51
|
Maruska KP, Carpenter RE, Fernald RD. Characterization of cell proliferation throughout the brain of the African cichlid fish Astatotilapia burtoni and its regulation by social status. J Comp Neurol 2013; 520:3471-91. [PMID: 22431175 DOI: 10.1002/cne.23100] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New cells are added in the brains of all adult vertebrates, but fishes have some of the greatest potential for neurogenesis and gliogenesis among all taxa, partly due to their indeterminate growth. Little is known, however, about how social interactions influence cell proliferation in the brain of these fishes that comprise the largest group of vertebrates. We used 5-bromo-2'-deoxyuridine (BrdU) to identify and localize proliferation zones in the telencephalon, diencephalon, mesencephalon, and rhombencephalon that were primarily associated with ventricular surfaces in the brain of the African cichlid fish Astatotilapia burtoni. Cell migration was evident in some regions by 1 day post injection, and many newborn cells coexpressed the neuronal marker HuC/D at 30 days, suggesting they had differentiated into neurons. To test the hypothesis that social status and perception of an opportunity to rise in rank influenced cell proliferation, we compared numbers of BrdU-labeled cells in multiple brain nuclei among fish of different social status. Socially suppressed subordinate males had the lowest numbers of proliferating cells in all brain regions examined, but males that were given an opportunity to rise in status had higher cell proliferation rates within 1 day, suggesting rapid upregulation of brain mitotic activity associated with this social transition. Furthermore, socially isolated dominant males had similar numbers of BrdU-labeled cells compared with dominant males that were housed in a socially rich environment, suggesting that isolation has little effect on proliferation and that reduced proliferation in subordinates is a result of the social subordination. These results suggest that A. burtoni will be a useful model to analyze the mechanisms of socially induced neurogenesis in vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biology, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
52
|
Ebbesson LOE, Braithwaite VA. Environmental effects on fish neural plasticity and cognition. JOURNAL OF FISH BIOLOGY 2012; 81:2151-2174. [PMID: 23252732 DOI: 10.1111/j.1095-8649.2012.03486.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae.
Collapse
Affiliation(s)
- L O E Ebbesson
- Uni Research AS, Thormøhlensgate 49B, 5006 Bergen, Norway.
| | | |
Collapse
|
53
|
Fraser TWK, Fjelldal PG, Skjæraasen JE, Hansen T, Mayer I. Triploidy alters brain morphology in pre-smolt Atlantic salmon Salmo salar: possible implications for behaviour. JOURNAL OF FISH BIOLOGY 2012; 81:2199-2212. [PMID: 23252734 DOI: 10.1111/j.1095-8649.2012.03479.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Total brain mass and the volumes of five specific brain regions in diploid and triploid Atlantic salmon Salmo salar pre-smolts were measured using digital images. There were no significant differences (P > 0·05) in total brain mass when corrected for fork length, or the volumes of the optic tecta or hypothalamus when corrected for brain mass, between diploids and triploids. There was a significant effect (P < 0·01) of ploidy on the volume of the olfactory bulb, with it being 9·0% larger in diploids compared with triploids. The cerebellum and telencephalon, however, were significantly larger, 17 and 8% respectively, in triploids compared with diploids. Sex had no significant effect (P > 0·05) on total brain mass or the volumes of any measured brain region. As the olfactory bulbs, cerebellum and telencephalon are implicated in a number of functions, including foraging ability, aggression and spatial cognition, these results may explain some of the behavioural differences previously reported between diploids and triploids.
Collapse
Affiliation(s)
- T W K Fraser
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, 0033 Oslo, Norway.
| | | | | | | | | |
Collapse
|
54
|
Yoshida M, Kondo H. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2012; 8:52. [PMID: 23114007 PMCID: PMC3505750 DOI: 10.1186/1744-9081-8-52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/29/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. METHODS Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. RESULTS The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned responses on a trial-to-trial basis. CONCLUSIONS These results demonstrate that Purkinje cells in the corpus cerebelli of goldfish show fear conditioning-related changes in response to a stimulus that had been emotionally neutral prior to conditioning. Unconditioned stimulus-induced climbing fibre inputs to the Purkinje cells may be involved in mediating these plastic changes.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Hiroki Kondo
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
55
|
Sex-specific plasticity in brain morphology depends on social environment of the guppy, Poecilia reticulata. Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1403-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
56
|
Ben-Simon A, Ben-Shahar O, Vasserman G, Segev R. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish. ACTA ACUST UNITED AC 2012; 215:4248-54. [PMID: 22972882 DOI: 10.1242/jeb.076018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interception of fast-moving targets is a demanding task many animals solve. To handle it successfully, mammals employ both saccadic and smooth pursuit eye movements in order to confine the target to their area centralis. But how can non-mammalian vertebrates, which lack smooth pursuit, intercept moving targets? We studied this question by exploring eye movement strategies employed by archer fish, an animal that possesses an area centralis, lacks smooth pursuit eye movements, but can intercept moving targets by shooting jets of water at them. We tracked the gaze direction of fish during interception of moving targets and found that they employ saccadic eye movements based on prediction of target position when it is hit. The fish fixates on the target's initial position for ∼0.2 s from the onset of its motion, a time period used to predict whether a shot can be made before the projection of the target exits the area centralis. If the prediction indicates otherwise, the fish performs a saccade that overshoots the center of gaze beyond the present target projection on the retina, such that after the saccade the moving target remains inside the area centralis long enough to prepare and perform a shot. These results add to the growing body of knowledge on biological target tracking and may shed light on the mechanism underlying this behavior in other animals with no neural system for the generation of smooth pursuit eye movements.
