51
|
Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R, Kshitiz. Systems Biology of Cancer Metastasis. Cell Syst 2019; 9:109-127. [PMID: 31465728 PMCID: PMC6716621 DOI: 10.1016/j.cels.2019.07.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Cancer metastasis is no longer viewed as a linear cascade of events but rather as a series of concurrent, partially overlapping processes, as successfully metastasizing cells assume new phenotypes while jettisoning older behaviors. The lack of a systemic understanding of this complex phenomenon has limited progress in developing treatments for metastatic disease. Because metastasis has traditionally been investigated in distinct physiological compartments, the integration of these complex and interlinked aspects remains a challenge for both systems-level experimental and computational modeling of metastasis. Here, we present some of the current perspectives on the complexity of cancer metastasis, the multiscale nature of its progression, and a systems-level view of the processes underlying the invasive spread of cancer cells. We also highlight the gaps in our current understanding of cancer metastasis as well as insights emerging from interdisciplinary systems biology approaches to understand this complex phenomenon.
Collapse
Affiliation(s)
- Yasir Suhail
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA; Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Margo P Cain
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Vanaja
- Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Paul A Kurywchak
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Andre Levchenko
- Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA
| | - Raghu Kalluri
- Department of Cancer Biology, MD Anderson Cancer Center, Houston, TX, USA
| | - Kshitiz
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA; Cancer Systems Biology @ Yale (CaSB@Yale), Yale University, West Haven, CT, USA.
| |
Collapse
|
52
|
Zuela-Sopilniak N, Lammerding J. Engineering approaches to studying cancer cell migration in three-dimensional environments. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180219. [PMID: 31431175 PMCID: PMC6627017 DOI: 10.1098/rstb.2018.0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most devastating diseases of our time, with 17 million new cancer cases and 9.5 million cancer deaths in 2018 worldwide. The mortality associated with cancer results primarily from metastasis, i.e. the spreading of cancer cells from the primary tumour to other organs. The invasion and migration of cells through basement membranes, tight interstitial spaces and endothelial cell layers are key steps in the metastatic cascade. Recent studies demonstrated that cell migration through three-dimensional environments that mimic the in vivo conditions significantly differs from their migration on two-dimensional surfaces. Here, we review recent technological advances made in the field of cancer research that provide more 'true to the source' experimental platforms and measurements for the study of cancer cell invasion and migration in three-dimensional environments. These include microfabrication, three-dimensional bioprinting and intravital imaging tools, along with force and stiffness measurements of cells and their environments. These techniques will enable new studies that better reflect the physiological environment found in vivo, thereby producing more robust results. The knowledge achieved through these studies will aid in the development of new treatment options with the potential to ultimately lighten the devastating cost cancer inflicts on patients and their families. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
53
|
Abstract
Cell migration is the physical movement of cells and is responsible for the extensive cellular invasion and metastasis that occur in high-grade tumors. Motivated by decades of direct observation of cell migration via light microscopy, theoretical models have emerged to capture various aspects of the fundamental physical phenomena underlying cell migration. Yet, the motility mechanisms actually used by tumor cells during invasion are still poorly understood, as is the role of cellular interactions with the extracellular environment. In this chapter, we review key physical principles of cytoskeletal self-assembly and force generation, membrane tension, biological adhesion, hydrostatic and osmotic pressures, and their integration in mathematical models of cell migration. With the goal of modeling-driven cancer therapy, we provide examples to guide oncologists and physical scientists in developing next-generation models to predict disease progression and treatment.
Collapse
Affiliation(s)
- Louis S Prahl
- Department of Biomedical Engineering and Physical Sciences-Oncology Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA.
| | - David J Odde
- Department of Biomedical Engineering and Physical Sciences-Oncology Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
54
|
Abstract
Cellular nuclei are bound by two uniformly separated lipid membranes that are fused with each other at numerous donut-shaped pores. These membranes are structurally supported by an array of distinct proteins with distinct mechanical functions. As a result, the nuclear envelope possesses unique mechanical properties, which enables it to resist cytoskeletal forces. Here, we review studies that are beginning to provide quantitative insights into nuclear membrane mechanics. We discuss how the mechanical properties of the fused nuclear membranes mediate their response to mechanical forces exerted on the nucleus and how structural reinforcement by different nuclear proteins protects the nuclear membranes against rupture. We also highlight some open questions in nuclear envelope mechanics, and discuss their relevance in the context of health and disease.
