51
|
Cen C, Chen J, Lin L, Chen M, Dong F, Shen Z, Cui X, Hou X, Gao F. Fancb deficiency causes premature ovarian insufficiency in mice†. Biol Reprod 2022; 107:790-799. [PMID: 35596251 DOI: 10.1093/biolre/ioac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022] Open
Abstract
FANCB protein is a major component of the Fanconi anemia (FA) core complex and plays important role in hematopoiesis and germ cell development. Deletion of Fancb gene causes the defect of primordial germ cells (PGCs) development and infertility in male mice. However, it remains unknown whether Fancb is required for female germ cell development. In this study, we found that the fertility of Fancb knockout male mice in C57/ICR mixed backgrounds was not affected. Female Fancb-/- mice were obtained by crossing Fancb+/- females with Fancb-/Y males. The number of PGCs was dramatically decreased in Fancb-/- females. Very few oocytes were observed after birth and primordial follicle pool was completely depleted at 6 weeks of age in Fancb-/- females. However, the remained oocytes from Fancb-/- mice were normal in fertilization and embryonic development from 2-cell to blastocyst stage. We also found that Fancb and Fancl double knockout males were also fertile and the number of sperm in epididymis was not reduced comparable to that of Fancb-/- and Fancl-/- single knockout mice. Taken together, these results demonstrated that Fancb is also essential for female germ cell development. Inactivation of Fancb causes massive germ cell loss and infertility in adult females. We also found that Fancb and Fancl do not act synergistically in regulating germ cell development.
Collapse
Affiliation(s)
- Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junhua Chen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Limei Lin
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaohui Hou
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
52
|
Kim HY, Kim HJ, Kim SH. Genetics and genomics of bone marrow failure syndrome. Blood Res 2022; 57:86-92. [PMID: 35483932 PMCID: PMC9057661 DOI: 10.5045/br.2022.2022056] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Inherited bone marrow failure syndrome (IBMFS) is a group of clinically heterogeneous disorders characterized by significant hematological cytopenias of one or more hematopoietic cell lineages and is associated with an increased risk of cancer. The genetic etiology of IBMFS includes germline mutations impacting several key biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, which may cause four major syndromes: Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Although the clinical features of some patients may be typical of a particular IBMFS, overlapping and atypical clinical manifestations and variable penetrance pose diagnostic challenges. Here, we review the clinical and genetic features of the major forms of IBMFS and discuss their molecular genetic diagnosis. Next-generation sequencing-based gene panel testing or whole exome sequencing will help elucidate the genetic causes and underlying mechanisms of this genetically heterogeneous group of diseases.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun-Hee Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
53
|
Kulasekararaj AG, Gandhi S. A tribute to Fanconi: 'clinical acumen still counts'. Haematologica 2022; 108:1-2. [PMID: 35417941 PMCID: PMC9827147 DOI: 10.3324/haematol.2022.280868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/22/2023] Open
Affiliation(s)
- Austin G. Kulasekararaj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust,King’s College London, London, UK,A.G. Kulasekararaj
| | - Shreyans Gandhi
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust
| |
Collapse
|
54
|
Altintas B, Giri N, McReynolds LJ, Best A, Alter BP. Genotype-phenotype and outcome associations in patients with Fanconi anemia: the National Cancer Institute cohort. Haematologica 2022; 108:69-82. [PMID: 35417938 PMCID: PMC9827153 DOI: 10.3324/haematol.2021.279981] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 02/04/2023] Open
Abstract
Fanconi anemia (FA) is caused by pathogenic variants in the FA/BRCA DNA repair pathway genes, and is characterized by congenital abnormalities, bone marrow failure (BMF) and increased cancer risk. We conducted a genotype-phenotype and outcomes study of 203 patients with FA in our cohort. We compared across the genes, FA/BRCA DNA repair pathways (upstream, ID complex and downstream), and type of pathogenic variants (hypomorphic or null). We explored differences between the patients evaluated in our clinic (clinic cohort) and those who provided data remotely (field cohort). Patients with variants in upstream complex pathway had less severe phenotype [lacked VACTERL-H (Vertebral, Anal, Cardiac, Trachea-esophageal fistula, Esophageal/duodenal atresia, Renal, Limb, Hydrocephalus) association and/or PHENOS (Pigmentation, small-Head, small-Eyes, Neurologic, Otologic, Short stature) features]. ID complex was associated with VACTERL-H. The clinic cohort had more PHENOS features than the field cohort. PHENOS was associated with increased risk of BMF, and VACTERL-H with hypothyroidism. The cumulative incidence of severe BMF was 70%, solid tumors (ST) 20% and leukemia 6.5% as the first event. Head and neck and gynecological cancers were the most common ST, with further increased risk after hematopoietic cell transplantation. Among patients with FANCA, variants in exons 27-30 were associated with higher frequency of ST. Overall median survival was 37 years; patients with leukemia or FANCD1/BRCA2 variants had poorest survival. Patients with variants in the upstream complex had better survival than ID or downstream complex (p=0.001 and 0.016, respectively). FA is phenotypically and genotypically heterogeneous; detailed characterization provides new insights towards understanding this complex syndrome and guiding clinical management.
Collapse
Affiliation(s)
- Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute,N. Giri
| | - Lisa J. McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| | - Ana Best
- Biostatistics Branch, Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute
| |
Collapse
|
55
|
Galetzka D, Böck J, Wagner L, Dittrich M, Sinizyn O, Ludwig M, Rossmann H, Spix C, Radsak M, Scholz-Kreisel P, Mirsch J, Linke M, Brenner W, Marron M, Poplawski A, Haaf T, Schmidberger H, Prawitt D. Hypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI JOURNAL 2022; 21:117-143. [PMID: 35221838 PMCID: PMC8859646 DOI: 10.17179/excli2021-4482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022]
Abstract
Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.
Collapse
Affiliation(s)
- Danuta Galetzka
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Julia Böck
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.,Institute of Pathology, Julius Maximilians University, Würzburg, Germany
| | - Lukas Wagner
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| | - Marcus Dittrich
- Bioinformatics Department, Julius Maximilians University, Würzburg, Germany
| | - Olesja Sinizyn
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | | | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre, Mainz, Germany
| | - Claudia Spix
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Markus Radsak
- Department of Hematology, University Medical Centre, Mainz, Germany
| | | | - Johanna Mirsch
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Germany
| | - Matthias Linke
- Institute of Human Genetics, University Medical Centre, Mainz, Germany
| | - Walburgis Brenner
- Department of Obstetrics and Women's Health, University Medical Centre, Mainz, Germany
| | - Manuela Marron
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Alicia Poplawski
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Centre, Mainz, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Heinz Schmidberger
- Department of Radiation Oncology and Radiation Therapy, University Medical Centre, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Centre, Mainz, Germany
| |
Collapse
|
56
|
Alter BP, Giri N, McReynolds LJ, Altintas B. Fanconi anaemia: A syndrome with distinct subgroups. Br J Haematol 2022; 197:467-474. [PMID: 35191533 DOI: 10.1111/bjh.18091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Fanconi anaemia (FA) is an inherited bone marrow failure syndrome (IBMFS) with a high cancer predisposition rate. Traditional diagnoses are made before age 10 years due to bone marrow failure (BMF) and characteristic birth defects. Up to 10% of published cases were adults at diagnosis. We hypothesized that FA subgroups diagnosed in childhood are distinct from those diagnosed as adults. We classified patients by age at diagnosis of FA as FA-PED (<18 years) or FA-ADULT (≥18 years). The National Cancer Institute IBMFS cohort included 178 FA-PED and 26 FA-ADULT cases. We compared various features; the cumulative incidences of first adverse events (severe BMF leading to haematopoietic cell transplant or death, leukaemia, or solid tumours) were compared using competing-risk analyses. FA-ADULT lacked the 'typical' FA features (birth defects and early-onset BMF or leukaemia), were mainly female, had more patients with FANCA genotype, and had or developed more head and neck squamous-cell carcinoma (HNSCC) and/or gynaecological cancers compared with FA-PED, albeit at similar ages in both subgroups. FA-ADULT is a distinct subgroup that remained unrecognized during childhood. Centres for adult haematology-oncology should consider FA diagnosis in patients with early-onset HNSCC or gynaecological cancer with or without haematologic problems.
Collapse
Affiliation(s)
- Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Burak Altintas
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
57
|
Fanconi Anemia Patients from an Indigenous Community in Mexico Carry a New Founder Pathogenic Variant in FANCG. Int J Mol Sci 2022; 23:ijms23042334. [PMID: 35216452 PMCID: PMC8877758 DOI: 10.3390/ijms23042334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/15/2022] Open
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by pathogenic variants (PV) in at least 22 genes, which cooperate in the Fanconi anemia/Breast Cancer (FA/BRCA) pathway to maintain genome stability. PV in FANCA, FANCC, and FANCG account for most cases (~90%). This study evaluated the chromosomal, molecular, and physical phenotypic findings of a novel founder FANCG PV, identified in three patients with FA from the Mixe community of Oaxaca, Mexico. All patients presented chromosomal instability and a homozygous PV, FANCG: c.511-3_511-2delCA, identified by next-generation sequencing analysis. Bioinformatic predictions suggest that this deletion disrupts a splice acceptor site promoting the exon 5 skipping. Analysis of Cytoscan 750 K arrays for haplotyping and global ancestry supported the Mexican origin and founder effect of the variant, reaffirming the high frequency of founder PV in FANCG. The degree of bone marrow failure and physical findings (described through the acronyms VACTERL-H and PHENOS) were used to depict the phenotype of the patients. Despite having a similar frequency of chromosomal aberrations and genetic constitution, the phenotype showed a wide spectrum of severity. The identification of a founder PV could help for a systematic and accurate genetic screening of patients with FA suspicion in this population.
