by the LPS-TLR4 system in the presence of a potent TLR4 agonist (E. coli LPS). Furthermore, we demonstrate that B. quintana LPS is not inactivated by polymyxin B, a classical cyclic cationic polypeptide antibiotic that bind the lipid A part of LPS, such as E. coli LPS. Using a murine LPS/D-galactosamine endotoxaemia model we showed that treatment with B. quintana LPS could improve the survival rate significantly. Since endogenous TLR4 ligands have been associated with several inflammatory- and immune-diseases, B. quintana LPS might be a novel therapeutic strategy for TLR4-driven pathologies.
Collapse
Affiliation(s)
- Gosia Malgorzata-Miller
- Department of Internal Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lena Heinbockel
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Klaus Brandenburg
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Jos W M van der Meer
- Department of Internal Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - Mihai G Netea
- Department of Internal Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
85
|
Dattaroy D, Seth RK, Das S, Alhasson F, Chandrashekaran V, Michelotti G, Fan D, Nagarkatti M, Nagarkatti P, Diehl AM, Chatterjee S. Sparstolonin B attenuates early liver inflammation in experimental NASH by modulating TLR4 trafficking in lipid rafts via NADPH oxidase activation. Am J Physiol Gastrointest Liver Physiol 2016; 310:G510-25. [PMID: 26718771 PMCID: PMC4824178 DOI: 10.1152/ajpgi.00259.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/28/2015] [Indexed: 01/31/2023]
Abstract
Although significant research data exist on the pathophysiology of nonalcoholic steatohepatitis (NASH), finding an efficient treatment regimen for it remains elusive. The present study used sparstolonin B (SsnB), a novel TLR4 antagonist derived from the Chinese herb Sparganium stoloniferum, as a possible drug to mitigate early inflammation in NASH. This study used an early steatohepatitic injury model in high-fat-fed mice with CYP2E1-mediated oxidative stress as a second hit. SsnB was administered for 1 wk along with bromodichloromethane (BDCM), an inducer of CYP2E1-mediated oxidative stress. Results showed that SsnB administration attenuated inflammatory morphology and decreased elevation of the liver enzyme alanine aminotransferase (ALT). Mice administered SsnB also showed decreased mRNA expression of proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-23, while protein levels of both TNF-α and IL-1β were significantly decreased. SsnB significantly decreased Kupffer cell activation as evidenced by reduction in CD68 and monocyte chemoattractant protein-1 (MCP1) mRNA and protein levels with concomitant inhibition of macrophage infiltration in the injured liver. Mechanistically, SsnB decreased TLR4 trafficking to the lipid rafts, a phenomenon described by the colocalization of TLR4 and lipid raft marker flotillin in tissues and immortalized Kupffer cells. Since we have shown previously that NADPH oxidase drives TLR4 trafficking in NASH, we studied the role of SsnB in modulating this pathway. SsnB prevented NADPH oxidase activation in vivo and in vitro as indicated by decreased peroxynitrite formation. In summary, the present study reports a novel use of the TLR4 antagonist SsnB in mitigating inflammation in NASH and in parallel shows a unique molecular mechanism of decreasing nitrative stress.
Collapse
Affiliation(s)
- Diptadip Dattaroy
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Ratanesh Kumar Seth
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Suvarthi Das
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Firas Alhasson
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | - Varun Chandrashekaran
- 1Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| | | | - Daping Fan
- 3Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina; and
| | - Mitzi Nagarkatti
- 4Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Prakash Nagarkatti
- 4Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Anna Mae Diehl
- 2Division of Gastroenterology, Duke University, Durham, North Carolina;
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina;
| |
Collapse
|
86
|
Kabanov DS, Serov DA, Zubova SV, Grachev SV, Prokhorenko IR. Dynamics of antagonistic potency of Rhodobacter capsulatus PG lipopolysaccharide against endotoxin-induced effects. BIOCHEMISTRY (MOSCOW) 2016; 81:275-83. [DOI: 10.1134/s000629791603010x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
87
|
García Bueno B, Caso JR, Madrigal JLM, Leza JC. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases. Neurosci Biobehav Rev 2016; 64:134-47. [PMID: 26905767 DOI: 10.1016/j.neubiorev.2016.02.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/27/2015] [Accepted: 02/12/2016] [Indexed: 02/08/2023]
Abstract
The innate immunity is a stereotyped first line of defense against pathogens and unspecified damage signals. One of main actors of innate immunity are the Toll-like receptors (TLRs), and one of the better characterized members of this family is TLR-4, that it is mainly activated by Gram-negative bacteria lipopolysaccharide. In brain, TLR-4 organizes innate immune responses against infections or cellular damage, but also possesses other physiological functions. In the last years, some evidences suggest a role of TLR-4 in stress and stress-related neuropsychiatric diseases. Peripheral and brain TLR-4 activation triggers sickness behavior, and its expression is a risk factor of depression. Some elements of the TLR-4 signaling pathway are up-regulated in peripheral samples and brain post-mortem tissue from depressed and suicidal patients. The "leaky gut" hypothesis of neuropsychiatric diseases is based on the existence of an increase of the intestinal permeability which results in bacterial translocation able to activate TLR-4. Enhanced peripheral TLR-4 expression/activity has been described in subjects diagnosed with schizophrenia, bipolar disorder and in autistic children. A role for TLR-4 in drugs abuse has been also proposed. The therapeutic potential of pharmacological/genetic modulation of TLRs signaling pathways in neuropsychiatry is promising, but a great preclinical/clinical scientific effort is still needed.
