51
|
Meng D, Li W, Ura K, Takagi Y. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen. Int J Biol Macromol 2020; 148:182-191. [PMID: 31953179 DOI: 10.1016/j.ijbiomac.2020.01.128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/25/2023]
Abstract
Nonmammalian collagens have attracted significant attention owing to their potential for use as a source of cell scaffolds for tissue engineering. Since the morphology of collagen fibrils controls cell proliferation and differentiation, its regulation is essential for fabricating scaffolds with desirable characteristics. In this study, we evaluated the effects of the phosphate ion (Pi) concentration on the characteristics of fibrils formed from swim bladder type I collagen (SBC) and skin type I collagen (SC) from the Bester sturgeon. An increase in the Pi concentration decreased the fibril formation rate, promoted the formation of thick fibrils, and increased the thermal stability of the fibrils for both SBC and SC. However, the SBC and SC fibrils exhibited different fibril formation rates, degrees of fibrillogenesis, morphologies, and denaturation temperatures for the same reaction conditions. Finally, by regulating the Pi concentration, various types of SBC and SC fibrils could be coated on cell culture wells, and fibroblasts could be cultured on them. The results showed that thin fibrils enhance fibroblast extension and proliferation, whereas thick fibrils restrain fibroblast extension but orient them in the same direction. The results of this study suggest that SBC fibrils, which exhibit diverse morphologies, are suitable for use as a novel scaffold material, whose characteristics can be tailored readily by varying the Pi concentration.
Collapse
Affiliation(s)
- Dawei Meng
- Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China; Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Wen Li
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kazuhiro Ura
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan.
| |
Collapse
|
52
|
Sousa RO, Martins E, Carvalho DN, Alves AL, Oliveira C, Duarte ARC, Silva TH, Reis RL. Collagen from Atlantic cod (Gadus morhua) skins extracted using CO2 acidified water with potential application in healthcare. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02048-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Yan M, Jiang X, Wang G, Wang A, Wang X, Wang X, Zhao X, Xu H, An X, Li Y. Preparation of self-assembled collagen fibrillar gel from tilapia skin and its formation in presence of acidic polysaccharides. Carbohydr Polym 2020; 233:115831. [PMID: 32059884 DOI: 10.1016/j.carbpol.2020.115831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
Fibrillar gel of pepsin-solubilized collagen from tilapia skin was prepared by self-assembly in neutral phosphate buffer at 28 °C. Then effects of acidic polysaccharides, such as sodium alginate (SA), chondroitin sulfate (CS), and hyaluronic acid (HA), on the formation and properties of self-assembled fibrillar gel were investigated. SA and CS prolonged gelling time, whereas HA had no obvious effect. SA made fibril network denser, while CS and HA induced the presence of larger ordered structures. All the acidic polysaccharides broadened the D-periodicity of fibrils. SA and HA increased the maximum mechanical strength of gel to 39.64 and 34.49 kN/m2, respectively, significantly higher than that of pure collagen gel (14.53 kN/m2), while that only 17.20 kN/m2 after CS introduced. HA had no evident effect on enzymatic resistance, while SA and CS decreased. Therefore, tilapia skin collagen with HA has a higher potential as a biomaterial than that with CS or SA.
Collapse
Affiliation(s)
- Mingyan Yan
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujie Jiang
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co. Ltd., Qingdao 266071, PR China
| | - Gaochao Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ailing Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinxin Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xinyu Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaochen Zhao
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hao Xu
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiangsheng An
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
54
|
Zhong H, Zhu W, Yan Z, Xu C, Wei B, Wang H. A quantum dot-based fluorescence sensing platform for the efficient and sensitive monitoring of collagen self-assembly. NEW J CHEM 2020. [DOI: 10.1039/d0nj01346c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and sensitive assay for monitoring collagen self-assembly is presented.
Collapse
Affiliation(s)
- Huaying Zhong
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Weizhe Zhu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Zihan Yan
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Benmei Wei
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| | - Haibo Wang
- School of Chemical and Environmental Engineering
- Wuhan Polytechnic University
- Wuhan
- P. R. China
| |
Collapse
|
55
|
Ferruzzi J, Zhang Y, Roblyer D, Zaman MH. Multi-scale Mechanics of Collagen Networks: Biomechanical Basis of Matrix Remodeling in Cancer. MULTI-SCALE EXTRACELLULAR MATRIX MECHANICS AND MECHANOBIOLOGY 2020. [DOI: 10.1007/978-3-030-20182-1_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
56
|
Optimizing cell encapsulation condition in ECM-Collagen I hydrogels to support 3D neuronal cultures. J Neurosci Methods 2020; 329:108460. [DOI: 10.1016/j.jneumeth.2019.108460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023]
|
57
|
Revealing the assembly of filamentous proteins with scanning transmission electron microscopy. PLoS One 2019; 14:e0226277. [PMID: 31860683 PMCID: PMC6924676 DOI: 10.1371/journal.pone.0226277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Filamentous proteins are responsible for the superior mechanical strength of our cells and tissues. The remarkable mechanical properties of protein filaments are tied to their complex molecular packing structure. However, since these filaments have widths of several to tens of nanometers, it has remained challenging to quantitatively probe their molecular mass density and three-dimensional packing order. Scanning transmission electron microscopy (STEM) is a powerful tool to perform simultaneous mass and morphology measurements on filamentous proteins at high resolution, but its applicability has been greatly limited by the lack of automated image processing methods. Here, we demonstrate a semi-automated tracking algorithm that is capable of analyzing the molecular packing density of intra- and extracellular protein filaments over a broad mass range from STEM images. We prove the wide applicability of the technique by analyzing the mass densities of two cytoskeletal proteins (actin and microtubules) and of the main protein in the extracellular matrix, collagen. The high-throughput and spatial resolution of our approach allow us to quantify the internal packing of these filaments and their polymorphism by correlating mass and morphology information. Moreover, we are able to identify periodic mass variations in collagen fibrils that reveal details of their axially ordered longitudinal self-assembly. STEM-based mass mapping coupled with our tracking algorithm is therefore a powerful technique in the characterization of a wide range of biological and synthetic filaments.
