51
|
Xue T, Chen S, Bai Y, Han C, Yang A, Zhang J. Neuromodulation in drug-resistant epilepsy: A review of current knowledge. Acta Neurol Scand 2022; 146:786-797. [PMID: 36063433 DOI: 10.1111/ane.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Nearly 1% of the global population suffers from epilepsy. Drug-resistant epilepsy (DRE) affects one-third of epileptic patients who are unable to treat their condition with existing drugs. For the treatment of DRE, neuromodulation offers a lot of potential. The background, mechanism, indication, application, efficacy, and safety of each technique are briefly described in this narrative review, with an emphasis on three approved neuromodulation therapies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation (RNS). Neuromodulatory approaches involving direct or induced electrical currents have been developed to lessen seizure frequency and duration in patients with DRE since the notion of electrical stimulation as a therapy for neurologic diseases originated in the early nineteenth century. Although few people have attained total seizure independence for more than 12 months using these treatments, more than half have benefitted from a 50% drop in seizure frequency over time. Although promising outcomes in adults and children with DRE have been achieved, challenges such as heterogeneity among epilepsy types and etiologies, optimization of stimulation parameters, a lack of biomarkers to predict response to neuromodulation therapies, high-level evidence to aid decision-making, and direct comparisons between neuromodulatory approaches remain. To solve these existing gaps, authorize new kinds of neuromodulation, and develop personalized closed-loop treatments, further research is needed. Finally, both invasive and non-invasive neuromodulation seems to be safe. Implantation-related adverse events for invasive stimulation primarily include infection and pain at the implant site. Intracranial hemorrhage is a frequent adverse event for DBS and RNS. Other stimulation-specific side-effects are mild with non-invasive stimulation.
Collapse
Affiliation(s)
- Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shujun Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yutong Bai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlei Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Anchao Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
52
|
Lin M, Stewart MT, Zefi S, Mateti KV, Gauthier A, Sharma B, Martinez LR, Ashby CR, Mantell LL. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Free Radic Biol Med 2022; 190:247-263. [PMID: 35964839 PMCID: PMC9367207 DOI: 10.1016/j.freeradbiomed.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.
Collapse
Affiliation(s)
- Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Maleka T Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Kranthi Venkat Mateti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lauren R Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
53
|
Carron R, Roncon P, Lagarde S, Dibué M, Zanello M, Bartolomei F. Latest Views on the Mechanisms of Action of Surgically Implanted Cervical Vagal Nerve Stimulation in Epilepsy. Neuromodulation 2022; 26:498-506. [PMID: 36064522 DOI: 10.1016/j.neurom.2022.08.447] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vagus nerve stimulation (VNS) is approved as an adjunctive treatment for drug-resistant epilepsy. Although there is a substantial amount of literature aiming at unraveling the mechanisms of action of VNS in epilepsy, it is still unclear how the cascade of events triggered by VNS leads to its antiepileptic effect. OBJECTIVE In this review, we integrated available peer-reviewed data on the effects of VNS in clinical and experimental research to identify those that are putatively responsible for its therapeutic effect. The topic of transcutaneous VNS will not be covered owing to the current lack of data supporting the differences and commonalities of its mechanisms of action in relation to invasive VNS. SUMMARY OF THE MAIN FINDINGS There is compelling evidence that the effect is obtained through the stimulation of large-diameter afferent myelinated fibers that project to the solitary tract nucleus, then to the parabrachial nucleus, which in turn alters the activity of the limbic system, thalamus, and cortex. VNS-induced catecholamine release from the locus coeruleus in the brainstem plays a pivotal role. Functional imaging studies tend to point toward a common vagal network that comes into play, made up of the amygdalo-hippocampal regions, left thalamus, and insular cortex. CONCLUSIONS Even though some crucial pieces are missing, neurochemical, molecular, cellular, and electrophysiological changes occur within the vagal afferent network at three main levels (the brainstem, the limbic system [amygdala and hippocampus], and the cortex). At this final level, VNS notably alters functional connectivity, which is known to be abnormally high within the epileptic zone and was shown to be significantly decreased by VNS in responders. The effect of crucial VNS parameters such as frequency or current amplitude on functional connectivity metrics is of utmost importance and requires further investigation.
Collapse
|
54
|
Driskill CM, Childs JE, Itmer B, Rajput JS, Kroener S. Acute Vagus Nerve Stimulation Facilitates Short Term Memory and Cognitive Flexibility in Rats. Brain Sci 2022; 12:brainsci12091137. [PMID: 36138873 PMCID: PMC9496852 DOI: 10.3390/brainsci12091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Vagus nerve stimulation (VNS) causes the release of several neuromodulators, leading to cortical activation and deactivation. The resulting preparatory cortical plasticity can be used to increase learning and memory in both rats and humans. The effects of VNS on cognition have mostly been studied either in animal models of different pathologies, and/or after extended VNS. Considerably less is known about the effects of acute VNS. Here, we examined the effects of acute VNS on short-term memory and cognitive flexibility in naïve rats, using three cognitive tasks that require comparatively brief (single session) training periods. In all tasks, VNS was delivered immediately before or during the testing phase. We used a rule-shifting task to test cognitive flexibility, a novel object recognition task to measure short-term object memory, and a delayed spontaneous alternation task to measure spatial short-term memory. We also analyzed exploratory behavior in an elevated plus maze to determine the effects of acute VNS on anxiety. Our results indicate that acute VNS can improve memory and cognitive flexibility relative to Sham-stimulation, and these effects are independent of unspecific VNS-induced changes in locomotion or anxiety.
Collapse
|
55
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
56
|
Rodenkirch C, Carmel JB, Wang Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front Neurosci 2022; 16:922424. [PMID: 35864985 PMCID: PMC9294458 DOI: 10.3389/fnins.2022.922424] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
After sensory information is encoded into neural signals at the periphery, it is processed through multiple brain regions before perception occurs (i.e., sensory processing). Recent work has begun to tease apart how neuromodulatory systems influence sensory processing. Vagus nerve stimulation (VNS) is well-known as an effective and safe method of activating neuromodulatory systems. There is a growing body of studies confirming VNS has immediate effects on sensory processing across multiple sensory modalities. These immediate effects of VNS on sensory processing are distinct from the more well-documented method of inducing lasting neuroplastic changes to the sensory pathways through repeatedly delivering a brief VNS burst paired with a sensory stimulus. Immediate effects occur upon VNS onset, often disappear upon VNS offset, and the modulation is present for all sensory stimuli. Conversely, the neuroplastic effect of pairing sub-second bursts of VNS with a sensory stimulus alters sensory processing only after multiple pairing sessions, this alteration remains after cessation of pairing sessions, and the alteration selectively affects the response properties of neurons encoding the specific paired sensory stimulus. Here, we call attention to the immediate effects VNS has on sensory processing. This review discusses existing studies on this topic, provides an overview of the underlying neuromodulatory systems that likely play a role, and briefly explores the potential translational applications of using VNS to rapidly regulate sensory processing.
Collapse
Affiliation(s)
- Charles Rodenkirch
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Jacobs Technion-Cornell Institute, Cornell Tech, New York, NY, United States
- *Correspondence: Charles Rodenkirch,
| | - Jason B. Carmel
- Department of Neurology and Orthopedics, Columbia University Medical Center, New York, NY, United States
| | - Qi Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Qi Wang,
| |
Collapse
|
57
|
Abstract
Systemic inflammation elicited by sepsis can induce an acute cerebral dysfunction known as sepsis-associated encephalopathy (SAE). Recent evidence suggests that SAE is common but shows a dynamic trajectory over time. Half of all patients with sepsis develop SAE in the intensive care unit, and some survivors present with sustained cognitive impairments for several years after initial sepsis onset. It is not clear why some, but not all, patients develop SAE and also the factors that determine the persistence of SAE. Here, we first summarize the chronic pathology and the dynamic changes in cognitive functions seen after the onset of sepsis. We then outline the cerebral effects of sepsis, such as neuroinflammation, alterations in neuronal synapses and neurovascular changes. We discuss the key factors that might contribute to the development and persistence of SAE in older patients, including premorbid neurodegenerative pathology, side effects of sedatives, renal dysfunction and latent virus reactivation. Finally, we postulate that some of the mechanisms that underpin neuropathology in SAE may also be relevant to delirium and persisting cognitive impairments that are seen in patients with severe COVID-19.
Collapse
Affiliation(s)
- Tatsuya Manabe
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
58
|
Adcock KS, Danaphongse T, Jacob S, Rallapalli H, Torres M, Haider Z, Seyedahmadi A, Morrison RA, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation does not improve recovery of forelimb motor or somatosensory function in a model of neuropathic pain. Sci Rep 2022; 12:9696. [PMID: 35690673 PMCID: PMC9188565 DOI: 10.1038/s41598-022-13621-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022] Open
Abstract
Nerve injury affecting the upper limb is a leading cause of lifelong disability. Damage to the nerves in the arm often causes weakness and somatosensory dysfunction ranging from numbness to pain. Previous studies show that combining brief bursts of electrical vagus nerve stimulation (VNS) with motor or tactile rehabilitation can restore forelimb function after median and ulnar nerve injury, which causes hyposensitivity of the ventral forelimb. Here, we sought to determine whether this approach would be similarly effective in a model of radial nerve injury that produces allodynia in the ventral forelimb. To test this, rats underwent complete transection of the radial nerve proximal to the elbow followed by tubular repair. In the first experiment, beginning ten weeks after injury, rats received six weeks of tactile rehabilitation, consisting of mechanical stimulation of either the dorsal or ventral region of the forepaw in the injured limb, with or without concurrent VNS. In a second experiment, a separate cohort of rats underwent six weeks of forelimb motor rehabilitative training with or without paired VNS. Contrary to findings in previous models of hyposensitivity, VNS therapy fails to improve recovery of either somatosensory or motor function in the forelimb after radial nerve injury. These findings describe initial evidence that pain may limit the efficacy of VNS therapy and thus highlight a characteristic that should be considered in future studies that seek to develop this intervention.