Collapse
Affiliation(s)
- B García Bueno
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J R Caso
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J L M Madrigal
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| | - J C Leza
- Department of Pharmacology, School of Medicine, Complutense University, CIBERSAM, Instituto de Investigación Hospital 12 de Octubre (Imas12), 28040 Madrid, Spain.
| |
Collapse
|
88
|
The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:913-923. [PMID: 26825693 DOI: 10.1016/j.bbalip.2016.01.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/16/2016] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on lipids endogenous to the cell, and the BPI-like proteins (including the Takeout-like proteins of arthropods), which act on exogenous lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
89
|
Li J, Csakai A, Jin J, Zhang F, Yin H. Therapeutic Developments Targeting Toll-like Receptor-4-Mediated Neuroinflammation. ChemMedChem 2016; 11:154-65. [PMID: 26136385 PMCID: PMC4983275 DOI: 10.1002/cmdc.201500188] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) have been shown to play an important role in the immune system, which warrants study of their remarkable potential as pharmacological targets. Activation of TLRs requires participation from specific pathogen-associated molecular patterns (PAMPs) and accessory proteins such as myeloid differentiation protein 2 (MD2), lipopolysaccharide binding protein (LBP), and cluster differentiation antigen 14 (CD14). Assembly of the TLR4-MD2-LPS complex is essential in TLR4 activation. Recent studies have revealed that TLR4 activation is a significant trigger of signal transmission pathways in the nervous system, which could result in chronic pain as well as opioid tolerance and dependence. Researchers of the molecular structure of TLRs and their accessory proteins have opened a door to syntheses of TLRs agonists and antagonists, such as eritoran. Small-molecule modulators of TLR4, such as MD2-I and tricyclic antidepressants, offer more promising prospects than peptides, given their convenience in oral administration and lower cost. Herein we mainly discuss the mechanisms and clinical prospects of TLR4 agonists and antagonists.
Collapse
Affiliation(s)
- Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100032, China
| | - Adam Csakai
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, 80309-0596, USA
| | - Jialin Jin
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100082, China
- Physikalisch-Astronomische Fakultät, Abbe School of Photonics, Jena, 07743, Germany
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100032, China.
| | - Hang Yin
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, 80309-0596, USA.
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100082, China.
| |
Collapse
|
90
|
Lai CH, Wang KC, Lee FT, Tsai HW, Ma CY, Cheng TL, Chang BI, Yang YJ, Shi GY, Wu HL. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm. PLoS One 2016; 11:e0146565. [PMID: 26741694 PMCID: PMC4711799 DOI: 10.1371/journal.pone.0146565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/18/2015] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor (TLR) family plays a key role in innate immunity and various inflammatory responses. TLR4, one of the well-characterized pattern-recognition receptors, can be activated by endogenous damage-associated molecular pattern molecules such as high mobility group box 1 (HMGB1) to sustain sterile inflammation. Evidence suggested that blockade of TLR4 signaling may confer protection against abdominal aortic aneurysm (AAA). Herein we aimed to obtain further insight into the mechanism by which TLR4 might promote aneurysm formation. Characterization of the CaCl2-induced AAA model in mice revealed that upregulation of TLR4 expression, localized predominantly to vascular smooth muscle cells (VSMCs), was followed by a late decline during a 28-day period of AAA development. In vitro, TLR4 expression was increased in VSMCs treated with HMGB1. Knockdown of TLR4 by siRNA attenuated HMGB1-enhanced production of proinflammatory cytokines, specifically interleukin-6 and monocyte chemoattractant protein-1 (MCP-1), and matrix-degrading matrix metalloproteinase (MMP)-2 from VSMCs. In vivo, two different strains of TLR4-deficient (C57BL/10ScNJ and C3H/HeJ) mice were resistant to CaCl2-induced AAA formation compared to their respective controls (C57BL/10ScSnJ and C3H/HeN). Knockout of TLR4 reduced interleukin-6 and MCP-1 levels and HMGB1 expression, attenuated macrophage accumulation, and eventually suppressed MMP production, elastin destruction and VSMC loss. Finally, human AAA exhibited higher TLR4 expression that was localized to VSMCs. These data suggest that TLR4 signaling contributes to AAA formation by promoting a proinflammatory status of VSMCs and by inducing proteinase release from VSMCs during aneurysm initiation and development.
