51
|
Tarif AMM, Islam MN, Jahan MR, Yanai A, Nozaki K, Masumoto KH, Shinoda K. Immunohistochemical expression and neurochemical phenotypes of huntingtin-associated protein 1 in the myenteric plexus of mouse gastrointestinal tract. Cell Tissue Res 2021; 386:533-558. [PMID: 34665322 DOI: 10.1007/s00441-021-03542-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Huntingtin-associated protein 1 (HAP1) is a neural huntingtin interactor and being considered as a core molecule of stigmoid body (STB). Brain/spinal cord regions with abundant STB/HAP1 expression are usually spared from neurodegeneration in stress/disease conditions, whereas the regions with little STB/HAP1 expression are always neurodegenerative targets. The enteric nervous system (ENS) can act as a potential portal for pathogenesis of neurodegenerative disorders. However, ENS is also a neurodegenerative target in these disorders. To date, the expression of HAP1 and its neurochemical characterization have never been examined there. In the current study, we determined the expression of HAP1 in the ENS of adult mice and characterized the morphological relationships of HAP1-immunoreactive (ir) cells with the markers of motor neurons, sensory neurons, and interneurons in the myenteric plexus using Western blotting and light/fluorescence microscopy. HAP1-immunoreaction was present in both myenteric and submucosal plexuses of ENS. Most of the HAP1-ir neurons exhibited STB in their cytoplasm. In myenteric plexus, a large number of calretinin, calbindin, NOS, VIP, ChAT, SP, somatostatin, and TH-ir neurons showed HAP1-immunoreactivity. In contrast, most of the CGRP-ir neurons were devoid of HAP1-immunoreactivity. Our current study is the first to clarify that HAP1 is highly expressed in excitatory motor neurons, inhibitory motor neurons, and interneurons but almost absent in sensory neurons in myenteric plexus. These suggest that STB/HAP1-ir neurons are mostly Dogiel type I neurons. Due to lack of putative STB/HAP1 protectivity, the sensory neurons (Dogiel type II) might be more vulnerable to neurodegeneration than STB/HAP1-expressing motoneurons/interneurons (Dogiel type I) in myenteric plexus.
Collapse
Affiliation(s)
- Abu Md Mamun Tarif
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Md Nabiul Islam
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Mir Rubayet Jahan
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
- Department of Anatomy and Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Akie Yanai
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
- Department of Basic Laboratory Sciences, Faculty of Medicine and Health Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Kanako Nozaki
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh-Hei Masumoto
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan
| | - Koh Shinoda
- Division of Neuroanatomy, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, 755-8505, Japan.
| |
Collapse
|
52
|
Tirassa P, Schirinzi T, Raspa M, Ralli M, Greco A, Polimeni A, Possenti R, Mercuri NB, Severini C. What substance P might tell us about the prognosis and mechanism of Parkinson's disease? Neurosci Biobehav Rev 2021; 131:899-911. [PMID: 34653503 DOI: 10.1016/j.neubiorev.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
The neuropeptide substance P (SP) plays an important role in neurodegenerative disorders, among which Parkinson's disease (PD). In the present work we have reviewed the involvement of SP and its preferred receptor (NK1-R) in motor and non-motor PD symptoms, in both PD animal models and patients. Despite PD is primarily a motor disorder, non-motor abnormalities, including olfactory deficits and gastrointestinal dysfunctions, can represent diagnostic PD predictors, according to the hypothesis that the olfactory and the enteric nervous system represent starting points of neurodegeneration, ascending to the brain via the sympathetic fibers and the vagus nerve. In PD patients, the α-synuclein aggregates in the olfactory bulb and the gastrointestinal tract, as well as in the dorsal motor nucleus of the vagus nerve often co-localize with SP, indicating SP-positive neurons as highly vulnerable sites of degeneration. Considering the involvement of the SP/NK1-R in both the periphery and specific brain areas, this system might represent a neuronal substrate for the symptom and disease progression, as well as a therapeutic target for PD.
Collapse
Affiliation(s)
- Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Marcello Raspa
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Antonella Polimeni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Roberta Possenti
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| |
Collapse
|
53
|
Najjar SA, Edwards BS, Albers KM, Davis BM, Smith-Edwards KM. Optogenetic activation of the distal colon epithelium engages enteric nervous system circuits to initiate motility patterns. Am J Physiol Gastrointest Liver Physiol 2021; 321:G426-G435. [PMID: 34468219 PMCID: PMC8560371 DOI: 10.1152/ajpgi.00026.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Digestive functions of the colon depend on sensory-motor reflexes in the enteric nervous system (ENS), initiated by intrinsic primary afferent neurons (IPANs). IPAN terminals project to the mucosal layer of the colon, allowing communication with epithelial cells comprising the colon lining. The chemical nature and functional significance of this epithelial-neural communication in regard to secretion and colon motility are of high interest. Colon epithelial cells can produce and release neuroactive substances such as ATP and 5-hydroxytryptamine (5-HT), which can activate receptors on adjacent nerve fibers, including IPAN subtypes. In this study, we examined if stimulation of epithelial cells alone is sufficient to activate neural circuits that control colon motility. Optogenetics and calcium imaging were used in ex vivo preparations of the mouse colon to selectively stimulate the colon epithelium, measure changes in motility, and record activity of neurons within the myenteric plexus. Light-mediated activation of epithelial cells lining the distal, but not proximal, colon caused local contractions and increased the rate of colonic migrating motor complexes. Epithelial-evoked local contractions in the distal colon were reduced by both ATP and 5-HT receptor antagonists. Our findings indicate that colon epithelial cells likely use purinergic and serotonergic signaling to initiate activity in myenteric neurons, produce local contractions, and facilitate large-scale coordination of ENS activity responsible for whole colon motility patterns.NEW & NOTEWORTHY Using an all-optical approach to measure real-time cell-to-cell communication responsible for colon functions, we show that selective optogenetic stimulation of distal colon epithelium produced activity in myenteric neurons, as measured with red genetically encoded calcium indicators. The epithelial-induced neural response led to local contractions, mediated by both purinergic and serotonergic signaling, and facilitated colonic motor complexes that propagate from proximal to distal colon.
Collapse
Affiliation(s)
- Sarah A Najjar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian S Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kathryn M Albers
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian M Davis
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristen M Smith-Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
54
|
Kimono DA. Gastrointestinal problems, mechanisms and possible therapeutic directions in Gulf war illness: a mini review. Mil Med Res 2021; 8:50. [PMID: 34503577 PMCID: PMC8431926 DOI: 10.1186/s40779-021-00341-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
By its nature, Gulf war illness (GWI) is multisymptomatic and affects several organ systems in the body. Along with other symptoms, veterans who suffer from GWI commonly report chronic gastrointestinal issues such as constipation, pain, indigestion, etc. However, until recently, most attention has been focused on neurological disturbances such as cognitive impairments, chronic fatigue, and chronic pain among affected veterans. With such high prevalence of gastrointestinal problems among Gulf war (GW) veterans, it is surprising that there is little research to investigate the mechanisms behind these issues. This review summarizes all the available works on the mechanisms behind gastrointestinal problems in GWI that have been published to date in various databases. Generally, these studies, which were done in rodent models, in vitro and human cohorts propose that an altered microbiome, a reactive enteric nervous system or a leaky gut among other possible mechanisms are the major drivers of gastrointestinal problems reported in GWI. This review aims to draw attention to the gastrointestinal tract as an important player in GWI disease pathology and a potential therapeutic target.
Collapse
|
55
|
Chen Y, Xu J, Chen Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021; 13:nu13062099. [PMID: 34205336 PMCID: PMC8234057 DOI: 10.3390/nu13062099] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that gut microbiota is important in the regulation of brain activity and cognitive functions. Microbes mediate communication among the metabolic, peripheral immune, and central nervous systems via the microbiota–gut–brain axis. However, it is not well understood how the gut microbiome and neurons in the brain mutually interact or how these interactions affect normal brain functioning and cognition. We summarize the mechanisms whereby the gut microbiota regulate the production, transportation, and functioning of neurotransmitters. We also discuss how microbiome dysbiosis affects cognitive function, especially in neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease.
