51
|
Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D'Andrea P, Lorenzon P, Bernareggi A. "Time window" effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 2021; 233:e13702. [PMID: 34097801 PMCID: PMC9286833 DOI: 10.1111/apha.13702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Aim Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. Methods Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. Results Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. Conclusion Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.
Collapse
Affiliation(s)
| | - Arthur Giniatullin
- Department of Physiology Kazan State Medical University Kazan Russia
- Laboratory of Biophysics of Synaptic Processes Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of RAS” Kazan Russia
| | | | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Marina Sciancalepore
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
- Institute of Fundamental Medicine and Biology Federal University Kazan Russia
| | - Paola D'Andrea
- Department of Life Sciences University of Trieste Trieste Italy
| | - Paola Lorenzon
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Annalisa Bernareggi
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| |
Collapse
|
52
|
Glogowska E, Arhatte M, Chatelain FC, Lesage F, Xu A, Grashoff C, Discher DE, Patel A, Honoré E. Piezo1 and Piezo2 foster mechanical gating of K 2P channels. Cell Rep 2021; 37:110070. [PMID: 34852225 DOI: 10.1016/j.celrep.2021.110070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 11/27/2022] Open
Abstract
Mechanoelectrical transduction is mediated by the opening of different types of force-sensitive ion channels, including Piezo1/2 and the TREK/TRAAK K2P channels. Piezo1 curves the membrane locally into an inverted dome that reversibly flattens in response to force application. Moreover, Piezo1 forms numerous preferential interactions with various membrane lipids, including cholesterol. Whether this structural architecture influences the functionality of neighboring membrane proteins is unknown. Here, we show that Piezo1/2 increase TREK/TRAAK current amplitude, slow down activation/deactivation, and remove inactivation upon mechanical stimulation. These findings are consistent with a mechanism whereby Piezo1/2 cause a local depletion of membrane cholesterol associated with a prestress of TREK/TRAAK channels. This regulation occurs in mouse fibroblasts between endogenous Piezo1 and TREK-1/2, both channel types acting in concert to delay wound healing. In conclusion, we demonstrate a community effect between different structural and functional classes of mechanosensitive ion channels.
Collapse
Affiliation(s)
- Edyta Glogowska
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Malika Arhatte
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Franck C Chatelain
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Florian Lesage
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine and Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Carsten Grashoff
- Department of Quantitative Cell Biology, Institute of Molecular Cell Biology, University of Münster, 48149 Münster, Germany
| | - Dennis E Discher
- Biophysical Engineering Laboratories, Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Patel
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut national de la santé et de la recherche médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, 06560 Valbonne, France.
| |
Collapse
|
53
|
Lai A, Cox CD, Chandra Sekar N, Thurgood P, Jaworowski A, Peter K, Baratchi S. Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biol Rev Camb Philos Soc 2021; 97:604-614. [PMID: 34781417 DOI: 10.1111/brv.12814] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/21/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022]
Abstract
Piezo1 is a mechanosensitive ion channel with essential roles in cardiovascular, lung, urinary, and immune functions. Piezo1 is widely distributed in different tissues in the human body and its specific roles have been identified following a decade of research; however, not all are well understood. Many structural and functional characteristics of Piezo1 have been discovered and are known to differ greatly from the characteristics of other mechanosensitive ion channels. Understanding the mechanisms by which this ion channel functions may be useful in determining its physiological roles in various organ systems. This review provides insight into the signalling pathways activated by mechanical stimulation of Piezo1 in various organ systems and cell types. We discuss downstream targets of Piezo1 and the overall effects resulting from Piezo1 activation, which may provide insights into potential treatment targets for diseases involving this ion channel.