Collapse
Affiliation(s)
- Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Wang
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Tzu Lee
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yuan Ma
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bi-Ing Chang
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jen Yang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Yueh Shi
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (HLW); (GYS)
| | - Hua-Lin Wu
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (HLW); (GYS)
| |
Collapse
|
91
|
De Paola M, Sestito SE, Mariani A, Memo C, Fanelli R, Freschi M, Bendotti C, Calabrese V, Peri F. Synthetic and natural small molecule TLR4 antagonists inhibit motoneuron death in cultures from ALS mouse model. Pharmacol Res 2016; 103:180-7. [DOI: 10.1016/j.phrs.2015.11.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/26/2015] [Accepted: 11/25/2015] [Indexed: 12/13/2022]
|
92
|
Flacher V, Neuberg P, Point F, Daubeuf F, Muller Q, Sigwalt D, Fauny JD, Remy JS, Frossard N, Wagner A, Mueller CG, Schaeffer E. Mannoside Glycolipid Conjugates Display Anti-inflammatory Activity by Inhibition of Toll-like Receptor-4 Mediated Cell Activation. ACS Chem Biol 2015; 10:2697-705. [PMID: 26389521 DOI: 10.1021/acschembio.5b00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inhibition of excessive Toll-like receptor 4 (TLR4) signaling is a therapeutic approach pursued for many inflammatory diseases. We report that Mannoside Glycolipid Conjugates (MGCs) selectively blocked TLR4-mediated activation of human monocytes and monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS). They potently suppressed pro-inflammatory cytokine secretion and maturation of DCs exposed to LPS, leading to impaired T cell stimulation. MGCs did not interfere with LPS and could act in a delayed manner, hours after LPS stimulation. Their inhibitory action required both the sugar heads and the lipid chain, although the nature of the sugar and the structure of the lipid tail could be modified. They blocked early signaling events at the cell membrane, enhanced internalization of CD14 receptors, and prevented colocalization of CD14 and TLR4, thereby abolishing NF-κB nuclear translocation. When the best lead conjugate was tested in a mouse model of LPS-induced acute lung inflammation, it displayed an anti-inflammatory action by suppressing the recruitment of neutrophils. Thus, MGCs could serve as promising leads for the development of selective TLR4 antagonistic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Vincent Flacher
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | | | - Floriane Point
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | - François Daubeuf
- Laboratory of Therapeutic Innovation, CNRS-University of Strasbourg UMR 7200/Laboratory of Excellence MEDALIS, Faculté de Pharmacie, Université de Strasbourg , 74 route du Rhin, 67400 Illkirch, France
| | - Quentin Muller
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | | | - Jean-Daniel Fauny
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | | | - Nelly Frossard
- Laboratory of Therapeutic Innovation, CNRS-University of Strasbourg UMR 7200/Laboratory of Excellence MEDALIS, Faculté de Pharmacie, Université de Strasbourg , 74 route du Rhin, 67400 Illkirch, France
| | | | - Christopher G Mueller
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| | - Evelyne Schaeffer
- Laboratory of Immunopathology and Therapeutic Chemistry, CNRS UPR 3572/Laboratory of Excellence MEDALIS, Institut de Biologie Moléculaire et Cellulaire , 15 rue René Descartes, 67000 Strasbourg, France
| |
Collapse
|
93
|
Seifert L, Deutsch M, Alothman S, Alqunaibit D, Werba G, Pansari M, Pergamo M, Ochi A, Torres-Hernandez A, Levie E, Tippens D, Greco SH, Tiwari S, Ly NNG, Eisenthal A, van Heerden E, Avanzi A, Barilla R, Zambirinis CP, Rendon M, Daley D, Pachter HL, Hajdu C, Miller G. Dectin-1 Regulates Hepatic Fibrosis and Hepatocarcinogenesis by Suppressing TLR4 Signaling Pathways. Cell Rep 2015; 13:1909-1921. [PMID: 26655905 PMCID: PMC4681001 DOI: 10.1016/j.celrep.2015.10.058] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 08/13/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023] Open
Abstract