Collapse
Affiliation(s)
- Yijing Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
| | - Jinying Xu
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (Y.C.); (J.X.)
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen 518057, China
- Correspondence: ; Tel.: +86-755-26925498
| |
Collapse
|
56
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
57
|
Immunomorphological Changes in Neuronal and Non-Neuronal Structures in the Rat Intestine in a Toxin-Induced Model of Parkinsonism. Bull Exp Biol Med 2021; 171:94-99. [PMID: 34057618 DOI: 10.1007/s10517-021-05179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 10/21/2022]
Abstract
The damage to the enteric nervous system structures and the localization of total and phosphorylated α-synuclein, the main pathomorphological marker of parkinsonism, were studied by immunomorphological methods on small intestine wholemounts from rats with parkinsonism induced by systemic administration of paraquat. Reduced density of neurons in the myenteric ganglia and degenerative changes with accumulation of phosphorylated α-synuclein in sympathetic afferents to the small intestine were revealed. Phosphorylated α-synuclein was also found in non-neuronal cells located outside the ganglia. The revealed changes presumably reflect the initial stage of spreading of the pathological process during the development of Parkinson's disease.
Collapse
|
58
|
High-fat diet impairs duodenal barrier function and elicits glia-dependent changes along the gut-brain axis that are required for anxiogenic and depressive-like behaviors. J Neuroinflammation 2021; 18:115. [PMID: 33993886 PMCID: PMC8126158 DOI: 10.1186/s12974-021-02164-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/30/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mood and metabolic disorders are interrelated and may share common pathological processes. Autonomic neurons link the brain with the gastrointestinal tract and constitute a likely pathway for peripheral metabolic challenges to affect behaviors controlled by the brain. The activities of neurons along these pathways are regulated by glia, which exhibit phenotypic shifts in response to changes in their microenvironment. How glial changes might contribute to the behavioral effects of consuming a high-fat diet (HFD) is uncertain. Here, we tested the hypothesis that anxiogenic and depressive-like behaviors driven by consuming a HFD involve compromised duodenal barrier integrity and subsequent phenotypic changes to glia and neurons along the gut-brain axis. METHODS C57Bl/6 male mice were exposed to a standard diet or HFD for 20 weeks. Bodyweight was monitored weekly and correlated with mucosa histological damage and duodenal expression of tight junction proteins ZO-1 and occludin at 0, 6, and 20 weeks. The expression of GFAP, TLR-4, BDNF, and DCX were investigated in duodenal myenteric plexus, nodose ganglia, and dentate gyrus of the hippocampus at the same time points. Dendritic spine number was measured in cultured neurons isolated from duodenal myenteric plexuses and hippocampi at weeks 0, 6, and 20. Depressive and anxiety behaviors were also assessed by tail suspension, forced swimming, and open field tests. RESULTS HFD mice exhibited duodenal mucosa damage with marked infiltration of immune cells and decreased expression of ZO-1 and occludin that coincided with increasing body weight. Glial expression of GFAP and TLR4 increased in parallel in the duodenal myenteric plexuses, nodose ganglia, and hippocampus in a time-dependent manner. Glial changes were associated with a progressive decrease in BDNF, and DCX expression, fewer neuronal dendritic spines, and anxiogenic/depressive symptoms in HFD-treated mice. Fluorocitrate (FC), a glial metabolic poison, abolished these effects both in the enteric and central nervous systems and prevented behavioral alterations at week 20. CONCLUSIONS HFD impairs duodenal barrier integrity and produces behavioral changes consistent with depressive and anxiety phenotypes. HFD-driven changes in both peripheral and central nervous systems are glial-dependent, suggesting a potential glial role in the alteration of the gut-brain signaling that occurs during metabolic disorders and psychiatric co-morbidity.
Collapse
|
59
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Scarano F, Nucera S, Scicchitano M, Oppedisano F, Bosco F, Ruga S, Zito MC, Macri R, Palma E, Muscoli C, Mollace V. The Contribution of Gut Microbiota-Brain Axis in the Development of Brain Disorders. Front Neurosci 2021; 15:616883. [PMID: 33833660 PMCID: PMC8021727 DOI: 10.3389/fnins.2021.616883] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Different bacterial families colonize most mucosal tissues in the human organism such as the skin, mouth, vagina, respiratory, and gastrointestinal districts. In particular, the mammalian intestine hosts a microbial community of between 1,000 and 1,500 bacterial species, collectively called "microbiota." Co-metabolism between the microbiota and the host system is generated and the symbiotic relationship is mutually beneficial. The balance that is achieved between the microbiota and the host organism is fundamental to the organization of the immune system. Scientific studies have highlighted a direct correlation between the intestinal microbiota and the brain, establishing the existence of the gut microbiota-brain axis. Based on this theory, the microbiota acts on the development, physiology, and cognitive functions of the brain, although the mechanisms involved have not yet been fully interpreted. Similarly, a close relationship between alteration of the intestinal microbiota and the onset of several neurological pathologies has been highlighted. This review aims to point out current knowledge as can be found in literature regarding the connection between intestinal dysbiosis and the onset of particular neurological pathologies such as anxiety and depression, autism spectrum disorder, and multiple sclerosis. These disorders have always been considered to be a consequence of neuronal alteration, but in this review, we hypothesize that these alterations may be non-neuronal in origin, and consider the idea that the composition of the microbiota could be directly involved. In this direction, the following two key points will be highlighted: (1) the direct cross-talk that comes about between neurons and gut microbiota, and (2) the degree of impact of the microbiota on the brain. Could we consider the microbiota a valuable target for reducing or modulating the incidence of certain neurological diseases?
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
60
|
Shabbir U, Arshad MS, Sameen A, Oh DH. Crosstalk between Gut and Brain in Alzheimer's Disease: The Role of Gut Microbiota Modulation Strategies. Nutrients 2021; 13:690. [PMID: 33669988 PMCID: PMC7924846 DOI: 10.3390/nu13020690] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota-gut-brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer's disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood-brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.
Collapse
Affiliation(s)
- Umair Shabbir
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| | - Muhammad Sajid Arshad
- Department of Food Science, Faculty of Life Sciences, Government College University, Faisalabad 38000, Pakistan;
| | - Aysha Sameen
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
61
|
Gene expression barcode values reveal a potential link between Parkinson's disease and gastric cancer. Aging (Albany NY) 2021; 13:6171-6181. [PMID: 33596182 PMCID: PMC7950232 DOI: 10.18632/aging.202623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer is a disease that develops from the lining of the stomach, whereas Parkinson’s disease is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. Although these two diseases seem to be distinct from each other, increasing evidence suggests that they might be linked. To explore the linkage between these two diseases, differentially expressed genes between the diseased people and their normal controls were identified using the barcode algorithm. This algorithm transforms actual gene expression values into barcode values comprised of 1’s (expressed genes) and 0’s (silenced genes). Once the overlapped differentially expressed genes were identified, their biological relevance was investigated. Thus, using the gene expression profiles and bioinformatics methods, we demonstrate that Parkinson’s disease and gastric cancer are indeed linked. This research may serve as a pilot study, and it will stimulate more research to investigate the relationship between gastric cancer and Parkinson’s disease from the perspective of gene profiles and their functions.