Collapse
|
58
|
Norris EG, Majeski J, Wayson SE, Coleman H, Choe R, Dalecki D, Hocking DC. Non-invasive acoustic fabrication methods to enhance collagen hydrogel bioactivity. MATERIALS RESEARCH EXPRESS 2019; 6:125410. [PMID: 33604057 PMCID: PMC7888985 DOI: 10.1088/2053-1591/ab597a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Much attention has focused recently on utilizing components of the extracellular matrix (ECM) as natural building blocks for a variety of tissue engineering applications and regenerative medicine therapies. Consequently, new fabrication methods are being sought to enable molecular control over the structural characteristics of ECM molecules in order to improve their biological function. Exposing soluble collagen to acoustic forces associated with ultrasound propagation produces localized variations in collagen microfiber organization that in turn, promote cell behaviors essential for tissue regeneration, including cell migration and matrix remodeling. In the present study, mechanisms by which ultrasound interacts with polymerizing collagen to produce functional changes in collagen microstructure were investigated. The rate of collagen polymerization was manipulated by adjusting the pH of collagen solutions and the temperature at which gels were polymerized. Results demonstrate that the phase transition of type I collagen from fluid to gel triggered a simultaneous increase in acoustic absorption. This phase transition of collagen involves the lateral growth of early-stage collagen microfibrils and importantly, corresponded to a defined period of time during which exposure to ultrasound introduced both structural and functional changes to the resultant collagen hydrogels. Together, these experiments isolated a critical window in the collagen fiber assembly process during which mechanical forces associated with ultrasound propagation are effective in producing structural changes that underlie the ability of acoustically-modified collagen hydrogels to stimulate cell migration. These results demonstrate that changes in material properties associated with collagen polymerization are a fundamental component of the mechanism by which acoustic forces modify collagen biomaterials to enhance biological function.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
| | - Joseph Majeski
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14642, United States of America
| | - Sarah E Wayson
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14642, United States of America
| | - Holly Coleman
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14642, United States of America
| | - Regine Choe
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14642, United States of America
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14642, United States of America
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, 14642, United States of America
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, 14642, United States of America
| |
Collapse
|
59
|
Sousa RO, Alves AL, Carvalho DN, Martins E, Oliveira C, Silva TH, Reis RL. Acid and enzymatic extraction of collagen from Atlantic cod (Gadus Morhua) swim bladders envisaging health-related applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:20-37. [DOI: 10.1080/09205063.2019.1669313] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rita O. Sousa
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Ana L. Alves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Duarte Nuno Carvalho
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Eva Martins
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence in Tissue Engineering and Regenerative Medicine, Avepark – Parque de Ciência e Tecnologia, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
60
|
Jia H, Janjanam J, Wu SC, Wang R, Pano G, Celestine M, Martinot O, Breeze‐Jones H, Clayton G, Garcin C, Shirinifard A, Zaske AM, Finkelstein D, Labelle M. The tumor cell-secreted matricellular protein WISP1 drives pro-metastatic collagen linearization. EMBO J 2019; 38:e101302. [PMID: 31294477 PMCID: PMC6694215 DOI: 10.15252/embj.2018101302] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023] Open
Abstract
Collagen linearization is a hallmark of aggressive tumors and a key pathogenic event that promotes cancer cell invasion and metastasis. Cell-generated mechanical tension has been proposed to contribute to collagen linearization in tumors, but it is unknown whether other mechanisms play prominent roles in this process. Here, we show that the secretome of cancer cells is by itself able to induce collagen linearization independently of cell-generated mechanical forces. Among the tumor cell-secreted factors, we find a key role in this process for the matricellular protein WISP1 (CCN4). Specifically, WISP1 directly binds to type I collagen to promote its linearization in vitro (in the absence of cells) and in vivo in tumors. Consequently, WISP1-induced type I collagen linearization facilitates tumor cell invasion and promotes spontaneous breast cancer metastasis, without significantly affecting gene expression. Furthermore, higher WISP1 expression in tumors from cancer patients correlates with faster progression to metastatic disease and poor prognosis. Altogether, these findings reveal a conceptually novel mechanism whereby pro-metastatic collagen linearization critically depends on a cancer cell-secreted factor.
Collapse
Affiliation(s)
- Hong Jia
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Jagadeesh Janjanam
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Sharon C Wu
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ruishan Wang
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Glendin Pano
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Marina Celestine
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ophelie Martinot
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Hannah Breeze‐Jones
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Georgia Clayton
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Cecile Garcin
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Abbas Shirinifard
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| | - Ana Maria Zaske
- Division of CardiologyDepartment of Internal MedicineUTHealth – The University of Texas Health Science Center at HoustonHoustonTXUSA
| | - David Finkelstein
- Department of Computational BiologySt. Jude Children's Research HospitalMemphisTNUSA
| | - Myriam Labelle
- Department of Developmental NeurobiologyComprehensive Cancer Center, Solid Tumor ProgramSt. Jude Children's Research HospitalMemphisTNUSA
| |
Collapse
|
61
|
Wang SS, Yu Y, Sun Y, Liu N, Zhou DQ. Comparison of Physicochemical Characteristics and Fibril Formation Ability of Collagens Extracted from the Skin of Farmed River Puffer ( Takifugu obscurus) and Tiger Puffer ( Takifugu rubripes). Mar Drugs 2019; 17:E462. [PMID: 31394862 PMCID: PMC6723254 DOI: 10.3390/md17080462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
Acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the skin of river puffer (ASC-RP and PSC-RP) and tiger puffer (ASC-TP and PSC-TP) were extracted and physicochemically examined. Denaturation temperature (Td) for all the collagens was found to be 25.5-29.5 °C, which was lower than that of calf skin collagen (35.9 °C). Electrophoretic patterns indicated all four samples were type I collagen with molecular form of (α1)2α2. FTIR spectra confirmed the extracted collagens had a triple-helical structure, and that the degree of hydrogen bonding in ASC was higher than PSC. All the extracted collagens could aggregate into fibrils with D-periodicity. The fibril formation rate of ASC-RP and PSC-RP was slightly higher than ASC-TP and PSC-TP. Turbidity analysis revealed an increase in fibril formation rate when adding a low concentration of NaCl (less than 300 mM). The fibril formation ability was suppressed with further increasing of NaCl concentration, as illustrated by a reduction in the turbidity and formation degree. SEM analysis confirmed the well-formed interwoven structure of collagen fibrils after 24 h of incubation. Summarizing the experimental results suggested that the extracted collagens from the skin of river puffer and tiger puffer could be considered a viable substitute to mammalian-derived collagens for further use in biomaterial applications.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ying Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yong Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Nan Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - De-Qing Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
62
|
Moxon SR, Corbett NJ, Fisher K, Potjewyd G, Domingos M, Hooper NM. Blended alginate/collagen hydrogels promote neurogenesis and neuronal maturation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109904. [PMID: 31499954 PMCID: PMC6873778 DOI: 10.1016/j.msec.2019.109904] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/17/2019] [Indexed: 12/30/2022]
Abstract
Brain extracellular matrix (ECM) is complex, heterogeneous and often poorly replicated in traditional 2D cell culture systems. The development of more physiologically relevant 3D cell models capable of emulating the native ECM is of paramount importance for the study of human induced pluripotent stem cell (iPSC)-derived neurons. Due to its structural similarity with hyaluronic acid, a primary component of brain ECM, alginate is a potential biomaterial for 3D cell culture systems. However, a lack of cell adhesion motifs within the chemical structure of alginate has limited its application in neural culture systems. This study presents a simple and accessible method of incorporating collagen fibrils into an alginate hydrogel by physical mixing and controlled gelation under physiological conditions and tests the hypothesis that such a substrate could influence the behaviour of human neurons in 3D culture. Regulation of the gelation process enabled the penetration of collagen fibrils throughout the hydrogel structure as demonstrated by transmission electron microscopy. Encapsulated human iPSC-derived neurons adhered to the blended hydrogel as evidenced by the increased expression of α1, α2 and β1 integrins. Furthermore, immunofluorescence microscopy revealed that encapsulated neurons formed complex neural networks and matured into branched neurons expressing synaptophysin, a key protein involved in neurotransmission, along the neurites. Mechanical tuning of the hydrogel stiffness by modulation of the alginate ionic crosslinker concentration also influenced neuron-specific gene expression. In conclusion, we have shown that by tuning the physicochemical properties of the alginate/collagen blend it is possible to create different ECM-like microenvironments where complex mechanisms underpinning the growth and development of human neurons can be simulated and systematically investigated. Alginate and collagen are blended to create a bespoke hydrogel that mimics aspects of brain ECM. Encapsulated human pluripotent stem cell derived neurons adhere to the hydrogel matrix and form 3D neural networks. Neuronal differentiation and maturation is promoted within the hydrogel matrix. Mechanical properties of the hydrogel can be easily tuned to optimise neurogenesis. The hydrogel presents a platform for studying neuronal function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Samuel R Moxon
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Nicola J Corbett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK
| | - Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK; School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Marco Domingos
- School of Mechanical, Aerospace and Civil Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, UK.
| |
Collapse
|
63
|
Yang J, Li Y, Liu Y, Li D, Zhang L, Wang Q, Xiao Y, Zhang X. Influence of hydrogel network microstructures on mesenchymal stem cell chondrogenesis in vitro and in vivo. Acta Biomater 2019; 91:159-172. [PMID: 31055122 DOI: 10.1016/j.actbio.2019.04.054] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/21/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022]
Abstract
Hydrogels, which provide three-dimensional (3D) niches for encapsulating bone marrow mesenchymal stem cells (BMSCs), are becoming a promising tissue engineering solution for chondrogenic differentiation of BMSCs. However, it remains a challenge to design a hydrogel material for effective chondrogenesis of BMSCs because of the complexity of cartilage ECM and cell-matrix interactions. Thus far, various studies have shown the physical-chemical cues of hydrogel materials to impact BMSCs chondrogenesis, but the design of the 3D network microstructure of the hydrogel to induce BMSCs chondrogenesis is still far from optimized. In this study, we successfully prepared two types of collagen hydrogels, namely, the fibrous network and porous network, with the same chemical composition and similar mechanical strength but with two distinct network microstructures. The two different network microstructures significantly influenced mass transfer, protein adsorption, degradability, and contraction of the collagen hydrogels. Moreover, the cells presented distinct proliferation and morphology in the two hydrogels, which consequently modulated chondrogenic differentiation of BMSCs derived from rat. Collagen hydrogels with a fibrous network promoted more chondrogenic differentiation of BMSCs without additional growth factors in vitro and subcutaneous implantation in vivo than those with a porous network. Moreover, fibrous network resulted in less ECM calcification than porous network. However, the fibrous network could not prevent hypertrophy of the chondrogenic cells induced by BMSCs. Overall, these results revealed that the 3D network microstructure of a hydrogel was a key design parameter for the chondrogenic differentiation of BMSCs. STATEMENT OF SIGNIFICANCE: Hydrogels had been used to induce the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in cartilage tissue engineering, but the key design parameters remain unoptimized. This was mainly due to the different material properties including composition, strength, and microstructure, which would interplay with each other and result in difficulties to investigate the effects for one factor. In this study, we fabricated two collagen hydrogels with the same chemical composition and mechanical strength, but two distinct network microstructures. The effects of the two network microstructures on the chondrogenic differentiation of BMSCs were investigated by in vitro and in vivo assays. The results highlight the effects of network microstructures and provide important information about optimizing the design of future hydrogels in cartilage tissue engineering.