Collapse
Affiliation(s)
- Avi Ben-Simon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
57
|
Hibi M, Shimizu T. Development of the cerebellum and cerebellar neural circuits. Dev Neurobiol 2012; 72:282-301. [DOI: 10.1002/dneu.20875] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
58
|
Neural plasticity is affected by stress and heritable variation in stress coping style. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:161-71. [PMID: 22285148 DOI: 10.1016/j.cbd.2012.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 02/07/2023]
Abstract
Here we use a comparative model to investigate how behavioral and physiological traits correlate with neural plasticity. Selection for divergent post-stress cortisol levels in rainbow trout (Oncorhynchus mykiss) has yielded low- (LR) and high responsive (HR) lines. Recent reports show low behavioral flexibility in LR compared to HR fish and we hypothesize that this divergence is caused by differences in neural plasticity. Genes involved in neural plasticity and neurogenesis were investigated by quantitative PCR in brains of LR and HR fish at baseline conditions and in response to two different stress paradigms: short-term confinement (STC) and long-term social (LTS) stress. Expression of proliferating cell nuclear antigen (PCNA), neurogenic differentiation factor (NeuroD) and doublecortin (DCX) was generally higher in HR compared to LR fish. STC stress led to increased expression of PCNA and brain-derived neurotrophic factor (BDNF) in both lines, whereas LTS stress generally suppressed PCNA and NeuroD expression while leaving BDNF expression unaltered. These results indicate that the transcription of neuroplasticity-related genes is associated with variation in coping style, while also being affected by STC - and LTS stress in a biphasic manner. A higher degree of neural plasticity in HR fish may provide the substrate for enhanced behavioral flexibility.
Collapse
|
59
|
Rajan KE, Ganesh A, Dharaneedharan S, Radhakrishnan K. Spatial learning-induced egr-1 expression in telencephalon of gold fish Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:153-159. [PMID: 20714804 DOI: 10.1007/s10695-010-9425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
The immediate-early gene (egr-1) expression was used to examine the neuron's response in telencephalon of goldfish during spatial learning in small space. Fishes were pre-exposed in the experimental apparatus and trained to pick food from the tray in a rectangular-shaped arena. The apparatus was divided into identical compartments comprising three gates to provide different spatial tasks. After the fish learned to pass through the gate one, two more gates were introduced one by one. Fish made more number of attempts and took longer time (P < 0.05) to pass through the first gate than the gate two or three. This active learning induces the expression of egr-1 in telencephalon as established by western blot analysis. Subsequently, the fish learn quickly to cross the similar type of second and third gate and make fewer errors with a corresponding decline in the level of egr-1 expression. As the fish learned to pass through all the three gates, third gate was replaced by modified gate three. Interestingly, the level of egr-1 expression increased again, when the fish exhibit a high exploratory behavior to cross the modified gate three. The present study shows that egr-1 expression is induced in the telencephalon of goldfish while intensively acquiring geometric spatial information to pass through the gates.
Collapse
Affiliation(s)
- K Emmanuvel Rajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| | | | | | | |
Collapse
|
60
|
Sex, ecology and the brain: evolutionary correlates of brain structure volumes in Tanganyikan cichlids. PLoS One 2010; 5:e14355. [PMID: 21179407 PMCID: PMC3003682 DOI: 10.1371/journal.pone.0014355] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/24/2010] [Indexed: 11/19/2022] Open
Abstract
Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected traits for species averages, the effect of ecological traits for each sex separately and the influence of sexual selection on structure dimorphism. Our results indicate that both ecological and sexually selected traits have influenced brain structure evolution. The patterns observed in males and females generally followed those observed at the species level. Interestingly, our results suggest that strong sexual selection is associated with reduced structure volumes, since all correlations between sexually selected traits and structure volumes were negative and the only statistically significant association between sexual selection and structure dimorphism was also negative. Finally, we previously found that monoparental female care was associated with increased brain size. However, here cerebellum and hypothalamus volumes, after controlling for brain size, associated negatively with female-only care. Thus, in accord with the mosaic model of brain evolution, brain structure volumes may not respond proportionately to changes in brain size. Indeed selection favoring larger brains can simultaneously lead to a reduction in relative structure volumes.