Collapse
|
62
|
Bioactive peptides and gut microbiota: Candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
63
|
Nyavor Y, Brands CR, Nicholson J, Kuther S, Cox KK, May G, Miller C, Yasuda A, Potter F, Cady J, Heyman HM, Metz TO, Stark TD, Hofmann T, Balemba OB. Supernatants of intestinal luminal contents from mice fed high-fat diet impair intestinal motility by injuring enteric neurons and smooth muscle cells. Neurogastroenterol Motil 2021; 33:e13990. [PMID: 32969549 DOI: 10.1111/nmo.13990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/12/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Damage to enteric neurons and impaired gastrointestinal muscle contractions cause motility disorders in 70% of diabetic patients. It is thought that enteric neuropathy and dysmotility occur before overt diabetes, but triggers of these abnormalities are not fully known. We tested the hypothesis that intestinal contents of mice with and without high-fat diet- (HFD-) induced diabetic conditions contain molecules that impair gastrointestinal movements by damaging neurons and disrupting muscle contractions. METHODS Small and large intestinal segments were collected from healthy, standard chow diet (SCD) fed mice. Filtrates of ileocecal contents (ileocecal supernatants; ICS) from HFD or SCD mice were perfused through them. Cultured intact intestinal muscularis externa preparations were used to determine whether ICS and their fractions obtained by solid-phase extraction (SPE) and SPE subfractions collected by high-performance liquid chromatography (HPLC) disrupt muscle contractions by injuring neurons and smooth muscle cells. KEY RESULTS ICS from HFD mice reduced intestinal motility, but those from SCD mice had no effect. ICS, aqueous SPE fractions and two out of twenty HPLC subfractions of aqueous SPE fractions from HFD mice blocked muscle contractions, caused a loss of nitrergic myenteric neurons through inflammation, and reduced smooth muscle excitability. Lipopolysaccharide and palmitate caused a loss of nitrergic myenteric neurons but did not affect muscle contractions. CONCLUSIONS & INFERENCES Unknown molecules in intestinal contents of HFD mice trigger enteric neuropathy and dysmotility. Further studies are required to identify the toxic molecules and their mechanisms of action.
Collapse
Affiliation(s)
- Yvonne Nyavor
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | - Jessica Nicholson
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Sydney Kuther
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Kortni K Cox
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - George May
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | | | - Allysha Yasuda
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Forrest Potter
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Joshua Cady
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Heino M Heyman
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Timo D Stark
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik, Technische Universität München, Freising, Germany
| | - Thomas Hofmann
- Lehrstuhl für Lebensmittelchemie und Molekulare Sensorik, Technische Universität München, Freising, Germany
| | - Onesmo B Balemba
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
64
|
Pawolski V, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2020; 10:E47. [PMID: 33396231 PMCID: PMC7823798 DOI: 10.3390/cells10010047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022] Open
Abstract
The enteric nervous system (ENS) constitutes the largest part of the peripheral nervous system. In recent years, ENS development and its neurogenetic capacity in homeostasis and allostasishave gained increasing attention. Developmentally, the neural precursors of the ENS are mainly derived from vagal and sacral neural crest cell portions. Furthermore, Schwann cell precursors, as well as endodermal pancreatic progenitors, participate in ENS formation. Neural precursorsenherite three subpopulations: a bipotent neuron-glia, a neuronal-fated and a glial-fated subpopulation. Typically, enteric neural precursors migrate along the entire bowel to the anal end, chemoattracted by glial cell-derived neurotrophic factor (GDNF) and endothelin 3 (EDN3) molecules. During migration, a fraction undergoes differentiation into neurons and glial cells. Differentiation is regulated by bone morphogenetic proteins (BMP), Hedgehog and Notch signalling. The fully formed adult ENS may react to injury and damage with neurogenesis and gliogenesis. Nevertheless, the origin of differentiating cells is currently under debate. Putative candidates are an embryonic-like enteric neural progenitor population, Schwann cell precursors and transdifferentiating glial cells. These cells can be isolated and propagated in culture as adult ENS progenitors and may be used for cell transplantation therapies for treating enteric aganglionosis in Chagas and Hirschsprung's diseases.
Collapse
Affiliation(s)
| | - Mirko H. H. Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, 01307 Dresden, Germany;
| |
Collapse
|
65
|
Karunaratne TB, Okereke C, Seamon M, Purohit S, Wakade C, Sharma A. Niacin and Butyrate: Nutraceuticals Targeting Dysbiosis and Intestinal Permeability in Parkinson's Disease. Nutrients 2020; 13:E28. [PMID: 33374784 PMCID: PMC7824468 DOI: 10.3390/nu13010028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis is implicated by many studies in the pathogenesis of Parkinson's disease (PD). Advances in sequencing technology and computing have resulted in confounding data regarding pathogenic bacterial profiles in conditions such as PD. Changes in the microbiome with reductions in short-chain fatty acid (SCFA)-producing bacteria and increases in endotoxin-producing bacteria likely contribute to the pathogenesis of PD. GPR109A, a G-protein coupled receptor found on the surface of the intestinal epithelium and immune cells, plays a key role in controlling intestinal permeability and the inflammatory cascade. The absence of GPR109A receptors is associated with decreased concentration of tight junction proteins, leading to increased intestinal permeability and susceptibility to inflammation. In inflammatory states, butyrate acts via GPR109A to increase concentrations of tight junction proteins and improve intestinal permeability. Niacin deficiency is exacerbated in PD by dopaminergic medications. Niacin supplementation has been shown to shift macrophage polarization from pro-inflammatory to an anti-inflammatory profile. Niacin and butyrate, promising nutrients and unique ligands for the G protein-coupled receptor GPR109A, are reviewed in this paper in detail.
Collapse
Affiliation(s)
- Tennekoon B. Karunaratne
- Digestive Health Clinical Research Center, Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (T.B.K.); (C.O.)
| | - Chijioke Okereke
- Digestive Health Clinical Research Center, Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (T.B.K.); (C.O.)
| | - Marissa Seamon
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (M.S.); (S.P.); (C.W.)
- Department of Neuroscience, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (M.S.); (S.P.); (C.W.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
- Department of Undergraduate Health Professionals, College of Allied Health Sciences, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
| | - Chandramohan Wakade
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (M.S.); (S.P.); (C.W.)
- Department of Neuroscience, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
- Department of Physical Therapy, College of Allied Health Sciences, Augusta University, 1120, 15th St, Augusta, GA 30912, USA
| | - Amol Sharma
- Digestive Health Clinical Research Center, Division of Gastroenterology/Hepatology, Medical College of Georgia, Augusta University, 1120, 15th St, Augusta, GA 30912, USA; (T.B.K.); (C.O.)
| |
Collapse
|
66
|
Bu LL, Huang KX, Zheng DZ, Lin DY, Chen Y, Jing XN, Liang YR, Tao EX. Alpha-Synuclein Accumulation and Its Phosphorylation in the Enteric Nervous System of Patients Without Neurodegeneration: An Explorative Study. Front Aging Neurosci 2020; 12:575481. [PMID: 33328957 PMCID: PMC7719782 DOI: 10.3389/fnagi.2020.575481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Alpha-synuclein (α-Syn) is widely distributed and involved in the regulation of the nervous system. The phosphorylation of α-Syn at serine 129 (pSer129α-Syn) is known to be closely associated with α-Synucleinopathies, especially Parkinson's disease (PD). The present study aimed to explore the α-Syn accumulation and its phosphorylation in the enteric nervous system (ENS) in patients without neurodegeneration. Patients who underwent colorectal surgery for either malignant or benign tumors that were not suitable for endoscopic resection (n = 19) were recruited to obtain normal intestinal specimens, which were used to assess α-Syn immunoreactivity patterns using α-Syn and pSer129α-Syn antibodies. Furthermore, the sub-location of α-Syn in neurons was identified by α-Syn/neurofilament double staining. Semi-quantitative counting was used to evaluate the expression of α-Syn and pSer129α-Syn in the ENS. Positive staining of α-Syn was detected in all intestinal layers in patients with non-neurodegenerative diseases. There was no significant correlation between the distribution of α-Syn and age (p = 0.554) or tumor stage (p = 0.751). Positive staining for pSer129α-Syn was only observed in the submucosa and myenteric plexus layers. The accumulation of pSer129α-Syn increased with age. In addition, we found that the degenerative changes of the ENS were related to the degree of tumor malignancy (p = 0.022). The deposits of α-Syn were present in the ENS of patients with non-neurodegenerative disorders; particularly the age-dependent expression of pSer129α-Syn in the submucosa and myenteric plexus. The current findings of α-Syn immunostaining in the ENS under near non-pathological conditions weaken the basis of using α-Syn pathology as a suitable hallmark to diagnose α-Synucleinopathies including PD. However, our data provided unique perspectives to study gastrointestinal dysfunction in non-neurodegenerative disorders. These findings provide new evidence to elucidate the neuropathological characteristics and α-Syn pathology pattern of the ENS in non-neurodegenerative conditions.