Collapse
Affiliation(s)
- Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
55
|
Liu S, Tao R, Wang M, Tian J, Genin GM, Lu TJ, Xu F. Regulation of Cell Behavior by Hydrostatic Pressure. APPLIED MECHANICS REVIEWS 2019; 71:0408031-4080313. [PMID: 31700195 PMCID: PMC6808007 DOI: 10.1115/1.4043947] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/18/2019] [Indexed: 06/10/2023]
Abstract
Hydrostatic pressure (HP) regulates diverse cell behaviors including differentiation, migration, apoptosis, and proliferation. Abnormal HP is associated with pathologies including glaucoma and hypertensive fibrotic remodeling. In this review, recent advances in quantifying and predicting how cells respond to HP across several tissue systems are presented, including tissues of the brain, eye, vasculature and bladder, as well as articular cartilage. Finally, some promising directions on the study of cell behaviors regulated by HP are proposed.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ru Tao
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Ming Wang
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Jin Tian
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Guy M. Genin
- The Key Laboratory of Biomedical Information
Engineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Mechanical Engineering &
Materials Science,
National Science Foundation Science and
Technology Center for Engineering Mechanobiology,
Washington University,
St. Louis, MO 63130
| | - Tian Jian Lu
- State Key Laboratory of Mechanics andControl of Mechanical Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 210016, China
- Department of Structural Engineering & Mechanics,
Nanjing Center for Multifunctional LightweightMaterials and Structures,
Nanjing University of Aeronautics and Astronautics,
Nanjing 21006, China;
State Key Laboratory for Strength andVibration of Mechanical Structures,
Xi'an Jiaotong University,
Xi'an 710049, China
| | - Feng Xu
- The Key Laboratory of Biomedical InformationEngineering of Ministry of Education,
School of Life Science and Technology,
Xi'an Jiaotong University,
Xi'an 710049, China
- Department of Biomedical Engineering,Bioinspired Engineering and Biomechanics Center (BEBC),
Xi'an Jiaotong University,
Xi'an 710049, China
e-mail:
| |
Collapse
|
56
|
Liu R, Liu Q, Pan Z, Liu X, Ding J. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7469-7477. [PMID: 30226387 DOI: 10.1021/acs.langmuir.8b02510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While various cellular responses to materials have been published, little concerns the deformation of cell nuclei. Herein we fabricated a polymeric micropillar array of appropriate dimensions to trigger the significant self-deformation of cell nuclei and examined six cell types, which could be classified into cancerous cells (Hela and HepG2) versus healthy cells (HCvEpC, MC3T3-E1, NIH3T3, and hMSC) or epithelial-like cells (Hela, HepG2, and HCvEpC) versus fibroblast-like cells (MC3T3-E1, NIH3T3, and hMSC). While all of the cell types exhibited severe nuclear deformation on the poly(lactide- co-glycolide) (PLGA) micropillar array, the difference between the epithelial-like and fibroblast-like cells was much more significant than that between the cancerous and healthy cells. We also examined the statistics of nuclear shape indexes of cells with an inevitable dispersity of nuclear sizes. It was found that larger nuclei favored more significant deformation on the micropillar array for each cell type. In the same region of nuclear size, the parts of the epithelial-like cells exhibited more significant nuclear deformation than those of the fibroblast-like cells. Hence, this article reports the nuclear size dependence of the self-deformation of cell nuclei on micropillar arrays for the first time and meanwhile strengthens the cell-type dependence.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
57
|
Stephens AD, Banigan EJ, Marko JF. Chromatin's physical properties shape the nucleus and its functions. Curr Opin Cell Biol 2019; 58:76-84. [PMID: 30889417 PMCID: PMC6692209 DOI: 10.1016/j.ceb.2019.02.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/06/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022]
Abstract
The cell nucleus encloses, organizes, and protects the genome. Chromatin maintains nuclear mechanical stability and shape in coordination with lamins and the cytoskeleton. Abnormal nuclear shape is a diagnostic marker for human diseases, and it can cause nuclear dysfunction. Chromatin mechanics underlies this link, as alterations to chromatin and its physical properties can disrupt or rescue nuclear shape. The cell can regulate nuclear shape through mechanotransduction pathways that sense and respond to extracellular cues, thus modulating chromatin compaction and rigidity. These findings reveal how chromatin's physical properties can regulate cellular function and drive abnormal nuclear morphology and dysfunction in disease.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States.
| | - Edward J Banigan
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, United States; Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, United States.
| |
Collapse
|
58
|
Escribano J, Chen MB, Moeendarbary E, Cao X, Shenoy V, Garcia-Aznar JM, Kamm RD, Spill F. Balance of mechanical forces drives endothelial gap formation and may facilitate cancer and immune-cell extravasation. PLoS Comput Biol 2019; 15:e1006395. [PMID: 31048903 PMCID: PMC6497229 DOI: 10.1371/journal.pcbi.1006395] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022] Open
Abstract
The formation of gaps in the endothelium is a crucial process underlying both cancer and immune cell extravasation, contributing to the functioning of the immune system during infection, the unfavorable development of chronic inflammation and tumor metastasis. Here, we present a stochastic-mechanical multiscale model of an endothelial cell monolayer and show that the dynamic nature of the endothelium leads to spontaneous gap formation, even without intervention from the transmigrating cells. These gaps preferentially appear at the vertices between three endothelial cells, as opposed to the border between two cells. We quantify the frequency and lifetime of these gaps, and validate our predictions experimentally. Interestingly, we find experimentally that cancer cells also preferentially extravasate at vertices, even when they first arrest on borders. This suggests that extravasating cells, rather than initially signaling to the endothelium, might exploit the autonomously forming gaps in the endothelium to initiate transmigration.
Collapse
Affiliation(s)
- Jorge Escribano
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Michelle B. Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Emad Moeendarbary
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Xuan Cao
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Vivek Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Fabian Spill
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
59
|
White FM, Gatenby RA, Fischbach C. The Physics of Cancer. Cancer Res 2019; 79:2107-2110. [PMID: 31018939 DOI: 10.1158/0008-5472.can-18-3937] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 11/16/2022]
Abstract
While often described as a "disease of the genes," cancer is, in fact, a complex dynamic system in which evolving cells both affect and are affected by the physical properties of their environment. About 10 years ago, after a number of multidisciplinary workshops and meetings, the NCI leadership embarked on a bold program to systematically integrate physical sciences into cancer biology and treatment through formation of the Physical Sciences-Oncology Network (PS-ON). Here, we highlight key areas in which the two disciplines have been successfully integrated and lessons learned from the first decade of the PS-ON experiment.