Collapse
Affiliation(s)
- Katherine S Adcock
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tanya Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Sarah Jacob
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Harshini Rallapalli
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Miranda Torres
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Zainab Haider
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Armin Seyedahmadi
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert A Morrison
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Robert L Rennaker
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Michael P Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA
| | - Seth A Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX, 75080-3021, USA. .,School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA. .,Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX, 75080-3021, USA.
| |
Collapse
|
59
|
Zhu S, Qing Y, Zhang Y, Zhang X, Ding F, Zhang R, Yao S, Kendrick KM, Zhao W. Transcutaneous auricular vagus nerve stimulation increases eye-gaze on salient facial features and oxytocin release. Psychophysiology 2022; 59:e14107. [PMID: 35638321 DOI: 10.1111/psyp.14107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Non-invasive, transcutaneous electrical stimulation of the auricular branch of the vagus nerve (taVNS) via the ear is used therapeutically in epilepsy, pain, and depression, and may also have beneficial effects on social cognition. However, the underlying mechanisms of taVNS are unclear and evidence regarding its role in social cognition improvement is limited. To investigate the impact of taVNS on social cognition we have studied its effects on gaze toward emotional faces in combination with eye-tracking and on the release of the neuropeptide oxytocin which plays a key role in influencing social cognition and motivation. A total of 54 subjects were enrolled (49 were included in the final analysis) in a sham-controlled, participant-blind, crossover experiment, consisting of two treatment sessions 1 week apart. In one session participants received 30-min taVNS (tragus), and in the other, they received 30-min sham (earlobe) stimulation with the treatment order counterbalanced. The proportion of time spent viewing the faces and facial features (eyes, nose, and mouth) was measured together with resting pupil size. Additionally, saliva samples were taken for the measurement of oxytocin concentrations by enzyme-linked immunoassay. Saliva oxytocin concentrations increased significantly after taVNS compared to sham stimulation, while resting pupil size did not. In addition, taVNS increased time spent viewing the nose region irrespective of face emotion, and this was positively correlated with increased saliva oxytocin concentrations. Our findings suggest that taVNS biases visual attention toward socially salient facial features across different emotions and this is associated with its effects on increasing endogenous oxytocin release.
Collapse
Affiliation(s)
- Siyu Zhu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanan Qing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yingying Zhang
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Xiaolu Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangyuan Ding
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Rong Zhang
- Key Laboratory for Neuroscience, Ministry of Education of China
- Key Laboratory for Neuroscience, National Committee of Health and Family Planning of China
- Department of Neurobiology, School of Basic Medical Sciences
- Neuroscience Research Institute, Peking University, Beijing, China
| | - Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
60
|
Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: present and future. Clin Sci (Lond) 2022; 136:695-709. [PMID: 35536161 PMCID: PMC9093220 DOI: 10.1042/cs20210507] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/30/2022]
Abstract
The vagus nerve, the great wanderer, is involved in numerous processes throughout the body and vagus nerve stimulation (VNS) has the potential to modulate many of these functions. This wide-reaching capability has generated much interest across a range of disciplines resulting in several clinical trials and studies into the mechanistic basis of VNS. This review discusses current preclinical and clinical evidence supporting the efficacy of VNS in different diseases and highlights recent advancements. Studies that provide insights into the mechanism of VNS are considered.
Collapse
Affiliation(s)
- Eibhlin Goggins
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, U.S.A
| | - Shuhei Mitani
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
61
|
Osorio-Forero A, Cherrad N, Banterle L, Fernandez LMJ, Lüthi A. When the Locus Coeruleus Speaks Up in Sleep: Recent Insights, Emerging Perspectives. Int J Mol Sci 2022; 23:ijms23095028. [PMID: 35563419 PMCID: PMC9099715 DOI: 10.3390/ijms23095028] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
For decades, numerous seminal studies have built our understanding of the locus coeruleus (LC), the vertebrate brain’s principal noradrenergic system. Containing a numerically small but broadly efferent cell population, the LC provides brain-wide noradrenergic modulation that optimizes network function in the context of attentive and flexible interaction with the sensory environment. This review turns attention to the LC’s roles during sleep. We show that these roles go beyond down-scaled versions of the ones in wakefulness. Novel dynamic assessments of noradrenaline signaling and LC activity uncover a rich diversity of activity patterns that establish the LC as an integral portion of sleep regulation and function. The LC could be involved in beneficial functions for the sleeping brain, and even minute alterations in its functionality may prove quintessential in sleep disorders.
Collapse
|
62
|
Vargas-Caballero M, Warming H, Walker R, Holmes C, Cruickshank G, Patel B. Vagus Nerve Stimulation as a Potential Therapy in Early Alzheimer's Disease: A Review. Front Hum Neurosci 2022; 16:866434. [PMID: 35572001 PMCID: PMC9098960 DOI: 10.3389/fnhum.2022.866434] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Cognitive dysfunction in Alzheimer's disease (AD) is caused by disturbances in neuronal circuits of the brain underpinned by synapse loss, neuronal dysfunction and neuronal death. Amyloid beta and tau protein cause these pathological changes and enhance neuroinflammation, which in turn modifies disease progression and severity. Vagal nerve stimulation (VNS), via activation of the locus coeruleus (LC), results in the release of catecholamines in the hippocampus and neocortex, which can enhance synaptic plasticity and reduce inflammatory signalling. Vagal nerve stimulation has shown promise to enhance cognitive ability in animal models. Research in rodents has shown that VNS can have positive effects on basal synaptic function and synaptic plasticity, tune inflammatory signalling, and limit the accumulation of amyloid plaques. Research in humans with invasive and non-invasive VNS devices has shown promise for the modulation of cognition. However, the direct stimulation of the vagus nerve afforded with the invasive procedure carries surgical risks. In contrast, non-invasive VNS has the potential to be a broadly available therapy to manage cognitive symptoms in early AD, however, the magnitude and specificity of its effects remains to be elucidated, and the non-inferiority of the effects of non-invasive VNS as compared with invasive VNS still needs to be established. Ongoing clinical trials with healthy individuals and patients with early AD will provide valuable information to clarify the potential benefits of non-invasive VNS in cognition and AD. Whether invasive or non-invasive VNS can produce a significant improvement on memory function and whether its effects can modify the progression of AD will require further investigation.
Collapse
Affiliation(s)
| | - Hannah Warming
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Robert Walker
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Clive Holmes
- Memory Assessment and Research Centre, Southern Health Foundation Trust, Southampton, United Kingdom
| | - Garth Cruickshank
- Queen Elizabeth Hospital Birmingham, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
63
|
Babushkina N, Manahan-Vaughan D. Frequency-dependency of the involvement of dopamine D1/D5 and beta-adrenergic receptors in hippocampal LTD triggered by locus coeruleus stimulation. Hippocampus 2022; 32:449-465. [PMID: 35478421 DOI: 10.1002/hipo.23419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/06/2022]
Abstract
Patterned stimulation of the locus coeruleus (LC, 100 Hz), in conjunction with test-pulse stimulation of hippocampal afferents, results in input-specific long-term depression (LTD) of synaptic plasticity in the hippocampus. Effects are long-lasting and have been described in Schaffer-collateral-CA1 and perforant path-dentate gyrus synapses in behaving rats. To what extent LC-mediated hippocampal LTD (LC-LTD) is frequency-dependent is unclear. Here, we report that LC-LTD can be triggered by LC stimulation with 2 and 5 Hz akin to tonic activity, 10 Hz equivalent to phasic activity, and 100 Hz akin to high-phasic activity in the dentate gyrus (DG) of freely behaving rats. LC-LTD at both 2 and 100 Hz can be significantly prevented by an NMDA receptor antagonist. The LC releases both noradrenaline (NA) and dopamine (DA) from its hippocampal terminals and may also trigger hippocampal DA release by activating the ventral tegmental area (VTA). Unclear is whether both neurotransmitters contribute equally to hippocampal LTD triggered by LC stimulation (LC-LTD). Both DA D1/D5 receptors (D1/D5R) and beta-adrenergic receptors (β-AR) are critically required for hippocampal LTD that is induced by patterned stimulation of hippocampal afferents, or is facilitated by spatial learning. We, therefore, explored to what extent these receptor subtypes mediate frequency-dependent hippocampal LC-LTD. LC-LTD elicited by 2, 5, and 10 Hz stimulation was unaffected by antagonism of β-AR with propranolol, whereas LC-LTD induced by these frequencies was prevented by D1/D5R-antagonism using SCH23390. By contrast, LC-LTD evoked at 100 Hz was prevented by β-AR-antagonism and only mildly affected by D1/D5R-antagonism. Taken together, these findings support that LC-LTD can be triggered by LC activity at a wide range of frequencies. Furthermore, the contribution of D1/D5R and β-AR to hippocampal LTD that is triggered by LC activity is frequency-dependent and suggests that D1/D5R may be involved in LC-mediated hippocampal tonus.