Collapse
|
58
|
Kiumarsi A, Mousavi SA, Kasaeian A, Rostami T, Rad S, Ghavamzadeh A, Mousavi SA. Radiation-free Reduced-intensity Hematopoietic Stem Cell Transplantation with In-Vivo T-cell Depletion from Matched Related and Unrelated Donors for Fanconi Anemia: Prognostic Factor Analysis. Exp Hematol 2022; 109:27-34. [DOI: 10.1016/j.exphem.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/25/2022]
|
59
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
60
|
Groarke EM, Calado RT, Liu JM. Cell senescence and malignant transformation in the inherited bone marrow failure syndromes: Overlapping pathophysiology with therapeutic implications. Semin Hematol 2022; 59:30-37. [PMID: 35491056 PMCID: PMC9062194 DOI: 10.1053/j.seminhematol.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/02/2023]
Abstract
Fanconi anemia, telomeropathies and ribosomopathies are members of the inherited bone marrow failure syndromes, rare genetic disorders that lead to failure of hematopoiesis, developmental abnormalities, and cancer predisposition. While each disorder is caused by different genetic defects in seemingly disparate processes of DNA repair, telomere maintenance, or ribosome biogenesis, they appear to lead to a common pathway characterized by premature senescence of hematopoietic stem cells. Here we review the experimental data on senescence and inflammation underlying marrow failure and malignant transformation. We conclude with a critical assessment of current and future therapies targeting these pathways in inherited bone marrow failure syndromes patients.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Johnson M Liu
- Division of Hematology, Maine Medical Center, Portland, ME
| |
Collapse
|
61
|
Gardner UG, Wood SG, Chen EY, Greenberger JS, Grossberg AJ. Use of a Therapeutic Trial of Graduated Neoadjuvant Radiation Therapy for Locally Advanced Esophageal Cancer in a Patient With Fanconi Anemia. Adv Radiat Oncol 2022; 7:100810. [PMID: 34765806 PMCID: PMC8570958 DOI: 10.1016/j.adro.2021.100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023] Open
Affiliation(s)
- Ulysses G. Gardner
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephanie G. Wood
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | - Emerson Y. Chen
- Division of Hematology and Medical Oncology, Department of Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Joel S. Greenberger
- Department of Radiation Oncology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aaron J. Grossberg
- Department of Radiation Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
62
|
Ilinca A, Kafantari E, Puschmann A. Relatively common hypomorphic variants in WARS2 cause monogenic disease. Parkinsonism Relat Disord 2022; 94:129-131. [DOI: 10.1016/j.parkreldis.2022.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
|
63
|
Luzwick JW, Dombi E, Boisvert RA, Roy S, Park S, Kunnimalaiyaan S, Goffart S, Schindler D, Schlacher K. MRE11-dependent instability in mitochondrial DNA fork protection activates a cGAS immune signaling pathway. SCIENCE ADVANCES 2021; 7:eabf9441. [PMID: 34910513 PMCID: PMC8673762 DOI: 10.1126/sciadv.abf9441] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mitochondrial DNA (mtDNA) instability activates cGAS-dependent innate immune signaling by unknown mechanisms. Here, we find that Fanconi anemia suppressor genes are acting in the mitochondria to protect mtDNA replication forks from instability. Specifically, Fanconi anemia patient cells show a loss of nascent mtDNA through MRE11 nuclease degradation. In contrast to DNA replication fork stability, which requires pathway activation by FANCD2-FANCI monoubiquitination and upstream FANC core complex genes, mitochondrial replication fork protection does not, revealing a mechanistic and genetic separation between mitochondrial and nuclear genome stability pathways. The degraded mtDNA causes hyperactivation of cGAS-dependent immune signaling resembling the unphosphorylated ISG3 response. Chemical inhibition of MRE11 suppresses this innate immune signaling, identifying MRE11 as a nuclease responsible for activating the mtDNA-dependent cGAS/STING response. Collective results establish a previously unknown molecular pathway for mtDNA replication stability and reveal a molecular handle to control mtDNA-dependent cGAS activation by inhibiting MRE11 nuclease.
Collapse
Affiliation(s)
- Jessica W. Luzwick
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Eszter Dombi
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca A. Boisvert
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Sunetra Roy
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Soyoung Park
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Detlev Schindler
- Institut für Humangenetik, University of Würzburg, Würzburg, Germany
| | - Katharina Schlacher
- Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Corresponding author.
| |
Collapse
|
64
|
Shahid M, Azfaralariff A, Zubair M, Abdulkareem Najm A, Khalili N, Law D, Firasat S, Fazry S. In silico study of missense variants of FANCA, FANCC and FANCG genes reveals high risk deleterious alleles predisposing to Fanconi anemia pathogenesis. Gene 2021; 812:146104. [PMID: 34864095 DOI: 10.1016/j.gene.2021.146104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/04/2022]
Abstract
Among the 22 Fanconi anemia (FA) reported genes, 90% of mutational spectra were found in three genes, namely FANCA (64%), FANCC (12%) and FANCG (8%). Therefore, this study aimed to identify the high-risk deleterious variants in three selected genes (FANCA, FANCC, and FANCG) through various computational approaches. The missense variant datasets retrieved from the UCSC genome browser were analyzed for their pathogenicity, stability, and phylogenetic conservancy. A total of 23 alterations, of which 16 in FANCA, 6 in FANCC and one variant in FANCG, were found to be highly deleterious. The native and mutant structures were generated, which demonstrated a profound impact on the respective proteins. Besides, their pathway analysis predicted many other pathways in addition to the Fanconi anemia pathway, homologous recombination, and mismatch repair pathways. Hence, this is the first comprehensive study that can be useful for understanding the genetic signatures in the development of FA.
Collapse
Affiliation(s)
- Muhammad Shahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Ahmad Azfaralariff
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Muhammad Zubair
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Pattoki Campus, Pakistan
| | - Ahmed Abdulkareem Najm
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nahid Khalili
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Persiaran Perdana BBN Putra Nilai, 71800 Nilai, Negeri Sembilan
| | - Sabika Firasat
- Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, 45320 Islamabad, Pakistan
| | - Shazrul Fazry
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; ZACH Biotech Depot Private Limited, Cheras, 43300, Selangor, Malaysia; Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
65
|
McReynolds LJ, Giri N, Leathwood L, Risch MO, Carr AG, Alter BP. Risk of cancer in heterozygous relatives of patients with Fanconi anemia. Genet Med 2021; 24:245-250. [PMID: 34906449 DOI: 10.1016/j.gim.2021.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Fanconi anemia (FA) is a cancer-prone inherited bone marrow failure syndrome caused by biallelic pathogenic variants in one of >22 genes in the FA/BRCA DNA repair pathway. A major concern is whether the risk of cancer is increased in individuals with a single pathogenic FA gene variant. METHODS We evaluated the risk of cancer in the relatives of patients with FA in the National Cancer Institute Inherited Bone Marrow Failure Syndrome cohort. We genotyped all available relatives and determined the rates, types of cancer and the age of patients at cancer diagnosis. We calculated the observed-to-expected (O/E) cancer ratios using data from the Surveillance, Epidemiology, and End Results Program adjusted for age, sex, and birth cohort. RESULTS The risk of cancer was not increased among all FA relatives and FA heterozygotes (O/E ratios of 0.78 and 0.79, respectively). In particular, the risk of cancer was not increased among FANCA or FANCC heterozygotes (O/E ratios of 0.92 and 0.71, respectively). Relatives did not have typical FA cancers, and age at cancer diagnosis was not younger than expected. CONCLUSION Understanding the risk of cancer in individuals with single pathogenic FA variants is critical for counseling and management. We did not find increased risk of cancer in these individuals. These findings do not extend to the known cancer predisposition autosomal dominant FA genes, namely BRCA1, BRCA2, PALB2, BRIP1, and RAD51C.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD.
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | | | | | | | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
66
|
Encarnación JA, Cerezuela P, Español I, García MR, Manso C, De la Fuente I, Garrigós N, Viney A, Minguillon J, Surrallés J. Fanconi-like anemia related to a FANCM mutation. Eur J Med Genet 2021; 65:104399. [PMID: 34793962 DOI: 10.1016/j.ejmg.2021.104399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 11/13/2021] [Indexed: 11/03/2022]
Abstract
Fanconi anemia is primarily inherited as an autosomal recessive genetic disorder with common delays in diagnosis and challenging treatments. Fanconi anemia patients have a high risk of developing solid tumors, particularly in the head and neck or anogenital regions. The diagnosis of Fanconi anemia is primarily based on the chromosomal breakage but FA gene sequencing is recommended in all patients with a positive chromosome fragility test. Here, we present a 32-year-old man with advanced tonsil squamous cell carcinoma and fatal toxicity after the first cycle of chemotherapy. No anemia was present. A recent variant mutation if the FANCM gene was detected (c1511_1515delGAGTA (pArg504AsnfsTer29)). Homozygous or double heterozygous pathogenic variants have been reported in FANCM and linked to azoospermia and primary ovarian failure without anemia. Alterations in this gene have also been associated with a genetic predisposition for solid tumors (breast and ovarian cancer) and hematological malignancies (B-cell acute lymphoblastic leukemia). Due to the hypersensitivity of these patients to DNA-damaging agents such as chemotherapy and radiotherapy, surgery is the best treatment option for malignant solid tumors. Dose reductions or alternative regimens of chemotherapy and/or radiotherapy are recommended in FA patients who develop a malignant tumor.