Collapse
Affiliation(s)
- Forest M White
- Department of Biological Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Robert A Gatenby
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, Florida.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York
| |
Collapse
|
60
|
Helical nanofiber yarn enabling highly stretchable engineered microtissue. Proc Natl Acad Sci U S A 2019; 116:9245-9250. [PMID: 31019088 DOI: 10.1073/pnas.1821617116] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Development of microtissues that possess mechanical properties mimicking those of native stretchable tissues, such as muscle and tendon, is in high demand for tissue engineering and regenerative medicine. However, regardless of the significant advances in synthetic biomaterials, it remains challenging to fabricate living microtissue with high stretchability because application of large strains to microtissues can damage the cells by rupturing their structures. Inspired by the hierarchical helical structure of native fibrous tissues and its behavior of nonaffine deformation, we develop a highly stretchable and tough microtissue fiber made up of a hierarchical helix yarn scaffold, scaling from nanometers to millimeters, that can overcome this limitation. This microtissue can be stretched up to 15 times its initial length and has a toughness of 57 GJ m-3 More importantly, cells grown on this scaffold maintain high viability, even under severe cyclic strains (up to 600%) that can be attributed to the nonaffine deformation under large strains, mimicking native biopolymer scaffolds. Furthermore, as proof of principle, we demonstrate that the nanotopography of the helical nanofiber yarn is able to induce cytoskeletal alignment and nuclear elongation, which promote myogenic differentiation of mesenchymal stem cells by triggering nuclear translocation of transcriptional coactivator with PDZ-binding motif (TAZ). The highly stretchable microtissues we develop here will facilitate a variety of tissue engineering applications and the development of engineered living systems.
Collapse
|
61
|
Modelling actin polymerization: the effect on confined cell migration. Biomech Model Mechanobiol 2019; 18:1177-1187. [PMID: 30843134 PMCID: PMC6647863 DOI: 10.1007/s10237-019-01136-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
The aim of this work is to model cell motility under conditions of mechanical confinement. This cell migration mode may occur in extravasation of tumour and neutrophil-like cells. Cell migration is the result of the complex action of different forces exerted by the interplay between myosin contractility forces and actin processes. Here, we propose and implement a finite element model of the confined migration of a single cell. In this model, we consider the effects of actin and myosin in cell motility. Both filament and globular actin are modelled. We model the cell considering cytoplasm and nucleus with different mechanical properties. The migration speed in the simulation is around 0.1 μm/min, which is in agreement with existing literature. From our simulation, we observe that the nucleus size has an important role in cell migration inside the channel. In the simulation the cell moves further when the nucleus is smaller. However, this speed is less sensitive to nucleus stiffness. The results show that the cell displacement is lower when the nucleus is stiffer. The degree of adhesion between the channel walls and the cell is also very important in confined migration. We observe an increment of cell velocity when the friction coefficient is higher.
Collapse
|
62
|
Balakrishnan S, Mathad SS, Sharma G, Raju SR, Reddy UB, Das S, Ananthasuresh GK. A Nondimensional Model Reveals Alterations in Nuclear Mechanics upon Hepatitis C Virus Replication. Biophys J 2019; 116:1328-1339. [PMID: 30879645 DOI: 10.1016/j.bpj.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 02/05/2023] Open
Abstract
Morphology of the nucleus is an important regulator of gene expression. Nuclear morphology is in turn a function of the forces acting on it and the mechanical properties of the nuclear envelope. Here, we present a two-parameter, nondimensional mechanical model of the nucleus that reveals a relationship among nuclear shape parameters, such as projected area, surface area, and volume. Our model fits the morphology of individual nuclei and predicts the ratio between forces and modulus in each nucleus. We analyzed the changes in nuclear morphology of liver cells due to hepatitis C virus (HCV) infection using this model. The model predicted a decrease in the elastic modulus of the nuclear envelope and an increase in the pre-tension in cortical actin as the causes for the change in nuclear morphology. These predictions were validated biomechanically by showing that liver cells expressing HCV proteins possessed enhanced cellular stiffness and reduced nuclear stiffness. Concomitantly, cells expressing HCV proteins showed downregulation of lamin-A,C and upregulation of β-actin, corroborating the predictions of the model. Our modeling assumptions are broadly applicable to adherent, monolayer cell cultures, making the model amenable to investigate changes in nuclear mechanics due to other stimuli by merely measuring nuclear morphology. Toward this, we present two techniques, graphical and numerical, to use our model for predicting physical changes in the nucleus.
Collapse
Affiliation(s)
- Sreenath Balakrishnan
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Suma S Mathad
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Geetika Sharma
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Shilpa R Raju
- Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Uma B Reddy
- Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Saumitra Das
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India.
| | - G K Ananthasuresh
- BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India; Mechanical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India.
| |
Collapse
|
63
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
64
|
Jacobson EC, Perry JK, Long DS, Olins AL, Olins DE, Wright BE, Vickers MH, O’Sullivan JM. Migration through a small pore disrupts inactive chromatin organization in neutrophil-like cells. BMC Biol 2018; 16:142. [PMID: 30477489 PMCID: PMC6257957 DOI: 10.1186/s12915-018-0608-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mammalian cells are flexible and can rapidly change shape when they contract, adhere, or migrate. The nucleus must be stiff enough to withstand cytoskeletal forces, but flexible enough to remodel as the cell changes shape. This is particularly important for cells migrating through confined spaces, where the nuclear shape must change in order to fit through a constriction. This occurs many times in the life cycle of a neutrophil, which must protect its chromatin from damage and disruption associated with migration. Here we characterized the effects of constricted migration in neutrophil-like cells. RESULTS Total RNA sequencing identified that migration of neutrophil-like cells through 5- or 14-μm pores was associated with changes in the transcript levels of inflammation and chemotaxis-related genes when compared to unmigrated cells. Differentially expressed transcripts specific to migration with constriction were enriched for groups of genes associated with cytoskeletal remodeling. Hi-C was used to capture the genome organization in control and migrated cells. Limited switching was observed between the active (A) and inactive (B) compartments after migration. However, global depletion of short-range contacts was observed following migration with constriction compared to migration without constriction. Regions with disrupted contacts, TADs, and compartments were enriched for inactive chromatin. CONCLUSION Short-range genome organization is preferentially altered in inactive chromatin, possibly protecting transcriptionally active contacts from the disruptive effects of migration with constriction. This is consistent with current hypotheses implicating heterochromatin as the mechanoresponsive form of chromatin. Further investigation concerning the contribution of heterochromatin to stiffness, flexibility, and protection of nuclear function will be important for understanding cell migration in relation to human health and disease.