Collapse
Affiliation(s)
- Lu-Lu Bu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kai-Xun Huang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - De-Zhi Zheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dan-Yu Lin
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ying Chen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Na Jing
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Ran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - En-Xiang Tao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
67
|
López-Taboada I, González-Pardo H, Conejo NM. Western Diet: Implications for Brain Function and Behavior. Front Psychol 2020; 11:564413. [PMID: 33329193 PMCID: PMC7719696 DOI: 10.3389/fpsyg.2020.564413] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022] Open
Abstract
The Western diet (WD) pattern characterized by high daily intake of saturated fats and refined carbohydrates often leads to obesity and overweight, and it has been linked to cognitive impairment and emotional disorders in both animal models and humans. This dietary pattern alters the composition of gut microbiota, influencing brain function by different mechanisms involving the gut-brain axis. In addition, long-term exposure to highly palatable foods typical of WD could induce addictive-like eating behaviors and hypothalamic-pituitary-adrenal (HPA) axis dysregulation associated with chronic stress, anxiety, and depression. In turn, chronic stress modulates eating behavior, and it could have detrimental effects on different brain regions such as the hippocampus, hypothalamus, amygdala, and several cortical regions. Moreover, obesity and overweight induce neuroinflammation, causing neuronal dysfunction. In this review, we summarize the current scientific evidence about the mechanisms and factors relating WD consumption with altered brain function and behavior. Possible therapeutic interventions and limitations are also discussed, aiming to tackle and prevent this current pandemic.
Collapse
Affiliation(s)
| | | | - Nélida María Conejo
- Laboratory of Neuroscience, Department of Psychology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|
68
|
Lamotte G, Holmes C, Sullivan P, Lenka A, Goldstein DS. Cardioselective peripheral noradrenergic deficiency in Lewy body synucleinopathies. Ann Clin Transl Neurol 2020; 7:2450-2460. [PMID: 33216462 PMCID: PMC7732242 DOI: 10.1002/acn3.51243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Lewy body (LB) synucleinopathies such as Parkinson’s disease (PD) entail profound cardiac norepinephrine deficiency. The status of sympathetic noradrenergic innervation at other extracranial sites has been unclear. Although in vivo neuroimaging studies have indicated a cardioselective noradrenergic lesion, no previous study has surveyed peripheral organs for norepinephrine contents in LB diseases. We reviewed 18F‐dopamine (18F‐DA) positron emission tomographic images and postmortem neurochemical data across several body organs of controls and patients with the LB synucleinopathies PD and pure autonomic failure (PAF) and the non‐LB synucleinopathy multiple system atrophy (MSA). Methods 18F‐DA–derived radioactivity in the heart, liver, spleen, pancreas, stomach, kidneys, thyroid, and submandibular glands were analyzed from 145 patients with LB synucleinopathies (112 PD, 33 PAF), 74 controls, and 85 MSA patients. In largely separate cohorts, postmortem tissue norepinephrine data were reviewed for heart, liver, spleen, pancreas, kidney, thyroid, submandibular gland, and sympathetic ganglion tissue from 38 PD, 2 PAF, and 5 MSA patients and 35 controls. Results Interventricular septal 18F‐DA–derived radioactivity was decreased in the LB synucleinopathy group compared to the control and MSA groups (P < 0.0001 each). The LB and non‐LB groups did not differ in liver, spleen, pancreas, stomach, or kidney 18F‐DA–derived radioactivity. The LB synucleinopathy group had markedly decreased apical myocardial norepinephrine, but normal tissue norepinephrine in other organs. The MSA group had normal tissue norepinephrine in all examined organs. Interpretation By in vivo sympathetic neuroimaging and postmortem neurochemistry peripheral noradrenergic deficiency in LB synucleinopathies is cardioselective. MSA does not involve peripheral noradrenergic deficiency.
Collapse
Affiliation(s)
- Guillaume Lamotte
- Clinical Neurosciences Program (CNP), Division of Intramural Research (DIR), National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA.,Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | - Courtney Holmes
- Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | - Patricia Sullivan
- Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| | - Abhishek Lenka
- Department of Neurology, Medstar Georgetown University Hospital, Washington, District of Columbia, USA
| | - David S Goldstein
- Autonomic Medicine Section, CNP/DIR/NINDS/NIH, Bethesda, Maryland, USA
| |
Collapse
|
69
|
Zanin M, Santos BFR, Antony PMA, Berenguer-Escuder C, Larsen SB, Hanss Z, Barbuti PA, Baumuratov AS, Grossmann D, Capelle CM, Weber J, Balling R, Ollert M, Krüger R, Diederich NJ, He FQ. Mitochondria interaction networks show altered topological patterns in Parkinson's disease. NPJ Syst Biol Appl 2020; 6:38. [PMID: 33173039 PMCID: PMC7655803 DOI: 10.1038/s41540-020-00156-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is linked to pathogenesis of Parkinson's disease (PD). However, individual mitochondria-based analyses do not show a uniform feature in PD patients. Since mitochondria interact with each other, we hypothesize that PD-related features might exist in topological patterns of mitochondria interaction networks (MINs). Here we show that MINs formed nonclassical scale-free supernetworks in colonic ganglia both from healthy controls and PD patients; however, altered network topological patterns were observed in PD patients. These patterns were highly correlated with PD clinical scores and a machine-learning approach based on the MIN features alone accurately distinguished between patients and controls with an area-under-curve value of 0.989. The MINs of midbrain dopaminergic neurons (mDANs) derived from several genetic PD patients also displayed specific changes. CRISPR/CAS9-based genome correction of alpha-synuclein point mutations reversed the changes in MINs of mDANs. Our organelle-interaction network analysis opens another critical dimension for a deeper characterization of various complex diseases with mitochondrial dysregulation.
Collapse
Affiliation(s)
- Massimiliano Zanin
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC), E-07122, Palma de Mallorca, Spain
- Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus of Montegancedo, E-28223, Pozuelo de Alarcón, Madrid, Spain
| | - Bruno F R Santos
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Institute of Systems Biomedicine, University of Luxembourg & Luxembourg Institute of Health, 6 avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Paul M A Antony
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
- Disease Modeling and Screening Platform (DMSP), Luxembourg Institute of Systems Biomedicine, University of Luxembourg & Luxembourg Institute of Health, 6 avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Clara Berenguer-Escuder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Simone B Larsen
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Zoé Hanss
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Peter A Barbuti
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
| | - Aidos S Baumuratov
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Dajana Grossmann
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Joseph Weber
- Centre Hospitalier de Luxembourg (CHL) 4, Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, 5000C, Odense, Denmark
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), 1A-B, rue Thomas Edison, L-1445, Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL) 4, Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Nico J Diederich
- Centre Hospitalier de Luxembourg (CHL) 4, Rue Nicolas Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Feng Q He
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 6, Avenue du Swing, L-4367, Belvaux, Luxembourg.
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, D-45122, Essen, Germany.
| |
Collapse
|
70
|
Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci 2020; 77:4505-4522. [PMID: 32424438 PMCID: PMC7599184 DOI: 10.1007/s00018-020-03543-6] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is an extensive network comprising millions of neurons and glial cells contained within the wall of the gastrointestinal tract. The major functions of the ENS that have been most studied include the regulation of local gut motility, secretion, and blood flow. Other areas that have been gaining increased attention include its interaction with the immune system, with the gut microbiota and its involvement in the gut-brain axis, and neuro-epithelial interactions. Thus, the enteric circuitry plays a central role in intestinal homeostasis, and this becomes particularly evident when there are faults in its wiring such as in neurodevelopmental or neurodegenerative disorders. In this review, we first focus on the current knowledge on the cellular composition of enteric circuits. We then further discuss how enteric circuits detect and process external information, how these signals may be modulated by physiological and pathophysiological factors, and finally, how outputs are generated for integrated gut function.