Collapse
Affiliation(s)
- Jirong Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Yuanqi Li
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yanbo Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu 61004, Sichuan, China
| | - Lei Zhang
- Sichuan Academy of Chinese Medicine Science, Chengdu 61004, Sichuan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 61004, Sichuan, China
| |
Collapse
|
64
|
Zhu S, Yuan Q, Yang M, You J, Yin T, Gu Z, Hu Y, Xiong S. A quantitative comparable study on multi-hierarchy conformation of acid and pepsin-solubilized collagens from the skin of grass carp (Ctenopharyngodon idella). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:446-457. [PMID: 30606554 DOI: 10.1016/j.msec.2018.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 10/25/2018] [Accepted: 11/24/2018] [Indexed: 12/31/2022]
Abstract
This work aimed to improve yield of collagen from the grass carp skin by employing different strategies (acid-acid method, pepsin-pepsin method and acid-pepsin method, denoted as A-A, P-P, A-P, respectively). And further to conduct quantitative characterization on structural properties, self-assembly kinetics and gelation properties of these collagens. Herein, a two-step collagen extraction method (pepsin-pepsin) was established with the high yield. Meanwhile, structural measurements of high-yield collagen (pepsin-soluble collagen, PSC) and acid-soluble collagen (ASC) indicated that both collagens maintained the typical triple helical conformation of collagen type I. Moreover, the fibrillogenesis tests of PSC and ASC at the various temperatures confirmed that self-assembly were the entropy-driven process. The gelation time of both ASC and PSC was determined by the dynamic time sweep at the different frequencies combined with Winter's criterion. The self-assembly kinetics results showed that fibrillogenesis rate for ASC solution was faster, and more liable to gelation relative to PSC. Mechanical measurements suggested that ASC showed the more resistance ability to deformation than PSC due to more complicated architecture, confirmed by higher fractal dimension. However, the equivalent typical assemblies of PSC to ASC at the various stages can still be expected via controlling incubation time or temperature under the guidance of Arrhenius equation. This study would provide some strategies for achieving maximum utilization of waste biomass and significant insights into the mechanisms underlying the quantitative differences in multiple hierarchy conformation (molecule, fibrillogenesis and hydrogel) of ASC and PSC, which may benefit for subsequent design, development and optimization of collagen-based hydrogels in biomedical industries.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, PR China
| | - Qijuan Yuan
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Mingtao Yang
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, PR China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhipeng Gu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, PR China.
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, PR China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde 415000, PR China.
| |
Collapse
|
65
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
66
|
Nan H, Liang L, Chen G, Liu L, Liu R, Jiao Y. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion. Phys Rev E 2018; 97:033311. [PMID: 29776156 DOI: 10.1103/physreve.97.033311] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016)PNASA60027-842410.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.
Collapse
Affiliation(s)
- Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Long Liang
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Guo Chen
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
67
|
Patel M, Park S, Lee HJ, Jeong B. Polypeptide Thermogels as Three-Dimensional Scaffolds for Cells. Tissue Eng Regen Med 2018; 15:521-530. [PMID: 30603576 PMCID: PMC6171707 DOI: 10.1007/s13770-018-0148-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/19/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Thermogel is an aqueous solution that exhibits a sol-to-gel transition as the temperature increases. Stem cells, growth factors, and differentiating factors can be incorporated in situ in the matrix during the sol-to-gel transition, leading to the formation of a three-dimensional (3D) cell-culture scaffold. METHODS The uses of thermogelling polypeptides, such as collagen, Matrigel™, elastin-like polypeptides, and synthetic polypeptides, as 3D scaffolds of cells, are summarized in this paper. RESULTS The timely supply of growth factors to the cells, cell survival, and metabolite removal is to be insured in the cell culture matrix. Various growth factors were incorporated in the matrix during the sol-to-gel transition of the thermogelling polypeptide aqueous solutions, and preferential differentiation of the incorporated stem cells into specific target cells were investigated. In addition, modulus of the matrix was controlled by post-crosslinking reactions of thermogels or employing composite systems. Chemical functional groups as well as biological factors were selected appropriately for targeted differentiation of the incorporated stem cells. CONCLUSION In addition to all the advantages of thermogels including mild conditions for cell-incorporation and controlled supplies of the growth factors, polypeptide thermogels provide neutral pH environments to the cells during the degradation of the gel. Polypeptide thermogels as an injectable scaffold can be a promising system for their eventual in vivo applications in stem cell therapy.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Sohee Park
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Korea
| |
Collapse
|
68
|
Jansen KA, Licup AJ, Sharma A, Rens R, MacKintosh FC, Koenderink GH. The Role of Network Architecture in Collagen Mechanics. Biophys J 2018; 114:2665-2678. [PMID: 29874616 PMCID: PMC6129505 DOI: 10.1016/j.bpj.2018.04.043] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 01/13/2023] Open
Abstract
Collagen forms fibrous networks that reinforce tissues and provide an extracellular matrix for cells. These networks exhibit remarkable strain-stiffening properties that tailor the mechanical functions of tissues and regulate cell behavior. Recent models explain this nonlinear behavior as an intrinsic feature of disordered networks of stiff fibers. Here, we experimentally validate this theoretical framework by measuring the elastic properties of collagen networks over a wide range of self-assembly conditions. We show that the model allows us to quantitatively relate both the linear and nonlinear elastic behavior of collagen networks to their underlying architecture. Specifically, we identify the local coordination number (or connectivity) 〈z〉 as a key architectural parameter that governs the elastic response of collagen. The network elastic response reveals that 〈z〉 decreases from 3.5 to 3 as the polymerization temperature is raised from 26 to 37°C while being weakly dependent on concentration. We furthermore infer a Young's modulus of 1.1 MPa for the collagen fibrils from the linear modulus. Scanning electron microscopy confirms that 〈z〉 is between three and four but is unable to detect the subtle changes in 〈z〉 with polymerization conditions that rheology is sensitive to. Finally, we show that, consistent with the model, the initial stress-stiffening response of collagen networks is controlled by the negative normal stress that builds up under shear. Our work provides a predictive framework to facilitate future studies of the regulatory effect of extracellular matrix molecules on collagen mechanics. Moreover, our findings can aid mechanobiological studies of wound healing, fibrosis, and cancer metastasis, which require collagen matrices with tunable mechanical properties.