Collapse
|
61
|
Delgado LM, Schmachtenberg O. Neurogenesis in the Adult Goldfish Cerebellum. Anat Rec (Hoboken) 2010; 294:11-5. [DOI: 10.1002/ar.21291] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 09/21/2010] [Indexed: 11/11/2022]
|
62
|
Measuring anxiety in zebrafish: A critical review. Behav Brain Res 2010; 214:157-71. [DOI: 10.1016/j.bbr.2010.05.031] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 11/18/2022]
|
63
|
Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci 2010; 11:90. [PMID: 20678210 PMCID: PMC2919542 DOI: 10.1186/1471-2202-11-90] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 01/06/2023] Open
Abstract
Recent research has demonstrated the suitability of adult zebrafish to model some aspects of complex behaviour. Studies of reward behaviour, learning and memory, aggression, anxiety and sleep strongly suggest that conserved regulatory processes underlie behaviour in zebrafish and mammals. The isolation and molecular analysis of zebrafish behavioural mutants is now starting, allowing the identification of novel behavioural control genes. As a result of this, studies of adult zebrafish are now helping to uncover the genetic pathways and neural circuits that control vertebrate behaviour.
Collapse
Affiliation(s)
- William Norton
- CNRS, UPR, Institute of Neurobiology Albert Fessard, Gif-sur-Yvette, France.
| | | |
Collapse
|
64
|
Matsunaga W, Watanabe E. Habituation of medaka (Oryzias latipes) demonstrated by open-field testing. Behav Processes 2010; 85:142-50. [PMID: 20615458 DOI: 10.1016/j.beproc.2010.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/16/2010] [Accepted: 06/29/2010] [Indexed: 01/11/2023]
Abstract
Habituation to novel environments is frequently studied to analyze cognitive phenotypes in animals, and an open-field test is generally conducted to investigate the changes that occur in animals during habituation. The test has not been used in behavioral studies of medaka (Oryzias latipes), which is recently being used in behavioral research. Therefore, we examined the open-field behavior of medaka on the basis of temporal changes in 2 conventional indexes of locomotion and position. The findings of our study clearly showed that medaka changed its behavior through multiple temporal phases as it became more familiar with new surroundings; this finding is consistent with those of other ethological studies in animals. During repeated open-field testing on 2 consecutive days, we observed that horizontal locomotion on the second day was less than that on the first day, which suggested that habituation is retained in fish for days. This temporal habituation was critically affected by water factors or visual cues of the tank, thereby suggesting that fish have spatial memory of their surroundings. Thus, the data from this study will afford useful fundamental information for behavioral phenotyping of medaka and for elucidating cognitive phenotypes in animals.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Laboratory of Neurophysiology, National Institute for Basic Biology, Higashiyama 5-1, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | | |
Collapse
|
65
|
Ampatzis K, Dermon CR. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol 2010; 518:1418-41. [PMID: 20187137 DOI: 10.1002/cne.22278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The beta(2)-adrenergic receptors (ARs) are G-protein-coupled receptors that mediate the physiological responses to adrenaline and noradrenaline. The present study aimed to determine the regional distribution of beta(2)-ARs in the adult zebrafish (Danio rerio) brain by means of in vitro autoradiographic and immunohistochemical methods. The immunohistochemical localization of beta(2)-ARs, in agreement with the quantitative beta-adrenoceptor autoradiography, showed a wide distribution of beta(2)-ARs in the adult zebrafish brain. The cerebellum and the dorsal zone of periventricular hypothalamus exhibited the highest density of [(3)H]CGP-12177 binding sites and beta(2)-AR immunoreactivity. Neuronal cells strongly stained for beta(2)-ARs were found in the periventricular ventral telencephalic area, magnocellular and parvocellular superficial pretectal nuclei (PSm, PSp), occulomotor nucleus (NIII), locus coeruleus (LC), medial octavolateral nucleus (MON), magnocellular octaval nucleus (MaON) reticular formation (SRF, IMRF, IRF), and ganglionic cell layer of cerebellum. Interestingly, in most cases (NIII, LC, MON, MaON, SRF, IMRF, ganglionic cerebellar layer) beta(2)-ARs were colocalized with alpha(2A)-ARs in the same neuron, suggesting their interaction for mediating the physiological functions of nor/adrenaline. Moderate to low labeling of beta(2)-ARs was found in neurons in dorsal telencephalic area, optic tectum (TeO), torus semicircularis (TS), and periventricular gray zone of optic tectum (PGZ). In addition to neuronal, glial expression of beta(2)-ARs was found in astrocytic fibers located in the central gray and dorsal rhombencephalic midline, in close relation to the ventricle. The autoradiographic and immunohistochemical distribution pattern of beta(2)-ARs in the adult zebrafish brain further support the conserved profile of adrenergic/noradrenergic system through vertebrate brain evolution.