Collapse
Affiliation(s)
- Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
71
|
Tan M, Yang T, Liu H, Xiao L, Li C, Zhu J, Chen J, Li T. Maternal vitamin A deficiency impairs cholinergic and nitrergic neurons, leading to gastrointestinal dysfunction in rat offspring via RARβ. Life Sci 2020; 264:118688. [PMID: 33130074 DOI: 10.1016/j.lfs.2020.118688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
AIMS Many gastrointestinal (GI) disorders are developmental in origin and are caused by abnormal enteric nervous system (ENS) formation. Maternal vitamin A deficiency (VAD) during pregnancy affects multiple central nervous system developmental processes during embryogenesis and fetal life. Here, we evaluated whether maternal diet-induced VAD during pregnancy alone can cause changes in the ENS that lead to GI dysfunction in rat offspring. MAIN METHODS Rats were selected to construct animal models of normal VA, VA deficiency and VA supplementation. The fecal water content, total gastrointestinal transmission time and colonic motility were measured to evaluate gastrointestinal function of eight-week-old offspring rats. The expression levels of RARβ, SOX10, cholinergic (ChAT) and nitrergic (nNOS) enteric neurons in colon tissues were detected through western blot and immunofluorescence. Primary enteric neurospheres were treated with retinoic acid (RA), infection with Ad-RARβ and siRARβ adenovirus, respectively. KEY FINDINGS Our data revealed marked reductions in the mean densities of cholinergic and nitrergic enteric neurons in the colon and GI dysfunction evidenced by mild intestinal flatulence, increased fecal water content, prolonged total GI transit time and reduced colon motility in adult offspring of the VAD group. Interestingly, maternal VA supplementation (VAS) during pregnancy rescued these changes. In addition, in vitro experiments demonstrated that exposure to appropriate doses of RA promoted enteric neurosphere differentiation into cholinergic and nitrergic neurons, possibly by upregulating RARβ expression, leading to enhanced SOX10 expression. SIGNIFICANCE Maternal VAD during pregnancy is an environmental risk factor for GI dysfunction in rat offspring.
Collapse
Affiliation(s)
- Mei Tan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Huan Liu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Lu Xiao
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Cheng Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Jiang Zhu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, China; Ministry of Education Key Laboratory of Child Development and Disorders, China; National Clinical Research Center for Child Health and Disorder, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China.
| |
Collapse
|
72
|
Vonderwalde I, Finlayson-Trick E. Gut amyloid-β induces cognitive deficits and Alzheimer's disease-related histopathology in a mouse model. J Physiol 2020; 599:15-16. [PMID: 32985682 DOI: 10.1113/jp280624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/25/2020] [Indexed: 01/19/2023] Open
Affiliation(s)
- Ilan Vonderwalde
- Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
73
|
Lee JY, Tuazon JP, Corey S, Bonsack B, Acosta S, Ehrhart J, Sanberg PR, Borlongan CV. A Gutsy Move for Cell-Based Regenerative Medicine in Parkinson's Disease: Targeting the Gut Microbiome to Sequester Inflammation and Neurotoxicity. Stem Cell Rev Rep 2020; 15:690-702. [PMID: 31317505 PMCID: PMC6731204 DOI: 10.1007/s12015-019-09906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmaceuticals and cell-based regenerative medicine for Parkinson’s disease (PD) offer palliative relief but do not arrest the disease progression. Cell therapy has emerged as an experimental treatment, but current cell sources such as human umbilical cord blood (hUCB) stem cells display only partial recapitulation of mature dopaminergic neuron phenotype and function. Nonetheless, stem cell grafts ameliorate PD-associated histological and behavioral deficits likely through stem cell graft-secreted therapeutic substances. We recently demonstrated the potential of hUCB-derived plasma in enhancing motor capabilities and gastrointestinal function, as well as preventing dopaminergic neuronal cell loss, in an 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP) rodent model of PD. Recognizing the translational need to test in another PD model, we now examined here the effects of an intravenously transplanted combination of hUCB and plasma into the 6-hydroxydopamine (6-OHDA) lesioned adult rats. Animals received three separate doses of 4 × 106 hUCB cells with plasma beginning at 7 days after stereotaxic 6-OHDA lesion, then behaviorally and immunohistochemically evaluated over 56 days post-lesion. Whereas vehicle-treated lesioned animals exhibited the typical 6-OHDA neurobehavioral symptoms, hUCB and plasma-treated lesioned animals showed significant attenuation of motor function, gut motility, and nigral dopaminergic neuronal survival, combined with diminished pro-inflammatory microbiomes not only in the nigra, but also in the gut. Altogether these data support a regenerative medicine approach for PD by sequestering inflammation and neurotoxicity through correction of gut dysbiosis.
Collapse
Affiliation(s)
- Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Sydney Corey
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Sandra Acosta
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
| | - Jared Ehrhart
- Saneron CCEL Therapeutics, Inc., Tampa, FL, 33618, USA
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA.
- Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL, 33612, USA.
| |
Collapse
|
74
|
Ugrumov M. Development of early diagnosis of Parkinson's disease: Illusion or reality? CNS Neurosci Ther 2020; 26:997-1009. [PMID: 32597012 PMCID: PMC7539842 DOI: 10.1111/cns.13429] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
The fight against neurodegenerative diseases, Alzheimer disease and Parkinson's disease (PD), is a challenge of the 21st century. The low efficacy of treating patients is due to the late diagnosis and start of therapy, after the degeneration of most specific neurons and depletion of neuroplasticity. It is believed that the development of early diagnosis (ED) and preventive treatment will delay the onset of specific symptoms. This review evaluates methodologies for developing ED of PD. Since PD is a systemic disease, and the degeneration of certain neurons precedes that of nigrostriatal dopaminergic neurons that control motor function, the current methodology is based on searching biomarkers, such as premotor symptoms and changes in body fluids (BF) in patients. However, all attempts to develop ED were unsuccessful. Therefore, it is proposed to enhance the current methodology by (i) selecting among biomarkers found in BF in patients at the clinical stage those that are characteristics of animal models of the preclinical stage, (ii) searching biomarkers in BF in subjects at the prodromal stage, selected by detecting premotor symptoms and failure of the nigrostriatal dopaminergic system. Moreover, a new methodology was proposed for the development of ED of PD using a provocative test, which is successfully used in internal medicine.
Collapse
Affiliation(s)
- Michael Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Institute of Developmental Biology RAS, Moscow, Russia
| |
Collapse
|
75
|
Graham KD, López SH, Sengupta R, Shenoy A, Schneider S, Wright CM, Feldman M, Furth E, Valdivieso F, Lemke A, Wilkins BJ, Naji A, Doolin E, Howard MJ, Heuckeroth RO. Robust, 3-Dimensional Visualization of Human Colon Enteric Nervous System Without Tissue Sectioning. Gastroenterology 2020; 158:2221-2235.e5. [PMID: 32113825 PMCID: PMC7392351 DOI: 10.1053/j.gastro.2020.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions. METHODS Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions. RESULTS We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm2. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm3 with 38,706 ± 5763 neuron/mm3 and 129,321 ± 25,356 glia/mm3. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions. CONCLUSIONS We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.