Collapse
Affiliation(s)
- Karin A Jansen
- Biological Soft Matter Group, AMOLF, Amsterdam, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Albert J Licup
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands
| | - Abhinav Sharma
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; Leibniz Institute for Polymer Research, Dresden, Germany
| | - Robbie Rens
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands
| | - Fred C MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, the Netherlands; Departments of Chemical & Biomolecular Engineering, Chemistry, and Physics & Astronomy, Rice University, Houston, Texas; Center for Theoretical Biophysics, Rice University, Houston, Texas.
| | | |
Collapse
|
69
|
Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater 2018; 73:236-249. [PMID: 29679778 DOI: 10.1016/j.actbio.2018.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/14/2023]
Abstract
Tumor and microenvironmental heterogeneity hinders the study of breast cancer biology and the assessment of therapeutic strategies, being associated with high variability and drug resistance. In this context, it is mandatory to develop three-dimensional breast tumor models able to reproduce this heterogeneity and the dynamic interaction occurring between tumor cells and microenvironment. Here we show a new breast cancer microtissue model (T-µTP) uniquely able to present intra-tumor morphological heterogeneity in a dynamic and responsive endogenous matrix. T-µTP consists of adenocarcinoma cells, endothelial cells and stromal fibroblasts. These three kinds of cells are totally embedded into an endogenous matrix which is rich in collagen and hyaluronic acid and it is directly produced by human fibroblasts. In this highly physiologically relevant environment, tumor cells evolve in different cluster morphologies recapitulating tumor spatiotemporal heterogeneity. Moreover they activate the desmoplastic and vascular reaction with affected collagen content, assembly and organization and the presence of aberrant capillary-like structures (CLS). Thus, T-µTP allows to outline main crucial events involved in breast cancer progression into a single model overcoming the limit of artificial extra cellular matrix surrogates. We strongly believe that T-µTP is a suitable model for the study of breast cancer and for drug screening assays following key parameters of clinical interest. STATEMENT OF SIGNIFICANCE Tumor and microenvironmental heterogeneity makes very hurdle to find a way to study and treat breast cancer. Here we develop an innovative 3D tumor microtissue model recapitulating in vitro tumor heterogeneity. Tumor microtissues are characterized by the activation of the stromal and vascular reaction too. We underline the importance to mimic different microenvironmental tumor features in the same time and in a single tissue in order to obtain a model of spatiotemporal tumor genesis and progression, suitable for the study of tumor treatment and resistance.
Collapse
|
70
|
Effect of ultra-high pressure on molecular structure and properties of bullfrog skin collagen. Int J Biol Macromol 2018; 111:200-207. [DOI: 10.1016/j.ijbiomac.2017.12.163] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/27/2017] [Accepted: 12/30/2017] [Indexed: 02/07/2023]
|
71
|
Lee AS, Inayathullah M, Lijkwan MA, Zhao X, Sun W, Park S, Hong WX, Parekh MB, Malkovskiy AV, Lau E, Qin X, Pothineni VR, Sanchez-Freire V, Zhang WY, Kooreman NG, Ebert AD, Chan CKF, Nguyen PK, Rajadas J, Wu JC. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix. Nat Biomed Eng 2018; 2:104-113. [PMID: 29721363 DOI: 10.1038/s41551-018-0191-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stem-cell-based therapies hold considerable promise for regenerative medicine. However, acute donor-cell death within several weeks after cell delivery remains a critical hurdle for clinical translation. Co-transplantation of stem cells with pro-survival factors can improve cell engraftment, but this strategy has been hampered by the typically short half-lives of the factors and by the use of Matrigel and other scaffolds that are not chemically defined. Here, we report a collagen-dendrimer biomaterial crosslinked with pro-survival peptide analogues that adheres to the extracellular matrix and slowly releases the peptides, significantly prolonging stem cell survival in mouse models of ischaemic injury. The biomaterial can serve as a generic delivery system to improve functional outcomes in cell-replacement therapy.
Collapse
Affiliation(s)
- Andrew S Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA.,Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA.,Pharmacology Division, Stanford University School of Medicine, Stanford, CA, USA
| | - Mohammed Inayathullah
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA.,Pharmacology Division, Stanford University School of Medicine, Stanford, CA, USA
| | - Maarten A Lijkwan
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xin Zhao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenchao Sun
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA.,Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA.,Pharmacology Division, Stanford University School of Medicine, Stanford, CA, USA
| | - Sujin Park
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wan Xing Hong
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mansi B Parekh
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrey V Malkovskiy
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward Lau
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Xulei Qin
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Venkata Raveendra Pothineni
- Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA
| | - Verónica Sanchez-Freire
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wendy Y Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nigel G Kooreman
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Antje D Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia K Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jayakumar Rajadas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Biomaterials and Advanced Drug Delivery Laboratory, Stanford University School of Medicine, Stanford, CA, USA. .,Pharmacology Division, Stanford University School of Medicine, Stanford, CA, USA.
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA, USA. .,Pharmacology Division, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
72
|
Kalbitzer L, Pompe T. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks. Acta Biomater 2018; 67:206-214. [PMID: 29208553 DOI: 10.1016/j.actbio.2017.11.051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. STATEMENT OF SIGNIFICANCE The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo tissues for in vitro cell culture experiments and tissue engineering applications.
Collapse
|
73
|
Abstract
The effect of carboxymethylcellulose (CMC) on the fibril formation of collagen in vitro was studied by turbidity measurements and atomic force microscopy (AFM). The kinetics curves of fibril formation indicated that the rate of collagen fibrillogenesis was decreased with the addition of CMC, meanwhile the final turbidity was obviously increased as the CMC/collagen ratio reached 30%. The AFM images of collagen-CMC solutions showed that the number of nucleation sites of collagen fibrillogenesis was significantly increased with the presence of CMC, while the diameter of immature collagen fibrils was obviously decreased. Moreover, the thermal stability of collagen fibril hydrogels was obviously improved with the presence of CMC. In addition, the morphologies of collagen fibrils observed by AFM revealed that the adjacent fibril segments or fibrils were intertwisted and even tightly merged, probably due to the hydrogen bonding and molecular entanglement interactions between CMC and collagen molecules.