Collapse
Affiliation(s)
- J A Encarnación
- Servicio de Oncología Radioterápica Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
| | - P Cerezuela
- Servicio de Oncología Médica Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - I Español
- Servicio de Hematología y Hemoterapia Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - M R García
- Servicio de Oncología Médica Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - C Manso
- Servicio de Medicina Intensiva, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - I De la Fuente
- Servicio de Oncología Radioterápica Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - N Garrigós
- Centro Inmunológico de Alicante, Spain; Servicio de Biología Molecular de Cialab Ribera Salud, Spain
| | - A Viney
- Servicio de Farmacia, Hospital General Universitario Santa Lucía, Cartagena, Spain
| | - J Minguillon
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau), Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041, Barcelona, Spain; Genetics Department, Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, Spain; Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041, Barcelona, Spain
| | - J Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau), Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041, Barcelona, Spain; Genetics Department, Hospital de la Santa Creu I Sant Pau, 08041, Barcelona, Spain; Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Center for Biomedical Network Research on Rare Diseases (CIBERER), Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041, Barcelona, Spain
| |
Collapse
|
67
|
Gueiderikh A, Maczkowiak-Chartois F, Rosselli F. A new frontier in Fanconi anemia: From DNA repair to ribosome biogenesis. Blood Rev 2021; 52:100904. [PMID: 34750031 DOI: 10.1016/j.blre.2021.100904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Described by Guido Fanconi almost 100 years ago, Fanconi anemia (FA) is a rare genetic disease characterized by developmental abnormalities, bone marrow failure (BMF) and cancer predisposition. The proteins encoded by FA-mutated genes (FANC proteins) and assembled in the so-called FANC/BRCA pathway have key functions in DNA repair and replication safeguarding, which loss leads to chromosome structural aberrancies. Therefore, since the 1980s, FA has been considered a genomic instability and chromosome fragility syndrome. However, recent findings have demonstrated new and unexpected roles of FANC proteins in nucleolar homeostasis and ribosome biogenesis, the alteration of which impacts cellular proteostasis. Here, we review the different cellular, biochemical and molecular anomalies associated with the loss of function of FANC proteins and discuss how these anomalies contribute to BMF by comparing FA to other major inherited BMF syndromes. Our aim is to determine the extent to which alterations in the DNA damage response in FA contribute to BMF compared to the consequences of the loss of function of the FANC/BRCA pathway on the other roles of the pathway.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Frédérique Maczkowiak-Chartois
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| | - Filippo Rosselli
- CNRS - UMR9019, Équipe labellisée "La Ligue contre le Cancer", 94805 Villejuif, France; Gustave Roussy Cancer Center, 94805 Villejuif, France; Université Paris-Saclay - Paris Sud, Orsay, France.
| |
Collapse
|
68
|
Ip E, McNeil C, Grimison P, Scheinberg T, Tudini E, Ho G, Scott RJ, Brown C, Sandroussi C, Guitera P, Spurdle AB, Goodwin A. Catastrophic chemotherapy toxicity leading to diagnosis of Fanconi anaemia due to FANCD1/BRCA2 during adulthood: description of an emerging phenotype. J Med Genet 2021; 59:912-915. [PMID: 34697207 DOI: 10.1136/jmedgenet-2021-108072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/07/2021] [Indexed: 11/03/2022]
Abstract
Fanconi anaemia due to biallelic loss of BRCA2 (Fanconi anaemia subtype D1) is traditionally diagnosed during childhood with cancer rates historically reported as 97% by 5.2 years. This report describes an adult woman with a history of primary ovarian failure, who was diagnosed with gastrointestinal adenocarcinoma and BRCA2-associated Fanconi anaemia at 23 years of age, only after she suffered severe chemotherapy toxicity. The diagnostic challenges include atypical presentation, initial false-negative chromosome fragility testing and variant classification. It highlights gastrointestinal adenocarcinoma as a consideration for adults with biallelic BRCA2 pathogenic variants with implications for surveillance. After over 4 years, the patient has no evidence of gastrointestinal cancer recurrence although the tumour was initially considered only borderline resectable. The use of platinum-based chemotherapy, to which heterozygous BRCA2 carriers are known to respond, may have had a beneficial anticancer effect, but caution is advised given its extreme immediate toxicity at standard dosing. Fanconi anaemia should be considered as a cause for women with primary ovarian failure of unknown cause and referral to cancer genetic services recommended when there is a family history of cancer in the hereditary breast/ovarian cancer spectrum.
Collapse
Affiliation(s)
- Emilia Ip
- Cancer Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Catriona McNeil
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Grimison
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia
| | - Tahlia Scheinberg
- Medical Oncology, Chris O'Brien Lifehouse, Camperdown, New South Wales, Australia.,Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Clinical Prostate Cancer Group, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Emma Tudini
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Gladys Ho
- Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Rodney J Scott
- Division of Molecular Medicine, NSW Health Pathology, Newcastle, New South Wales, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, New South Wales, Australia.,Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Christina Brown
- Haematology Unit, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Charbel Sandroussi
- Department of Hepatobiliary and Upper Gastrointestinal Surgery, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Pascale Guitera
- Department of Medicine, The University of Sydney, Sydney, New South Wales, Australia.,Melanoma Institute Australia, North Sydney, New South Wales, Australia.,Dermatology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Annabel Goodwin
- Cancer Genetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia .,Medical Oncology, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
69
|
McReynolds LJ, Biswas K, Giri N, Sharan SK, Alter BP. Genotype-cancer association in patients with Fanconi anemia due to pathogenic variants in FANCD1 (BRCA2) or FANCN (PALB2). Cancer Genet 2021; 258-259:101-109. [PMID: 34687993 DOI: 10.1016/j.cancergen.2021.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/28/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023]
Abstract
Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome and a cancer predisposition disorder. Cancers in FA include acute leukemia and solid tumors; the most frequent solid tumor is head and neck squamous cell carcinoma. FA is a primarily autosomal recessive disorder. Several of the genes in which biallelic pathogenic variants cause FA are also autosomal monoallelic cancer predisposition genes e.g. FANCD1 (BRCA2) and FANCN (PALB2). We observed that patients with FA due to biallelic or homozygous pathogenic variants in FANCD1 and FANCN have a unique cancer association. We curated published cases plus our NCI cohort cases, including 71 patients in the FANCD1 group (94 cancers and 69 variants) and 16 patients in the FANCN group (23 cancers and 20 variants). Only patients in FANCD1 and FANCN groups had one or more of these tumors: brain tumors (primarily medulloblastoma), Wilms tumor and neuroblastoma; this is a genotype-specific cancer combination of tumors of embryonal origin. Acute leukemias, seen in all FA genotypes, also occurred in FANCD1 and FANCN group patients at young ages. In silico predictions of pathogenicity for FANCD1 variants were compared with results from a mouse embryonic stem cell-based functional assay. Patients with two null FANCD1 variants did not have an increased frequency of cancer nor earlier onset of cancer compared with those with hypomorphic variants. Patients with FA and these specific cancers should consider genetic testing focused on FANCD1 and FANCN, and patients with these genotypes may consider ongoing surveillance for these specific cancers.
Collapse
Affiliation(s)
- Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
70
|
Mahmood R, Mahmood A, Khan SA, Jaffar R. An experience with 124 cases of fanconi anemia: clinical spectrum, hematological parameters and chromosomal breakage analysis. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:498-503. [PMID: 34824882 PMCID: PMC8610795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Fanconi anemia is an inherited bone marrow failure syndrome characterized by somatic abnormalities and an increased predisposition to malignancies. OBJECTIVE To determine the clinical spectrum and evaluate the hematological parameters as well as highlight diagnosis by chromosomal breakage analysis of Fanconi anemia patients. MATERIAL AND METHODS A total of 124 patients were diagnosed as having Fanconi anemia from August 2014 to May 2020 at Armed Forces Institute of Pathology, Rawalpindi, Pakistan. Clinical details, somatic abnormalities, radiological findings, lab parameters and result of chromosomal breakage analysis were noted and analyzed. RESULTS One hundred and twenty four (14.29%) were diagnosed as having Fanconi anemia (FA) on chromosomal breakage test. Median age was 09 years 06 months. Male to female ratio was 1.9:1. Six of these patients exhibited mosaicism and were classified as FA mosaic. Somatic abnormalities were detected in 74 (59.7%) patients; the most common being skeletal abnormalities and short stature. CONCLUSION Chromosomal breakage analysis is a cost-effective method for diagnosis of Fanconi anemia. Early diagnosis is pertinent for proper treatment and long term prognosis.
Collapse
Affiliation(s)
- Rafia Mahmood
- Armed Forces Institute of PathologyRawalpindi, Pakistan
| | - Asad Mahmood
- Armed Forces Institute of PathologyRawalpindi, Pakistan
| | | | - Raza Jaffar
- Armed Forces Institute of PathologyRawalpindi, Pakistan
| |
Collapse
|
71
|
George M, Solanki A, Chavan N, Rajendran A, Raj R, Mohan S, Nemani S, Kanvinde S, Munirathnam D, Rao S, Radhakrishnan N, Lashkari HP, Ghildhiyal RG, Manglani M, Shanmukhaiah C, Bhat S, Ramesh S, Cherian A, Junagade P, Vundinti BR. A comprehensive molecular study identified 12 complementation groups with 56 novel FANC gene variants in Indian Fanconi anemia subjects. Hum Mutat 2021; 42:1648-1665. [PMID: 34585473 DOI: 10.1002/humu.24286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/09/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal or X-linked genetic disorder characterized by chromosomal breakages, congenital abnormalities, bone marrow failure (BMF), and cancer. There has been a discovery of 22 FANC genes known to be involved in the FA pathway. This wide number of pathway components makes molecular diagnosis challenging for FA. We present here the most comprehensive molecular diagnosis of FA subjects from India. We observed a high frequency (4.42 ± 1.5 breaks/metaphase) of chromosomal breakages in 181 FA subjects. The major clinical abnormalities observed were skin pigmentation (70.2%), short stature (46.4%), and skeletal abnormalities (43.1%), along with a few minor clinical abnormalities. The combination of Sanger sequencing and Next Generation Sequencing could molecularly characterize 164 (90.6%) FA patients and identified 12 different complementation groups [FANCA (56.10%), FANCG (16.46%), FANCL (12.80%), FANCD2 (4.88%), FANCJ (2.44%), FANCE (1.22%), FANCF (1.22%), FANCI (1.22%), FANCN (1.22%), FANCC (1.22%), FANCD1 (0.61%) and FANCB (0.61%)]. A total of 56 novel variants were identified in our cohort, including a hotspot variant: a deletion of exon 27 in the FANCA gene and a nonsense variant at c.787 C>T in the FANCG gene. Our comprehensive molecular findings can aid in the stratification of molecular investigation in the diagnosis and management of FA patients.