Collapse
|
66
|
Abstract
Fish act aggressively towards their mirror image suggesting that they consider it another individual, whereas in some mammals behavioural response to mirrors may be an evidence of self-recognition. Since fish cannot self-recognize, we asked whether they could distinguish between fighting a mirror image and fighting a real fish. We compared molecular, physiological and behavioural responses in each condition and found large differences in brain gene expression levels. Although neither levels of aggressive behaviour nor circulating androgens differed between these conditions, males fighting a mirror image had higher immediate early gene (IEG) expression in brain areas homologous to the amygdala and hippocampus than controls. Since amygdalar responses are associated with fear and fear conditioning in other species, higher levels of brain activation when fighting a mirror suggest fish experience fear in response to fights with a mirror image. Clearly, the fish recognize something unusual about the mirror image and the differential brain response may reflect a cognitive distinction.
Collapse
|
67
|
Yoshida M, Hirano R. Effects of local anesthesia of the cerebellum on classical fear conditioning in goldfish. Behav Brain Funct 2010; 6:20. [PMID: 20331854 PMCID: PMC2848191 DOI: 10.1186/1744-9081-6-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 03/23/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Besides the amygdala, of which emotion roles have been intensively studied, the cerebellum has also been demonstrated to play a critical role in simple classical fear conditioning in both mammals and fishes. In the present study, we examined the effect of local administration of the anesthetic agent lidocaine into the cerebellum on fear-related, classical heart-rate conditioning in goldfish. METHODS The effects of microinjection of the anesthetic agent lidocaine into the cerebellum on fear conditioning were investigated in goldfish. The fear conditioning paradigm was delayed classical conditioning with light as a conditioned stimulus and electric shock as an unconditioned stimulus; cardiac deceleration (bradycardia) was the conditioned response. RESULTS Injecting lidocaine into the cerebellum had no effect on the base heart rate, an arousal/orienting response to the novel stimulus (i.e., the first presentation of light), or an unconditioned response to electric shock. However, lidocaine injection greatly impaired acquisition of conditioned bradycardia. Lidocaine injection 60 min before the start of the conditioning procedure showed no effect on acquisition of conditioned bradycardia, indicating that the effect of lidocaine was reversible. CONCLUSIONS The present results further confirm the idea that the cerebellum in teleost fish, as in mammals, is critically involved in classical fear conditioning.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima 739-8528, Japan.
| | | |
Collapse
|
68
|
Pineal projections in the zebrafish (Danio rerio): overlap with retinal and cerebellar projections. Neuroscience 2009; 164:1712-20. [DOI: 10.1016/j.neuroscience.2009.09.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 11/20/2022]
|
69
|
Yoshida M, Hirano R, Shima T. Photocardiography: a novel method for monitoring cardiac activity in fish. Zoolog Sci 2009; 26:356-61. [PMID: 19715506 DOI: 10.2108/zsj.26.356] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A non-invasive technique to monitor cardiac activity in small fish, such as goldfish, zebrafish, and medaka, is needed. In the present study, we developed photocardiography (PCG), a non-invasive optical method, to record cardiac activity in small fish. The method monitors changes in near-infrared light transmission through the heart using a phototransistor located outside the body. With this technique, heartbeats in fish of various sizes (14-218 mm) were stably recorded. PCG was applied to monitor the heartbeat during fear-related classical heart rate conditioning in goldfish wherein an electrical shock was used as an unconditioned stimulus. The heartbeats were continuously monitored, even when the beat coincided with the electrical shock, showing that PCG is robust even in an electrically noisy environment. This technique is particularly useful when monitoring the heartbeats of fish of small size or in the presence of ambient electrical noise, conditions in which the use of conventional electrocardiography (ECG) is difficult.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima, Japan.