Collapse
Affiliation(s)
- Cuicui Ding
- a College of Ecological Environment and Urban Construction , Fujian University of Technology , Fuzhou , China
| | - Ronghui Shi
- a College of Ecological Environment and Urban Construction , Fujian University of Technology , Fuzhou , China
| | - Zhigong Zheng
- a College of Ecological Environment and Urban Construction , Fujian University of Technology , Fuzhou , China
| | - Min Zhang
- b College of Materials Engineering , Fujian Agriculture and Forestry University , Fuzhou , China
| |
Collapse
|
74
|
Zhu S, Yuan Q, Yin T, You J, Gu Z, Xiong S, Hu Y. Self-assembly of collagen-based biomaterials: preparation, characterizations and biomedical applications. J Mater Chem B 2018; 6:2650-2676. [DOI: 10.1039/c7tb02999c] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
By combining regulatory parameters with characterization methods, researchers can selectively fabricate collagenous biomaterials with various functional responses for biomedical applications.
Collapse
Affiliation(s)
- Shichen Zhu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Qijuan Yuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Tao Yin
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Juan You
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
| | - Zhipeng Gu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Shanbai Xiong
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| | - Yang Hu
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology
- Huazhong Agricultural University
- Wuhan 430070
- P. R. China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province
| |
Collapse
|
75
|
Confocal Rheology Probes the Structure and Mechanics of Collagen through the Sol-Gel Transition. Biophys J 2017; 113:1882-1892. [PMID: 29045881 DOI: 10.1016/j.bpj.2017.08.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/18/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023] Open
Abstract
Fibrillar type I collagen-based hydrogels are commonly used in tissue engineering and as matrices for biophysical studies. Mechanical and structural properties of these gels are known to be governed by the conditions under which fibrillogenesis occurs, exhibiting variation as a function of protein concentration, temperature, pH, and ionic strength. Deeper understanding of how macroscopic structure affects viscoelastic properties of collagen gels over the course of fibrillogenesis provides fundamental insight into biopolymer gel properties and promises enhanced control over the properties of such gels. Here, we investigate type I collagen fibrillogenesis using confocal rheology-simultaneous confocal reflectance microscopy, confocal fluorescence microscopy, and rheology. The multimodal approach allows direct comparison of how viscoelastic properties track the structural evolution of the gel on fiber and network length scales. Quantitative assessment and comparison of each imaging modality and the simultaneously collected rheological measurements show that the presence of a system-spanning structure occurs at a time similar to rheological determinants of gelation. Although this and some rheological measures are consistent with critical gelation through percolation, additional rheological and structural properties of the gel are found to be inconsistent with this theory. This study clarifies how structure sets viscoelasticity during collagen fibrillogenesis and more broadly highlights the utility of multimodal measurements as critical test-beds for theoretical descriptions of complex systems.
Collapse
|
76
|
Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve-A Review of Current Approaches. Adv Healthc Mater 2017; 6. [PMID: 29171921 DOI: 10.1002/adhm.201700918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/25/2017] [Indexed: 11/08/2022]
Abstract
Tissue engineered heart valves (TEHVs) have the potential to address the shortcomings of current implants through the combination of cells and bioactive biomaterials that promote growth and proper mechanical function in physiological conditions. The ideal TEHV should be anti-thrombogenic, biocompatible, durable, and resistant to calcification, and should exhibit a physiological hemodynamic profile. In addition, TEHVs may possess the capability to integrate and grow with somatic growth, eliminating the need for multiple surgeries children must undergo. Thus, this review assesses clinically available heart valve prostheses, outlines the design criteria for developing a heart valve, and evaluates three types of biomaterials (decellularized, natural, and synthetic) for tissue engineering heart valves. While significant progress has been made in biomaterials and fabrication techniques, a viable tissue engineered heart valve has yet to be translated into a clinical product. Thus, current strategies and future perspectives are also discussed to facilitate the development of new approaches and considerations for heart valve tissue engineering.
Collapse
Affiliation(s)
- Aline L. Y. Nachlas
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Siyi Li
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Michael E. Davis
- Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- Children's Heart Research & Outcomes (HeRO) Center Children's Healthcare of Atlanta & Emory University Atlanta GA 30322 USA
| |
Collapse
|
77
|
Agarwal T, Narayan R, Maji S, Ghosh SK, Maiti TK. Decellularized caprine liver extracellular matrix as a 2D substrate coating and 3D hydrogel platform for vascularized liver tissue engineering. J Tissue Eng Regen Med 2017; 12:e1678-e1690. [PMID: 29052367 DOI: 10.1002/term.2594] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/20/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Tarun Agarwal
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Rajan Narayan
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Somnath Maji
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Sudip Kumar Ghosh
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| | - Tapas Kumar Maiti
- Department of BiotechnologyIndian Institute of Technology Kharagpur Kharagpur West Bengal India
| |
Collapse
|
78
|
Xiao M, Jiang M, Wu K, Yang H, Ni X, Yan W, Phillips GO, Jiang F. Investigation on curdlan dissociation by heating in water. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
79
|
Diamantides N, Wang L, Pruiksma T, Siemiatkoski J, Dugopolski C, Shortkroff S, Kennedy S, Bonassar LJ. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication 2017; 9:034102. [PMID: 28677597 DOI: 10.1088/1758-5090/aa780f] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Collagen has shown promise as a bioink for extrusion-based bioprinting, but further development of new collagen bioink formulations is necessary to improve their printability. Screening these formulations by measuring print accuracy is a costly and time consuming process. We hypothesized that rheological properties of the bioink before, during, and/or after gelation can be used to predict printability. In this study, we investigated the effects of riboflavin photocrosslinking and pH on type I collagen bioink rheology before, during, and after gelation and directly correlated these findings to the printability of each bioink formulation. From the riboflavin crosslinking study, results showed that riboflavin crosslinking increased the storage moduli of collagen bioinks, but the degree of improvement was less pronounced at higher collagen concentrations. Dots printed with collagen bioinks with riboflavin crosslinking exhibited smaller dot footprint areas than those printed with collagen bioinks without riboflavin crosslinking. From the pH study, results showed that gelation kinetics and final gel moduli were highly pH dependent and both exhibited maxima around pH 8. The shape fidelity of printed lines was highest at pH 8-9.5. The effect of riboflavin crosslinking and pH on cell viability was assessed using bovine chondrocytes. Cell viability in collagen gels was found to decrease after blue light activated riboflavin crosslinking but was not affected by pH. Correlations between rheological parameters and printability showed that the modulus associated with the bioink immediately after extrusion and before deposition was the best predictor of bioink printability. These findings will allow for the more rapid screening of collagen bioink formulations.