Collapse
Affiliation(s)
- Natalia Babushkina
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Denise Manahan-Vaughan
- Medical Faculty, Department of Neurophysiology, Ruhr University Bochum, Bochum, Germany.,International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
64
|
Reif-Leonhard C, Reif A, Baune BT, Kavakbasi E. Vagusnervstimulation bei schwer zu behandelnden Depressionen. DER NERVENARZT 2022; 93:921-930. [PMID: 35380222 PMCID: PMC9452433 DOI: 10.1007/s00115-022-01282-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Einführung Seit 20 Jahren ist die Vagusnervstimulation (VNS) eine europaweit zugelassene invasive Therapieoption für therapieresistente Depressionen (TRD). Im Gegensatz zu geläufigeren Behandlungen wie EKT sind Kenntnisse über VNS sowohl in der Allgemeinbevölkerung als auch in Fachkreisen gering. Methoden In diesem narrativen Review geben wir eine klinisch und wissenschaftlich fundierte Übersicht über die VNS. Hypothesen zum Wirkmechanismus sowie die aktuelle Evidenzlage zur Wirksamkeit werden dargestellt. Das perioperative Management, das Nebenwirkungsprofil und die Nachbetreuung einschließlich Dosistitration werden beschrieben. Ein Vergleich über internationale Leitlinienempfehlungen zur VNS findet sich ebenfalls. Ferner formulieren wir Kriterien, die bei der Auswahl geeigneter Patienten hilfreich sind. Ergebnisse Die elektrischen Impulse werden über den N. vagus afferent weitergeleitet und stimulieren über verschiedene Wege ein neuromodulatorisches zerebrales Netzwerk. Viele Studien und Fallserien zeigten die Wirksamkeit von VNS als adjuvantes Verfahren bei TRD. Der Effekt tritt mit einer Latenz von 3 bis 12 Monaten ein und steigt möglicherweise mit der Dauer der VNS. Unter der Beachtung der Stimulationsempfehlungen sind die Nebenwirkungen für die meisten Patienten tolerabel. Fazit Die VNS ist eine zugelassene, wirksame und gut verträgliche Langzeittherapie für chronische und therapieresistente Depressionen. Weitere Sham-kontrollierte Studien über einen längeren Beobachtungszeitraum sind zur Verbesserung der Evidenz wünschenswert. Zusatzmaterial online Die Online-Version dieses Beitrags (10.1007/s00115-022-01282-6) enthält eine weitere Infobox. Beitrag und Zusatzmaterial stehen Ihnen auf www.springermedizin.de zur Verfügung. Bitte geben Sie dort den Beitragstitel in die Suche ein, das Zusatzmaterial finden Sie beim Beitrag unter „Ergänzende Inhalte“. ![]()
Collapse
|
65
|
Klaming R, Simmons AN, Spadoni AD, Lerman I. Effects of Noninvasive Cervical Vagal Nerve Stimulation on Cognitive Performance But Not Brain Activation in Healthy Adults. Neuromodulation 2022; 25:424-432. [PMID: 35396072 PMCID: PMC8144242 DOI: 10.1111/ner.13313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVES While preliminary evidence suggests that noninvasive vagal nerve stimulation (nVNS) may enhance cognition, to our knowledge, no study has directly assessed the effects of nVNS on brain function and cognitive performance in healthy individuals. The aim of this study was therefore to assess whether nVNS enhances complex visuospatial problem solving in a normative sample. Functional magnetic resonance imaging (fMRI) was used to examine underlying neural substrates. MATERIAL AND METHODS Participants received transcutaneous cervical nVNS (N = 15) or sham (N = 15) stimulation during a 3 T fMRI scan. Stimulation lasted for 2 min at 24 V for nVNS and at 4.5 V for sham. Subjects completed a matrix reasoning (MR) task in the scanner and a forced-choice recognition task outside the scanner. An analysis of variance (ANOVA) was used to assess group differences in cognitive performance. And linear mixed effects (LMEs) regression analysis was used to assess main and interaction effects of experimental groups, level of MR task difficulty, and recall accuracy on changes in blood oxygen level-dependent (BOLD) signal. RESULTS Subjects who received nVNS showed higher accuracy for both easy (p = 0.017) and hard (p = 0.013) items of the MR task, slower reaction times for hard items (p = 0.014), and fewer false negative errors during the forced-choice recognition task (p = 0.047). MR task difficulty related to increased activation in frontoparietal regions (p < 0.001). No difference between nVNS and sham stimulation was found on BOLD response during performance of the MR task. CONCLUSIONS We hypothesize that nVNS increased attention compared to sham, and that this effect led to enhanced executive functions, and consequently to better performance on visuospatial reasoning and recognition tasks. Results provide initial support that nVNS may be a low-risk, low-cost treatment for cognitive disorders.
Collapse
Affiliation(s)
- Ruth Klaming
- San Diego Department of Psychiatry, University of California, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA; San Diego State University, San Diego, CA, USA.
| | - Alan N Simmons
- San Diego Department of Psychiatry, University of California, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Andrea D Spadoni
- San Diego Department of Psychiatry, University of California, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Imanuel Lerman
- San Diego Department of Psychiatry, University of California, San Diego, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
66
|
Zhang SQ, Xia ZX, Deng Q, Yang PF, Long LH, Wang F, Chen JG. Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats. Neurobiol Stress 2022; 18:100453. [PMID: 35685681 PMCID: PMC9170826 DOI: 10.1016/j.ynstr.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Repeated vagus nerve stimulation (rVNS) exerts anxiolytic effect by activation of noradrenergic pathway. Centrolateral amygdala (CeL), a lateral subdivision of central amygdala, receives noradrenergic inputs, and its neuronal activity is positively correlated to anxiolytic effect of benzodiazepines. The activation of β-adrenergic receptors (β-ARs) could enhance glutamatergic transmission in CeL. However, it is unclear whether the neurobiological mechanism of noradrenergic system in CeL mediates the anxiolytic effect induced by rVNS. Here, we find that rVNS treatment produces an anxiolytic effect in male rats by increasing the neuronal activity of CeL. Electrophysiology recording reveals that rVNS treatment enhances the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated excitatory neurotransmission in CeL, which is mimicked by β-ARs agonist isoproterenol or blocked by β-ARs antagonist propranolol. Moreover, chemogenetic inhibition of CeL neurons or pharmacological inhibition of β-ARs in CeL intercepts both enhanced glutamatergic neurotransmission and the anxiolytic effects by rVNS treatment. These results suggest that the amplified AMPAR trafficking in CeL via activation of β-ARs is critical for the anxiolytic effects induced by rVNS treatment. rVNS amplifies the noradrenergic system in CeL and results in anxiolysis. rVNS treatment enhances AMPAR-mediated excitatory neurotransmission CeL via β-ARs. Pharmacological inhibition β-ARs in CeL intercept the anxiolytic effects by rVNS. Exciting CeL neurons lead to an increase in inhibitory inputs into CeM neurons. Inhibiting CeL neurons abate inhibitory inputs into CeM and anxiolysis by rVNS.
Collapse
|
67
|
Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R. Effect of Vagus Nerve Stimulation on Attention and Working Memory in Neuropsychiatric Disorders: A Systematic Review. Neuromodulation 2022; 25:343-355. [PMID: 35088719 DOI: 10.1016/j.neurom.2021.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND It has been suggested that vagus nerve stimulation (VNS) may enhance attention and working memory. The neuromodulator effects of VNS are thought to activate the release of neurotransmitters involving cognition and to promote neuronal plasticity. Therefore, VNS has been studied for its effects on attention and working memory impairment in neuropsychiatric disorders. OBJECTIVES This study aimed to assess the effects of VNS on attention and working memory among patients with neuropsychiatric disorders, examine stimulation parameters, provide mechanistic hypotheses, and propose future studies using VNS. MATERIALS AND METHODS We conducted a systematic review using electronic databases MEDLINE (Ovid), Embase (Ovid), Cochrane library, and PsycINFO (Ovid). Narrative analysis was used to describe the therapeutic effects of VNS on attention and working memory, describe stimulation parameters, and propose explanatory mechanisms. RESULTS We identified 20 studies reporting VNS effects on attention and working memory in patients with epilepsy or mood disorders. For epilepsy, there was one randomized controlled trial from all 18 studies. It demonstrated no statistically significant differences in the cognitive tasks between active and control VNS. From a within-subject experimental design, significant improvement of working memory after VNS was demonstrated. One of three nonrandomized controlled trials found significantly improved attentional performance after VNS. The cohort studies compared VNS and surgery and found attentional improvement in both groups. Nine of 12 pretest-posttest studies showed improvement of attention or working memory after VNS. For mood disorders, although one study showed significant improvement of attention following VNS, the other did not. CONCLUSIONS This review suggests that, although we identified some positive results from eligible studies, there is insufficient good-quality evidence to establish VNS as an effective intervention to enhance attention and working memory in persons with neuropsychiatric disorders. Further studies assessing the efficacy of such intervention are needed.
Collapse
Affiliation(s)
- Daruj Aniwattanapong
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chulalongkorn Cognitive, Clinical & Computational Neuroscience Lab, Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| | - Justine J List
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Nithya Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Gursimrat S Bhatti
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Ricardo Jorge
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Mental Health Care Line, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
68
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
69
|
Morrison RA, Abe ST, Danaphongse T, Ezhil V, Somaney A, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Common Cholinergic, Noradrenergic, and Serotonergic Drugs Do Not Block VNS-Mediated Plasticity. Front Neurosci 2022; 16:849291. [PMID: 35281514 PMCID: PMC8904722 DOI: 10.3389/fnins.2022.849291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Vagus nerve stimulation (VNS) delivered during motor rehabilitation enhances recovery from a wide array of neurological injuries and was recently approved by the U.S. FDA for chronic stroke. The benefits of VNS result from precisely timed engagement of neuromodulatory networks during rehabilitative training, which promotes synaptic plasticity in networks activated by rehabilitation. Previous studies demonstrate that lesions that deplete these neuromodulatory networks block VNS-mediated plasticity and accompanying enhancement of recovery. There is a great deal of interest in determining whether commonly prescribed pharmacological interventions that influence these neuromodulatory networks would similarly impair VNS effects. Here, we sought to directly test the effects of three common pharmaceuticals at clinically relevant doses that target neuromodulatory pathways on VNS-mediated plasticity in rats. To do so, rats were trained on a behavioral task in which jaw movement during chewing was paired with VNS and received daily injections of either oxybutynin, a cholinergic antagonist, prazosin, an adrenergic antagonist, duloxetine, a serotonin-norepinephrine reuptake inhibitor, or saline. After the final behavioral session, intracortical microstimulation (ICMS) was used to evaluate reorganization of motor cortex representations, with area of cortex eliciting jaw movement as the primary outcome. In animals that received control saline injections, VNS paired with training significantly increased the movement representation of the jaw compared to naïve animals, consistent with previous studies. Similarly, none of the drugs tested blocked this VNS-dependent reorganization of motor cortex. The present results provide direct evidence that these common pharmaceuticals, when used at clinically relevant doses, are unlikely to adversely impact the efficacy of VNS therapy.