| | | | | |
Collapse
|
70
|
Spence RD, Zhen Y, White S, Schlinger BA, Day LB. Recovery of motor and cognitive function after cerebellar lesions in a songbird: role of estrogens. Eur J Neurosci 2009; 29:1225-34. [PMID: 19302157 DOI: 10.1111/j.1460-9568.2009.06685.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to its key role in complex motor function, the cerebellum is increasingly recognized to have a role in cognition. Songbirds are particularly good models for the investigation of motor and cognitive processes but little is known about the role of the songbird cerebellum in these processes. To explore cerebellar function in a songbird, we lesioned the cerebellum of adult female zebra finches and examined the effects on a spatial working memory task and on motor function during this task. There is evidence for steroid synthesis in the songbird brain and neurosteroids may have an impact on some forms of neural plasticity in adult songbirds. We therefore hypothesized that neurosteroids would affect motor and cognitive function after a cerebellar injury. We found that cerebellar lesions produced deficits in motor and cognitive aspects of a spatial task. In line with our prediction, birds in which estrogen synthesis was blocked had impaired performance in our spatial task compared with those that had estrogen synthesis blocked but estrogen replaced. There was no clear effect of estrogen replacement on motor function. We also found that lesions induced expression of the estrogen synthetic enzyme aromatase in reactive astrocytes and Bergmann glia around a cerebellar lesion. These data suggest that the cerebellum of songbirds mediates both motor and cognitive function and that estrogens may improve the recovery of cognitive aspects of cerebellar function after injury.
Collapse
Affiliation(s)
- Rory D Spence
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
71
|
Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima SI, Hibi M. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 2009; 330:406-26. [PMID: 19371731 DOI: 10.1016/j.ydbio.2009.04.013] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/06/2009] [Accepted: 04/07/2009] [Indexed: 01/11/2023]
Abstract
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1(+) granule cells and vglut2(high) cells, which receive Purkinje cell inputs; some vglut2(high) cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2(+) neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.
Collapse
Affiliation(s)
- Young-Ki Bae
- Laboratory for Vertebrate Axis Formation, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Wang X, Cai J, Zhang J, Wang C, Yu A, Chen Y, Zuo Z. Acute trimethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2008; 90:58-64. [PMID: 18801585 DOI: 10.1016/j.aquatox.2008.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2008] [Revised: 07/24/2008] [Accepted: 07/31/2008] [Indexed: 05/26/2023]
Abstract
Trimethyltin (TMT) is a well-documented neurotoxicant that affects the function of central nervous system (CNS). In this study, we studied the neurotoxicity of TMT on the brain of marine fish Sebastiscus marmoratus. Our results showed that TMT acute exposure induced brain cell apoptosis in the telencephalon, optic tectum and cerebellum. In addition, we observed increased production of reactive oxygen species (ROS), nitric oxide (NO) and one asparate-specific cysteinyl protease named caspase-3 which are often associated with the processes of cell apoptosis, in the brain of S. marmoratus after acute treatment of TMT. Our results indicated that TMT induces neurotoxicity and oxidative stress in marine fish S. marmoratus. Our results suggested that TMT exposure in the environment may affect fish behaviors including schooling, sensory and motorial learnings, based on the observation of cell apoptosis in the cerebral regions.
Collapse
Affiliation(s)
- Xinli Wang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen City 361005, PR China
| | | | | | | | | | | | | |
Collapse
|
73
|
Desjardins JK, Fernald RD. How do social dominance and social information influence reproduction and the brain? Integr Comp Biol 2008; 48:596-603. [PMID: 21669819 DOI: 10.1093/icb/icn089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
How does living in a social environment influence the brain? In particular, we ask the following questions: How do animals perceive and use social information? How does the perception of social information influence the reproductive system? Where is this represented in the brain? We present a model system in which these questions can be addressed, focusing on the brain's role in integrating information. In the social fish, Astatotilapia burtoni (Haplochromis), the relationship between social status and gonadotropin-releasing hormone (GnRH1) has been well established. Change in status results in numerous changes in the physiology of A. burtoni at every level of organization. Social status can regulate reproduction via the hypothalamic-pituitary-gonadal (HPG) axis. GnRH1 is used by the brain to signal the pituitary about reproductive state so reproductive control depends on regulation of this signaling peptide. In this fish, social dominance is tightly coupled to fertility. Here, we have exploited this link to understand the regulatory systems from circulating hormones, brain volume to gene expression.
Collapse
|
74
|
Zhang J, Zuo Z, Chen R, Chen Y, Wang C. Tributyltin exposure causes brain damage in Sebastiscus marmoratus. CHEMOSPHERE 2008; 73:337-343. [PMID: 18644613 DOI: 10.1016/j.chemosphere.2008.05.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 05/03/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
Tributyltin (TBT) is a ubiquitous marine environmental contaminant characterized primarily by its reproductive toxicity. However, the neurotoxic effect of TBT has not been extensively described, especially in fishes which have a high number of species in the marine environment. This study was conducted to investigate the neurotoxic effects of TBT at environmental levels (1, 10, and 100ngl(-1)) on female Sebastiscus marmoratus. The results showed that TBT exposure induced apoptosis in brain cells of three regions including the pallial areas of the telencephalon, the granular layer of the optic tectum, and the cerebellum. In addition, the increase of reactive oxygen species and nitric oxide levels, and the decrease of Na+/K+-ATPase activity were found in the brain. The results strongly indicated neurotoxicity of TBT to fishes. According to the regions in which apoptosis was found in the brain, TBT exposure might influence the schooling, sensory and motorial functions of fishes.