Collapse
Affiliation(s)
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David S. Long
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Biomedical Engineering, Wichita State University, Wichita, USA
| | - Ada L. Olins
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New England, Portland, ME USA
| | - Donald E. Olins
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New England, Portland, ME USA
| | - Bryon E. Wright
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
65
|
Lele TP, Dickinson RB, Gundersen GG. Mechanical principles of nuclear shaping and positioning. J Cell Biol 2018; 217:3330-3342. [PMID: 30194270 PMCID: PMC6168261 DOI: 10.1083/jcb.201804052] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/27/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Positioning and shaping the nucleus represents a mechanical challenge for the migrating cell because of its large size and resistance to deformation. Cells shape and position the nucleus by transmitting forces from the cytoskeleton onto the nuclear surface. This force transfer can occur through specialized linkages between the nuclear envelope and the cytoskeleton. In response, the nucleus can deform and/or it can move. Nuclear movement will occur when there is a net differential in mechanical force across the nucleus, while nuclear deformation will occur when mechanical forces overcome the mechanical resistance of the various structures that comprise the nucleus. In this perspective, we review current literature on the sources and magnitude of cellular forces exerted on the nucleus, the nuclear envelope proteins involved in transferring cellular forces, and the contribution of different nuclear structural components to the mechanical response of the nucleus to these forces.
Collapse
Affiliation(s)
- Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL
- Anatomy and Cell Biology, University of Florida, Gainesville, FL
| | | | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
66
|
Mathieu S, Manneville JB. Intracellular mechanics: connecting rheology and mechanotransduction. Curr Opin Cell Biol 2018; 56:34-44. [PMID: 30253328 DOI: 10.1016/j.ceb.2018.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 12/30/2022]
Abstract
Cell mechanics is crucial for a wide range of cell functions, including proliferation, polarity, migration and differentiation. Cells sense external physical cues and translate them into a cellular response. While force sensing occurs in the vicinity of the plasma membrane, forces can reach deep in the cell interior and to the nucleus. We review here the recent developments in the field of intracellular mechanics. We focus first on intracellular rheology, the study of the mechanical properties of the cell interior, and recapitulate the contribution of active mechanisms, the cytoskeleton and intracellular organelles to cell rheology. We then discuss how forces are transmitted inside the cell during mechanotransduction events, through direct force transmission and biochemical signaling, and how intracellular rheology and mechanotransduction are connected.
Collapse
Affiliation(s)
- Samuel Mathieu
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm, F-75005, Paris, France.
| |
Collapse
|
67
|
G9a Correlates with VLA-4 Integrin and Influences the Migration of Childhood Acute Lymphoblastic Leukemia Cells. Cancers (Basel) 2018; 10:cancers10090325. [PMID: 30213075 PMCID: PMC6162492 DOI: 10.3390/cancers10090325] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/31/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. As ALL progresses, leukemic cells cross the endothelial barrier and infiltrate other tissues. Epigenetic enzymes represent novel therapeutic targets in hematological malignancies, and might contribute to cells' capacity to migrate across physical barriers. Although many molecules drive this process, the role of the nucleus and its components remain unclear. We report here, for the first time, that the expression of G9a (a histone methyltransferase related with gene silencing) correlates with the expression of the integrin subunit α4 in children with ALL. We have demonstrated that G9a depletion or its inhibition with BIX01294 abrogated the ability of ALL cells to migrate through an endothelial monolayer. Moreover, G9a-depleted and BIX01294-treated cells presented bigger nuclei and more adherent phenotype than control cells on endothelial monolayers. Blocking G9a did not affect the cell cytoskeleton or integrin expression of ALL cell lines, and only its depletion reduced slightly F-actin polymerization. Similarly to the transendothelial migration, G9a inhibition impaired the cell migration induced by the integrin VLA-4 (α4β1) of primary cells and ALL cell lines through narrow spaces in vitro. Our results suggest a cellular connection between G9a and VLA-4, which underlies novel functions of G9a during ALL cell migration.
Collapse
|
68
|
Chang CC, Wang K, Zhang Y, Chen D, Fan B, Hsieh CH, Wang J, Wu MH, Chen J. Mechanical property characterization of hundreds of single nuclei based on microfluidic constriction channel. Cytometry A 2018; 93:822-828. [PMID: 30063818 DOI: 10.1002/cyto.a.23386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/18/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
Abstract
As label-free biomarkers, the mechanical properties of nuclei are widely treated as promising biomechanical markers for cell type classification and cellular status evaluation. However, previously reported mechanical parameters were derived from only around 10 nuclei, lacking statistical significances due to low sample numbers. To address this issue, nuclei were first isolated from SW620 and A549 cells, respectively, using a chemical treatment method. This was followed by aspirating them through two types of microfluidic constriction channels for mechanical property characterization. In this study, hundreds of nuclei were characterized, producing passage times of 0.5 ± 1.2 s for SW620 nuclei in type I constriction channel (n = 153), 0.045 ± 0.047 s for SW620 nuclei in type II constriction channel (n = 215) and 0.50 ± 0.86 s for A549 nuclei in type II constriction channel. In addition, neural network based pattern recognition was used to classify the nuclei isolated from SW620 and A549 cells, producing successful classification rates of 87.2% for diameters of nuclei, 85.5% for passage times of nuclei and 89.3% for both passage times and diameters of nuclei. These results indicate that the characterization of the mechanical properties of nuclei may contribute to the classification of different tumor cells.