Collapse
Affiliation(s)
- Robert A. Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- *Correspondence: Robert A. Morrison,
| | - Stephanie T. Abe
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Tanya Danaphongse
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Vikram Ezhil
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Armaan Somaney
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Katherine S. Adcock
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Robert L. Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Michael P. Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Seth A. Hays
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States
- Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
- Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
70
|
Mertens A, Gadeyne S, Lescrauwaet E, Carrette E, Meurs A, De Herdt V, Dewaele F, Raedt R, Miatton M, Boon P, Vonck K. The potential of invasive and non-invasive vagus nerve stimulation to improve verbal memory performance in epilepsy patients. Sci Rep 2022; 12:1984. [PMID: 35132096 PMCID: PMC8821667 DOI: 10.1038/s41598-022-05842-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
Abstract
It has been demonstrated that acute vagus nerve stimulation (VNS) improves word recognition memory in epilepsy patients. Transcutaneous auricular vagus nerve stimulation (taVNS) has gained interest as a non-invasive alternative to improve cognition. In this prospective randomized cross-over study, we investigated the effect of both invasive VNS and taVNS on verbal memory performance in 15 patients with drug-resistant epilepsy. All patients conducted a word recognition memory paradigm in 3 conditions: VNS ON, VNS OFF and taVNS (3-period 3-treatment cross-over study design). For each condition, patients memorized 21 highlighted words from text paragraphs. Afterwards, the intervention was delivered for 30 s. Immediate recall and delayed recognition scores were obtained for each condition. This memory paradigm was repeated after 6 weeks of VNS therapy in 2 conditions: VNS ON and VNS OFF (2-period 2-treatment cross-over study design). Acute VNS and taVNS did not improve verbal memory performance. Immediate recall and delayed recognition scores were significantly improved after 6 weeks of VNS treatment irrespective of the acute intervention. We can conclude that the previously described positive effects of invasive VNS on verbal memory performance could not be replicated with invasive VNS and taVNS. An improved verbal memory performance was seen after 6 weeks of VNS treatment, suggesting that longer and more repetitive stimulation of the vagal pathway is required to modulate verbal memory performance.Clinical trial registration number: NCT05031208.
Collapse
Affiliation(s)
- Ann Mertens
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium.
| | - Stefanie Gadeyne
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Emma Lescrauwaet
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Evelien Carrette
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Alfred Meurs
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Veerle De Herdt
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Frank Dewaele
- Department of Neurosurgery, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Marijke Miatton
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, 9000, Ghent, Belgium
| |
Collapse
|
71
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
72
|
Afra P, Adamolekun B, Aydemir S, Watson GDR. Evolution of the Vagus Nerve Stimulation (VNS) Therapy System Technology for Drug-Resistant Epilepsy. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:696543. [PMID: 35047938 PMCID: PMC8757869 DOI: 10.3389/fmedt.2021.696543] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
The vagus nerve stimulation (VNS) Therapy® System is the first FDA-approved medical device therapy for the treatment of drug-resistant epilepsy. Over the past two decades, the technology has evolved through multiple iterations resulting in software-related updates and implantable lead and generator hardware improvements. Healthcare providers today commonly encounter a range of single- and dual-pin generators (models 100, 101, 102, 102R, 103, 104, 105, 106, 1000) and related programming systems (models 250, 3000), all of which have their own subtle, but practical differences. It can therefore be a daunting task to go through the manuals of these implant models for comparison, some of which are not readily available. In this review, we highlight the technological evolution of the VNS Therapy System with respect to device approval milestones and provide a comparison of conventional open-loop vs. the latest closed-loop generator models. Battery longevity projections and an in-depth examination of stimulation mode interactions are also presented to further differentiate amongst generator models.
Collapse
Affiliation(s)
- Pegah Afra
- Department of Neurology, Weill-Cornell Medicine, New York, NY, United States.,Department of Neurology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Bola Adamolekun
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Seyhmus Aydemir
- Department of Neurology, Weill-Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
73
|
Sun JB, Cheng C, Tian QQ, Yuan H, Yang XJ, Deng H, Guo XY, Cui YP, Zhang MK, Yin ZX, Wang C, Qin W. Transcutaneous Auricular Vagus Nerve Stimulation Improves Spatial Working Memory in Healthy Young Adults. Front Neurosci 2022; 15:790793. [PMID: 35002607 PMCID: PMC8733384 DOI: 10.3389/fnins.2021.790793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023] Open
Abstract
Working memory (WM) is one of the core components of higher cognitive functions. There exists debate regarding the extent to which current techniques can enhance human WM capacity. Here, we examined the WM modulation effects of a previously less studied technique, transcutaneous auricular vagus nerve stimulation (taVNS). In experiment 1, a within-subject study, we aimed to investigate whether and which stimulation protocols of taVNS can modulate spatial WM performance in healthy adults. Forty-eight participants performed baseline spatial n-back tasks (1, 3-back) and then received online taVNS, offline taVNS, or sham stimulation before or during (online group) the posttest of spatial n-back tasks in random order. Results showed that offline taVNS could significantly increase hits in spatial 3-back task, whereas no effect was found in online taVNS or sham group. No significant taVNS effects were found on correct rejections or reaction time of accurate trials (aRT) in both online and offline protocols. To replicate the results found in experiment 1 and further investigate the generalization effect of offline taVNS, we carried out experiment 2. Sixty participants were recruited and received offline taVNS or offline earlobe stimulation in random order between baseline and posttests of behavioral tests (spatial/digit 3-back tasks). Results replicated the findings; offline taVNS could improve hits but not correct rejections or aRT in spatial WM performance, which were found in experiment 1. However, there were no significant stimulation effects on digit 3-back task. Overall, the findings suggest that offline taVNS has potential on modulating WM performance.
Collapse
Affiliation(s)
- Jin-Bo Sun
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Chen Cheng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Qian-Qian Tian
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hang Yuan
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Hui Deng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Xiao-Yu Guo
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Ya-Peng Cui
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Meng-Kai Zhang
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Zi-Xin Yin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Cong Wang
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Wei Qin
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Sciences and Technology, Xidian University, Xi'an, China.,Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| |
Collapse
|
74
|
Brougher J, Aziz U, Adari N, Chaturvedi M, Jules A, Shah I, Syed S, Thorn CA. Self-Administration of Right Vagus Nerve Stimulation Activates Midbrain Dopaminergic Nuclei. Front Neurosci 2022; 15:782786. [PMID: 34975384 PMCID: PMC8716493 DOI: 10.3389/fnins.2021.782786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Left cervical vagus nerve stimulation (l-VNS) is an FDA-approved treatment for neurological disorders including epilepsy, major depressive disorder, and stroke, and l-VNS is increasingly under investigation for a range of other neurological indications. Traditional l-VNS is thought to induce therapeutic neuroplasticity in part through the coordinated activation of multiple broadly projecting neuromodulatory systems in the brain. Recently, it has been reported that striking lateralization exists in the anatomical and functional connectivity between the vagus nerves and the dopaminergic midbrain. These emerging findings suggest that VNS-driven activation of this important plasticity-promoting neuromodulatory system may be preferentially driven by targeting the right, rather than the left, cervical nerve. Objective: To compare the effects of right cervical VNS (r-VNS) vs. traditional l-VNS on self-administration behavior and midbrain dopaminergic activation in rats. Methods: Rats were implanted with a stimulating cuff electrode targeting either the right or left cervical vagus nerve. After surgical recovery, rats underwent a VNS self-administration assay in which lever pressing was paired with r-VNS or l-VNS delivery. Self-administration was followed by extinction, cue-only reinstatement, and stimulation reinstatement sessions. Rats were sacrificed 90 min after completion of behavioral training, and brains were removed for immunohistochemical analysis of c-Fos expression in the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc), as well as in the noradrenergic locus coeruleus (LC). Results: Rats in the r-VNS cohort performed significantly more lever presses throughout self-administration and reinstatement sessions than did rats in the l-VNS cohort. Moreover, this appetitive behavioral responding was associated with significantly greater c-Fos expression among neuronal populations within the VTA, SNc, and LC. Differential c-Fos expression following r-VNS vs. l-VNS was particularly prominent within dopaminergic midbrain neurons. Conclusion: Our results support the existence of strong lateralization within vagal-mesencephalic signaling pathways, and suggest that VNS targeted to the right, rather than left, cervical nerve preferentially activates the midbrain dopaminergic system. These findings raise the possibility that r-VNS could provide a promising strategy for enhancing dopamine-dependent neuroplasticity, opening broad avenues for future research into the efficacy and safety of r-VNS in the treatment of neurological disease.