Collapse
Affiliation(s)
- Jiliang Zhang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | | | | | |
Collapse
|
75
|
Abstract
AIM To establish a link between rCBF assessed with Tc-ECD SPET and the clinical manifestation of the disease. METHODS We performed the study on 11 patients (five girls and six boys; mean age 11.2 years) displaying autistic behaviour and we compared their data with that of an age-matched reference group of eight normal children. A quantitative analysis of rCBF was performed calculating a perfusion index (PI) and an asymmetry index (AI) in each lobe. Images were analysed with statistical parametric mapping software, following the spatial normalization of SPET images for a standard brain. RESULTS A statistically significant (P=0.003) global reduction of CBF was found in the group of autistic children (PI=1.07+/-0.07) when compared with the reference group (PI=1.25+/-0.12). Moreover, a significant difference was also observed for the right-to-left asymmetry of hemispheric perfusion between the control group and autistic patients (P=0.0085) with a right prevalence greater in autistic (2.90+/-1.68) with respect to normal children (1.12+/-0.49). Our data show a significant decrease of global cerebral perfusion in autistic children in comparison with their normal counterparts and the existence of left-hemispheric dysfunction, especially in the temporo-parietal areas devoted to language and the comprehension of music and sounds. CONCLUSION We suggest that these abnormal areas are related to the cognitive impairment observed in autistic children, such as language deficits, impairment of cognitive development and object representation, and abnormal perception and responses to sensory stimuli. Tc-ECD SPET seems to be sensitive in revealing brain blood flow alterations and left-to-right asymmetries, when neuroradiological patterns are normal.
Collapse
|
76
|
Volkmann K, Rieger S, Babaryka A, Köster RW. The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Dev Biol 2008; 313:167-80. [DOI: 10.1016/j.ydbio.2007.10.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/18/2007] [Accepted: 10/15/2007] [Indexed: 11/27/2022]
|
77
|
Dezfuli BS, Giari L, Shinn AP. The role of rodlet cells in the inflammatory response in Phoxinus phoxinus brains infected with Diplostomum. FISH & SHELLFISH IMMUNOLOGY 2007; 23:300-4. [PMID: 17182257 DOI: 10.1016/j.fsi.2006.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 11/07/2006] [Accepted: 11/08/2006] [Indexed: 05/13/2023]
Abstract
European minnows, Phoxinus phoxinus L., are commonly infected with Diplostomum phoxini Faust, 1918 metacercariae. A sub-sample of 34 minnows collected from the River Endrick, Stirlingshire, Scotland revealed that 50% of the population were infected (n = 17), with the cerebellum, medulla oblongata and the optic lobe regions of the minnow brain bearing the heaviest infections (13.7 +/- 2.6 mean +/- S.E.; 1-38 range). Serial histological sections through the brains of both uninfected and infected minnows revealed the presence of rodlet cells in the latter, which were occasionally observed in close proximity to the tegument of a metacercaria. Rodlet cells were the only type of host inflammatory cells found in this study and their role in the host's immune response to parasitic infection is commented upon.
Collapse
Affiliation(s)
- Bahram S Dezfuli
- Department of Biology, University of Ferrara, Via Borsari, 46, 44100 Ferrara, Italy.
| | | | | |
Collapse
|
78
|
Matsumoto N, Yoshida M, Uematsu K. Effects of partial ablation of the cerebellum on sustained swimming in goldfish. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:105-14. [PMID: 17519524 DOI: 10.1159/000102972] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 07/03/2006] [Indexed: 11/19/2022]
Abstract
To investigate the role of the corpus cerebelli in the control of sustained swimming or cruising in goldfish, Carassius auratus, we conducted experiments examining the effects of partial ablation of the corpus cerebelli (CC) on swimming performance against constant water flow at various speeds. Ten out of 15 CC-ablated fish successfully maintained sustained swimming against water flow even at the highest speed tested (3.0 body lengths per second). This result showed that the CC is not crucial for generating the simple swimming motor pattern, although some effects of the surgical operation itself on the capability of the sustained swimming were found in both sham-operated and CC-ablated fish. However, we found that both tail-beat amplitude and frequency in CC-ablated goldfish tended to be greater than that of control fish at the same swimming speeds. The thrust index (square of the value obtained by multiplying the tail beat frequency (Hz) by twice the tail beat amplitude (mm)) was significantly larger in CC-ablated fish than in control fish at higher swimming speeds (> or =2.0 body length per second). This result suggests that CC-ablated goldfish produced more thrust by tail beats than control fish to maintain sustained swimming at higher speeds. We concluded that in goldfish the CC plays no major role in the posture control and generation of simple forward swimming movement, although the integrity of the CC is important for execution of normal swim gait.