Dectin-1 is a C-type lectin receptor critical in anti-fungal immunity, but Dectin-1 has not been linked to regulation of sterile inflammation or oncogenesis. We found that Dectin-1 expression is upregulated in hepatic fibrosis and liver cancer. However, Dectin-1 deletion exacerbates liver fibro-inflammatory disease and accelerates hepatocarcinogenesis. Mechanistically, we found that Dectin-1 protects against chronic liver disease by suppressing TLR4 signaling in hepatic inflammatory and stellate cells. Accordingly, Dectin-1(-/-) mice exhibited augmented cytokine production and reduced survival in lipopolysaccharide (LPS)-mediated sepsis, whereas Dectin-1 activation was protective. We showed that Dectin-1 inhibits TLR4 signaling by mitigating TLR4 and CD14 expression, which are regulated by Dectin-1-dependent macrophage colony stimulating factor (M-CSF) expression. Our study suggests that Dectin-1 is an attractive target for experimental therapeutics in hepatic fibrosis and neoplastic transformation. More broadly, our work deciphers critical cross-talk between pattern recognition receptors and implicates a role for Dectin-1 in suppression of sterile inflammation, inflammation-induced oncogenesis, and LPS-mediated sepsis.
Collapse
Affiliation(s)
- Lena Seifert
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Michael Deutsch
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Sara Alothman
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Dalia Alqunaibit
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Gregor Werba
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Mridul Pansari
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Matthew Pergamo
- S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Atsuo Ochi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Alejandro Torres-Hernandez
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Elliot Levie
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Daniel Tippens
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Stephanie H. Greco
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Shaun Tiwari
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Nancy Ngoc Giao Ly
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Andrew Eisenthal
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Eliza van Heerden
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Antonina Avanzi
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Rocky Barilla
- S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Constantinos P. Zambirinis
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Mauricio Rendon
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Donnele Daley
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - H. Leon Pachter
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - Cristina Hajdu
- S. Arthur Localio Laboratory, Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016
| | - George Miller
- S. Arthur Localio Laboratory, Department of Surgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016
- S. Arthur Localio Laboratory, Department of Cell Biology New York University School of Medicine, 550 First Avenue, New York, NY 10016
| |
Collapse
|
94
|
Tsukamoto H, Ukai I, Yamagata Y, Takeuchi S, Kubota K, Kozakai S, Suzuki N, Kimoto M, Tomioka Y. Leucine-rich repeat 2 of human Toll-like receptor 4 contains the binding site for inhibitory monoclonal antibodies. FEBS Lett 2015; 589:3893-8. [DOI: 10.1016/j.febslet.2015.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/29/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
|
95
|
Hedgpeth DC, Zhang X, Jin J, Leite RS, Krayer JW, Huang Y. Periodontal CD14 mRNA expression is downregulated in patients with chronic periodontitis and type 2 diabetes. BMC Oral Health 2015; 15:145. [PMID: 26581717 PMCID: PMC4652420 DOI: 10.1186/s12903-015-0118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background Patients with type 2 diabetes mellitus (T2DM) have increased severity of periodontitis. Toll-like receptor (TLR)4, its co-receptors CD14 and MD-2, and adaptor MyD88 play pivotal roles in lipopolysaccharide (LPS)-triggered tissue inflammation and periodontitis. This study investigated the effects of T2DM and periodontitis on TLR4, CD14, MD-2 and MyD88 mRNA expression in surgically removed periodontal tissues. Methods Periodontal tissue specimens were collected from 14 patients without periodontitis and T2DM (Group 1), 15 patients with periodontitis alone (Group 2), and 7 patients with both periodontitis and T2DM (Group 3). The mRNA of TLR4, CD14, MD-2 and MyD88 was quantified using real-time PCR and compared between the groups. Results Statistical analysis showed that periodontal expression of CD14 mRNA was significantly reduced across Groups 1, 2 and 3 (p = 0.02) whereas the mRNA expression of TLR4, MD-2 and MyD88 was not significantly different among the groups. Furthermore, when patients in Groups 1 and 2 were combined (n = 22), the CD14 mRNA expression was significantly lower than that in patients of Group 1 (p = 0.04). Conclusions CD14 mRNA expression was downregulated across patients with neither periodontitis nor T2DM, patients with periodontitis alone and patients with both diseases, suggesting that CD14 mRNA expression is associated with a favorable host response or subjected to a negative feedback regulation.