Collapse
Affiliation(s)
- Chun-Chieh Chang
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan
| | - Ke Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yi Zhang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Deyong Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Beiyuan Fan
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chia-Hsun Hsieh
- Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Junbo Wang
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Min-Hsien Wu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan City, Taiwan.,Division of Haematology/Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City, Taiwan
| | - Jian Chen
- State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, People's Republic of China.,School of Electronic, Electrical and Communication Engineering/School of Future Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
69
|
Spill F, Bakal C, Mak M. Mechanical and Systems Biology of Cancer. Comput Struct Biotechnol J 2018; 16:237-245. [PMID: 30105089 PMCID: PMC6077126 DOI: 10.1016/j.csbj.2018.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 07/11/2018] [Indexed: 12/18/2022] Open
Abstract
Mechanics and biochemical signaling are both often deregulated in cancer, leading toincreased cell invasiveness, proliferation, and survival. The dynamics and interactions of cytoskeletal components control basic mechanical properties, such as cell tension, stiffness, and engagement with the extracellular environment, which can lead to extracellular matrix remodeling. Intracellular mechanics can alter signaling and transcription factors, impacting cell decision making. Additionally, signaling from soluble and mechanical factors in the extracellular environment, such as substrate stiffness and ligand density, can modulate cytoskeletal dynamics. Computational models closely integrated with experimental support, incorporating cancer-specific parameters, can provide quantitative assessments and serve as predictive tools toward dissecting the feedback between signaling and mechanics and across multiple scales and domains in tumor progression.
Collapse
Affiliation(s)
- Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
| | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, USA
| |
Collapse
|
70
|
Feng S, Zhou L, Zhang Y, Lü S, Long M. Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness. Biomech Model Mechanobiol 2018; 17:1611-1630. [PMID: 29968162 DOI: 10.1007/s10237-018-1047-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Directional neutrophil migration during human immune responses is a highly coordinated process regulated by both biochemical and biomechanical environments. In this paper, we developed an integrative mathematical model of neutrophil migration using a lattice Boltzmann-particle method built in-house to solve the moving boundary problem with spatiotemporal regulation of biochemical components. The mechanical features of the cell cortex are modeled by a series of spring-connected nodes representing discrete cell-substrate adhesive sites. The intracellular signaling cascades responsible for cytoskeletal remodeling [e.g., small GTPases, phosphoinositide-3-kinase (PI3K), and phosphatase and tensin homolog] are built based on our previous four-layered signaling model centered on the bidirectional molecular transport mechanism and implemented as reaction-diffusion equations. Focal adhesion dynamics are determined by force-dependent integrin-ligand binding kinetics and integrin recycling and are thus integrated with cell motion. Using numerical simulations, the model reproduces the major features of cell migration in response to uniform and gradient biochemical stimuli based on the quantitative spatiotemporal regulation of signaling molecules, which agree with experimental observations. The existence of multiple types of integrins with different binding kinetics could act as an adaptation mechanism for substrate stiffness. Moreover, cells can perform reversal, U-turn, or lock-on behaviors depending on the steepness of the reversal biochemical signals received. Finally, this model is also applied to predict the responses of mutants in which PTEN is overexpressed or disrupted.
Collapse
Affiliation(s)
- Shiliang Feng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lüwen Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
71
|
Chen J, Weihs D, Van Dijk M, Vermolen FJ. A phenomenological model for cell and nucleus deformation during cancer metastasis. Biomech Model Mechanobiol 2018; 17:1429-1450. [PMID: 29845458 PMCID: PMC6154301 DOI: 10.1007/s10237-018-1036-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/21/2018] [Indexed: 12/21/2022]
Abstract
Cell migration plays an essential role in cancer metastasis. In cancer invasion through confined spaces, cells must undergo extensive deformation, which is a capability related to their metastatic potentials. Here, we simulate the deformation of the cell and nucleus during invasion through a dense, physiological microenvironment by developing a phenomenological computational model. In our work, cells are attracted by a generic emitting source (e.g., a chemokine or stiffness signal), which is treated by using Green’s Fundamental solutions. We use an IMEX integration method where the linear parts and the nonlinear parts are treated by using an Euler backward scheme and an Euler forward method, respectively. We develop the numerical model for an obstacle-induced deformation in 2D or/and 3D. Considering the uncertainty in cell mobility, stochastic processes are incorporated and uncertainties in the input variables are evaluated using Monte Carlo simulations. This quantitative study aims at estimating the likelihood for invasion and the length of the time interval in which the cell invades the tissue through an obstacle. Subsequently, the two-dimensional cell deformation model is applied to simplified cancer metastasis processes to serve as a model for in vivo or in vitro biomedical experiments.
Collapse
Affiliation(s)
- Jiao Chen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 3200003, Haifa, Israel
| | - Marcel Van Dijk
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| | - Fred J Vermolen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
72
|
Anselme K, Wakhloo NT, Rougerie P, Pieuchot L. Role of the Nucleus as a Sensor of Cell Environment Topography. Adv Healthc Mater 2018; 7:e1701154. [PMID: 29283219 DOI: 10.1002/adhm.201701154] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/06/2017] [Indexed: 12/25/2022]
Abstract
The proper integration of biophysical cues from the cell vicinity is crucial for cells to maintain homeostasis, cooperate with other cells within the tissues, and properly fulfill their biological function. It is therefore crucial to fully understand how cells integrate these extracellular signals for tissue engineering and regenerative medicine. Topography has emerged as a prominent component of the cellular microenvironment that has pleiotropic effects on cell behavior. This progress report focuses on the recent advances in the understanding of the topography sensing mechanism with a special emphasis on the role of the nucleus. Here, recent techniques developed for monitoring the nuclear mechanics are reviewed and the impact of various topographies and their consequences on nuclear organization, gene regulation, and stem cell fate is summarized. The role of the cell nucleus as a sensor of cell-scale topography is further discussed.