Collapse
Affiliation(s)
- Noritaka Matsumoto
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima, Japan
| | | | | |
Collapse
|
79
|
Ampatzis K, Dermon CR. Sex differences in adult cell proliferation within the zebrafish (Danio rerio) cerebellum. Eur J Neurosci 2007; 25:1030-40. [PMID: 17331199 DOI: 10.1111/j.1460-9568.2007.05366.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been reported that neurons generated in the adult brain show sex-specific differences in several brain regions of lower vertebrates and mammals. The present study questioned whether cell proliferation and survival in the adult zebrafish (Danio rerio) cerebellum, the most mitotically active area of adult teleost brain, is sexually differentiated. Adult zebrafish were treated with the thymidine analogue 5'-bromo-2'-deoxyuridine (BrdU) and allowed to survive for 24 h (short-term) and for 21 days (long-term). BrdU immunohistochemistry allowed visualization of cells incorporating BrdU at the S phase of mitosis. At short-term survival, male zebrafish had a higher number of labelled cells at proliferation sites of the molecular layer of corpus cerebelli (CCe) and the granular layer of the caudal lobe of the cerebellum (LCa) than did females. In long-term survival, BrdU-positive cells were found at their final destination, but only the granular layer of the medial division of the valvula cerebelli showed sex-specific differences in the number of labelled cells. This higher mitotic activity in male cerebellum might be related to sex-specific motor behaviour observed in male zebrafish. To investigate the role of programmed cell death, the terminal deoxynucleotidyl-mediated dUTP nick-end-labelling (TUNEL) method was applied. The vast majority of apoptotic figures occurred in the granular cell layer of valvula and CCe, only in a few cases within the BrdU-retaining cells. Apoptosis was found specifically at the sites of the final destination of proliferating cells, indicating that the close relation of cell birth and death might represent a possible plasticity mechanism in the adult zebrafish cerebellum.
Collapse
|
80
|
Salas C, Broglio C, Durán E, Gómez A, Ocaña FM, Jiménez-Moya F, Rodríguez F. Neuropsychology of Learning and Memory in Teleost Fish. Zebrafish 2006; 3:157-71. [DOI: 10.1089/zeb.2006.3.157] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cosme Salas
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | - Cristina Broglio
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | - Emilio Durán
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | - Antonia Gómez
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | | | | | | |
Collapse
|
81
|
Iwaniuk AN, Hurd PL, Wylie DRW. Comparative morphology of the avian cerebellum: I. Degree of foliation. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:45-62. [PMID: 16717442 DOI: 10.1159/000093530] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 12/16/2005] [Indexed: 11/19/2022]
Abstract
Despite the conservative circuitry of the cerebellum, there is considerable variation in the shape of the cerebellum among vertebrates. One aspect of cerebellar morphology that is of particular interest is the degree of folding, or foliation, of the cerebellum and its functional significance. Here, we present the first comprehensive analysis of variation in cerebellar foliation in birds with the aim of determining the effects that allometry, phylogeny and development have on species differences in the degree of cerebellar foliation. Using both conventional and phylogenetically based statistics, we assess the effects of these variables on cerebellar foliation among 91 species of birds. Overall, our results indicate that allometry exerts the strongest effect and accounts for more than half of the interspecific variation in cerebellar foliation. In addition, we detected a significant phylogenetic effect. A comparison among orders revealed that several groups, corvids, parrots and seabirds, have significantly more foliated cerebella than other groups, after accounting for allometric effects. Lastly, developmental mode was weakly correlated with relative cerebellar foliation, but incubation period and fledging age were not. From our analyses, we conclude that allometric and phylogenetic effects exert the strongest effects and developmental mode a weak effect on avian cerebellar foliation. The phylogenetic distribution of highly foliated cerebella also suggests that cognitive and/or behavioral differences play a role in the evolution of the cerebellum.
Collapse
Affiliation(s)
- Andrew N Iwaniuk
- Department of Psychology, University of Alberta, Edmonton, Canada.