Collapse
Affiliation(s)
- Nicole Diamantides
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Semiconductor nanomaterials are emerging as a class of materials that can push the fundamental limits of current biomedical devices and possibly revolutionize healthcare. In particular, silicon nanostructures have been proven to be attractive systems for integrating nanoscale machines in biology because of their tunable electronic and optical properties, low cytotoxicity, and the vast microfabrication toolbox available for silicon. Studies have demonstrated that the implementation of next-generation silicon-based biomedical devices can benefit from the rational design of their nanoscale components. In this review, we will discuss some recent progress in this area, with a particular focus on the chemical synthesis of new silicon nanostructures and their emerging applications ranging from fundamental biophysical studies to clinical relevance.
Collapse
Affiliation(s)
- Hector Acaron Ledesma
- Biophysics graduate program, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
81
|
Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun 2017; 8:14346. [PMID: 28146148 PMCID: PMC5296669 DOI: 10.1038/ncomms14346] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023] Open
Abstract
In native tissues, cellular and acellular components are anisotropically organized and often aligned in specific directions, providing structural and mechanical properties for actuating biological functions. Thus, engineering alignment not only allows for emulation of native tissue structures but might also enable implementation of specific functionalities. However, achieving desired alignment is challenging, especially in three-dimensional constructs. By exploiting the elastomeric property of polydimethylsiloxane and fibrillogenesis kinetics of collagen, here we introduce a simple yet effective method to assemble and align fibrous structures in a multi-modular three-dimensional conglomerate. Applying this method, we have reconstructed the CA3–CA1 hippocampal neural circuit three-dimensionally in a monolithic gel, in which CA3 neurons extend parallel axons to and synapse with CA1 neurons. Furthermore, we show that alignment of the fibrous scaffold facilitates the establishment of functional connectivity. This method can be applied for reconstructing other neural circuits or tissue units where anisotropic organization in a multi-modular structure is desired. Alignment or anisotropic organisation within and between cells enables biological function but is challenging to engineer. Here, the authors align collagen fibres in a pre-strained polydimethylsiloxane mould to generate a 3D scaffold that guides hippocampal neuron axon growth to form CA3–CA1 neural circuits.
Collapse
|
82
|
Yi HG, Lee H, Cho DW. 3D Printing of Organs-On-Chips. Bioengineering (Basel) 2017; 4:E10. [PMID: 28952489 PMCID: PMC5590440 DOI: 10.3390/bioengineering4010010] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/14/2017] [Accepted: 01/20/2017] [Indexed: 12/21/2022] Open
Abstract
Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.
Collapse
Affiliation(s)
- Hee-Gyeong Yi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.
| | - Hyungseok Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Korea.
| |
Collapse
|
83
|
Rangel-Argote M, Claudio-Rizo JA, Castellano LE, Vega-González A, Mata-Mata JL, Mendoza-Novelo B. ECM–oligourethene–silica hydrogels as a local drug release system of dexamethasone for stimulating macrophages. RSC Adv 2017. [DOI: 10.1039/c6ra25989h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The incorporation of silica particles inside of extracellular matrix hydrogels supports the loading and releasing of dexamethasone, a therapeutic for modulating macrophage.
Collapse
Affiliation(s)
| | - Jesús A. Claudio-Rizo
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - Laura E. Castellano
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - Arturo Vega-González
- Departamento de Ingenierías Química
- Electrónica y Biomédica
- DCI
- Universidad de Guanajuato
- León
| | - José L. Mata-Mata
- Departamento de Química
- DCNE
- Universidad de Guanajuato
- Guanajuato
- Mexico
| | | |
Collapse
|
84
|
Pawelec KM, Best SM, Cameron RE. Collagen: a network for regenerative medicine. J Mater Chem B 2016; 4:6484-6496. [PMID: 27928505 PMCID: PMC5123637 DOI: 10.1039/c6tb00807k] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/20/2016] [Indexed: 12/28/2022]
Abstract
The basic building block of the extra-cellular matrix in native tissue is collagen. As a structural protein, collagen has an inherent biocompatibility making it an ideal material for regenerative medicine. Cellular response, mediated by integrins, is dictated by the structure and chemistry of the collagen fibers. Fiber formation, via fibrillogenesis, can be controlled in vitro by several factors: pH, ionic strength, and collagen structure. After formation, fibers are stabilized via cross-linking. The final bioactivity of collagen scaffolds is a result of both processes. By considering each step of fabrication, scaffolds can be tailored for the specific needs of each tissue, improving their therapeutic potential.
Collapse
Affiliation(s)
- K M Pawelec
- University of Michigan , 2350 Hayward Ave , Ann Arbor , MI 48109 , USA
| | - S M Best
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| | - R E Cameron
- Cambridge Centre for Medical Materials , University of Cambridge , Cambridge , CB3 0FS , UK .
| |
Collapse
|
85
|
Liang L, Jones C, Chen S, Sun B, Jiao Y. Heterogeneous force network in 3D cellularized collagen networks. Phys Biol 2016; 13:066001. [PMID: 27779119 DOI: 10.1088/1478-3975/13/6/066001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml-1 are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites in collagen networks with high concentrations.