Collapse
Affiliation(s)
- Austin Lai
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, 405 Liverpool St, Sydney, New South Wales, 2010, Australia
| | - Nadia Chandra Sekar
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia
| | - Peter Thurgood
- School of Engineering, RMIT University, 124 La Trobe St, Melbourne, Victoria, 3001, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia
| | - Karlheinz Peter
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia.,Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, 30 Flemington Rd, Parkville, 3053, Australia
| | - Sara Baratchi
- School of Health and Biomedical Sciences, RMIT University, 289 McKimmies Rd, Bundoora, Victoria, 3083, Australia.,Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, 30 Flemington Rd, Parkville, 3053, Australia
| |
Collapse
|
54
|
Yamaguchi Y, Allegrini B, Rapetti-Mauss R, Picard V, Garçon L, Kohl P, Soriani O, Peyronnet R, Guizouarn H. Hereditary Xerocytosis: Differential Behavior of PIEZO1 Mutations in the N-Terminal Extracellular Domain Between Red Blood Cells and HEK Cells. Front Physiol 2021; 12:736585. [PMID: 34737711 PMCID: PMC8562563 DOI: 10.3389/fphys.2021.736585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Hereditary Xerocytosis, a rare hemolytic anemia, is due to gain of function mutations in PIEZO1, a non-selective cation channel activated by mechanical stress. How these PIEZO1 mutations impair channel function and alter red blood cell (RBC) physiology, is not completely understood. Here, we report the characterization of mutations in the N-terminal part of the protein (V598M, F681S and the double mutation G782S/R808Q), a part of the channel that was subject of many investigations to decipher its role in channel gating. Our data show that the electrophysiological features of these PIEZO1 mutants expressed in HEK293T cells are different from previously characterized PIEZO1 mutations that are located in the pore or at the C-terminal extracellular domain of the protein. Although RBC with PIEZO1 mutations showed a dehydrated phenotype, the activity of V598M, F681S or R808Q in response to stretch was not significantly different from the WT channels. In contrast, the G782S mutant showed larger currents compared to the WT PIEZO1. Interestingly, basal activity of all the mutated channels was not significantly altered at the opposite of what was expected according to the decreased water and cation contents of resting RBC. In addition, the features of mutant PIEZO1 expressed in HEK293 cells do not always correlate with the observation in RBC where PIEZO1 mutations induced a cation leak associated with an increased conductance. Our work emphasizes the role of the membrane environment in PIEZO1 activity and the need to characterize RBC permeability to assess pathogenicity to PIEZO1 mutants associated with erythrocyte diseases.
Collapse
Affiliation(s)
- Yohei Yamaguchi
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Benoit Allegrini
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | | | - Véronique Picard
- Université Paris Sud-Paris Saclay, Faculté de Pharmacie, Service d'Hématologie Biologique, Hôpital Bicêtre, APHP, Le Kremlin-Bicêtre, France
| | - Loïc Garçon
- Université Picardie Jules Verne, EA 4666, Service d'Hématologie Biologique, CHU, Amiens, France
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Olivier Soriani
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Germany.,Medical Center and Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Hélène Guizouarn
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| |
Collapse
|
55
|
Lin Y, Buyan A, Corry B. Computational studies of Piezo1 yield insights into key lipid–protein interactions, channel activation, and agonist binding. Biophys Rev 2021; 14:209-219. [DOI: 10.1007/s12551-021-00847-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
|
56
|
Li JV, Ng CA, Cheng D, Zhou Z, Yao M, Guo Y, Yu ZY, Ramaswamy Y, Ju LA, Kuchel PW, Feneley MP, Fatkin D, Cox CD. Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Commun Biol 2021; 4:1038. [PMID: 34489534 PMCID: PMC8421374 DOI: 10.1038/s42003-021-02528-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanosensitive channels are integral membrane proteins that sense mechanical stimuli. Like most plasma membrane ion channel proteins they must pass through biosynthetic quality control in the endoplasmic reticulum that results in them reaching their destination at the plasma membrane. Here we show that N-linked glycosylation of two highly conserved asparagine residues in the 'cap' region of mechanosensitive Piezo1 channels are necessary for the mature protein to reach the plasma membrane. Both mutation of these asparagines (N2294Q/N2331Q) and treatment with an enzyme that hydrolyses N-linked oligosaccharides (PNGaseF) eliminates the fully glycosylated mature Piezo1 protein. The N-glycans in the cap are a pre-requisite for N-glycosylation in the 'propeller' regions, which are present in loops that are essential for mechanotransduction. Importantly, trafficking-defective Piezo1 variants linked to generalized lymphatic dysplasia and bicuspid aortic valve display reduced fully N-glycosylated Piezo1 protein. Thus the N-linked glycosylation status in vitro correlates with efficient membrane trafficking and will aid in determining the functional impact of Piezo1 variants of unknown significance.