Collapse
Affiliation(s)
- Jackson Brougher
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Umaymah Aziz
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Nikitha Adari
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Muskaan Chaturvedi
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Aryela Jules
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Iqra Shah
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Saba Syed
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| | - Catherine A Thorn
- Department of Neuroscience, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
75
|
Vagus Nerve Stimulation as a Treatment for Fear and Anxiety in Individuals with Autism Spectrum Disorder. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2022; 7. [PMID: 36303861 PMCID: PMC9600938 DOI: 10.20900/jpbs.20220007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anxiety disorders affect a large percentage of individuals who have an autism spectrum disorder (ASD). In children with ASD, excessive anxiety is also linked to gastrointestinal problems, self-injurious behaviors, and depressive symptoms. Exposure-based cognitive behavioral therapies are effective treatments for anxiety disorders in children with ASD, but high relapse rates indicate the need for additional treatment strategies. This perspective discusses evidence from preclinical research, which indicates that vagus nerve stimulation (VNS) paired with exposure to fear-provoking stimuli and situations could offer benefits as an adjuvant treatment for anxiety disorders that coexist with ASD. Vagus nerve stimulation is approved for use in the treatment of epilepsy, depression, and more recently as an adjuvant in rehabilitative training following stroke. In preclinical models, VNS shows promise in simultaneously enhancing consolidation of extinction memories and reducing anxiety. In this review, we will present potential mechanisms by which VNS could treat fear and anxiety in ASD. We also discuss potential uses of VNS to treat depression and epilepsy in the context of ASD, and noninvasive methods to stimulate the vagus nerve.
Collapse
|
76
|
Stress-related dysautonomias and neurocardiology-based treatment approaches. Auton Neurosci 2022; 239:102944. [DOI: 10.1016/j.autneu.2022.102944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 10/13/2021] [Accepted: 01/16/2022] [Indexed: 11/21/2022]
|
77
|
Kamel LY, Xiong W, Gott BM, Kumar A, Conway CR. Vagus nerve stimulation: An update on a novel treatment for treatment-resistant depression. J Neurol Sci 2022; 434:120171. [DOI: 10.1016/j.jns.2022.120171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 12/11/2022]
|
78
|
Gadeyne S, Mertens A, Carrette E, Van den Bossche F, Boon P, Raedt R, Vonck K. Transcutaneous auricular vagus nerve stimulation cannot modulate the P3b event-related potential in healthy volunteers. Clin Neurophysiol 2021; 135:22-29. [PMID: 35007840 DOI: 10.1016/j.clinph.2021.11.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE The release of cortical norepinephrine is one of the possible mechanisms of action of vagus nerve stimulation (VNS), a neuromodulatory treatment currently under investigation for cognitive impairment. Transcutaneous auricular VNS (taVNS) may be able to activate vagal nerve branches ending in the brainstem's locus coeruleus (LC) non-invasively. The aim was to investigate if acute taVNS can modulate the P3b, a cognitive event-related potential (ERP) reflecting noradrenergic brain activation under control of the LC. METHODS Thirty-nine healthy volunteers performed an auditory oddball task during no stimulation, sham stimulation and taVNS in a randomized order. P3b amplitude, latency and behavioral outcome parameters were compared between conditions using linear mixed models. RESULTS P3b amplitude and latency during taVNS did not differ significantly from sham or control. Reaction time shortened and P3b latency prolonged with repetition of the oddball task. CONCLUSIONS We were unable to modulate cognitive ERPs by means of acute taVNS in a large group of healthy volunteers. SIGNIFICANCE Targeting vagal nerve fibres via a transcutaneous approach did not alter the P3b in healthy participants. The stimulation parameters used and transient delivery of taVNS might be insufficient to adequately modulate the LC. Also, a disbalanced locus coeruleus - norepinephrine system in patients may be more prone for improvement.
Collapse
Affiliation(s)
- Stefanie Gadeyne
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium.
| | - Ann Mertens
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Evelien Carrette
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | | | - Paul Boon
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - Kristl Vonck
- 4Brain, Department of Neurology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
79
|
Competitive dynamics underlie cognitive improvements during sleep. Proc Natl Acad Sci U S A 2021; 118:2109339118. [PMID: 34903651 PMCID: PMC8713802 DOI: 10.1073/pnas.2109339118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep facilitates both long-term episodic memory consolidation and short-term working memory functioning. However, the mechanism by which the sleeping brain performs both complex feats and which sleep features are associated with these processes remain unclear. Using a pharmacological approach, we demonstrate that long-term and working memory are served by distinct offline neural mechanisms and that these mechanisms are mutually antagonistic. We propose a sleep switch model in which the brain toggles between the two memory processes via a complex interaction at the synaptic, systems, and mechanistic level with implications for research on cognitive disturbances observed in neurodegenerative disorders such as Alzheimer’s and Parkinson's disease, both of which involve the decline of sleep. We provide evidence that human sleep is a competitive arena in which cognitive domains vie for limited resources. Using pharmacology and effective connectivity analysis, we demonstrate that long-term memory and working memory are served by distinct offline neural mechanisms that are mutually antagonistic. Specifically, we administered zolpidem to increase central sigma activity and demonstrated targeted suppression of autonomic vagal activity. With effective connectivity, we determined the central activity has greater causal influence over autonomic activity, and the magnitude of this influence during sleep produced a behavioral trade-off between offline long-term and working memory processing. These findings suggest a sleep switch mechanism that toggles between central sigma-dependent long-term memory and autonomic vagal-dependent working memory processing.
Collapse
|
80
|
Berger A, Vespa S, Dricot L, Dumoulin M, Iachim E, Doguet P, Vandewalle G, El Tahry R. How Is the Norepinephrine System Involved in the Antiepileptic Effects of Vagus Nerve Stimulation? Front Neurosci 2021; 15:790943. [PMID: 34924947 PMCID: PMC8675889 DOI: 10.3389/fnins.2021.790943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 01/09/2023] Open
Abstract
Vagus Nerve Stimulation (VNS) is an adjunctive treatment for patients suffering from inoperable drug-resistant epilepsy. Although a complete understanding of the mediators involved in the antiepileptic effects of VNS and their complex interactions is lacking, VNS is known to trigger the release of neurotransmitters that have seizure-suppressing effects. In particular, norepinephrine (NE) is a neurotransmitter that has been associated with the clinical effects of VNS by preventing seizure development and by inducing long-term plastic changes that could restore a normal function of the brain circuitry. However, the biological requisites to become responder to VNS are still unknown. In this review, we report evidence of the critical involvement of NE in the antiepileptic effects of VNS in rodents and humans. Moreover, we emphasize the hypothesis that the functional integrity of the noradrenergic system could be a determining factor to obtain clinical benefits from the therapy. Finally, encouraging avenues of research involving NE in VNS treatment are discussed. These could lead to the personalization of the stimulation parameters to maximize the antiepileptic effects and potentially improve the response rate to the therapy.
Collapse
Affiliation(s)
- Alexandre Berger
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Synergia Medical SA, Mont-Saint-Guibert, Belgium.,GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Simone Vespa
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Manon Dumoulin
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Evelina Iachim
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Department of Pediatric Neurology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Gilles Vandewalle
- GIGA-Cyclotron Research Center-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Riëm El Tahry
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Center for Refractory Epilepsy, Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
81
|
|
82
|
Bremner JD, Wittbrodt MT, Gurel NZ, Shandhi MH, Gazi AH, Jiao Y, Levantsevych OM, Huang M, Beckwith J, Herring I, Murrah N, Driggers EG, Ko YA, Alkhalaf ML, Soudan M, Shallenberger L, Hankus AN, Nye JA, Park J, Woodbury A, Mehta PK, Rapaport MH, Vaccarino V, Shah AJ, Pearce BD, Inan OT. Transcutaneous Cervical Vagal Nerve Stimulation in Patients with Posttraumatic Stress Disorder (PTSD): A Pilot Study of Effects on PTSD Symptoms and Interleukin-6 Response to Stress. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021; 6:100190. [PMID: 34778863 PMCID: PMC8580056 DOI: 10.1016/j.jadr.2021.100190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is a highly disabling condition associated with alterations in multiple neurobiological systems, including increases in inflammatory and sympathetic function, responsible for maintenance of symptoms. Treatment options including medications and psychotherapies have limitations. We previously showed that transcutaneous Vagus Nerve Stimulation (tcVNS) blocks inflammatory (interleukin (IL)-6) responses to stress in PTSD. The purpose of this study was to assess the effects of tcVNS on PTSD symptoms and inflammatory responses to stress. METHODS Twenty patients with PTSD were randomized to double blind active tcVNS (N=9) or sham (N=11) stimulation in conjunction with exposure to personalized traumatic scripts immediately followed by active or sham tcVNS and measurement of IL-6 and other biomarkers of inflammation. Patients then self administered active or sham tcVNS twice daily for three months. PTSD symptoms were measured with the PTSD Checklist (PCL) and the Clinician Administered PTSD Scale (CAPS), clinical improvement with the Clinical Global Index (CGI) and anxiety with the Hamilton Anxiety Scale (Ham-A) at baseline and one-month intervals followed by a repeat of measurement of biomarkers with traumatic scripts. After three months patients self treated with twice daily open label active tcVNS for another three months followed by assessment with the CGI. RESULTS Traumatic scripts increased IL-6 in PTSD patients, an effect that was blocked by tcVNS (p<.05). Active tcVNS treatment for three months resulted in a 31% greater reduction in PTSD symptoms compared to sham treatment as measured by the PCL (p=0.013) as well as hyperarousal symptoms and somatic anxiety measured with the Ham-A p<0.05). IL-6 increased from baseline in sham but not tcVNS. Open label tcVNS resulted in improvements measured with the CGI compared to the sham treatment period p<0.05). CONCLUSIONS These preliminary results suggest that tcVNS reduces inflammatory responses to stress, which may in part underlie beneficial effects on PTSD symptoms.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta VA Medical Center, Decatur, Georgia
| | - Matthew T. Wittbrodt
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - MdMobashir H. Shandhi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Asim H. Gazi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Yunshen Jiao
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Oleksiy M. Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Minxuan Huang
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Joy Beckwith
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Isaias Herring
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Nancy Murrah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Emily G. Driggers
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - MhmtJamil L. Alkhalaf
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Majd Soudan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Lucy Shallenberger
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Allison N. Hankus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jeanie Park
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Medicine, Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Anna Woodbury
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia
| | - Puja K. Mehta
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, Utah
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur, Georgia
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Bioengineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
83
|
Ludwig M, Wienke C, Betts MJ, Zaehle T, Hämmerer D. Current challenges in reliably targeting the noradrenergic locus coeruleus using transcutaneous auricular vagus nerve stimulation (taVNS). Auton Neurosci 2021; 236:102900. [PMID: 34781120 DOI: 10.1016/j.autneu.2021.102900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), as a non-invasive brain stimulation technique may influence the locus coeruleus-norepinephrine system (LC-NE system) via modulation of the Vagus Nerve (VN) which projects to the LC. Few human studies exist examining the effects of taVNS on the LC-NE system and studies to date assessing the ability of taVNS to target the LC yield heterogeneous results. The aim of this review is to present an overview of the current challenges in assessing effects of taVNS on LC function and how translational approaches spanning animal and human research can help in this regard. A particular emphasis of the review discusses how the effects of taVNS may be influenced by changes in structure and function of the LC-NE system across the human lifespan and in disease.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Matthew J Betts
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London, UK; Department of Psychology, University of Innsbruck; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
84
|
Tseng CT, Gaulding SJ, Dancel CLE, Thorn CA. Local activation of α2 adrenergic receptors is required for vagus nerve stimulation induced motor cortical plasticity. Sci Rep 2021; 11:21645. [PMID: 34737352 PMCID: PMC8568982 DOI: 10.1038/s41598-021-00976-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Vagus nerve stimulation (VNS) paired with rehabilitation training is emerging as a potential treatment for improving recovery of motor function following stroke. In rats, VNS paired with skilled forelimb training results in significant reorganization of the somatotopic cortical motor map; however, the mechanisms underlying this form of VNS-dependent plasticity remain unclear. Recent studies have shown that VNS-driven cortical plasticity is dependent on noradrenergic innervation of the neocortex. In the central nervous system, noradrenergic α2 receptors (α2-ARs) are widely expressed in the motor cortex and have been critically implicated in synaptic communication and plasticity. In current study, we examined whether activation of cortical α2-ARs is necessary for VNS-driven motor cortical reorganization to occur. Consistent with previous studies, we found that VNS paired with motor training enlarges the map representation of task-relevant musculature in the motor cortex. Infusion of α2-AR antagonists into M1 blocked VNS-driven motor map reorganization from occurring. Our results suggest that local α2-AR activation is required for VNS-induced cortical reorganization to occur, providing insight into the mechanisms that may underlie the neuroplastic effects of VNS therapy.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Solomon J Gaulding
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Canice Lei E Dancel
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA
| | - Catherine A Thorn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75080, USA.