Collapse
Affiliation(s)
- Long Liang
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | | | | | | | | |
Collapse
|
86
|
Impact of Telopeptides on Self-Assembly Properties of Snakehead (Channa argus) Skin Collagen. FOOD BIOPHYS 2016. [DOI: 10.1007/s11483-016-9452-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
87
|
Shimizu M, Saito T, Nishiyama Y, Iwamoto S, Yano H, Isogai A, Endo T. Fast and Robust Nanocellulose Width Estimation Using Turbidimetry. Macromol Rapid Commun 2016; 37:1581-1586. [DOI: 10.1002/marc.201600357] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/08/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Michiko Shimizu
- Institute for the Promotion of University Strategy; Kyoto Institute of Technology; Kyoto 606-8585 Japan
| | - Tsuguyuki Saito
- Department of Biomaterials Science; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo 113-857 Japan
| | - Yoshiharu Nishiyama
- Univ. Grenoble; Alpes; CERMAV, F-38000 Grenoble, France, CNRSCERMAV; F-38000 Grenoble France
| | - Shinichiro Iwamoto
- Department of Materials and Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Hiroshima 739-0046 Japan
| | - Hiroyuki Yano
- Research Institute for Sustainable Humanosphere; Kyoto University; Kyoto 611-0011 Japan
| | - Akira Isogai
- Department of Biomaterials Science; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo 113-857 Japan
| | - Takashi Endo
- Department of Materials and Chemistry; National Institute of Advanced Industrial Science and Technology (AIST); Hiroshima 739-0046 Japan
| |
Collapse
|
88
|
Claudio-Rizo JA, Mendoza-Novelo B, Delgado J, Castellano LE, Mata-Mata JL. A new method for the preparation of biomedical hydrogels comprised of extracellular matrix and oligourethanes. Biomed Mater 2016; 11:035016. [DOI: 10.1088/1748-6041/11/3/035016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
89
|
Ferri F, Calegari GR, Molteni M, Cardinali B, Magatti D, Rocco M. Size and Density of Fibers in Fibrin and Other Filamentous Networks from Turbidimetry: Beyond a Revisited Carr–Hermans Method, Accounting for Fractality and Porosity. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fabio Ferri
- Dipartimento
di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell’Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gabriele Re Calegari
- Dipartimento
di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell’Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Matteo Molteni
- Dipartimento
di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell’Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Barbara Cardinali
- Biopolimeri
e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, c/o CBA, Largo R. Benzi 10, I-16132 Genova, Italy
| | - Davide Magatti
- Dipartimento
di Scienza e Alta Tecnologia and To.Sca.Lab, Università dell’Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Mattia Rocco
- Biopolimeri
e Proteomica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, c/o CBA, Largo R. Benzi 10, I-16132 Genova, Italy
| |
Collapse
|
90
|
Preparation and Characterization of an <i>In Situ</i> Hydrogel of Self-Assembly Type I Collagen from Shark Skin/Methylcellulose for Central Nerve System Regeneration. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2015. [DOI: 10.4028/www.scientific.net/jbbbe.24.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Central nerve system degeneration is a crucial problem for many patients. To use an in situ hydrogel formation is an attractive method to treat that problem. An in situ hydrogel was developed for central nerve system regeneration. An acid soluble collagen (ASC) and pepsin soluble collagen (PSC) from the shark skin of the brownbanded bamboo shark (Chiloscyllium punctatum) were used to produce hybridized hydrogels by the biomimetic approach. Collagen was mixed with methylcellulose and used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as a crosslinker. The hydrogels had various ratios of collagen:methylcellulose: 100:0, 70:30, 50:50, 30:70, and 0:100. Structural, molecular, and morphological organization were characterized and observed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The DSC results showed that the peak of denatured collagen fibril shifted higher in a 30:70 ratio of collagen:methylcellulose in both ASC and PSC. The FT-IR results indicated that the structure of hydrogels from both ASC and PSC were organized into complex structures. The SEM results demonstrated that the collagen fibril networks were formed in both ASC and PSC hydrogels. The results indicated that the samples containing collagen promise to be an in situ hydrogel for central nerve regeneration.
Collapse
|
91
|
Jones CAR, Liang L, Lin D, Jiao Y, Sun B. The spatial-temporal characteristics of type I collagen-based extracellular matrix. SOFT MATTER 2014; 10:8855-8863. [PMID: 25287650 DOI: 10.1039/c4sm01772b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Type I collagen abounds in mammalian extracellular matrix (ECM) and is crucial to many biophysical processes. While previous studies have mostly focused on bulk averaged properties, here we provide a comprehensive and quantitative spatial-temporal characterization of the microstructure of type I collagen-based ECM as the gelation temperature varies. The structural characteristics including the density and nematic correlation functions are obtained by analyzing confocal images of collagen gels prepared at a wide range of gelation temperatures (from 16 °C to 36 °C). As temperature increases, the gel microstructure varies from a "bundled" network with strong orientational correlation between the fibers to an isotropic homogeneous network with no significant orientational correlation, as manifested by the decaying of length scales in the correlation functions. We develop a kinetic Monte-Carlo collagen growth model to better understand how ECM microstructure depends on various environmental or kinetic factors. We show that the nucleation rate, growth rate, and an effective hydrodynamic alignment of collagen fibers fully determines the spatiotemporal fluctuations of the density and orientational order of collagen gel microstructure. Also the temperature dependence of the growth rate and nucleation rate follow the prediction of classical nucleation theory.
Collapse
|
92
|
Freeze-Thawed Hybridized Preparation with Biomimetic Self-Assembly for a Polyvinyl Alcohol/Collagen Hydrogel Created for Meniscus Tissue Engineering. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2014. [DOI: 10.4028/www.scientific.net/jbbbe.21.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Freeze-thawed hybridized preparation and the biomimetic self-assembly technique were used to fabricate hydrogel as tissue engineered scaffolds for meniscus tissue. Because of the advantages of both techniques, they were hybridized together as an interesting preparation for hydrogel. Three molecular weights (high, medium, and low) of PVA were prepared in a biomimetic solution before formation into hydrogel by freeze-thawing. The most suitable molecular weight PVA for hydrogel formation was chosen to be mixed with collagen. PVA, PVA/collagen, and collagen were prepared in biomimetic solutions and freeze-thawed into hydrogels. The hydrogels were analyzed and characterized by FTIR, DSC, and SEM. FTIR characterization indicated that high molecular weight PVA formed molecular interaction better than the other molecular weights, and PVA molecules formed molecular interaction with collagen molecules via –OH and C=O groups. DSC characterization showed that the hybridized preparation of freeze-thawing and biomimetic self-assembly kept the characteristics of PVA and collagen. SEM analysis demonstrated that the morphological formation of PVA/collagen was hybridized during freeze-thawing and collagen self-assembly. The morphological structure was organized into a porous network structure. The porous structure showed a rough wall that was formed by the hybridized structure of the crystal domain dispersed in amorphous and collagen self-assembly.
Collapse
|