Collapse
Affiliation(s)
- Merin George
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Avani Solanki
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Niranjan Chavan
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| | - Aruna Rajendran
- Department of Pediatric Hematology, Institute of Child Health and Hospital for Children, Chennai, Tamilnadu, India
| | - Revathi Raj
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sheila Mohan
- Department of Pediatric Hematology, Oncology, Apollo Speciality Hospital, Chennai, Tamilnadu, India
| | - Sandeep Nemani
- Department of Hematology, Usha Hematology Center, Sangli, Maharashtra, India
| | - Shailesh Kanvinde
- Department of Paediatric Hematology Oncology, Deenanath Mangeshkar Hospital and Research Center, Pune, Maharashtra, India
| | - Deendayalan Munirathnam
- Department of Pediatric Oncology, Kanchi Kamakoti Childs Trust Hospital, Chennai, Tamil Nadu, India
| | - Sudha Rao
- Department of Paediatric Haemato-Oncology and Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Nita Radhakrishnan
- Department of Paediatric Haematology Oncology, Super Specialty Pediatric Hospital & Post Graduate Teaching Institute, Noida, Uttar Pradesh, India
| | - Harsha Prasada Lashkari
- Department of Pediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Mangalore, India
| | - Radha Gulati Ghildhiyal
- Department of Pediatrics, Lokmanya Tilak Municipal General Hospital, Mumbai, Maharashtra, India
| | - Mamta Manglani
- Department of Hematology, Comprehensive Thalassemia Care Center and Bone Marrow Transplantation Center, Mumbai, Maharashtra, India
| | | | - Sunil Bhat
- Department of Paediatric Haematology, Oncology and Blood & Bone Marrow Transplantation, Narayana Health Network Hospitals, Bangalore, India
| | - Sowmyashree Ramesh
- Department of Pediatrics, Vanivilas Hospital, Bangalore, Karnataka, India
| | - Anchu Cherian
- Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Pritesh Junagade
- Department of stem cell transplantation, Lotus Hospital, Pune, Maharashtra, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, India
| |
Collapse
|
72
|
Fanconi Anaemia, Childhood Cancer and the BRCA Genes. Genes (Basel) 2021; 12:genes12101520. [PMID: 34680915 PMCID: PMC8535386 DOI: 10.3390/genes12101520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022] Open
Abstract
Fanconi anaemia (FA) is an inherited chromosomal instability disorder characterised by congenital and developmental abnormalities and a strong cancer predisposition. In less than 5% of cases FA can be caused by bi-allelic pathogenic variants (PGVs) in BRCA2/FANCD1 and in very rare cases by bi-allelic PGVs in BRCA1/FANCS. The rarity of FA-like presentation due to PGVs in BRCA2 and even more due to PGVs in BRCA1 supports a fundamental role of the encoded proteins for normal development and prevention of malignant transformation. While FA caused by BRCA1/2 PGVs is strongly associated with distinct spectra of embryonal childhood cancers and AML with BRCA2-PGVs, and also early epithelial cancers with BRCA1 PGVs, germline variants in the BRCA1/2 genes have also been identified in non-FA childhood malignancies, and thereby implying the possibility of a role of BRCA PGVs also for non-syndromic cancer predisposition in children. We provide a concise review of aspects of the clinical and genetic features of BRCA1/2-associated FA with a focus on associated malignancies, and review novel aspects of the role of germline BRCA2 and BRCA1 PGVs occurring in non-FA childhood cancer and discuss aspects of clinical and biological implications.
Collapse
|
73
|
Fujisawa M, Matsushima M, Ueda T, Kaneko M, Fujimoto R, Sano M, Teramura E, Monma M, Mizukami H, Nakahara F, Suzuki H, Suzuki T, Yabe M, Yabe T. Three Cases of Esophageal Cancer Related to Fanconi Anemia. Intern Med 2021; 60:2953-2959. [PMID: 33814498 PMCID: PMC8502673 DOI: 10.2169/internalmedicine.6926-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The risk of carcinogenesis increases after 20 years old in patients with Fanconi anemia (FA). We herein report three rare cases of FA combined with esophageal cancer in women; all patients were diagnosed with FA in early childhood. Patients 1 and 2 were diagnosed with advanced and superficial esophageal cancer, respectively, at 21 and 30 years old, respectively. Patient 3 was diagnosed with superficial esophageal cancer, underwent curative surgery at 26 years old, and survived for over 5 years without recurrence. Therefore, establishing a protocol for the early detection of esophageal cancer in FA patients over 20 years old is important.
Collapse
Affiliation(s)
- Mia Fujisawa
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Masashi Matsushima
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Takashi Ueda
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Motoki Kaneko
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Ryutaro Fujimoto
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Masaya Sano
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Erika Teramura
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Makiko Monma
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Hajime Mizukami
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Fumio Nakahara
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Hidekazu Suzuki
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Takayoshi Suzuki
- Divisions of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University, School of Medicine, Japan
| | - Miharu Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University, School of Medicine, Japan
| | - Toshimasa Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University, School of Medicine, Japan
| |
Collapse
|
74
|
Jia N, Guo C, Nakazawa Y, van den Heuvel D, Luijsterburg MS, Ogi T. Dealing with transcription-blocking DNA damage: Repair mechanisms, RNA polymerase II processing and human disorders. DNA Repair (Amst) 2021; 106:103192. [PMID: 34358806 DOI: 10.1016/j.dnarep.2021.103192] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/15/2022]
Abstract
Transcription-blocking DNA lesions (TBLs) in genomic DNA are triggered by a wide variety of DNA-damaging agents. Such lesions cause stalling of elongating RNA polymerase II (RNA Pol II) enzymes and fully block transcription when unresolved. The toxic impact of DNA damage on transcription progression is commonly referred to as transcription stress. In response to RNA Pol II stalling, cells activate and employ transcription-coupled repair (TCR) machineries to repair cytotoxic TBLs and resume transcription. Increasing evidence indicates that the modification and processing of stalled RNA Pol II is an integral component of the cellular response to and the repair of TBLs. If TCR pathways fail, the prolonged stalling of RNA Pol II will impede global replication and transcription as well as block the access of other DNA repair pathways that may act upon the TBL. Consequently, such prolonged stalling will trigger profound genome instability and devastating clinical features. In this review, we will discuss the mechanisms by which various types of TBLs are repaired by distinct TCR pathways and how RNA Pol II processing is regulated during these processes. We will also discuss the clinical consequences of transcription stress and genotype-phenotype correlations of related TCR-deficiency disorders.
Collapse
Affiliation(s)
- Nan Jia
- Department of Allergy and Clinical Immunology, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Chaowan Guo
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan; Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| |
Collapse
|
75
|
Hughes AD, Kurre P. The impact of clonal diversity and mosaicism on haematopoietic function in Fanconi anaemia. Br J Haematol 2021; 196:274-287. [PMID: 34258754 DOI: 10.1111/bjh.17653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Recent advances have facilitated studies of the clonal architecture of the aging haematopoietic system, and provided clues to the mechanisms underlying the origins of hematopoietic malignancy. Much less is known about the clonal composition of haematopoiesis and its impact in bone marrow failure (BMF) disorders, including Fanconi anaemia (FA). Understanding clonality in FA is likely to inform both the marked predisposition to cancer and the rapid erosion of regenerative reserve seen with this disease. This may also hold broader lessons for haematopoietic stem cell biology in other diseases with a clonal restriction. In this review, we focus on the conceptual basis and available tools to study clonality, and highlight insights in somatic mosaicism and malignant evolution in FA in the context of haematopoietic failure and gene therapy.
Collapse
Affiliation(s)
- Andrew D Hughes
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
76
|
Abstract
Inherited bone marrow failure syndromes are a group of genetic disorders associated with bone marrow production defects resulting in single or multiple cytopenias. Many of these disorders predispose the patient to hematologic and nonhematologic malignancies, requiring life-long follow-up. A positive family history of hematologic disorders or malignancies is frequent, as these disorders commonly run in families, and selection of family members as potential bone marrow donors should be performed with caution to avoid transplanting potentially defective stem cells. This review highlights the most common genetic disorders associated with bone marrow failure.