Collapse
Affiliation(s)
- Kahleb D. Graham
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics at University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Silvia Huerta López
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Rajarshi Sengupta
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,American Association for Cancer Research, 615 Chestnut Street, 17th Floor, Philadelphia, PA 19106-4404
| | - Archana Shenoy
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Emma Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Federico Valdivieso
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Amanda Lemke
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Benjamin J. Wilkins
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104-4318
| | - Edward Doolin
- Pediatric General, Thoracic and Fetal Surgery, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A. 19104-4318
| | - Marthe J. Howard
- Department of Neurosciences, University of Toledo, Mail Stop # 1007, 3000 Arlington Avenue, Toledo, OH, U.S.A, 43614-2598
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| |
Collapse
|
76
|
Chalazonitis A, Li Z, Pham TD, Chen J, Rao M, Lindholm P, Saarma M, Lindahl M, Gershon MD. Cerebral dopamine neurotrophic factor is essential for enteric neuronal development, maintenance, and regulation of gastrointestinal transit. J Comp Neurol 2020; 528:2420-2444. [PMID: 32154930 DOI: 10.1002/cne.24901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022]
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is expressed in the brain and is neuroprotective. We have previously shown that CDNF is also expressed in the bowel and that its absence leads to degeneration and autophagy in the enteric nervous system (ENS), particularly in the submucosal plexus. We now demonstrate that enteric CDNF immunoreactivity is restricted to neurons (submucosal > myenteric) and is not seen in glia, interstitial cells of Cajal, or smooth muscle. Expression of CDNF, moreover, is essential for the normal development and survival of enteric dopaminergic neurons; thus, expression of the dopaminergic neuronal markers, dopamine, tyrosine hydroxylase, and dopamine transporter are deficient in the ileum of Cdnf -/- mice. The normal age-related decline in proportions of submucosal dopaminergic neurons is exacerbated in Cdnf -/- animals. The defect in Cdnf -/- animals is not dopamine-restricted; proportions of other submucosal neurons (NOS-, GABA-, and CGRP-expressing), are also deficient. The deficits in submucosal neurons are reflected functionally in delayed gastric emptying, slowed colonic motility, and prolonged total gastrointestinal transit. CDNF is expressed selectively in isolated enteric neural crest-derived cells (ENCDC), which also express the dopamine-related transcription factor Foxa2. Addition of CDNF to ENCDC promotes development of dopaminergic neurons; moreover, survival of these neurons becomes CDNF-dependent after exposure to bone morphogenetic protein 4. The effects of neither glial cell-derived neurotrophic factor (GDNF) nor serotonin are additive with CDNF. We suggest that CDNF plays a critical role in development and long-term maintenance of dopaminergic and other sets of submucosal neurons.
Collapse
Affiliation(s)
- Alcmène Chalazonitis
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - ZhiShan Li
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Tuan D Pham
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Jason Chen
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Meenakshi Rao
- Department of Pediatrics, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University, Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
77
|
Abstract
Many studies highlighted that a bidirectional communication between the gut and the central nervous system (CNS) exists. A vigorous immune response to antigens must be avoided, and pathogenic organisms crossing the gut barrier must be detected and killed. For this reason, the immune system developed fine mechanisms able to maintain this delicate balance. The microbiota is beneficial to its host, providing protection against pathogenic bacteria. It is intimately involved in numerous aspects of host physiology, from nutritional status to behavior and stress response. In the last few years, the implication of the gut microbiota and its bioactive microbiota-derived molecules in the progression of multiple diseases, as well as in the development of neurodegenerative disorders, gained increasing attention. The purpose of this review is to provide an overview of the gut microbiota with particular attention toward neurological disorders and mast cells. Relevant roles are played by the mast cells in neuroimmune communication, such as sensors and effectors of cytokines and neurotransmitters. In this context, the intake of beneficial bacterial strains as probiotics could represent a valuable therapeutic approach to adopt in combination with classical therapies. Further studies need to be performed to understand if the gut bacteria are responsible for neurological disorders or if neurological disorders influence the bacterial profile.
Collapse
|
78
|
Orr ME, Reveles KR, Yeh CK, Young EH, Han X. Can oral health and oral-derived biospecimens predict progression of dementia? Oral Dis 2020; 26:249-258. [PMID: 31541581 PMCID: PMC7031023 DOI: 10.1111/odi.13201] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/09/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Growing evidence indicates that oral health and brain health are interconnected. Declining cognition and dementia coincide with lack of self‐preservation, including oral hygiene. The oral microbiota plays an important role in maintaining oral health. Emerging evidence suggests a link between oral dysbiosis and cognitive decline in patients with Alzheimer's disease. This review showcases the recent advances connecting oral health and cognitive function during aging and the potential utility of oral‐derived biospecimens to inform on brain health. Collectively, experimental findings indicate that the connection between oral health and cognition cannot be underestimated; moreover, oral biospecimens are abundant and readily obtainable without invasive procedures, which may help inform on cognitive health.
Collapse
Affiliation(s)
- Miranda E Orr
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas.,Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas.,Department of Medicine, UT Health San Antonio, San Antonio, Texas.,Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas.,Gerontology and Geriatric Medicine, Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kelly R Reveles
- College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Pharmacotherapy Education & Research Center, UT Health San Antonio, San Antonio, Texas
| | - Chih-Ko Yeh
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas.,Geriatric Research, Education & Clinical Center and Research Service, South Texas Veterans Health Care System, San Antonio, Texas.,Comprehensive Dentistry, School of Dentistry, UT Health San Antonio, San Antonio, Texas
| | - Eric H Young
- College of Pharmacy, The University of Texas at Austin, Austin, Texas.,Pharmacotherapy Education & Research Center, UT Health San Antonio, San Antonio, Texas
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, San Antonio, Texas.,Department of Medicine, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
79
|
Lindahl M, Chalazonitis A, Palm E, Pakarinen E, Danilova T, Pham TD, Setlik W, Rao M, Võikar V, Huotari J, Kopra J, Andressoo JO, Piepponen PT, Airavaara M, Panhelainen A, Gershon MD, Saarma M. Cerebral dopamine neurotrophic factor-deficiency leads to degeneration of enteric neurons and altered brain dopamine neuronal function in mice. Neurobiol Dis 2019; 134:104696. [PMID: 31783118 PMCID: PMC7000201 DOI: 10.1016/j.nbd.2019.104696] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is neuroprotective for nigrostriatal dopamine neurons and restores dopaminergic function in animal models of Parkinson’s disease (PD). To understand the role of CDNF in mammals, we generated CDNF knockout mice (Cdnf−/−), which are viable, fertile, and have a normal life-span. Surprisingly, an age-dependent loss of enteric neurons occurs selectively in the submucosal but not in the myenteric plexus. This neuronal loss is a consequence not of increased apoptosis but of neurodegeneration and autophagy. Quantitatively, the neurodegeneration and autophagy found in the submucosal plexus in duodenum, ileum and colon of the Cdnf−/− mouse are much greater than in those of Cdnf+/+ mice. The selective vulnerability of submucosal neurons to the absence of CDNF is reminiscent of the tendency of pathological abnormalities to occur in the submucosal plexus in biopsies of patients with PD. In contrast, the number of substantia nigra dopamine neurons and dopamine and its metabolite concentrations in the striatum are unaltered in Cdnf−/− mice; however, there is an age-dependent deficit in the function of the dopamine system in Cdnf−/− male mice analyzed. This is observed as D-amphetamine-induced hyperactivity, aberrant dopamine transporter function, and as increased D-amphetamine-induced dopamine release demonstrating that dopaminergic axon terminal function in the striatum of the Cdnf−/− mouse brain is altered. The deficiencies of Cdnf−/− mice, therefore, are reminiscent of those seen in early stages of Parkinson’s disease.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland.