Collapse
Affiliation(s)
- Dustin C Hedgpeth
- Department of Stomatology, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Xiaoming Zhang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA.
| | - Junfei Jin
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA. .,Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, People's Republic of China.
| | - Renata S Leite
- Department of Stomatology, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA. .,Center for Oral Health Research, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Joe W Krayer
- Department of Stomatology, James B. Edwards College of Dental Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Yan Huang
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, College of Medicine, Medical University of South Carolina, 114 Doughty Street, Charleston, SC, 29425, USA. .,Ralph H. Johnson VA Medical Center, 114 Doughty Street, Charleston, SC, 29401, USA.
| |
Collapse
|
96
|
Solano G, Gómez A, León G. Assessing endotoxins in equine-derived snake antivenoms: Comparison of the USP pyrogen test and the Limulus Amoebocyte Lysate assay (LAL). Toxicon 2015; 105:13-8. [DOI: 10.1016/j.toxicon.2015.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/06/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
|
97
|
Mahita J, Harini K, Rao Pichika M, Sowdhamini R. An in silico approach towards the identification of novel inhibitors of the TLR-4 signaling pathway. J Biomol Struct Dyn 2015; 34:1345-62. [PMID: 26264972 DOI: 10.1080/07391102.2015.1079243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Precise functioning and fine-tuning of Toll-like receptor 4 (TLR4) signaling is a critical requirement for the smooth functioning of the innate immune system, since aberrant TLR4 activation causes excessive production of pro-inflammatory cytokines and interferons. This can result in life threatening conditions such as septic shock and other inflammatory disorders. The TRIF-related adaptor molecule (TRAM) adaptor protein is unique to the TLR4 signaling pathway and abrogation of TRAM-mediated TLR4 signaling is a promising strategy for developing therapeutics aimed at disrupting TRAM interactions with other components of the TLR4 signaling complex. The VIPER motif from the vaccinia virus-producing protein, A46 has been reported to disrupt TRAM-TLR4 interactions. We have exploited this information, in combination with homology modeling and docking approaches, to identify a potential binding site on TRAM lined by the BB loop and αC helix. Virtual screening of commercially available small molecules targeting the binding site enabled to short-list 12 small molecules to abrogate TRAM-mediated TLR4 signaling. Molecular dynamics and molecular mechanics calculations have been performed for the analysis of these receptor-ligand interactions.
Collapse
Affiliation(s)
- Jarjapu Mahita
- a National Centre for Biological Sciences , GKVK Campus, Bangalore , India
| | - K Harini
- a National Centre for Biological Sciences , GKVK Campus, Bangalore , India
| | | | | |
Collapse
|
98
|
Chebrolu C, Artner D, Sigmund AM, Buer J, Zamyatina A, Kirschning CJ. Species and mediator specific TLR4 antagonism in primary human and murine immune cells by βGlcN(1↔1)αGlc based lipid A mimetics. Mol Immunol 2015; 67:636-41. [PMID: 26319313 DOI: 10.1016/j.molimm.2015.07.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 06/18/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022]
Abstract
Immune stimulatory pathogen associated molecular patterns (PAMPs) are major drivers of infection pathology. Infections with Gram-negative bacteria or negatively polar and single stranded RNA influenza virus are prominent causes of morbidity and mortality. Toll-like receptor (TLR) 4 is a major host sensor for both of the two infections. In order to inhibit TLR4 driven immune activation we recently developed synthetic tetra-acylated lipid A mimetics based on a conformationally restricted βGlcN(1↔1)αGlcN disaccharide scaffold (DA-compounds) that antagonized ectopically overexpressed human and murine TLR4/MD-2 complexes. Here we comparatively analyzed human peripheral blood mononuclear cell (hPBMC) and murine bone marrow derived macrophage (mBM) activation upon 30 min of preincubation in vitro with six variably acylated DA-compounds. 16 h subsequent to consequent LPS challenge, we sampled culture supernatants for cytokine and NO concentration analysis. Four compounds significantly inhibited release of both TNF and IL-6 by hPBMCs upon LPS challenge. In contrast, three compounds effectively inhibited mBM production of MIP-2 and KC, and even five of them inhibited IL-6 and NO production. LPS driven like other TLR ligand driven mBM TNF release was largely unimpaired. The inhibitory effect was specific in that Clo75 driven cytokine release by both hPBMCs and mBMs was unimpaired by the compounds analyzed. Our results indicate biological species specificity of LPS antagonism by variably tetraacylated lipid A mimetics and validate three out of six DA-antagonists as promising candidates for development of therapeutically applicable anti-inflammatory compounds.