Collapse
|
77
|
Lee RH, Kang H, Yom SS, Smogorzewska A, Johnson DE, Grandis JR. Treatment of Fanconi Anemia-Associated Head and Neck Cancer: Opportunities to Improve Outcomes. Clin Cancer Res 2021; 27:5168-5187. [PMID: 34045293 DOI: 10.1158/1078-0432.ccr-21-1259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022]
Abstract
Fanconi anemia, the most frequent genetic cause of bone marrow failure, is characterized by an extreme predilection toward multiple malignancies, including a greater than 500-fold incidence of head and neck squamous cell carcinoma (HNSCC) relative to the general population. Fanconi anemia-associated HNSCC and esophageal SCC (FA-HNSCC) often present at advanced stages with poor survival. Surgical resection remains the primary treatment for FA-HNSCC, and there is often great reluctance to administer systemic agents and/or radiotherapy to these patients given their susceptibility to DNA damage. The paucity of FA-HNSCC case reports limits evidence-based management, and such cases have not been analyzed collectively in detail. We present a systematic review of FA-HNSCC treatments reported from 1966 to 2020, defining a cohort of 119 patients with FA-HNSCC including 16 esophageal SCCs (131 total primary tumors), who were treated with surgery, radiotherapy, systemic therapy (including cytotoxic agents, EGFR inhibitors, or immune checkpoint inhibitors), or a combination of modalities. We summarize the clinical responses and regimen-associated toxicities by treatment modality. The collective evidence suggests that when possible, surgical resection with curative intent should remain the primary treatment modality for FA-HNSCC. Radiation can be administered with acceptable toxicity in the majority of cases, including patients who have undergone stem cell transplantation. Although there is little justification for cytotoxic chemotherapy, EGFR inhibitors and tyrosine kinase inhibitors may be both safe and effective. Immunotherapy may also be considered. Most oncologists have little personal experience with FA-HNSCC. This review is intended as a comprehensive resource for clinicians.
Collapse
Affiliation(s)
- Rex H Lee
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hyunseok Kang
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sue S Yom
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York
| | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| |
Collapse
|
78
|
Sharp MF, Bythell-Douglas R, Deans AJ, Crismani W. The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Mol Cell 2021; 81:2278-2289. [PMID: 33984284 DOI: 10.1016/j.molcel.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.
Collapse
Affiliation(s)
- Michael F Sharp
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
79
|
Daum H, Zlotogora J. Fanconi Anemia Gene Variants in Patients with Gonadal Dysfunction. Reprod Sci 2021; 29:1408-1413. [PMID: 33977503 DOI: 10.1007/s43032-021-00582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
Fanconi anemia (FA) is a multisystem disease, characterized by the triad of physical abnormalities, bone marrow failure, and increased risk for malignancy. In the past few years, data has accumulated regarding fertility issues in FA patients, mostly due to gonadal dysfunction, which is prevalent in FA patients reaching puberty. It seems that attenuated FA phenotype lacking the classical manifestations often is presented with POI or azoospermia. Searching the literature, we summarized data regarding FA patients presenting as suffering from sub/infertility due to gonadal dysfunction, with or without other FA symptoms. We present a summary of the patients having biallelic pathogenic variants in FA genes FANCA, FANCM, BRCA2, and XRCC2 that presented with gonadal dysfunction with or without other phenotypic features of FA. Some were in mosaic, while some are considered hypomorphic, enabling residual protein function. There are also a few descriptions of POI associated with monoallelic pathogenic variants in FANCA, BRCA2, and FANCL. We conclude that the diagnosis of FA in gonadal dysfunction patients is of utmost importance due to its actionability. Follow-up strategies in FA patients are designed to discover early stages of leukemias and solid tumors and thus save lives. The feasibility of next-generation sequencing (NGS) can now ease this diagnostic procedure. An open question is the justification of performing NGS for all isolated azoospermia/POI patients.
Collapse
Affiliation(s)
- Hagit Daum
- Department of Genetics, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Joël Zlotogora
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
80
|
Thompson AS, Saba N, McReynolds LJ, Munir S, Ahmed P, Sajjad S, Jones K, Yeager M, Donovan FX, Chandrasekharappa SC, Alter BP, Savage SA, Rehman S. The causes of Fanconi anemia in South Asia and the Middle East: A case series and review of the literature. Mol Genet Genomic Med 2021; 9:e1693. [PMID: 33960719 PMCID: PMC8372062 DOI: 10.1002/mgg3.1693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/16/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Background Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with characteristic dysmorphology primarily caused by biallelic pathogenic germline variants in any of 22 different DNA repair genes. There are limited data on the specific molecular causes of FA in different ethnic groups. Methods We performed exome sequencing and copy number variant analyses on 19 patients with FA from 17 families undergoing hematopoietic cell transplantation evaluation in Pakistan. The scientific literature was reviewed, and we curated germline variants reported in patients with FA from South Asia and the Middle East. Results The genetic causes of FA were identified in 14 of the 17 families: seven FANCA, two FANCC, one FANCF, two FANCG, and two FANCL. Homozygous and compound heterozygous variants were present in 12 and two families, respectively. Nine families carried variants previously reported as pathogenic, including two families with the South Asian FANCL founder variant. We also identified five novel likely deleterious variants in FANCA, FANCF, and FANCG in affected patients. Conclusions Our study supports the importance of determining the genomic landscape of FA in diverse populations, in order to improve understanding of FA etiology and assist in the counseling of families.
Collapse
Affiliation(s)
- Ashley S Thompson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nusrat Saba
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Saeeda Munir
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Parvez Ahmed
- Quaid-i-Azam International Hospital, Islamabad, Pakistan
| | - Sumaira Sajjad
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 20850, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 20850, USA
| | - Frank X Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sadia Rehman
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| |
Collapse
|
81
|
Bernard F, Uppungunduri CRS, Meyer S, Cummins M, Patrick K, James B, Skinner R, Tewari S, Carpenter B, Wynn R, Veys P, Amrolia P. Excellent overall and chronic graft-versus-host-disease-free event-free survival in Fanconi anaemia patients undergoing matched related- and unrelated-donor bone marrow transplantation using alemtuzumab-Flu-Cy: the UK experience. Br J Haematol 2021; 193:804-813. [PMID: 33855694 DOI: 10.1111/bjh.17418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/20/2022]
Abstract
Haematopoietic stem cell transplantation (HSCT) remains the only curative option in Fanconi anaemia (FA). We analysed the outcome of children transplanted for FA between 1999 and 2018 in the UK. A total of 94 transplants were performed in 82 patients. Among the donors, 51·2% were matched related donors (MRD) while the remainder were alternative donors. Most patients received a fludarabine-cyclophosphamide (Flu-Cy)-based conditioning regimen (86·6%) and in vivo T-cell depletion with alemtuzumab (69·5%). Five-year overall survival (OS) was 85·4% [70·4-93.2] with MRD, 95·7% [72·9-99.4] with matched unrelated donors (MUD), 44·4% [6·6-78.5] with mismatched unrelated donors (MMUD) and 44·4% [13·6-71.9] with mismatched related donors (MMRD) (P < 0·001). Other factors significantly impacting OS were pre-transplant bone marrow status, source of stem cells, cytomegalovirus (CMV) serostatus, preparation with Flu-Cy, use of total body irradiation (TBI) and alemtuzumab as serotherapy. In multivariate analysis, absence of myelodysplastic syndrome (MDS) or leukaemia, bone marrow as source of stem cells, cytomegalovirus (CMV) other than +/- (Recipient/Donor) and Flu-Cy were protective factors for five-year OS. Five-year chronic graft-versus-host-disease (cGVHD)-free event-free survival was 75·4% with the same risk factors except for CMV serostatus. Five-year non-relapse mortality was 13·8% [7·3-22.3]. Only five patients (6·1%) developed grade II-IV acute GVHD and two patients chronic GVHD. These data confirm the excellent outcome of matched related or unrelated HSCT in children with FA.
Collapse
Affiliation(s)
- Fanette Bernard
- Paediatric Onco-Haematology Unit, Geneva University Hospital, Geneva, Switzerland
| | | | - Stephan Meyer
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Teenage and Young Adult Cancer, The Christie NHS Foundation Trust, Manchester, UK.,Department of Haematology and Oncology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michelle Cummins
- Department of Paediatric Haematology and Bone Marrow Transplantation, Bristol Royal Hospital for Children, Bristol, UK
| | - Katharine Patrick
- Department of Paediatric Haematology, Sheffield Children's Hospital, Sheffield, UK
| | - Beki James
- Department of Paediatric Oncology and Haematology, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology and Oncology, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Sanjay Tewari
- Department of Paediatric Haematology/Oncology, The Royal Marsden Hospital NHS Trust, Sutton, UK
| | - Ben Carpenter
- Department of Haematology, University College London Hospitals NHS Trust, London, UK
| | - Robert Wynn
- Department of Blood and Marrow Transplant, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul Veys
- Department of Bone Marrow Transplant and Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Persis Amrolia
- Department of Bone Marrow Transplant and Haematology, Great Ormond Street Hospital for Children, London, UK.,Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | | |
Collapse
|
82
|
Deng S, Ye W, Zhang S, Zhu G, Zhang P, Song Y, Duan F, Lang J, Lu S. Oral Tongue Cancer in a Patient with Fanconi Anemia: A Case Report and Literature Review. Cancer Manag Res 2021; 13:3145-3154. [PMID: 33883933 PMCID: PMC8053604 DOI: 10.2147/cmar.s301582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose Fanconi anemia (FA) is a rare genetic disorder characterized by congenital anomalies, progressive bone marrow failure and high susceptibility to solid tumors, especially head and neck squamous cell carcinoma (HNSCC). Management of FA patients with head and neck cancer is a challenge due to increased risk of surgery, poor tolerance of chemotherapy, and severe myelotoxicity of radiotherapy. Patients and Methods We present a case of a 33-year-old man with carcinoma of oral tongue (T1N2M0), who experienced prolonged and profound bone marrow failure as a consequence of concurrent cisplatin/radiation. The young patient who developed HNSCC without risk factors, the myelotoxicity after exposure to platinum-based agent cisplatin and the further evaluation of phenotypic characteristics raised suspicion of FA. Whole exome sequencing performed for the patient and parents ultimately established the diagnosis of FA. Results Genetic testing in 23 FANC genes revealed two novel heterozygous mutations, c.367C>T and c.3971_3972delCGinsTT in FANCA gene of the patient, which were inherited from his father and mother, respectively. Radiotherapy with reduced dose has successfully alleviated the symptoms of tumor invasion and progression, and the radiation-related side effects were acceptable. Unfortunately, the patient eventually died of locoregional disease progression. Conclusion This case highlights the importance of considering the diagnosis of FA in young patients who develop HNSCC in the absence of risk factors, thus permitting more effective oncological treatment strategies and improved outcomes. In conclusion, any decision on different modalities of management in such patients should be based on a balance between locoregional control and therapeutic toxicity.