| | | | - Erik Palm
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Emmi Pakarinen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tatiana Danilova
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Tuan D Pham
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Wanda Setlik
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Meenakshi Rao
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Vootele Võikar
- Neuroscience Center/Laboratory Animal Center, Mustialankatu 1, FI-00014, University of Helsinki, Finland
| | - Jatta Huotari
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Jaakko Kopra
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Jaan-Olle Andressoo
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Petteri T Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, Viikinkaari 5E, FI-00014, University of Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| | - Michael D Gershon
- Department of Pathology & Cell Biology, Columbia University, NY, New York, USA
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE Unit, Viikinkaari 5D, FI-00014, University of Helsinki, Finland
| |
Collapse
|
80
|
Castillo X, Castro-Obregón S, Gutiérrez-Becker B, Gutiérrez-Ospina G, Karalis N, Khalil AA, Lopez-Noguerola JS, Rodríguez LL, Martínez-Martínez E, Perez-Cruz C, Pérez-Velázquez J, Piña AL, Rubio K, García HPS, Syeda T, Vanoye-Carlo A, Villringer A, Winek K, Zille M. Re-thinking the Etiological Framework of Neurodegeneration. Front Neurosci 2019; 13:728. [PMID: 31396030 PMCID: PMC6667555 DOI: 10.3389/fnins.2019.00728] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are among the leading causes of disability and death worldwide. The disease-related socioeconomic burden is expected to increase with the steadily increasing life expectancy. In spite of decades of clinical and basic research, most strategies designed to manage degenerative brain diseases are palliative. This is not surprising as neurodegeneration progresses "silently" for decades before symptoms are noticed. Importantly, conceptual models with heuristic value used to study neurodegeneration have been constructed retrospectively, based on signs and symptoms already present in affected patients; a circumstance that may confound causes and consequences. Hence, innovative, paradigm-shifting views of the etiology of these diseases are necessary to enable their timely prevention and treatment. Here, we outline four alternative views, not mutually exclusive, on different etiological paths toward neurodegeneration. First, we propose neurodegeneration as being a secondary outcome of a primary cardiovascular cause with vascular pathology disrupting the vital homeostatic interactions between the vasculature and the brain, resulting in cognitive impairment, dementia, and cerebrovascular events such as stroke. Second, we suggest that the persistence of senescent cells in neuronal circuits may favor, together with systemic metabolic diseases, neurodegeneration to occur. Third, we argue that neurodegeneration may start in response to altered body and brain trophic interactions established via the hardwire that connects peripheral targets with central neuronal structures or by means of extracellular vesicle (EV)-mediated communication. Lastly, we elaborate on how lifespan body dysbiosis may be linked to the origin of neurodegeneration. We highlight the existence of bacterial products that modulate the gut-brain axis causing neuroinflammation and neuronal dysfunction. As a concluding section, we end by recommending research avenues to investigate these etiological paths in the future. We think that this requires an integrated, interdisciplinary conceptual research approach based on the investigation of the multimodal aspects of physiology and pathophysiology. It involves utilizing proper conceptual models, experimental animal units, and identifying currently unused opportunities derived from human data. Overall, the proposed etiological paths and experimental recommendations will be important guidelines for future cross-discipline research to overcome the translational roadblock and to develop causative treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR, United States
| | - Susana Castro-Obregón
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamin Gutiérrez-Becker
- Artificial Intelligence in Medical Imaging KJP, Ludwig Maximilian University of Munich, Munich, Germany
| | - Gabriel Gutiérrez-Ospina
- Laboratorio de Biología de Sistemas, Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas y Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nikolaos Karalis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ahmed A. Khalil
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Liliana Lozano Rodríguez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eduardo Martínez-Martínez
- Cell Communication & Extracellular Vesicles Laboratory, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Claudia Perez-Cruz
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - Judith Pérez-Velázquez
- Departamento de Matemáticas y Mecánica, Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Mathematische Modellierung Biologischer Systeme, Fakultät für Mathematik, Technische Universität München, Munich, Germany
| | - Ana Luisa Piña
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karla Rubio
- Lung Cancer Epigenetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Tauqeerunnisa Syeda
- National Polytechnic Institute, Center of Research in Advanced Studies, Mexico City, Mexico
| | - America Vanoye-Carlo
- Laboratorio de Neurociencias, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City, Mexico
| | - Arno Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Katarzyna Winek
- The Shimon Peres Postdoctoral Fellow at the Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Institute for Medical and Marine Biotechnology, University of Lübeck, Lübeck, Germany
- Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Lübeck, Germany
| |
Collapse
|
81
|
Wang Y, Wang Q, Kuerban K, Dong M, Qi F, Li G, Ling J, Qiu W, Zhang W, Ye L. Colonic electrical stimulation promotes colonic motility through regeneration of myenteric plexus neurons in slow transit constipation beagles. Biosci Rep 2019; 39:BSR20182405. [PMID: 31064818 PMCID: PMC6522827 DOI: 10.1042/bsr20182405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Slow transit constipation (STC) is a common disease characterized by markedly delayed colonic transit time as a result of colonic motility dysfunction. It is well established that STC is mostly caused by disorders of relevant nerves, especially the enteric nervous system (ENS). Colonic electrical stimulation (CES) has been regarded as a valuable alternative for the treatment of STC. However, little report focuses on the underlying nervous mechanism to normalize the delayed colonic emptying and relieve symptoms. In the present study, the therapeutic effect and the influence on ENS triggered by CES were investigated in STC beagles. The STC beagle model was established by oral administration of diphenoxylate/atropine and alosetron. Histopathology, electron microscopy, immunohistochemistry, Western blot analysis and immunofluorescence were used to evaluate the influence of pulse train CES on myenteric plexus neurons. After 5 weeks of treatment, CES could enhance the colonic electromyogram (EMG) signal to promote colonic motility, thereby improving the colonic content emptying of STC beagles. HE staining and transmission electron microscopy confirmed that CES could regenerate ganglia and synaptic vesicles in the myenteric plexus. Immunohistochemical staining showed that synaptophysin (SYP), protein gene product 9.5 (PGP9.5), cathepsin D (CAD) and S-100B in the colonic intramuscular layer were up-regulated by CES. Western blot analysis and immunofluorescence further proved that CES induced the protein expression of SYP and PGP9.5. Taken together, pulse train CES could induce the regeneration of myenteric plexus neurons, thereby promoting the colonic motility in STC beagles.
Collapse
Affiliation(s)
- Yongbin Wang
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Qian Wang
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Pathology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Kudelaidi Kuerban
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mengxue Dong
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Feilong Qi
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Li
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Jie Ling
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Wei Qiu
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Wenzhong Zhang
- Pudong New Area People's Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai 201200, China
| | - Li Ye
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
82
|
Lee JY, Tuazon JP, Ehrhart J, Sanberg PR, Borlongan CV. Gutting the brain of inflammation: A key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson's disease model. J Cell Mol Med 2019; 23:5466-5474. [PMID: 31148353 PMCID: PMC6653272 DOI: 10.1111/jcmm.14429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/14/2022] Open
Abstract
Current therapies for Parkinson's disease (PD), including L‐3,4‐dihydroxyphenylalanine (L‐DOPA), and clinical trials investigating dopaminergic cell transplants, have generated mixed results with the eventual induction of dyskinetic side effects. Although human umbilical cord blood (hUCB) stem/progenitor cells present with no or minimal capacity of differentiation into mature dopaminergic neurons, their transplantation significantly attenuates parkinsonian symptoms likely via bystander effects, specifically stem cell graft‐mediated secretion of growth factors, anti‐inflammatory cytokines, or synaptic function altogether promoting brain repair. Recognizing this non‐cell replacement mechanism, we examined here the effects of intravenously transplanted combination of hUCB‐derived plasma into the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced rat model of PD. Animals received repeated dosing of either hUCB‐derived plasma or vehicle at 3, 5 and 10 days after induction into MPTP lesion, then behaviourally and immunohistochemically evaluated over 56 days post‐lesion. Compared to vehicle treatment, transplantation with hUCB‐derived plasma significantly improved motor function, gut motility and dopaminergic neuronal survival in the substantia nigra pars compacta (SNpc), which coincided with reduced pro‐inflammatory cytokines in both the SNpc and the intestinal mucosa and dampened inflammation‐associated gut microbiota. These novel data directly implicate a key pathological crosstalk between gut and brain ushering a new avenue of therapeutically targeting the gut microbiome with hUCB‐derived stem cells and plasma for PD.