Collapse
Affiliation(s)
- Chiranjeevi Chebrolu
- Institute of Medical Microbiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniel Artner
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Anna M Sigmund
- Institute of Medical Microbiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University of Duisburg-Essen, 45147 Essen, Germany
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Carsten J Kirschning
- Institute of Medical Microbiology, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
99
|
Liu Q, Li J, Jubair S, Wang D, Luo Y, Fan D, Janicki JS. Sparstolonin B attenuates hypoxia-induced apoptosis, necrosis and inflammation in cultured rat left ventricular tissue slices. Cardiovasc Drugs Ther 2015; 28:433-9. [PMID: 25117676 DOI: 10.1007/s10557-014-6545-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE Ischemia/reperfusion results in tissue damage, a rapid increase in cytokines and chemokines and inflammatory cell infiltration. Herein we investigated the ability of a selective TLR2/4 antagonist, Sparstolonin B (SsnB), to protect rat cultured left ventricular tissue (LV) slices from hypoxic injury by inhibiting the myocardial inflammatory response independent of inflammatory cell infiltration. METHODS AND RESULTS Media Lactate dehydrogenase (LDH) levels were measured to reflect hypoxia-induced cytotoxicity and cell injury with and without SsnB. Incubation with SsnB (15 and 30 μM) significantly reduced by 20 and 40%, respectively, the amount of LDH released from the hypoxic LV slices. TUNEL staining showed that SsnB significantly attenuated the levels of hypoxia-induced apoptotic cells from 61.5 ± 4.0 to 27.0 ± 2.1 (15 μM SsnB) and 23.5 ± 2.2 (30 μM SsnB) cells/unit area. Similarly, the Periodic Acid-Schiff (PAS) staining of ischemic areas in untreated hypoxic LV slices was increased 17 fold from 0.26± 0.09 to 4.41 ± 0.43%, while in hypoxic slices incubated with 15 and 30 μM of SsnB, the PAS positive ischemic areas were increased by only 6.4 fold to 1.66 ± 0.39% and 3.8 fold to 1.00 ± 0.22%, respectively. Rt-PCR confirmed that MCP1 and IL-6 expression during hypoxia was elevated by 2 and 4 fold, respectively, while their up-regulation was significantly inhibited (i.e., < 0.7 fold increase) by SsnB. CONCLUSION The selective TLR2/4 antagonist, Sparstolonin B, can substantially protect LV myocardium via its ability to inhibit injury resulting from hypoxic myocardial-generated inflammation. Accordingly SsnB has potential as a therapeutic agent for the attenuation of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qing Liu
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Tai LM, Ghura S, Koster KP, Liakaite V, Maienschein‐Cline M, Kanabar P, Collins N, Ben‐Aissa M, Lei AZ, Bahroos N, Green SJ, Hendrickson B, Van Eldik LJ, LaDu MJ. APOE-modulated Aβ-induced neuroinflammation in Alzheimer's disease: current landscape, novel data, and future perspective. J Neurochem 2015; 133:465-88. [PMID: 25689586 PMCID: PMC4400246 DOI: 10.1111/jnc.13072] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 01/12/2023]
Abstract
Chronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aβ-independent neuroinflammation, data for APOE-modulated Aβ-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aβ-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.
Collapse
Affiliation(s)
- Leon M. Tai
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Shivesh Ghura
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Kevin P. Koster
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | | | | | - Pinal Kanabar
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Nicole Collins
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Manel Ben‐Aissa
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| | - Arden Zhengdeng Lei
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | - Neil Bahroos
- UIC Center for Research Informatics University of IllinoisChicagoIllinoisUSA
| | | | - Bill Hendrickson
- UIC Research Resources CenterUniversity of IllinoisChicagoIllinoisUSA
| | | | - Mary Jo LaDu
- Department of Anatomy and Cell BiologyUniversity of IllinoisChicagoIllinoisUSA
| |
Collapse
|