| |
Collapse
|
85
|
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol 2021; 20:1038-1047. [PMID: 34710360 DOI: 10.1016/s1474-4422(21)00300-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Three neuromodulation therapies have been appropriately tested and approved in refractory focal epilepsies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation of the epileptogenic zone or zones. These therapies are primarily palliative. Only a few individuals have achieved complete freedom from seizures for more than 12 months with these therapies, whereas more than half have benefited from long-term reduction in seizure frequency of more than 50%. Implantation-related adverse events primarily include infection and pain at the implant site. Intracranial haemorrhage is a frequent adverse event for ANT-DBS and responsive neurostimulation. Other stimulation-specific side-effects are observed with VNS and ANT-DBS. Biomarkers to predict response to neuromodulation therapies are not available, and high-level evidence to aid decision making about when and for whom these therapies should be preferred over other antiepileptic treatments is scant. Future studies are thus needed to address these shortfalls in knowledge, approve other forms of neuromodulation, and develop personalised closed-loop therapies with embedded machine learning. Until then, neuromodulation could be considered for individuals with intractable seizures, ideally after the possibility of curative surgical treatment has been carefully assessed and ruled out or judged less appropriate.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon 1 University Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Epilepsy Institute, Lyon, France
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Arseny Sokolov
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
86
|
Ricci A, Idzikowski MA, Soares CN, Brietzke E. Exploring the mechanisms of action of the antidepressant effect of the ketogenic diet. Rev Neurosci 2021; 31:637-648. [PMID: 32406387 DOI: 10.1515/revneuro-2019-0073] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
The ketogenic diet (KD) is characterized by a diet ratio of 4:1 fat to non-fat energy sources. For decades KD has been successfully used to control seizures in epilepsy patients. Investigations into its mechanism of action suggest that it may have an effect on the metabolic, nervous, immune, and digestive systems. In this review, we postulate that KD may also improve depressive symptoms - for that, we highlight the similarities between depression and epilepsy, describe the extent to which body systems involved in both conditions are affected by the KD, and ultimately hypothesize how KD could improve MDD outcomes. Research into animal models and human patients have reported that KD can increase mitochondrial biogenesis and increase cellular resistance to oxidative stress both at the mitochondrial and genetic levels. Its effect on neurotransmitters alters cell-to-cell communication in the brain and may decrease hyperexcitability by increasing Gamma Aminobutyric Acid (GABA) and decreasing excitatory neurotransmitter levels. Its anti-inflammatory effects are mediated by decreasing chemo- and cytokine levels, including TNF-alpha and IL-1 levels. Finally, KD can alter gut microbiota (GM). Certain strains of microbiota predominate in major depressive disorder (MDD) when compared to healthy individuals. Recent evidence points to Bacteroidetes as a potential treatment predictor as it seems to increase in KD treatment responders for epilepsy. Each of these observations contributes to the presumed modulatory effects of KD on mood and supports its potential role as antidepressant.
Collapse
Affiliation(s)
- Alessandro Ricci
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada
| | - Maia A Idzikowski
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada
| | - Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada.,Kingston General Hospital, Kingston, ON, Canada.,Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Elisa Brietzke
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, K7L7X3, Kingston, ON, Canada.,Kingston General Hospital, Kingston, ON, Canada.,Centre for Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| |
Collapse
|
87
|
Potential of Multiscale Astrocyte Imaging for Revealing Mechanisms Underlying Neurodevelopmental Disorders. Int J Mol Sci 2021; 22:ijms221910312. [PMID: 34638653 PMCID: PMC8508625 DOI: 10.3390/ijms221910312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023] Open
Abstract
Astrocytes provide trophic and metabolic support to neurons and modulate circuit formation during development. In addition, astrocytes help maintain neuronal homeostasis through neurovascular coupling, blood-brain barrier maintenance, clearance of metabolites and nonfunctional proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed, astrocyte dysfunction during development has been implicated in Rett disease, Alexander's disease, epilepsy, and autism, among other disorders. Numerous disease model mice have been established to investigate these diseases, but important preclinical findings on etiology and pathophysiology have not translated into clinical interventions. A multidisciplinary approach is required to elucidate the mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity, morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive investigations of brain structure and function at multiple spatiotemporal scales, and these technologies are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to mesoscopic scale.
Collapse
|
88
|
Morrison RA, Hays SA, Kilgard MP. Vagus Nerve Stimulation as a Potential Adjuvant to Rehabilitation for Post-stroke Motor Speech Disorders. Front Neurosci 2021; 15:715928. [PMID: 34489632 PMCID: PMC8417469 DOI: 10.3389/fnins.2021.715928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Stroke often leaves lasting impairments affecting orofacial function. While speech therapy is able to enhance function after stroke, many patients see only modest improvements after treatment. This partial restoration of function after rehabilitation suggests that there is a need for further intervention. Rehabilitative strategies that augment the effects of traditional speech therapy hold promise to yield greater efficacy and reduce disability associated with motor speech disorders. Recent studies demonstrate that brief bursts of vagus nerve stimulation (VNS) can facilitate the benefits of rehabilitative interventions. VNS paired with upper limb rehabilitation enhances recovery of upper limb function in patients with chronic stroke. Animal studies reveal that these improvements are driven by VNS-dependent synaptic plasticity in motor networks. Moreover, preclinical evidence demonstrates that a similar strategy of pairing VNS can promote synaptic reorganization in orofacial networks. Building on these findings, we postulate that VNS-directed orofacial plasticity could target post-stroke motor speech disorders. Here, we outline the rationale for pairing VNS with traditional speech therapy to enhance recovery in the context of stroke of speech motor function. We also explore similar treatments that aim to enhance synaptic plasticity during speech therapy, and how VNS differs from these existing therapeutic strategies. Based on this evidence, we posit that VNS-paired speech therapy shows promise as a means of enhancing recovery after post-stroke motor speech disorders. Continued development is necessary to comprehensively establish and optimize this approach, which has the potential to increase quality of life for the many individuals suffering with these common impairments.
Collapse
Affiliation(s)
- Robert A Morrison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| | - Seth A Hays
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States.,Erik Jonsson School of Engineering and Computer Science, University of Texas at Dallas, Richardson, TX, United States
| | - Michael P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Texas Biomedical Device Center, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
89
|
Altidor LKP, Bruner MM, Deslauriers JF, Garman TS, Ramirez S, Dirr EW, Olczak KP, Maurer AP, Lamb DG, Otto KJ, Burke SN, Bumanglag AV, Setlow B, Bizon JL. Acute vagus nerve stimulation enhances reversal learning in rats. Neurobiol Learn Mem 2021; 184:107498. [PMID: 34332068 DOI: 10.1016/j.nlm.2021.107498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/24/2021] [Indexed: 01/19/2023]
Abstract
Cognitive flexibility is a prefrontal cortex-dependent neurocognitive process that enables behavioral adaptation in response to changes in environmental contingencies. Electrical vagus nerve stimulation (VNS) enhances several forms of learning and neuroplasticity, but its effects on cognitive flexibility have not been evaluated. In the current study, a within-subjects design was used to assess the effects of VNS on performance in a novel visual discrimination reversal learning task conducted in touchscreen operant chambers. The task design enabled simultaneous assessment of acute VNS both on reversal learning and on recall of a well-learned discrimination problem. Acute VNS delivered in conjunction with stimuli presentation during reversal learning reliably enhanced learning of new reward contingencies. Enhancement was not observed, however, if VNS was delivered during the session but was not coincident with presentation of to-be-learned stimuli. In addition, whereas VNS delivered at 30 HZ enhanced performance, the same enhancement was not observed using 10 or 50 Hz. Together, these data show that acute VNS facilitates reversal learning and indicate that the timing and frequency of the VNS are critical for these enhancing effects. In separate rats, administration of the norepinephrine reuptake inhibitor atomoxetine also enhanced reversal learning in the same task, consistent with a noradrenergic mechanism through which VNS enhances cognitive flexibility.