Collapse
Affiliation(s)
- Siyao Deng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Wenjing Ye
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shichuan Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Peng Zhang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yanqiong Song
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Fanglei Duan
- Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.,Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| |
Collapse
|
83
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
84
|
Schultz-Rogers L, Lach FP, Rickman KA, Ferrer A, Mangaonkar AA, Schwab TL, Schmitz CT, Clark KJ, Dsouza NR, Zimmermann MT, Litzow M, Jacobi N, Klee EW, Smogorzewska A, Patnaik MM. A homozygous missense variant in UBE2T is associated with a mild Fanconi anemia phenotype. Haematologica 2021; 106:1188-1192. [PMID: 32646888 PMCID: PMC8018101 DOI: 10.3324/haematol.2020.259275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/30/2022] Open
|
85
|
Chan SH, Ni Y, Li ST, Teo JX, Ishak NDB, Lim WK, Ngeow J. Spectrum of Germline Mutations Within Fanconi Anemia–Associated Genes Across Populations of Varying Ancestry. JNCI Cancer Spectr 2021; 5:6146409. [DOI: 10.1093/jncics/pkaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Fanconi anemia (FA) is a rare genetic disorder associated with hematological disorders and solid tumor predisposition. Owing to phenotypic heterogeneity, some patients remain undetected until adulthood, usually following cancer diagnoses. The uneven prevalence of FA cases with different underlying FA gene mutations worldwide suggests variable genetic distribution across populations. Here, we aim to assess the genetic spectrum of FA-associated genes across populations of varying ancestries and explore potential genotype–phenotype associations in cancer.
Methods
Carrier frequency and variant spectrum of potentially pathogenic germline variants in 17 FA genes (excluding BRCA1/FANCS, BRCA2/FANCD1, BRIP1/FANCJ, PALB2/FANCN, RAD51C/FANCO) were evaluated in 3523 Singaporeans and 7 populations encompassing Asian, European, African, and admixed ancestries from the Genome Aggregation Database. Germline and somatic variants of 17 FA genes in 7 cancer cohorts from The Cancer Genome Atlas were assessed to explore genotype–phenotype associations.
Results
Germline variants in FANCA were consistently more frequent in all populations. Similar trends in carrier frequency and variant spectrum were detected in Singaporeans and East Asians, both distinct from other ancestry groups, particularly in the lack of recurrent variants. Our exploration of The Cancer Genome Atlas dataset suggested higher germline and somatic mutation burden between FANCA and FANCC with head and neck and lung squamous cell carcinomas as well as FANCI and SLX4/FANCP with uterine cancer, but the analysis was insufficiently powered to detect any statistical significance.
Conclusion
Our findings highlight the diverse genetic spectrum of FA-associated genes across populations of varying ancestries, emphasizing the need to include all known FA-related genes for accurate molecular diagnosis of FA.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Ying Ni
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shao-Tzu Li
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Nur Diana Binte Ishak
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
86
|
Moreno OM, Sánchez AI, Herreño A, Giraldo G, Suárez F, Prieto JC, Clavijo AS, Olaya M, Vargas Y, Benítez J, Surallés J, Rojas A. Phenotypic Characteristics and Copy Number Variants in a Cohort of Colombian Patients with VACTERL Association. Mol Syndromol 2021; 11:271-283. [PMID: 33505230 DOI: 10.1159/000510910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/13/2020] [Indexed: 11/19/2022] Open
Abstract
VACTERL association (OMIM 192350) is a heterogeneous clinical condition characterized by congenital structural defects that include at least 3 of the following features: vertebral abnormalities, anal atresia, heart defects, tracheoesophageal fistula, renal malformations, and limb defects. The nonrandom occurrence of these malformations and some familial cases suggest a possible association with genetic factors such as chromosomal alterations, gene mutations, and inherited syndromes such as Fanconi anemia (FA). In this study, the clinical phenotype and its relationship with the presence of chromosomal abnormalities and FA were evaluated in 18 patients with VACTERL association. For this, a G-banded karyotype, array-comparative genomic hybridization, and chromosomal fragility test for FA were performed. All patients (10 female and 8 male) showed a broad clinical spectrum: 13 (72.2%) had vertebral abnormalities, 8 (44.4%) had anal atresia, 14 (77.8%) had heart defects, 8 (44.4%) had esophageal atresia, 10 (55.6%) had renal abnormalities, and 10 (55.6%) had limb defects. Chromosomal abnormalities and FA were ruled out. In 2 cases, the finding of microalterations, namely del(15)(q11.2) and dup(17)(q12), explained the phenotype; in 8 cases, copy number variations were classified as variants of unknown significance and as not yet described in VACTERL. These variants comprise genes related to important cellular functions and embryonic development.
Collapse
Affiliation(s)
- Olga M Moreno
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana I Sánchez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.,Departamento Materno Infantil, Facultad de Ciencias de la Salud, Pontificia Universidad Javeriana, Cali, Colombia.,Centro Médico Imbanaco de Cali, Cali, Colombia
| | - Angélica Herreño
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gustavo Giraldo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fernando Suárez
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia.,Unidad de Genética Medica, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Juan Carlos Prieto
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ana Shaia Clavijo
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mercedes Olaya
- Servicio de Patología, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Yaris Vargas
- Servicio de Pediatría, Neonatología, Hospital Universitario de San Ignacio, Bogotá, Colombia
| | - Javier Benítez
- CNIO: Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Jordi Surallés
- Departamento de Genética y Microbiología, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Adriana Rojas
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
87
|
Fujii J, Homma T, Kobayashi S, Warang P, Madkaikar M, Mukherjee MB. Erythrocytes as a preferential target of oxidative stress in blood. Free Radic Res 2021; 55:562-580. [PMID: 33427524 DOI: 10.1080/10715762.2021.1873318] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Red blood cells (RBC) are specifically differentiated to transport oxygen and carbon dioxide in the blood and they lack most organelles, including mitochondria. The autoxidation of hemoglobin constitutes a major source of reactive oxygen species (ROS). Nitric oxide, which is produced by endothelial nitric oxide synthase (NOS3) or via the hemoglobin-mediated conversion of nitrite, interacts with ROS and results in the production of reactive nitrogen oxide species. Herein we present an overview of anemic diseases that are closely related to oxidative damage. Because the compensation of proteins by means of gene expression does not proceed in enucleated cells, antioxidative and redox systems play more important roles in maintaining the homeostasis of RBC against oxidative insult compared to ordinary cells. Defects in hemoglobin and enzymes that are involved in energy production and redox reactions largely trigger oxidative damage to RBC. The results of studies using genetically modified mice suggest that antioxidative enzymes, notably superoxide dismutase 1 and peroxiredoxin 2, play essential roles in coping with oxidative damage in erythroid cells, and their absence limits erythropoiesis, the life-span of RBC and consequently results in the development of anemia. The degeneration of the machinery involved in the proteolytic removal of damaged proteins appears to be associated with hemolytic events. The ubiquitin-proteasome system is the dominant machinery, not only for the proteolytic removal of damaged proteins in erythroid cells but also for the development of erythropoiesis. Hence, despite the fact that it is less abundant in RBC compared to ordinary cells, the aberrant ubiquitin-proteasome system may be associated with the development of anemic diseases via the accumulation of damaged proteins, as typified in sickle cell disease, and impaired erythropoiesis.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Prashant Warang
- ICMR - National Institute of Immunohaematology, Mumbai, India
| | | | | |
Collapse
|
88
|
García-de-Teresa B, Rodríguez A, Frias S. Chromosome Instability in Fanconi Anemia: From Breaks to Phenotypic Consequences. Genes (Basel) 2020; 11:E1528. [PMID: 33371494 PMCID: PMC7767525 DOI: 10.3390/genes11121528] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Fanconi anemia (FA), a chromosomal instability syndrome, is caused by inherited pathogenic variants in any of 22 FANC genes, which cooperate in the FA/BRCA pathway. This pathway regulates the repair of DNA interstrand crosslinks (ICLs) through homologous recombination. In FA proper repair of ICLs is impaired and accumulation of toxic DNA double strand breaks occurs. To repair this type of DNA damage, FA cells activate alternative error-prone DNA repair pathways, which may lead to the formation of gross structural chromosome aberrations of which radial figures are the hallmark of FA, and their segregation during cell division are the origin of subsequent aberrations such as translocations, dicentrics and acentric fragments. The deficiency in DNA repair has pleiotropic consequences in the phenotype of patients with FA, including developmental alterations, bone marrow failure and an extreme risk to develop cancer. The mechanisms leading to the physical abnormalities during embryonic development have not been clearly elucidated, however FA has features of premature aging with chronic inflammation mediated by pro-inflammatory cytokines, which results in tissue attrition, selection of malignant clones and cancer onset. Moreover, chromosomal instability and cell death are not exclusive of the somatic compartment, they also affect germinal cells, as evidenced by the infertility observed in patients with FA.