Collapse
Affiliation(s)
- Jinyuan Vero Li
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Chai-Ann Ng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Delfine Cheng
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Zijing Zhou
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Yang Guo
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ze-Yan Yu
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Philip W Kuchel
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Michael P Feneley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Department of Cardiology, St Vincent's Hospital, Sydney, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Charles D Cox
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
57
|
Guo J, Gu D, Zhao T, Zhao Z, Xiong Y, Sun M, Xin C, Zhang Y, Pei L, Sun J. Trends in Piezo Channel Research Over the Past Decade: A Bibliometric Analysis. Front Pharmacol 2021; 12:668714. [PMID: 33935792 PMCID: PMC8082452 DOI: 10.3389/fphar.2021.668714] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose: We used bibliometric methods to evaluate the global scientific output of research on Piezo channels and explore the current status and trends in this field over the past decade. Methods: Piezo channel-related studies published in 2010-2020 were retrieved from Web of Science. The R bibliometrix package was used for quantitative and qualitative analyses of publication outputs and author contributions. VOSviewer was used to construct networks based on co-authorship of countries/institutions/authors, co-citation analysis of journals/references, citation analysis of documents, and co-occurrence of keywords. Results: In total, 556 related articles and reviews were included in the final analysis. The number of publications has increased substantially with time. The country and institution contributing the most to this field was the United States and Scripps Research Institute, respectively. Ardem Patapoutian was the most productive author and ranked first among the cited authors, h-index, and m-index. The top cited reference was the article published by Coste B et al. in Science (2010) that identified Piezo1/2 in mammalian cells. The top journals in terms of the number of selected articles and citations were Nature Communications and Nature, respectively. The co-occurrence analysis revealed that Piezo channels are involved a variety of cell types (Merkel cells, neurons, endothelial cells, red blood cells), physiological processes (touch sensation, blood pressure, proprioception, vascular development), related ion channels (transient receptor potential, Gardos), and diseases (pain, distal arthrogryposis, dehydrated hereditary stomatocytosis, cancer), and pharmacology (Yoda1, GsMTx-4). Conclusion: Our bibliometric analysis shows that Piezo channel research continues to be a hotspot. The focus has evolved from Piezo identification to architecture, activation mechanism, roles in diseases, and pharmacology.
Collapse
Affiliation(s)
- Jing Guo
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongmei Gu
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Zhao
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanhao Zhao
- Department of Massage, Danyang Hospital of Traditional Chinese Medicine, Danyang, China
| | - Yajun Xiong
- School of Internet of Things Engineering, Jiangnan University, Wuxi, China
| | - Mengzhu Sun
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chen Xin
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yujie Zhang
- Acupuncture and Massage College, Health and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lixia Pei
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, China
| | - Jianhua Sun
- Department of Acupuncture Rehabilitation, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Acupuncture and Moxibustion Disease Project Group of China Evidence-Based Medicine Center of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
58
|
Jiang Y, Yang X, Jiang J, Xiao B. Structural Designs and Mechanogating Mechanisms of the Mechanosensitive Piezo Channels. Trends Biochem Sci 2021; 46:472-488. [PMID: 33610426 DOI: 10.1016/j.tibs.2021.01.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
The evolutionarily conserved Piezo channel family, including Piezo1 and Piezo2 in mammals, serves as versatile mechanotransducers in various cell types and consequently governs fundamental pathophysiological processes ranging from vascular development to the sense of gentle touch and tactile pain. Piezo1/2 possess a unique 38-transmembrane (TM) helix topology and form a homotrimeric propeller-shaped structure comprising a central ion-conducting pore and three peripheral mechanosensing blades. The unusually curved TM region of the three blades shapes a signature nano-bowl configuration with potential to generate large in-plane membrane area expansion, which might confer exquisite mechanosensitivity to Piezo channels. Here, we review the current understanding of Piezo channels with a particular focus on their unique structural designs and elegant mechanogating mechanisms.