Collapse
Affiliation(s)
| | - Matthew M Bruner
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Tyler S Garman
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Saúl Ramirez
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Elliott W Dirr
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaitlynn P Olczak
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Andrew P Maurer
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, USA
| | - Damon G Lamb
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA; Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL, USA
| | - Kevin J Otto
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Sara N Burke
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Argyle V Bumanglag
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Evelyn F. & William L. McKnight Brain Institute, University of Florida, USA.
| |
Collapse
|
90
|
Ko DWK. Transcutaneous vagus nerve stimulation (tVNS) as a potential therapeutic application for neurodegenerative disorders - A focus on dysautonomia in Parkinson's disease. Auton Neurosci 2021; 235:102858. [PMID: 34365230 DOI: 10.1016/j.autneu.2021.102858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/29/2022]
Abstract
The understandings of pathogenic processes in major neurodegenerative diseases has significantly advanced in recent years, with evidence showing pathological spread of intraneuronal proteinaceous inclusions as a fundamental factor. In Parkinson's disease (PD), the culprit protein has been identified as α-synuclein as the main component for mediating progressive neurodegeneration. With severe pathology evident in the autonomic nervous system prior to clinical manifestations of PD, pathogenic spread can occur from the peripheral nervous system through key nuclei, such as the anterior olfactory nucleus and dorsal motor nucleus of the glossopharyngeal and vagal nerves, gradually reaching the brainstem, midbrain and cerebral cortex. With this understanding and the proposed involvement of the vagus nerve in disease progression in PD, notably occurring prior to characterized clinical motor features, it raises intriguing questions as to whether vagal nerve pathology can be accurately detected, and importantly used as a reliable marker for determining early neurodegeneration. Along with this is the potential use of vagus nerve neuromodulation for treatment of early disease symptoms like dysautonomia, for modulating sympatho-vagal imbalances and easing severe comorbidities of the disease. In this article, we take a closer look at the pathogenic transmission processes in neurodegenerative disorders that impact the vagus nerve, and how vagus nerve neuromodulation can be potentially applied as a therapeutic approach for major neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel W K Ko
- Neuropix Company Ltd, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong Special Administrative Region.
| |
Collapse
|
91
|
Mertens A, Carrette S, Klooster D, Lescrauwaet E, Delbeke J, Wadman WJ, Carrette E, Raedt R, Boon P, Vonck K. Investigating the Effect of Transcutaneous Auricular Vagus Nerve Stimulation on Cortical Excitability in Healthy Males. Neuromodulation 2021; 25:395-406. [PMID: 35396071 DOI: 10.1111/ner.13488] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/16/2021] [Accepted: 06/07/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES As a potential treatment for epilepsy, transcutaneous auricular vagus nerve stimulation (taVNS) has yielded inconsistent results. Combining transcranial magnetic stimulation with electromyography (TMS-EMG) and electroencephalography (TMS-EEG) can be used to investigate the effect of interventions on cortical excitability by evaluating changes in motor evoked potentials (MEPs) and TMS-evoked potentials (TEPs). The goal of this study is to objectively evaluate the effect of taVNS on cortical excitability with TMS-EMG and TMS-EEG. These findings are expected to provide insight in the mechanism of action and help identify more optimal stimulation paradigms. MATERIALS AND METHODS In this prospective single-blind cross-over study, 15 healthy male subjects underwent active and sham taVNS for 60 min, using a maximum tolerated stimulation current. Single and paired pulse TMS was delivered over the right-sided motor hotspot to evaluate MEPs and TEPs before and after the intervention. MEP statistical analysis was conducted with a two-way repeated measures ANOVA. TEPs were analyzed with a cluster-based permutation analysis. Linear regression analysis was implemented to investigate an association with stimulation current. RESULTS MEP and TEP measurements were not affected by taVNS in this study. An association was found between taVNS stimulation current and MEP outcome measures indicating a decrease in cortical excitability in participants who tolerated higher taVNS currents. A subanalysis of participants (n = 8) who tolerated a taVNS current ≥2.5 mA showed a significant increase in the resting motor threshold, decrease in MEP amplitude and modulation of the P60 and P180 TEP components. CONCLUSIONS taVNS did not affect cortical excitability measurements in the overall population in this study. However, taVNS has the potential to modulate specific markers of cortical excitability in participants who tolerate higher stimulation levels. These findings indicate the need for adequate stimulation protocols based on the recording of objective outcome parameters.
Collapse
Affiliation(s)
- Ann Mertens
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Sofie Carrette
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Debby Klooster
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Emma Lescrauwaet
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Jean Delbeke
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Wytse Jan Wadman
- Swammerdam Institute of Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Evelien Carrette
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Robrecht Raedt
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| | - Paul Boon
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Kristl Vonck
- Department of Neurology, 4BRAIN Research Group, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
92
|
Abstract
Fluoroquinolones (FQs) are a broad class of antibiotics typically prescribed for bacterial infections, including infections for which their use is discouraged. The FDA has proposed the existence of a permanent disability (Fluoroquinolone Associated Disability; FQAD), which is yet to be formally recognized. Previous studies suggest that FQs act as selective GABAA receptor inhibitors, preventing the binding of GABA in the central nervous system. GABA is a key regulator of the vagus nerve, involved in the control of gastrointestinal (GI) function. Indeed, GABA is released from the Nucleus of the Tractus Solitarius (NTS) to the Dorsal Motor Nucleus of the vagus (DMV) to tonically regulate vagal activity. The purpose of this review is to summarize the current knowledge on FQs in the context of the vagus nerve and examine how these drugs could lead to dysregulated signaling to the GI tract. Since there is sufficient evidence to suggest that GABA transmission is hindered by FQs, it is reasonable to postulate that the vagal circuit could be compromised at the NTS-DMV synapse after FQ use, possibly leading to the development of permanent GI disorders in FQAD.
Collapse
|
93
|
Thompson SL, O'Leary GH, Austelle CW, Gruber E, Kahn AT, Manett AJ, Short B, Badran BW. A Review of Parameter Settings for Invasive and Non-invasive Vagus Nerve Stimulation (VNS) Applied in Neurological and Psychiatric Disorders. Front Neurosci 2021; 15:709436. [PMID: 34326720 PMCID: PMC8313807 DOI: 10.3389/fnins.2021.709436] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Vagus nerve stimulation (VNS) is an established form of neuromodulation with a long history of promising applications. Earliest reports of VNS in the literature date to the late 1800’s in experiments conducted by Dr. James Corning. Over the past century, both invasive and non-invasive VNS have demonstrated promise in treating a variety of disorders, including epilepsy, depression, and post-stroke motor rehabilitation. As VNS continues to rapidly grow in popularity and application, the field generally lacks a consensus on optimum stimulation parameters. Stimulation parameters have a significant impact on the efficacy of neuromodulation, and here we will describe the longitudinal evolution of VNS parameters in the following categorical progression: (1) animal models, (2) epilepsy, (3) treatment resistant depression, (4) neuroplasticity and rehabilitation, and (5) transcutaneous auricular VNS (taVNS). We additionally offer a historical perspective of the various applications and summarize the range and most commonly used parameters in over 130 implanted and non-invasive VNS studies over five applications.
Collapse
Affiliation(s)
- Sean L Thompson
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Georgia H O'Leary
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher W Austelle
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Elise Gruber
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Alex T Kahn
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Andrew J Manett
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Baron Short
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
94
|
Transcutaneous auricular VNS applied to experimental pain: A paired behavioral and EEG study using thermonociceptive CO2 laser. PLoS One 2021; 16:e0254480. [PMID: 34252124 PMCID: PMC8274876 DOI: 10.1371/journal.pone.0254480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background Transcutaneous auricular Vagal Nerve Stimulation (taVNS) is a non-invasive neurostimulation technique with potential analgesic effects. Several studies based on subjective behavioral responses suggest that taVNS modulates nociception differently with either pro-nociceptive or anti-nociceptive effects. Objective This study aimed to characterize how taVNS alters pain perception, by investigating its effects on event-related potentials (ERPs) elicited by different types of spinothalamic and lemniscal somatosensory stimuli, combined with quantitative sensory testing (detection threshold and intensity ratings). Methods We performed 3 experiments designed to study the time-dependent effects of taVNS and compare with standard cervical VNS (cVNS). In Experiment 1, we assessed the effects of taVNS after 3 hours of stimulation. In Experiment 2, we focused on the immediate effects of the duty cycle (OFF vs. ON phases). Experiments 1 and 2 included 22 and 15 healthy participants respectively. Both experiments consisted of a 2-day cross-over protocol, in which subjects received taVNS and sham stimulation sequentially. In addition, subjects received a set of nociceptive (thermonociceptive CO2 laser, mechanical pinprick) and non-nociceptive (vibrotactile, cool) stimuli, for which we recorded detection thresholds, intensity of perception and ERPs. Finally, in Experiment 3, we tested 13 epileptic patients with an implanted cVNS by comparing OFF vs. ON cycles, using a similar experimental procedure. Results Neither taVNS nor cVNS appeared to modulate the cerebral and behavioral aspects of somatosensory perception. Conclusion The potential effect of taVNS on nociception requires a cautious interpretation, as we found no objective change in behavioral and cerebral responses to spinothalamic and lemniscal somatosensory stimulations.