Collapse
Affiliation(s)
- Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Julian P Tuazon
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | | | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Psychiatry, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida.,Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
83
|
Seguella L, Capuano R, Sarnelli G, Esposito G. Play in advance against neurodegeneration: exploring enteric glial cells in gut-brain axis during neurodegenerative diseases. Expert Rev Clin Pharmacol 2019; 12:555-564. [PMID: 31025582 DOI: 10.1080/17512433.2019.1612744] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: New investigations have shown that 'activated' enteric glial cells (EGCs), astrocyte-like cells of the enteric nervous system (ENS), represent a possible extra-CNS trigger point of the neurodegenerative processes in impaired intestinal permeability conditions. The early modulation of enteric glia-mediated neuroinflammation might optimize neuroprotective treatments outcomes currently used in neurodegenerative diseases. Areas covered: We discussed recent clinical and preclinical data existing on the Pubmed database, concerning the glial role in neurodegeneration. We focused on the gut as possible "entrance door" for endoluminal neurotoxic agents that induce neurological impairments during leaky gut conditions. Moreover, we reviewed the paradigmatic studies linking the leaky gut-induced priming of EGCs to the induction of late neurodegenerative processes in Parkinson's disease and other neurodegenerative disorders. Expert opinion: The previous appearance of neuropathological markers in the ENS emphasizes the extra-CNS origin of neurodegenerative disorders, by directing their therapies toward peripheral management of neurodegeneration. In light of the EGCs changes resulting from a switch-on of activated phenotype in leaky gut syndrome, EGCs sampling could be predictive for neuropathological conditions detection, anticipating their symptomatic manifestation in the CNS.
Collapse
Affiliation(s)
- Luisa Seguella
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Riccardo Capuano
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Giovanni Sarnelli
- b Department of Clinical Medicine and Surgery , University of Naples 'Federico II' , Naples , Italy
| | - Giuseppe Esposito
- a Department of Physiology and Pharmacology "V. Erspamer" , Sapienza University of Rome , Rome , Italy
| |
Collapse
|
84
|
Redenšek S, Flisar D, Kojović M, Kramberger MG, Georgiev D, Pirtošek Z, Trošt M, Dolžan V. Genetic variability of inflammation and oxidative stress genes does not play a major role in the occurrence of adverse events of dopaminergic treatment in Parkinson's disease. J Neuroinflammation 2019; 16:50. [PMID: 30813952 PMCID: PMC6393982 DOI: 10.1186/s12974-019-1439-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Inflammation and oxidative stress are recognized as important contributors to Parkinson's disease pathogenesis. As such, genetic variability in these pathways could have a role in susceptibility for the disease as well as in the treatment outcome. Dopaminergic treatment is effective in management of motor symptoms, but poses a risk for motor and non-motor adverse events. Our aim was to evaluate the impact of selected single-nucleotide polymorphisms in genes involved in inflammation and oxidative stress on Parkinson's disease susceptibility and the occurrence of adverse events of dopaminergic treatment. METHODS In total, 224 patients were enrolled, and their demographic and clinical data on the disease course were collected. Furthermore, a control group of 146 healthy Slovenian blood donors were included for Parkinson's disease' risk evaluation. Peripheral blood was obtained for DNA isolation. Genotyping was performed for NLRP3 rs35829419, CARD8 rs2043211, IL1β rs16944, IL1β rs1143623, IL6 rs1800795, CAT rs1001179, CAT rs10836235, SOD2 rs4880, NOS1 rs2293054, NOS1 rs2682826, TNF-α rs1800629, and GPX1 rs1050450. Logistic regression was used for analysis of possible associations. RESULTS We observed a nominally significant association of the IL1β rs1143623 C allele with the risk for Parkinson's disease (OR = 0.59; 95%CI = 0.38-0.92, p = 0.021). CAT rs1001179 A allele was significantly associated with peripheral edema (OR = 0.32; 95%CI = 0.15-0.68; p = 0.003). Other associations observed were only nominally significant after adjustments: NOS1 rs2682826 A allele and excessive daytime sleepiness and sleep attacks (OR = 1.75; 95%CI = 1.00-3.06, p = 0.048), SOD2 rs4880 T allele and nausea/vomiting (OR = 0.49, 95%CI = 0.25-0.94; p = 0.031), IL1β rs1143623 C allele and orthostatic hypotension (OR = 0.57, 95%CI = 0.32-1.00, p = 0.050), and NOS1 rs2682826 A allele and impulse control disorders (OR = 2.59; 95%CI = 1.09-6.19; p = 0.032). We did not find any associations between selected polymorphisms and motor adverse events. CONCLUSIONS Apart from some nominally significant associations, one significant association between CAT genetic variability and peripheral edema was observed as well. Therefore, the results of our study suggest some links between genetic variability in inflammation- and oxidative stress-related pathways and non-motor adverse events of dopaminergic treatment. However, the investigated polymorphisms do not play a major role in the occurrence of the disease and the adverse events of dopaminergic treatment.
Collapse
Affiliation(s)
- Sara Redenšek
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | | | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
85
|
Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil 2019; 25:48-60. [PMID: 30646475 PMCID: PMC6326209 DOI: 10.5056/jnm18087] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Disturbances along the brain-gut-microbiota axis may significantly contribute to the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) is the most frequent cause of dementia characterized by a progressive decline in cognitive function associated with the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. Alterations in the gut microbiota composition induce increased permeability of the gut barrier and immune activation leading to systemic inflammation, which in turn may impair the blood-brain barrier and promote neuroinflammation, neural injury, and ultimately neurodegeneration. Recently, Aβ has also been recognized as an antimicrobial peptide participating in the innate immune response. However, in the dysregulated state, Aβ may reveal harmful properties. Importantly, bacterial amyloids through molecular mimicry may elicit cross-seeding of misfolding and induce microglial priming. The Aβ seeding and propagation may occur at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing or via other cells as astrocytes, fibroblasts, microglia, and immune system cells. A growing body of experimental and clinical data confirms a key role of gut dysbiosis and gut microbiota-host interactions in neurodegeneration. The convergence of gut-derived inflammatory response together with aging and poor diet in the elderly contribute to the pathogenesis of AD. Modification of the gut microbiota composition by food-based therapy or by probiotic supplementation may create new preventive and therapeutic options in AD.
Collapse
Affiliation(s)
- Karol Kowalski
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| |
Collapse
|
86
|
Englinger B, Pirker C, Heffeter P, Terenzi A, Kowol CR, Keppler BK, Berger W. Metal Drugs and the Anticancer Immune Response. Chem Rev 2018; 119:1519-1624. [DOI: 10.1021/acs.chemrev.8b00396] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bernhard Englinger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Alessio Terenzi
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Christian R. Kowol
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, A-1090 Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
- Research Cluster “Translational Cancer Therapy Research”, University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
87
|
Gateway reflex: Local neuroimmune interactions that regulate blood vessels. Neurochem Int 2018; 130:104303. [PMID: 30273641 DOI: 10.1016/j.neuint.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023]
Abstract
Neuroimmunology is a research field that intersects neuroscience and immunology, with the larger aim of gaining significant insights into the pathophysiology of chronic inflammatory diseases such as multiple sclerosis. Conventional studies in this field have so far mainly dealt with immune responses in the nervous system (i.e. neuroinflammation) or systemic immune regulation by the release of glucocorticoids. On the other hand, recently accumulating evidence has indicated bidirectional interactions between specific neural activations and local immune responses. Here we discuss one such local neuroimmune interaction, the gateway reflex. The gateway reflex represents a mechanism that translates specific neural stimulations into local inflammatory outcomes by changing the state of specific blood vessels to allow immune cells to extravasate, thus forming the gateway. Several types of gateway reflex have been identified, and each regulates distinct blood vessels to create gateways for immune cells that induce local inflammation. The gateway reflex represents a novel therapeutic strategy for neuroinflammation and is potentially applicable to other inflammatory diseases in peripheral organs.
Collapse
|