Collapse
Affiliation(s)
- Benilde García-de-Teresa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfredo Rodríguez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México 04530, Mexico;
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
89
|
Abad E, Samino S, Grodzicki RL, Pagano G, Trifuoggi M, Graifer D, Potesil D, Zdrahal Z, Yanes O, Lyakhovich A. Identification of metabolic changes leading to cancer susceptibility in Fanconi anemia cells. Cancer Lett 2020; 503:185-196. [PMID: 33316348 DOI: 10.1016/j.canlet.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Fanconi anemia (FA) is a chromosomal instability disorder of bone marrow associated with aplastic anemia, congenital abnormalities and a high risk of malignancies. The identification of more than two dozen FA genes has revealed a plethora of interacting proteins that are mainly involved in repair of DNA interstrand crosslinks (ICLs). Other important findings associated with FA are inflammation, oxidative stress response, mitochondrial dysfunction and mitophagy. In this work, we performed quantitative proteomic and metabolomic analyses on defective FA cells and identified a number of metabolic abnormalities associated with cancer. In particular, an increased de novo purine biosynthesis, a high concentration of fumarate, and an accumulation of purinosomal clusters were found. This was in parallel with decreased OXPHOS and altered glycolysis. On the whole, our results indicate an association between the need for nitrogenous bases upon impaired DDR in FA cells with a subsequent increase in purine metabolism and a potential role in oncogenesis.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126 Naples, Italy
| | | | - David Potesil
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbynek Zdrahal
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Oscar Yanes
- Universitat Rovira i Virgili, Department of Electronic Engineering, IISPV, Tarragona 43007, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, 630117, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
90
|
Yin Y, Ji J, Zhao J, Chen S, Tian W. Clinical and epidemiological features of heart-hand syndrome, an updated analysis in China. BMC Musculoskelet Disord 2020; 21:777. [PMID: 33238988 PMCID: PMC7690113 DOI: 10.1186/s12891-020-03813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this study was to prospectively recruit patients treated with limb malformation and to explore the prevalence and the clinical and epidemiological features of Heart-Hand Syndrome (HHS) in China. METHODS The consecutive patients treated for congenital upper limb malformation in Beijing Ji Shui Tan Hospital from October 1st, 2016 to October 1st, 2019 were prospectively recruited. We reviewed the patients' medical records and identified patients with abnormal electrocardiogram (ECG) and/or abnormal ultrasonic cardiogram as well as their basic demographic and clinical characteristics. RESULTS A total 1653 (1053 male and 600 female) patients with congenital upper extremity malformations were prospectively recruited. Among them, 200 (12.1%) had abnormal ultrasonic cardiogram (181patients, 10.9%) and/or abnormal ECG (19 patients, 1.1%). The commonest type of abnormal heart structure was atrial septal defect (69/181 38.1%), and the commonest abnormal ECG was wave patterns (7/19, 36.8%). HHS patients had a higher comorbidity rate (11%) than non-HHS patients (6.9%). Patients with HHS were classified into four groups by the types of congenital upper extremity malformations, among which the most common group was thumb type (121/200, 60.5%). CONCLUSIONS HHS occurred frequently among patients with congenital upper extremity malformation in China, particularly for those with multiple congenital malformations. The commonest type of hand malformations of HHS patients was thumb malformation.
Collapse
Affiliation(s)
- Yaobin Yin
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University, Malmö, Sweden.,Clinical Research Centre (CRC), Skåne University Hospital, Building 28, floor 11, Jan Waldenströms gata 35, SE-205 02, Malmö, Sweden
| | - Junhui Zhao
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China
| | - Shanlin Chen
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China.
| | - Wen Tian
- Department of Hand Surgery, Beijing Ji Shui Tan Hospital, Xin jie kou dong jie 31, Xi Cheng Qu, Beijing, 100035, China.
| |
Collapse
|
91
|
Lach FP, Singh S, Rickman KA, Ruiz PD, Noonan RJ, Hymes KB, DeLacure MD, Kennedy JA, Chandrasekharappa SC, Smogorzewska A. Esophageal cancer as initial presentation of Fanconi anemia in patients with a hypomorphic FANCA variant. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005595. [PMID: 33172906 PMCID: PMC7784490 DOI: 10.1101/mcs.a005595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 11/24/2022] Open
Abstract
Fanconi anemia (FA) is a clinically heterogenous and genetically diverse disease with 22 known complementation groups (FA-A to FA-W), resulting from the inability to repair DNA interstrand cross-links. This rare disorder is characterized by congenital defects, bone marrow failure, and cancer predisposition. FANCA is the most commonly mutated gene in FA and a variety of mostly private mutations have been documented, including small and large indels and point and splicing variants. Genotype-phenotype associations in FA are complex, and a relationship between particular FANCA variants and the observed cellular phenotype or illness severity remains unclear. In this study, we describe two siblings with compound heterozygous FANCA variants (c.3788_3790delTCT and c.4199G > A) who both presented with esophageal squamous cell carcinoma at the age of 51. The proband came to medical attention when he developed pancytopenia after a single cycle of low-dose chemotherapy including platinum-based therapy. Other than a minor thumb abnormality, neither patient had prior findings to suggest FA, including normal blood counts and intact fertility. Patient fibroblasts from both siblings display increased chromosomal breakage and hypersensitivity to interstrand cross-linking agents as seen in typical FA. Based on our functional data demonstrating that the c.4199G > A/p.R1400H variant represents a hypomorphic FANCA allele, we conclude that the residual activity of the Fanconi anemia repair pathway accounts for lack of spontaneous bone marrow failure or infertility with the late presentation of malignancy as the initial disease manifestation. This and similar cases of adult-onset esophageal cancer stress the need for chromosome breakage testing in patients with early onset of aerodigestive tract squamous cell carcinomas before platinum-based therapy is initiated.
Collapse
Affiliation(s)
- Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA
| | - Sonia Singh
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA.,Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, 10065 USA
| | - Kimberly A Rickman
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA
| | - Penelope D Ruiz
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA
| | - Raymond J Noonan
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA
| | - Kenneth B Hymes
- New York University School of Medicine, Division of Hematology and Oncology, Department of Internal Medicine, Laura and Isaac Perlmutter Cancer Center, New York, New York, 10016 USA
| | - Mark D DeLacure
- Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York 10003, USA.,Departments of Plastic Surgery and Neurosurgery, New York University, New York, New York 10016, USA
| | - Jennifer A Kennedy
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA
| | - Settara C Chandrasekharappa
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, New York, 10065 USA
| |
Collapse
|
92
|
Poot M. Fanconi Anemia: A Syndrome of Anemia and Skeletal Malformations Progressing to a Gene Network Involved in Genomic Stability and Malignant Disease. Mol Syndromol 2020; 11:178-182. [PMID: 33224011 PMCID: PMC7675226 DOI: 10.1159/000510878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/19/2022] Open
|
93
|
Human mutational constraint as a tool to understand biology of rare and emerging bone marrow failure syndromes. Blood Adv 2020; 4:5232-5245. [PMID: 33104793 DOI: 10.1182/bloodadvances.2020002687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Inherited bone marrow failure (IBMF) syndromes are rare blood disorders characterized by hematopoietic cell dysfunction and predisposition to hematologic malignancies. Despite advances in the understanding of molecular pathogenesis of these heterogeneous diseases, genetic variant interpretation, genotype-phenotype correlation, and outcome prognostication remain difficult. As new IBMF and other myelodysplastic syndrome (MDS) predisposition genes continue to be discovered (frequently in small kindred studies), there is an increasing need for a systematic framework to evaluate penetrance and prevalence of mutations in genes associated with IBMF phenotypes. To address this need, we analyzed population-based genomic data from >125 000 individuals in the Genome Aggregation Database for loss-of-function (LoF) variants in 100 genes associated with IBMF. LoF variants in genes associated with IBMF/MDS were present in 0.426% of individuals. Heterozygous LoF variants in genes in which haploinsufficiency is associated with IBMF/MDS were identified in 0.422% of the population; homozygous LoF variants associated with autosomal recessive IBMF/MDS diseases were identified in only .004% of the cohort. Using age distribution of LoF variants and 2 measures of mutational constraint, LOEUF ("loss-of-function observed/expected upper bound fraction") and pLI ("probability of being loss-of-function intolerance"), we evaluated the pathogenicity, tolerance, and age-related penetrance of LoF mutations in specific genes associated with IBMF syndromes. This analysis led to insights into rare IBMF diseases, including syndromes associated with DHX34, MDM4, RAD51, SRP54, and WIPF1. Our results provide an important population-based framework for the interpretation of LoF variant pathogenicity in rare and emerging IBMF syndromes.
Collapse
|
94
|
Sharma R, Lewis S, Wlodarski MW. DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype Patterns. Front Pediatr 2020; 8:570084. [PMID: 33194896 PMCID: PMC7644847 DOI: 10.3389/fped.2020.570084] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage response is essential to human physiology. A broad spectrum of pathologies are displayed by individuals carrying monoallelic or biallelic loss-of-function mutations in DNA damage repair genes. DNA repair syndromes with biallelic disturbance of essential DNA damage response pathways manifest early in life with multi-systemic involvement and a high propensity for hematologic and solid cancers, as well as bone marrow failure. In this review, we describe classic biallelic DNA repair cancer syndromes arising from faulty single- and double-strand DNA break repair, as well as dysfunctional DNA helicases. These clinical entities include xeroderma pigmentosum, constitutional mismatch repair deficiency, ataxia telangiectasia, Nijmegen breakage syndrome, deficiencies of DNA ligase IV, NHEJ/Cernunnos, and ERCC6L2, as well as Bloom, Werner, and Rothmund-Thompson syndromes. To give an in-depth understanding of these disorders, we provide historical overview and discuss the interplay between complex biology and heterogeneous clinical manifestations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sara Lewis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
95
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
96
|
A heterozygous hypomorphic mutation of Fanca causes impaired follicle development and subfertility in female mice. Mol Genet Genomics 2020; 296:103-112. [PMID: 33025164 DOI: 10.1007/s00438-020-01730-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
Reduced fertility is a common clinical feature of the individuals with Fanconi anemia (FA), a rare autosomal recessive disorder due to deficiency in FA pathway during DNA repair. Our previous study reported that the heterozygous pathogenic variants in FANCA (Fanconi anemia complementation group A) induced premature ovarian insufficiency (POI). However, the genotype-phenotype correlation in POI caused by FANCA variants remains considerably uncertain. Herein, a heterozygous non-frameshift Fanca-mutated mouse strain (Fanca+/hypo) carrying a 9-bp deletion (c.3581del9, p.QEA1194-1196del) was generated. The mutant mice exhibited slightly decreased Fanca protein level in ovaries, suggesting the non-frameshift deletion mutant is hypomorphic. Female fertility test showed decreased number of litters, litter sizes and prolonged litter interval time in the female Fanca+/hypo mice compared to wild-type mice. Follicle counting revealed a consistent decreasing pattern of follicle numbers in Fanca+/hypo females compared to that in wild-type mice with aging. Furthermore, embryonic fibroblasts of Fanca+/hypo mice were hyper-responsive to Mitomycin C in vitro, demonstrating a partial loss of function of this hypomorphic Fanca mutant in DNA repair. Collectively, our experimental observations suggest that the hypomorphic Fanca allele is sufficient to reduce female fertility in mice, providing new insights into the genetic counseling of FANCA variants in subfertile women.