Collapse
Affiliation(s)
- Yan Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Xuzhong Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jinghui Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
59
|
Chong J, De Vecchis D, Hyman AJ, Povstyan OV, Ludlow MJ, Shi J, Beech DJ, Kalli AC. Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure. Biophys J 2021; 120:1343-1356. [PMID: 33582137 PMCID: PMC8105715 DOI: 10.1016/j.bpj.2021.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023] Open
Abstract
Piezo1 forms a mechanically activated calcium-permeable nonselective cation channel that is functionally important in many cell types. Structural data exist for C-terminal regions, but we lack information about N-terminal regions and how the entire channel interacts with the lipid bilayer. Here, we use computational approaches to predict the three-dimensional structure of the full-length Piezo1 and simulate it in an asymmetric membrane. A number of novel insights are suggested by the model: 1) Piezo1 creates a trilobed dome in the membrane that extends beyond the radius of the protein, 2) Piezo1 changes the lipid environment in its vicinity via preferential interactions with cholesterol and phosphatidylinositol 4,5-bisphosphate (PIP2) molecules, and 3) cholesterol changes the depth of the dome and PIP2 binding preference. In vitro alteration of cholesterol concentration inhibits Piezo1 activity in a manner complementing some of our computational findings. The data suggest the importance of N-terminal regions of Piezo1 for dome structure and membrane cholesterol and PIP2 interactions.
Collapse
Affiliation(s)
- Jiehan Chong
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Dario De Vecchis
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Adam J Hyman
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Oleksandr V Povstyan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Melanie J Ludlow
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom.
| | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
60
|
Jiang W, Del Rosario JS, Botello-Smith W, Zhao S, Lin YC, Zhang H, Lacroix J, Rohacs T, Luo YL. Crowding-induced opening of the mechanosensitive Piezo1 channel in silico. Commun Biol 2021; 4:84. [PMID: 33469156 PMCID: PMC7815867 DOI: 10.1038/s42003-020-01600-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Mechanosensitive Piezo1 channels are essential mechanotransduction proteins in eukaryotes. Their curved transmembrane domains, called arms, create a convex membrane deformation, or footprint, which is predicted to flatten in response to increased membrane tension. Here, using a hyperbolic tangent model, we show that, due to the intrinsic bending rigidity of the membrane, the overlap of neighboring Piezo1 footprints produces a flattening of the Piezo1 footprints and arms. Multiple all-atom molecular dynamics simulations of Piezo1 further reveal that this tension-independent flattening is accompanied by gating motions that open an activation gate in the pore. This open state recapitulates experimentally obtained ionic selectivity, unitary conductance, and mutant phenotypes. Tracking ion permeation along the open pore reveals the presence of intracellular and extracellular fenestrations acting as cation-selective sites. Simulations also reveal multiple potential binding sites for phosphatidylinositol 4,5-bisphosphate. We propose that the overlap of Piezo channel footprints may act as a cooperative mechanism to regulate channel activity.
Collapse
Affiliation(s)
- Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - John Smith Del Rosario
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wesley Botello-Smith
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Siyuan Zhao
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yi-Chun Lin
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Han Zhang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Jérôme Lacroix
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA.
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA.
| | - Yun Lyna Luo
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, 91766, USA.
| |
Collapse
|
61
|
Stansfeld PJ. Greasing the Gears of Mechanosensitive Piezo Channels with Phosphoinositides and Cholesterol. Biophys J 2020; 119:1467-1469. [DOI: 10.1016/j.bpj.2020.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022] Open
|