Collapse
Affiliation(s)
- Karine Anselme
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Nayana Tusamda Wakhloo
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| | - Pablo Rougerie
- Institute of Biomedical SciencesFederal University of Rio de Janeiro Rio de Janeiro RJ 21941‐902 Brazil
| | - Laurent Pieuchot
- University of Haute‐AlsaceUniversity of Strasbourg CNRS UMR7361, IS2M 68057 Mulhouse France
| |
Collapse
|
73
|
Maturation State and Matrix Microstructure Regulate Interstitial Cell Migration in Dense Connective Tissues. Sci Rep 2018; 8:3295. [PMID: 29459687 PMCID: PMC5818574 DOI: 10.1038/s41598-018-21212-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
Few regenerative approaches exist for the treatment of injuries to adult dense connective tissues. Compared to fetal tissues, adult connective tissues are hypocellular and show limited healing after injury. We hypothesized that robust repair can occur in fetal tissues with an immature extracellular matrix (ECM) that is conducive to cell migration, and that this process fails in adults due to the biophysical barriers imposed by the mature ECM. Using the knee meniscus as a platform, we evaluated the evolving micromechanics and microstructure of fetal and adult tissues, and interrogated the interstitial migratory capacity of adult meniscal cells through fetal and adult tissue microenvironments with or without partial enzymatic digestion. To integrate our findings, a computational model was implemented to determine how changing biophysical parameters impact cell migration through these dense networks. Our results show that the micromechanics and microstructure of the adult meniscus ECM sterically hinder cell mobility, and that modulation of these ECM attributes via an exogenous matrix-degrading enzyme permits migration through this otherwise impenetrable network. By addressing the inherent limitations to repair imposed by the mature ECM, these studies may define new clinical strategies to promote repair of damaged dense connective tissues in adults.
Collapse
|
74
|
Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V, Adam SA, Goldman RD, Marko JF. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol Biol Cell 2018; 29:220-233. [PMID: 29142071 PMCID: PMC5909933 DOI: 10.1091/mbc.e17-06-0410] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/29/2023] Open
Abstract
Nuclear shape and architecture influence gene localization, mechanotransduction, transcription, and cell function. Abnormal nuclear morphology and protrusions termed "blebs" are diagnostic markers for many human afflictions including heart disease, aging, progeria, and cancer. Nuclear blebs are associated with both lamin and chromatin alterations. A number of prior studies suggest that lamins dictate nuclear morphology, but the contributions of altered chromatin compaction remain unclear. We show that chromatin histone modification state dictates nuclear rigidity, and modulating it is sufficient to both induce and suppress nuclear blebs. Treatment of mammalian cells with histone deacetylase inhibitors to increase euchromatin or histone methyltransferase inhibitors to decrease heterochromatin results in a softer nucleus and nuclear blebbing, without perturbing lamins. Conversely, treatment with histone demethylase inhibitors increases heterochromatin and chromatin nuclear rigidity, which results in reduced nuclear blebbing in lamin B1 null nuclei. Notably, increased heterochromatin also rescues nuclear morphology in a model cell line for the accelerated aging disease Hutchinson-Gilford progeria syndrome caused by mutant lamin A, as well as cells from patients with the disease. Thus, chromatin histone modification state is a major determinant of nuclear blebbing and morphology via its contribution to nuclear rigidity.
Collapse
Affiliation(s)
- Andrew D Stephens
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Patrick Z Liu
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Edward J Banigan
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Luay M Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208.,Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
75
|
Cheng B, Lin M, Huang G, Li Y, Ji B, Genin GM, Deshpande VS, Lu TJ, Xu F. Cellular mechanosensing of the biophysical microenvironment: A review of mathematical models of biophysical regulation of cell responses. Phys Life Rev 2017; 22-23:88-119. [PMID: 28688729 PMCID: PMC5712490 DOI: 10.1016/j.plrev.2017.06.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 12/11/2022]
Abstract
Cells in vivo reside within complex microenvironments composed of both biochemical and biophysical cues. The dynamic feedback between cells and their microenvironments hinges upon biophysical cues that regulate critical cellular behaviors. Understanding this regulation from sensing to reaction to feedback is therefore critical, and a large effort is afoot to identify and mathematically model the fundamental mechanobiological mechanisms underlying this regulation. This review provides a critical perspective on recent progress in mathematical models for the responses of cells to the biophysical cues in their microenvironments, including dynamic strain, osmotic shock, fluid shear stress, mechanical force, matrix rigidity, porosity, and matrix shape. The review highlights key successes and failings of existing models, and discusses future opportunities and challenges in the field.
Collapse
Affiliation(s)
- Bo Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guoyou Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuhui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Guy M Genin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Mechanical Engineering & Materials Science, and NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis 63130, MO, USA
| | - Vikram S Deshpande
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Tian Jian Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
76
|
Ringer P, Colo G, Fässler R, Grashoff C. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol 2017; 64:6-16. [DOI: 10.1016/j.matbio.2017.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
77
|
Szczesny SE, Mauck RL. The Nuclear Option: Evidence Implicating the Cell Nucleus in Mechanotransduction. J Biomech Eng 2017; 139:2592356. [PMID: 27918797 DOI: 10.1115/1.4035350] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Biophysical stimuli presented to cells via microenvironmental properties (e.g., alignment and stiffness) or external forces have a significant impact on cell function and behavior. Recently, the cell nucleus has been identified as a mechanosensitive organelle that contributes to the perception and response to mechanical stimuli. However, the specific mechanotransduction mechanisms that mediate these effects have not been clearly established. Here, we offer a comprehensive review of the evidence supporting (and refuting) three hypothetical nuclear mechanotransduction mechanisms: physical reorganization of chromatin, signaling at the nuclear envelope, and altered cytoskeletal structure/tension due to nuclear remodeling. Our goal is to provide a reference detailing the progress that has been made and the areas that still require investigation regarding the role of nuclear mechanotransduction in cell biology. Additionally, we will briefly discuss the role that mathematical models of cell mechanics can play in testing these hypotheses and in elucidating how biophysical stimulation of the nucleus drives changes in cell behavior. While force-induced alterations in signaling pathways involving lamina-associated polypeptides (LAPs) (e.g., emerin and histone deacetylase 3 (HDAC3)) and transcription factors (TFs) located at the nuclear envelope currently appear to be the most clearly supported mechanism of nuclear mechanotransduction, additional work is required to examine this process in detail and to more fully test alternative mechanisms. The combination of sophisticated experimental techniques and advanced mathematical models is necessary to enhance our understanding of the role of the nucleus in the mechanotransduction processes driving numerous critical cell functions.