Collapse
|
97
|
Kamal L, Pierce SB, Canavati C, Rayyan AA, Jaraysa T, Lobel O, Lolas S, Norquist BM, Rabie G, Zahdeh F, Levy-Lahad E, King MC, Kanaan MN. Helicase-inactivating BRIP1 mutation yields Fanconi anemia with microcephaly and other congenital abnormalities. Cold Spring Harb Mol Case Stud 2020; 6:a005652. [PMID: 33028645 PMCID: PMC7552932 DOI: 10.1101/mcs.a005652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Fanconi anemia is a genetically and phenotypically heterogeneous disorder characterized by congenital anomalies, bone marrow failure, cancer, and sensitivity of chromosomes to DNA cross-linking agents. One of the 22 genes responsible for Fanconi anemia is BRIP1, in which biallelic truncating mutations lead to Fanconi anemia group J and monoallelic truncating mutations predispose to certain cancers. However, of the more than 1000 reported missense mutations in BRIP1, very few have been functionally characterized. We evaluated the functional consequence of BRIP1 p.R848H (c.2543G > A), which was homozygous in two cousins with low birth weight, microcephaly, upper limb abnormalities, and imperforate anus and for whom chromosome breakage analysis of patient cells revealed increased mitomycin C sensitivity. BRIP1 p.R848H alters a highly conserved residue in the catalytic DNA helicase domain. We show that BRIP1 p.R848H leads to a defect in helicase activity. Heterozygosity at this missense has been reported in multiple cancer patients but, in the absence of functional studies, classified as of unknown significance. Our results support that this mutation is pathogenic for Fanconi anemia in homozygotes and for increased cancer susceptibility in heterozygous carriers.
Collapse
Affiliation(s)
- Lara Kamal
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Sarah B Pierce
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christina Canavati
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Amal Abu Rayyan
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Tamara Jaraysa
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Orit Lobel
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Suhair Lolas
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Barbara M Norquist
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195, USA
| | - Grace Rabie
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Fouad Zahdeh
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| | - Ephrat Levy-Lahad
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Mary-Claire King
- Departments of Medicine and Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Moien N Kanaan
- Molecular Genetics Laboratory, Istishari Arab Hospital, Ramallah, Palestine
- Hereditary Research Laboratory and Department of Biology, Bethlehem University, Bethlehem, Palestine
| |
Collapse
|
98
|
Poduval DB, Ognedal E, Sichmanova Z, Valen E, Iversen GT, Minsaas L, Lønning PE, Knappskog S. Assessment of tumor suppressor promoter methylation in healthy individuals. Clin Epigenetics 2020; 12:131. [PMID: 32859265 PMCID: PMC7455917 DOI: 10.1186/s13148-020-00920-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Background The number of tumor suppressor genes for which germline mutations have been linked to cancer risk is steadily increasing. However, while recent reports have linked constitutional normal tissue promoter methylation of BRCA1 and MLH1 to ovarian and colon cancer risk, the role of epigenetic alterations as cancer risk factors remains largely unknown, presenting an important area for future research. Currently, we lack fast and sensitive methods for assessment of promoter methylation status across known tumor suppressor genes. Results In this paper, we present a novel NGS-based approach assessing promoter methylation status across a large panel of defined tumor suppressor genes to base-pair resolution. The method omits the limitations related to commonly used array-approaches. Our panel includes 565 target regions covering the promoters of 283 defined tumor suppressors, selected by pre-specified criteria, and was applied for rapid targeted methylation-specific NGS. The feasibility of the method was assessed by analyzing normal tissue DNA (white blood cells, WBC) samples from 34 healthy postmenopausal women and by performing preliminary assessment of the methylation landscape of tumor suppressors in these individuals. The mean target coverage was 189.6x providing a sensitivity of 0.53%, sufficient for promoter methylation assessment of low-level methylated genes like BRCA1. Within this limited test-set, we detected 206 regions located in the promoters of 149 genes to be differentially methylated (hyper- or hypo-) at > 99% confidence level. Seven target regions in gene promoters (CIITA, RASSF1, CHN1, PDCD1LG2, GSTP1, XPA, and ZNF668) were found to be hyper-methylated in a minority of individuals, with a > 20 percent point difference in mean methylation across the region between individuals. In an exploratory hierarchical clustering analysis, we found that the individuals analyzed may be grouped into two main groups based on their WBC methylation profile across the 283 tumor suppressor gene promoters. Conclusions Methylation-specific NGS of our tumor suppressor panel, with detailed assessment of differential methylation in healthy individuals, presents a feasible method for identification of novel epigenetic risk factors for cancer.
Collapse
Affiliation(s)
- Deepak B Poduval
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Elisabet Ognedal
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway.,Present address: Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Zuzana Sichmanova
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Eivind Valen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Gjertrud T Iversen
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Laura Minsaas
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per E Lønning
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Stian Knappskog
- K.G. Jebsen Center for Genome Directed Cancer Therapy, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Oncology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
99
|
Repczynska A, Pastorczak A, Babol-Pokora K, Skalska-Sadowska J, Drozniewska M, Mlynarski W, Haus O. Novel FANCA mutation in the first fully-diagnosed patient with Fanconi anemia in Polish population - case report. Mol Cytogenet 2020; 13:33. [PMID: 32793304 PMCID: PMC7418427 DOI: 10.1186/s13039-020-00503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fanconi anemia is a rare genetic disorder caused by mutations in genes which protein products are involved in replication, cell cycle control and DNA repair. It is characterized by congenital malformations, bone marrow failure, and high risk of cancer. The diagnosis is based on morphological and hematological abnormalities such as pancytopenia, macrocytic anaemia and progressive bone marrow failure. Genetic examination, often very complex, includes chromosomal breakage testing and mutational analysis. CASE PRESENTATION We present a child with clinical diagnosis of Fanconi anemia. Although morphological abnormalities of skin and bones were present from birth, diagnosis was only suspected at the age of 8. Chromosome breakage test in patient's lymphocytes showed increased level of aberrations (gaps, chromatid breaks, chromosome breaks, radial figures and rearrangements) compared to control. Next generation sequencing revealed presence of two pathogenic variants in FANCA gene, one of which was not previously reported. CONCLUSIONS The article provides additional supportive evidence that compound biallelic mutations of FANCA are associated with Fanconi anemia. It also illustrates the utility of combination of cytogenetic and molecular tests, together with detailed clinical evaluation in providing accurate diagnosis of Fanconi anemia. This report, to the best of our knowledge, describes the first fully diagnosed FA patient in Polish population.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Agata Pastorczak
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Katarzyna Babol-Pokora
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Jolanta Skalska-Sadowska
- Department of Oncology, Hematology and Pediatric Transplantology, Medical University in Poznan, ul. Szpitalna 27/33, 60-572 Poznan, Poland
| | - Malgorzata Drozniewska
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Mindelsohn Way, B15 2TG Birmingham, UK
| | - Wojciech Mlynarski
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Olga Haus
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
100
|
Sabol M, Akbudak MA, Fricova D, Beck I, Sedlacek R. Novel TALEN-generated mCitrine-FANCD2 fusion reporter mouse model for in vivo research of DNA damage response. DNA Repair (Amst) 2020; 94:102936. [PMID: 32717583 DOI: 10.1016/j.dnarep.2020.102936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022]
Abstract
Reporter gene mouse lines are routinely used for studies related to functional genomics, proteomics, cell biology or cell-based drug screenings, and represent a crucial platform for in vivo research. In the generation of knock-in reporter lines, new gene targeting methods provide several advantages over the standard transgenic techniques. First of all, specific targeting of the genome allows expression of the reporter gene under controlled conditions, whether in a specific locus in the genome or in a "safe harbor" locus. Historically, the ROSA26 locus is used for gene knock-in strategies by homologous recombination in mouse embryonic stem cells. The other preferred place for integration of the reporter transgene in the mouse genome is the endogenous promoter of a target gene. In this study, we employed TALENs to generate a reporter fusion protein expressed from its native promoter. For monitoring DNA damage response, we generated a mouse line expressing a mCitrine-tagged version of the FANCD2 protein, involved in DNA damage response and repair, and the Fanconi anemia (FA) pathway. This model could be a valuable tool for in vivo investigation of DNA damage.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic; Laboratory for Hereditary Cancer, Division of Molecular Medicine, Rudjer Boskovic Institute, Zagreb, Croatia
| | - M Aydın Akbudak
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic; Department of Agricultural Biotechnology, Akdeniz University, Antalya, Turkey.
| | - Dominika Fricova
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Inken Beck
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| |
Collapse
|