51
|
Ouach A, Pin F, Bertrand E, Vercouillie J, Gulhan Z, Mothes C, Deloye JB, Guilloteau D, Suzenet F, Chalon S, Routier S. Design of α7 nicotinic acetylcholine receptor ligands using the (het)Aryl-1,2,3-triazole core: Synthesis, in vitro evaluation and SAR studies. Eur J Med Chem 2016; 107:153-64. [DOI: 10.1016/j.ejmech.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/30/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
|
52
|
ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice. Behav Pharmacol 2015; 26:241-8. [PMID: 25426579 DOI: 10.1097/fbp.0000000000000111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nicotine withdrawal produces cognitive deficits that can predict relapse. Amelioration of these cognitive deficits emerges as a target in current smoking cessation therapies. In rodents, withdrawal from chronic nicotine disrupts contextual fear conditioning (CFC), whereas acute nicotine enhances this hippocampus-specific learning and memory. These modifications are mediated by β2-subunit-containing (β2*) nicotinic acetylcholine receptors in the hippocampus. We aimed to test ABT-089, a partial agonist of α4β2*, and ABT-107, an α7 nicotinic acetylcholine receptor agonist, for amelioration of cognitive deficits induced by withdrawal from chronic nicotine in mice. Mice underwent chronic nicotine administration (12.6 mg/kg/day or saline for 12 days), followed by 24 h of withdrawal. At the end of withdrawal, mice received 0.3 or 0.6 mg/kg ABT-089 or 0.3 mg/kg ABT-107 (doses were determined through initial dose-response experiments and prior studies) and were trained and tested for CFC. Nicotine withdrawal produced deficits in CFC that were reversed by acute ABT-089, but not ABT-107. Cued conditioning was not affected. Taken together, our results suggest that modulation of hippocampal learning and memory using ABT-089 may be an effective component of novel therapeutic strategies for nicotine addiction.
Collapse
|
53
|
Sinkus ML, Graw S, Freedman R, Ross RG, Lester HA, Leonard S. The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology 2015; 96:274-88. [PMID: 25701707 PMCID: PMC4486515 DOI: 10.1016/j.neuropharm.2015.02.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 01/16/2023]
Abstract
The human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7) is ubiquitously expressed in both the central nervous system and in the periphery. CHRNA7 is genetically linked to multiple disorders with cognitive deficits, including schizophrenia, bipolar disorder, ADHD, epilepsy, Alzheimer's disease, and Rett syndrome. The regulation of CHRNA7 is complex; more than a dozen mechanisms are known, one of which is a partial duplication of the parent gene. Exons 5-10 of CHRNA7 on chromosome 15 were duplicated and inserted 1.6 Mb upstream of CHRNA7, interrupting an earlier partial duplication of two other genes. The chimeric CHRFAM7A gene product, dupα7, assembles with α7 subunits, resulting in a dominant negative regulation of function. The duplication is human specific, occurring neither in primates nor in rodents. The duplicated α7 sequence in exons 5-10 of CHRFAM7A is almost identical to CHRNA7, and thus is not completely queried in high throughput genetic studies (GWAS). Further, pre-clinical animal models of the α7nAChR utilized in drug development research do not have CHRFAM7A (dupα7) and cannot fully model human drug responses. The wide expression of CHRNA7, its multiple functions and modes of regulation present challenges for study of this gene in disease. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
- Melissa L Sinkus
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Sharon Graw
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Robert Freedman
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| | - Randal G Ross
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Henry A Lester
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Sherry Leonard
- Department of Psychiatry, University of Colorado Denver, Aurora, CO 80045, USA; Veterans Affairs Medical Research Center, Denver, CO 80262, USA.
| |
Collapse
|
54
|
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience 2015; 298:81-93. [DOI: 10.1016/j.neuroscience.2015.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
|
55
|
The role of nicotinic acetylcholine and opioid systems of the ventral orbital cortex in modulation of formalin-induced orofacial pain in rats. Eur J Pharmacol 2015; 758:147-52. [DOI: 10.1016/j.ejphar.2015.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/16/2022]
|
56
|
A phase 2 randomized, controlled trial of the α7 agonist ABT-126 in mild-to-moderate Alzheimer's dementia. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2015; 1:81-90. [PMID: 29854928 PMCID: PMC5974973 DOI: 10.1016/j.trci.2015.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction The safety and efficacy of the novel α7 nicotinic acetylcholine receptor agonist ABT-126 were investigated in subjects with mild-to-moderate Alzheimer's dementia (AD). Methods Subjects not currently receiving acetylcholinesterase inhibitors were randomized to ABT-126 (5 or 25 mg once daily), donepezil 10 mg once daily, or placebo for 12 weeks. The primary efficacy end point was the change from baseline to final evaluation in the 11-item Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog) total score. Results A total of 274 subjects were randomized. Although the study did not meet its primary end point, trends toward improvement were seen with ABT-126 25 mg (least squares mean [standard error] difference from placebo −1.19 [0.90]; one-sided P = .095) and donepezil (−1.43 [0.90]; one-sided P = .057) on the 11-item ADAS-Cog total score change from baseline to the final evaluation. ABT-126 5 mg was numerically similar to placebo. An exposure-response analysis indicated a statistically significant relationship between ABT-126 exposure and the change from baseline in ADAS-Cog, with no evidence of a plateau. No clinically meaningful differences in safety were observed among treatment groups. Discussion Although the ABT-126 25 mg dose did not demonstrate statistically significant improvement, results of the exposure-response analysis suggest that higher doses may produce better efficacy, and the safety profile of ABT-126 in this study supports additional studies with higher doses in subjects with mild-to-moderate AD. Clinical trial register number NCT00948909.