Collapse
Affiliation(s)
- Spencer E Szczesny
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, 424 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, 3900 Woodland Avenue, Philadelphia, PA 19104;Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
78
|
Deveraux S, Allena R, Aubry D. A numerical model suggests the interplay between nuclear plasticity and stiffness during a perfusion assay. J Theor Biol 2017; 435:62-77. [PMID: 28919399 DOI: 10.1016/j.jtbi.2017.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022]
Abstract
Cell deformability is a necessary condition for a cell to be able to migrate, an ability that is vital both for healthy and diseased organisms. The nucleus being the largest and stiffest organelle, it often is a barrier to cell migration. It is thus essential to characterize its mechanical behaviour. First, we numerically investigate the visco-elasto-plastic properties of the isolated nucleus during a compression test. This simulation highlights the impact of the mechanical behaviour of the nuclear lamina and the nucleoplasm on the overall plasticity. Second, a whole cell model is developed to simulate a perfusion experiment to study the possible interactions between the cytoplasm and the nucleus. We analyze and discuss the role of the lamina for a wild-type cell model, and a lamin-deficient one, in which the Young's modulus of the lamina is set to 1% of its nominal value. This simulation suggests an interplay between the cytoplasm and the nucleoplasm, especially in the lamin-deficient cell, showing the need of a stiffer nucleoplasm to maintain nuclear plasticity.
Collapse
Affiliation(s)
- Solenne Deveraux
- Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, Grande Voie des Vignes, Châtenay-Malabry 92290 France.
| | - Rachele Allena
- Arts et Metiers ParisTech, LBM/Institut de Biomécanique Humaine Georges Charpak, 151 bd de l'Hôpital, Paris 75013 France
| | - Denis Aubry
- Laboratoire MSSMat UMR CNRS 8579, CentraleSupelec, Université Paris-Saclay, Grande Voie des Vignes, Châtenay-Malabry 92290 France
| |
Collapse
|
79
|
Tocco VJ, Li Y, Christopher KG, Matthews JH, Aggarwal V, Paschall L, Luesch H, Licht JD, Dickinson RB, Lele TP. The nucleus is irreversibly shaped by motion of cell boundaries in cancer and non-cancer cells. J Cell Physiol 2017; 233:1446-1454. [PMID: 28542912 DOI: 10.1002/jcp.26031] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023]
Abstract
Actomyosin stress fibers impinge on the nucleus and can exert compressive forces on it. These compressive forces have been proposed to elongate nuclei in fibroblasts, and lead to abnormally shaped nuclei in cancer cells. In these models, the elongated or flattened nuclear shape is proposed to store elastic energy. However, we found that deformed shapes of nuclei are unchanged even after removal of the cell with micro-dissection, both for smooth, elongated nuclei in fibroblasts and abnormally shaped nuclei in breast cancer cells. The lack of shape relaxation implies that the nuclear shape in spread cells does not store any elastic energy, and the cellular stresses that deform the nucleus are dissipative, not static. During cell spreading, the deviation of the nucleus from a convex shape increased in MDA-MB-231 cancer cells, but decreased in MCF-10A cells. Tracking changes of nuclear and cellular shape on micropatterned substrata revealed that fibroblast nuclei deform only during deformations in cell shape and only in the direction of nearby moving cell boundaries. We propose that motion of cell boundaries exert a stress on the nucleus, which allows the nucleus to mimic cell shape. The lack of elastic energy in the nuclear shape suggests that nuclear shape changes in cells occur at constant surface area and volume.
Collapse
Affiliation(s)
- Vincent J Tocco
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Yuan Li
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Keith G Christopher
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - James H Matthews
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida
| | - Varun Aggarwal
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Lauren Paschall
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Hendrik Luesch
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida
| | - Jonathan D Licht
- Division of Hematology and Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, Florida
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, Florida
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, Florida.,Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
80
|
Inside the Cell: Integrins as New Governors of Nuclear Alterations? Cancers (Basel) 2017; 9:cancers9070082. [PMID: 28684679 PMCID: PMC5532618 DOI: 10.3390/cancers9070082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 07/04/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer cell migration is a complex process that requires coordinated structural changes and signals in multiple cellular compartments. The nucleus is the biggest and stiffest organelle of the cell and might alter its physical properties to allow cancer cell movement. Integrins are transmembrane receptors that mediate cell-cell and cell-extracellular matrix interactions, which regulate numerous intracellular signals and biological functions under physiological conditions. Moreover, integrins orchestrate changes in tumor cells and their microenvironment that lead to cancer growth, survival and invasiveness. Most of the research efforts have focused on targeting integrin-mediated adhesion and signaling. Recent exciting data suggest the crucial role of integrins in controlling internal cellular structures and nuclear alterations during cancer cell migration. Here we review the emerging role of integrins in nuclear biology. We highlight increasing evidence that integrins are critical for changes in multiple nuclear components, the positioning of the nucleus and its mechanical properties during cancer cell migration. Finally, we discuss how integrins are integral proteins linking the plasma membrane and the nucleus, and how they control cell migration to enable cancer invasion and infiltration. The functional connections between these cell receptors and the nucleus will serve to define new attractive therapeutic targets.