| | | | | |
Collapse
|
82
|
Montefusco-Siegmund RA, Romero A, Kausel G, Muller M, Fujimoto M, Figueroa J. Cloning of the prepro C-RFa gene and brain localization of the active peptide in Salmo salar. Cell Tissue Res 2006; 325:277-85. [PMID: 16557384 DOI: 10.1007/s00441-006-0168-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
In all vertebrates, the synthesis and release of prolactin (Prl) from pituitary lactotroph cells is tightly controlled by hypothalamic factors. We have cloned and characterized a hypothalamic cDNA from Atlantic salmon (Salmo salar) encoding C-RFa, a peptide structurally related to mammalian Prl-releasing peptide (PrRP). The deduced preprohormone precursor is composed of 155 amino acid residues presenting a 87.1% similarity to chum salmon C-RFa and a 100% similarity to all fish C-RFa in the bioactive precursor motifs. C-RFa-immunoreactive perikarya and fibres were located in the brain of S. salar, especially in the hypothalamus, olfactory tract, optic tectum and cerebellum. In contrast, immunolabelled fibres were not observed in the pituitary stalk or in the hypophysis. However, interestingly, we detected immunolabelled cells in the rostral pars distalis of the pituitary in the basolateral region in which Prl is synthesized. These results were confirmed by obtaining a strong signal by using reverse transcription/polymerase chain reaction (RT-PCR) on mRNA from both hypothalamus and pituitary. These data show, for the first time, by immunohistochemistry and RT-PCR, that C-RFa is produced in pituitary cells. Finally, based on these results, a possible function for C-RFa as a locally produced PrRP in this teleost is discussed.
Collapse
Affiliation(s)
- R A Montefusco-Siegmund
- Instituto de Bioquímica, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile
| | | | | | | | | | | |
Collapse
|
83
|
Broglio C, Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Rodríguez F, Salas C. Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, temporal and emotional memory in actinopterygian fish. Brain Res Bull 2006; 66:277-81. [PMID: 16144602 DOI: 10.1016/j.brainresbull.2005.03.021] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 03/20/2005] [Indexed: 11/20/2022]
Abstract
In mammals and birds different pallial forebrain areas participate in separate memory systems. In particular, the hippocampal pallium is implicated in spatial memory and temporal attribute processing, whereas the amygdalar pallium is involved in emotional memory. Here we analyze the involvement of teleost fish lateral and medial pallia, proposed as homologous to the hippocampus and amygdala, respectively, in a variety of learning and memory tasks, such as spatial memory; reversal learning; delay or trace motor classical conditioning; heart rate, emotional classical conditioning; and two way active avoidance conditioning. Results show that the damage to the lateral pallium produces a profound deficit in spatial learning and memory in teleost fish. In addition, lateral pallium lesions produce a significant deficit in trace classical conditioning, whereas they have no significant effects on delay conditioning, or in heart rate conditioning. In contrast, medial pallium lesions disrupt emotional, heart rate conditioning and avoidance conditioning, but spare spatial memory and temporal stimulus processing. These data demonstrate a striking functional similarity between the medial and lateral pallia of teleost fish and the pallial amygdala and hippocampal pallium of land vertebrates, respectively. The reviewed evidence suggest that these two separate memory systems, the hippocampus-dependent spatial, relational or temporal memory system, and the amygdala based emotional memory system, could have appeared early during evolution, having conserved their functional identity through vertebrate phylogenesis.
Collapse
Affiliation(s)
- C Broglio
- Laboratorio de Psicobiología, Universidad de Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
84
|
Folgueira M, Anadón R, Yáñez J. Afferent and efferent connections of the cerebellum of a salmonid, the rainbow trout (Oncorhynchus mykiss): A tract-tracing study. J Comp Neurol 2006; 497:542-65. [PMID: 16739164 DOI: 10.1002/cne.20979] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The connections of the cerebellum of the rainbow trout were studied by experimental methods. The pretectal paracommissural nucleus has reciprocal connections with the cerebellum. Three additional pretectal nuclei project to both the corpus and valvula cerebelli, and seem to receive cerebellar afferents. A large number of cells of the lateral nucleus of the valvula project to wide regions of the cerebellum, including the valvula, the corpus, the granular eminences, and the caudal lobe, whereas the contralateral inferior olive and scattered reticular cells project only to the corpus and valvula cerebelli. Afferents to the corpus were also observed from the ventral tegmental nucleus, the "paraisthmic nucleus," the perilemniscal nucleus, the central gray, and the octavolateral area. Valvular afferents were also observed from the torus semicircularis and the midbrain tegmental areas. In most cases of cerebellar application, labeled fibers were seen in the thalamus, the pretectum, the torus longitudinalis and torus semicircularis, the nucleus of the medial longitudinal fascicle, and midbrain and rhombencephalic reticular areas. From the corpus cerebelli some fibers also project to the posterior tubercle and the hypothalamus. Moreover, the granular eminences project to the cerebellar crest. DiI application to most of the areas showing labeled fibers after cerebellar tracer application led to the labeling of characteristic eurydendroid cells, mainly in the valvula cerebelli and the caudal lobe. A few putative eurydendroid cells were labeled from the octavolateralis regions. These results in a teleost with a generalized brain indicate several differences with respect to the cerebellar connections reported in other teleost fishes that have specialized brains.
Collapse
Affiliation(s)
- Mónica Folgueira
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071 A Coruña, Spain
| | | | | |
Collapse
|