Collapse
|
95
|
Vagus Nerve Stimulation with Mild Stimulation Intensity Exerts Anti-Inflammatory and Neuroprotective Effects in Parkinson's Disease Model Rats. Biomedicines 2021; 9:biomedicines9070789. [PMID: 34356853 PMCID: PMC8301489 DOI: 10.3390/biomedicines9070789] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The major surgical treatment for Parkinson’s disease (PD) is deep brain stimulation (DBS), but a less invasive treatment is desired. Vagus nerve stimulation (VNS) is a relatively safe treatment without cerebral invasiveness. In this study, we developed a wireless controllable electrical stimulator to examine the efficacy of VNS on PD model rats. Methods: Adult female Sprague-Dawley rats underwent placement of a cuff-type electrode and stimulator on the vagus nerve. Following which, 6-hydroxydopamine (6-OHDA) was administered into the left striatum to prepare a PD model. VNS was started immediately after 6-OHDA administration and continued for 14 days. We evaluated the therapeutic effects of VNS with behavioral and immunohistochemical outcome assays under different stimulation intensity (0.1, 0.25, 0.5 and 1 mA). Results: VNS with 0.25–0.5 mA intensity remarkably improved behavioral impairment, preserved dopamine neurons, reduced inflammatory glial cells, and increased noradrenergic neurons. On the other hand, VNS with 0.1 mA and 1 mA intensity did not display significant therapeutic efficacy. Conclusions: VNS with 0.25–0.5 mA intensity has anti-inflammatory and neuroprotective effects on PD model rats induced by 6-OHDA administration. In addition, we were able to confirm the practicality and effectiveness of the new experimental device.
Collapse
|
96
|
Souza RR, Robertson NM, McIntyre CK, Rennaker RL, Hays SA, Kilgard MP. Vagus nerve stimulation enhances fear extinction as an inverted-U function of stimulation intensity. Exp Neurol 2021; 341:113718. [PMID: 33844986 DOI: 10.1016/j.expneurol.2021.113718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Studies in rodents indicate that pairing vagus nerve stimulation (VNS) with extinction training enhances fear extinction. However, the role of stimulation parameters on the effects of VNS remains largely unknown. Identifying the optimal stimulation intensity is a critical step in clinical translation of neuromodulation-based therapies. Here, we sought to investigate the role of stimulation intensity in rats receiving VNS paired with extinction training in a rat model for Posttraumatic Stress Disorder (PTSD). Male Sprague-Dawley rats underwent single prolonged stress followed by a severe fear conditioning training and were implanted with a VNS device. After recovery, independent groups of rats were exposed to extinction training paired with sham (0 mA) or VNS at different intensities (0.4, 0.8, or 1.6 mA). VNS intensities of 0.4 mA or 0.8 mA decreased conditioned fear during extinction training compared to sham stimulation. Pairing extinction training with moderate VNS intensity of 0.8 mA produced significant reduction in conditioned fear during extinction retention when rats were tested a week after VNS-paired extinction. High intensity VNS at 1.6 mA failed to enhance extinction. These findings indicate that a narrow range of VNS intensities enhances extinction learning, and suggest that the 0.8 mA VNS intensity used in earlier rodent and human stroke studies may also be the optimal in using VNS as an adjuvant in exposure therapies for PTSD.
Collapse
Affiliation(s)
- Rimenez R Souza
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States.
| | - Nicole M Robertson
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Christa K McIntyre
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Robert L Rennaker
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Seth A Hays
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| | - Michael P Kilgard
- Texas Biomedical Device Center, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States; School of Behavioral Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
97
|
Kucuker MU, Almorsy AG, Sonmez AI, Ligezka AN, Doruk Camsari D, Lewis CP, Croarkin PE. A Systematic Review of Neuromodulation Treatment Effects on Suicidality. Front Hum Neurosci 2021; 15:660926. [PMID: 34248523 PMCID: PMC8267816 DOI: 10.3389/fnhum.2021.660926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Neuromodulation is an important group of therapeutic modalities for neuropsychiatric disorders. Prior studies have focused on efficacy and adverse events associated with neuromodulation. Less is known regarding the influence of neuromodulation treatments on suicidality. This systematic review sought to examine the effects of various neuromodulation techniques on suicidality. Methods: A systematic review of the literature from 1940 to 2020 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline was conducted. Any reported suicide-related outcome, including suicidal ideation, suicide intent, suicide attempt, completed suicide in reports were considered as a putative measure of treatment effect on suicidality. Results: The review identified 129 relevant studies. An exploratory analysis of a randomized controlled trial comparing the effects of sertraline and transcranial direct-current stimulation (tDCS) for treating depression reported a decrease in suicidal ideation favoring tDCS vs. placebo and tDCS combined with sertraline vs. placebo. Several studies reported an association between repetitive transcranial magnetic stimulation and improvements in suicidal ideation. In 12 of the studies, suicidality was the primary outcome, ten of which showed a significant improvement in suicidal ideation. Electroconvulsive therapy (ECT) and magnetic seizure therapy was also shown to be associated with lower suicidal ideation and completed suicide rates. There were 11 studies which suicidality was the primary outcome and seven of these showed an improvement in suicidal ideation or suicide intent and fewer suicide attempts or completed suicides in patients treated with ECT. There was limited literature focused on the potential protective effect of vagal nerve stimulation with respect to suicidal ideation. Data were mixed regarding the potential effects of deep brain stimulation on suicidality. Conclusions: Future prospective studies of neuromodulation that focus on the primary outcome of suicidality are urgently needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=125599, identifier: CRD42019125599.
Collapse
Affiliation(s)
- Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Ammar G. Almorsy
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Ayse Irem Sonmez
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Charles P. Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
98
|
Transcutaneous vagus nerve stimulation in patients with attention-deficit/hyperactivity disorder: A viable option? PROGRESS IN BRAIN RESEARCH 2021; 264:171-190. [PMID: 34167655 DOI: 10.1016/bs.pbr.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Individuals with attention-deficit/hyperactivity disorder (ADHD) suffer from a range of cognitive and behavioral problems that severely impair their educational and occupational attainment. ADHD symptoms have been linked to structural and functional changes within and between different brain regions, particularly the prefrontal cortex. At the system level, reduced availability of the neurotransmitters dopamine (DA) and norepinephrine (NE) but also γ-aminobutyric acid (GABA) have been repeatedly demonstrated. Recently, non-invasive brain stimulation (NIBS) techniques have been explored as treatment alternatives to alter dysfunctional activation patterns in specified brain areas or networks. In the current paper, we introduce transcutaneous vagus nerve stimulation (tVNS) as a systemic approach to directly affect NE and GABA neurotransmission. TVNS is a non-drug intervention with low risk and proven efficacy in improving cognitive particularly executive functions. It is easy to apply and therefore well-suited to provide home-based or mobile treatment options allowing a significant increase in treatment intensity and providing easier access to medical care for individuals who are unable to regularly visit a clinician. We describe in detail the underlying mechanisms of tVNS and current fields of application and discuss its potential as an adjuvant treatment for ADHD.
Collapse
|
99
|
Shimogawa T, Mukae N, Morioka T, Tanaka S, Sakata A, Uehara T, Mizoguchi M. Possible relationship between vagus nerve stimulation and ictal discharges revealed by long-term electroencephalographic and electrocorticographic monitoring in a non-responsive patient. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.101066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
100
|
Venkatasamy L, Nizamutdinov D, Jenkins J, Shapiro LA. Vagus Nerve Stimulation Ameliorates Cognitive Impairment and Increased Hippocampal Astrocytes in a Mouse Model of Gulf War Illness. Neurosci Insights 2021; 16:26331055211018456. [PMID: 34104886 PMCID: PMC8165814 DOI: 10.1177/26331055211018456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/29/2021] [Indexed: 01/17/2023] Open
Abstract
Gulf war illness (GWI), is a chronic multi-symptom illness that has impacted approximately one-third of the veterans who served in the 1990 to 1991 Gulf War. GWI symptoms include cognitive impairments (eg, memory and concentration problems), headaches, migraines, fatigue, gastrointestinal and respiratory issues, as well as emotional deficits. The exposure to neurological chemicals such as the anti-nerve gas drug, pyridostigmine bromide (PB), and the insecticide permethrin (PER), may contribute to the etiologically related factors of GWI. Various studies utilizing mouse models of GWI have reported the interplay of these chemical agents in increasing neuroinflammation and cognitive dysfunction. Astrocytes are involved in the secretion of neuroinflammatory cytokines and chemokines in pathological conditions and have been implicated in GWI symptomology. We hypothesized that exposure to PB and PER causes lasting changes to hippocampal astrocytes, concurrent with chronic cognitive deficits that can be reversed by cervical vagus nerve stimulation (VNS). GWI was induced in CD1 mice by injecting the mixture of PER (200 mg/kg) and PB (2 mg/kg), i.p. for 10 consecutive days. VNS stimulators were implanted at 33 weeks after GWI induction. The results show age-related cognitive alterations at approximately 9 months after exposure to PB and PER. The results also showed an increased number of GFAP-labeled astrocytes in the hippocampus and dentate gyrus that was ameliorated by VNS.
Collapse
Affiliation(s)
- Lavanya Venkatasamy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| | - Damir Nizamutdinov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| | - Jaclyn Jenkins
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| | - Lee A Shapiro
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX, USA
| |
Collapse
|