Collapse
|
81
|
Shi M, Song W, Han T, Chang B, Li G, Jin J, Zhang Y. Role of the unfolded protein response in topography-induced osteogenic differentiation in rat bone marrow mesenchymal stem cells. Acta Biomater 2017; 54:175-185. [PMID: 28315494 DOI: 10.1016/j.actbio.2017.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/09/2017] [Accepted: 03/12/2017] [Indexed: 12/20/2022]
Abstract
The topography of biomaterials can significantly influence the osteogenic differentiation of cells. Understanding topographical signal transduction is critical for developing biofunctional surfaces, but the current knowledge is insufficient. Recently, numerous reports have suggested that the unfolded protein response (UPR) and osteogenic differentiation are inter-linked. Therefore, we hypothesize that the UPR pathway may be involved in the topography-induced osteogenesis. In the present study, different surface topographies were fabricated on pure titanium foils and the endoplasmic reticulum (ER) stress and UPR pathway were systematically investigated. We found that ER stress and the PERK-eIF2α-ATF4 pathway were activated in a time- and topography-dependent manner. Additionally, the activation of the PERK-eIF2α-ATF4 pathway by different topographies was in line with their osteogenic induction capability. More specifically, the osteogenic differentiation could be enhanced or weakened when the PERK-eIF2α-ATF4 pathway was promoted or inhibited, respectively. Furthermore, tuning of the degree of ER stress with different concentrations of thapsigargin revealed that mild ER stress promotes osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Taken together, our findings suggest that the UPR may play a critical role in topography-induced osteogenic differentiation, which may help to provide new insights into topographical signal transduction. STATEMENT OF SIGNIFICANCE Suitable implant surface topography can effectively improve bioactivity and eventual bone affinity. However, the mechanism of topographical signaling transduction is unclear and criteria for designation of an appropriate implant surface topography is lacking. This study shows that the ER stress and PERK-eIF2α-ATF4 pathway were activated by micro- and micro/nano-topographies, which is corresponding to the osteogenic induction abilities of these topographies. Furthermore, we have found that mild ER stress improves osteogenic differentiation, whereas excessive ER stress inhibits osteogenic differentiation and causes apoptosis. Our findings demonstrate that the UPR plays a critical role in the topography induced osteogenic differentiation, which may help to provide new insights into the topographical signaling transduction.
Collapse
Affiliation(s)
- Mengqi Shi
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Tianxiao Han
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing 100050, PR China
| | - Bei Chang
- PLA Rocket Force General Hospital, Beijing 100088, PR China
| | - Guangwen Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Jianfeng Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
82
|
Abstract
Cell migration through tight spaces can induce substantial deformations of the nucleus and cause nuclear envelope (NE) rupture, resulting in uncontrolled exchange of nuclear and cytosolic proteins. These events can cause DNA damage and, in severe cases, nuclear fragmentation, challenging the integrity of the genomic material. Cells overcome NE ruptures during interphase by repairing the NE using components of the endosomal sorting complexes required for transport (ESCRT) machinery. Paralleling the molecular mechanism used during NE reformation in late mitosis, ESCRT-III subunits and the associated AAA-ATPase VPS4B are recruited to NE rupture sites and help restore NE integrity. While these findings are common to many cell types, they are particularly relevant in the context of cancer metastasis, where nuclear deformation and rupture could drive genomic instability in invading cells and further promote cancer progression. At the same time, inhibiting NE repair may offer new therapeutic approaches to specifically target invasive cancer cells.
Collapse
Affiliation(s)
- Philipp Isermann
- a Nancy E. and Peter C. Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology , Cornell University , Ithaca , NY , USA
| | - Jan Lammerding
- a Nancy E. and Peter C. Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology , Cornell University , Ithaca , NY , USA
| |
Collapse
|
83
|
Shah P, Wolf K, Lammerding J. Bursting the Bubble - Nuclear Envelope Rupture as a Path to Genomic Instability? Trends Cell Biol 2017; 27:546-555. [PMID: 28285738 DOI: 10.1016/j.tcb.2017.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 01/22/2023]
Abstract
The nuclear envelope safeguards the genetic material inside the nucleus by separating it from the cytoplasm. Until recently, it was assumed that nuclear envelope (NE) breakdown occurs only in a highly controlled fashion during mitosis when the chromatin is condensed and divided between the daughter cells. However, recent studies have demonstrated that adherent and migrating cells exhibit transient NE rupture during interphase caused by compression from cytoskeletal or external forces. NE rupture results in uncontrolled exchange between the nuclear interior and cytoplasm and leads to DNA damage. In this review, we discuss the causes and consequences of NE rupture, and how NE rupture could contribute to genomic instability.
Collapse
Affiliation(s)
- Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Katarina Wolf
- Department of Cell Biology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA; Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
84
|
Miroshnikova YA, Nava MM, Wickström SA. Emerging roles of mechanical forces in chromatin regulation. J Cell Sci 2017. [DOI: 10.1242/jcs.202192] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Cells are constantly subjected to a spectrum of mechanical cues, such as shear stress, compression, differential tissue rigidity and strain, to which they adapt by engaging mechanisms of mechanotransduction. While the central role of cell adhesion receptors in this process is established, it has only recently been appreciated that mechanical cues reach far beyond the plasma membrane and the cytoskeleton, and are directly transmitted to the nucleus. Furthermore, changes in the mechanical properties of the perinuclear cytoskeleton, nuclear lamina and chromatin are critical for cellular responses and adaptation to external mechanical cues. In that respect, dynamic changes in the nuclear lamina and the surrounding cytoskeleton modify mechanical properties of the nucleus, thereby protecting genetic material from damage. The importance of this mechanism is highlighted by debilitating genetic diseases, termed laminopathies, that result from impaired mechanoresistance of the nuclear lamina. What has been less evident, and represents one of the exciting emerging concepts, is that chromatin itself is an active rheological element of the nucleus, which undergoes dynamic changes upon application of force, thereby facilitating cellular adaption to differential force environments. This Review aims to highlight these emerging concepts by discussing the latest literature in this area and by proposing an integrative model of cytoskeletal and chromatin-mediated responses to mechanical stress.
Collapse
Affiliation(s)
| | - Michele M. Nava
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
| | - Sara A. Wickström
- Paul Gerson Unna Group ‘Skin Homeostasis and Ageing’, Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne 50931, Germany
| |
Collapse
|