Collapse
|
57
|
Thomsen MS, Zwart R, Ursu D, Jensen MM, Pinborg LH, Gilmour G, Wu J, Sher E, Mikkelsen JD. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties. PLoS One 2015; 10:e0130572. [PMID: 26086615 PMCID: PMC4472343 DOI: 10.1371/journal.pone.0130572] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/21/2015] [Indexed: 12/03/2022] Open
Abstract
The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer’s disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.
Collapse
Affiliation(s)
- Morten Skøtt Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ruud Zwart
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Daniel Ursu
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Majbrit Myrup Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hageman Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Jie Wu
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, United States of America
| | - Emanuele Sher
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Jens Damsgaard Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
58
|
Carruthers SP, Gurvich CT, Rossell SL. The muscarinic system, cognition and schizophrenia. Neurosci Biobehav Rev 2015; 55:393-402. [PMID: 26003527 DOI: 10.1016/j.neubiorev.2015.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
An increasing body of evidence has implicated the central muscarinic system as contributing to a number of symptoms of schizophrenia and serving as a potential target for pharmaceutical interventions. A theoretical review is presented that focuses on the central muscarinic system's contribution to the cognitive symptoms of schizophrenia. The aim is to bridge the void between pertinent neuropsychological and neurobiological research to provide an explanatory account of the role that the central muscarinic system plays in the symptoms of schizophrenia. First, there will be a brief overview of the relevant neuropsychological schizophrenia literature, followed by a concise introduction to the central muscarinic system. Subsequently, we will draw from animal, neuropsychological and pharmacological literature, and discuss the findings in relation to cognition, schizophrenia and the muscarinic system. Whilst unifying the multiple domains of research into a concise review will act as a useful line of enquiry into the central muscarinic systems contribution to the symptoms of schizophrenia, it will be made apparent that more research is needed in this field.
Collapse
Affiliation(s)
- Sean P Carruthers
- Brain and Psychological Sciences Research Centre (BPsyC), Faculty of Health, Arts, Design, Swinburne University of Technology, Melbourne 3122, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia.
| | - Caroline T Gurvich
- Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia
| | - Susan L Rossell
- Brain and Psychological Sciences Research Centre (BPsyC), Faculty of Health, Arts, Design, Swinburne University of Technology, Melbourne 3122, VIC, Australia; Monash Alfred Psychiatry Research Centre (MAPrc), Monash University Central Clinical School and The Alfred Hospital, Melbourne 3004, VIC, Australia; Psychiatry, St Vincent's Hospital, Melbourne 3065, VIC, Australia
| |
Collapse
|
59
|
Arunrungvichian K, Boonyarat C, Fokin VV, Taylor P, Vajragupta O. Cognitive Improvements in a Mouse Model with Substituted 1,2,3-Triazole Agonists for Nicotinic Acetylcholine Receptors. ACS Chem Neurosci 2015; 6:1331-40. [DOI: 10.1021/acschemneuro.5b00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Kuntarat Arunrungvichian
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
| | - Chantana Boonyarat
- Department
of Pharmaceutical Chemistry, Faculty of Pharmaceutical Science, KhonKaen University, 123 Muang, KhonKaen 40002, Thailand
| | - Valery V. Fokin
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Palmer Taylor
- Department
of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0650, United States
| | - Opa Vajragupta
- Center
of Excellence for Innovation in Drug Design and Discovery, Faculty
of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand
| |
Collapse
|
60
|
Beinat C, Reekie T, Banister SD, O'Brien-Brown J, Xie T, Olson TT, Xiao Y, Harvey A, O'Connor S, Coles C, Grishin A, Kolesik P, Tsanaktsidis J, Kassiou M. Structure-activity relationship studies of SEN12333 analogues: determination of the optimal requirements for binding affinities at α7 nAChRs through incorporation of known structural motifs. Eur J Med Chem 2015; 95:277-301. [PMID: 25827398 DOI: 10.1016/j.ejmech.2015.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 12/27/2022]
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) have implications in the regulation of cognitive processes such as memory and attention and have been identified as a promising therapeutic target for the treatment of the cognitive deficits associated with schizophrenia and Alzheimer's disease (AD). Structure affinity relationship studies of the previously described α7 agonist SEN12333 (8), have resulted in the identification of compound 45, a potent and selective agonist of the α7 nAChR with enhanced affinity and improved physicochemical properties over the parent compound (SEN12333, 8).
Collapse
Affiliation(s)
- Corinne Beinat
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tristan Reekie
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Samuel D Banister
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Teresa Xie
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Thao T Olson
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | - Yingxian Xiao
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | | - John Tsanaktsidis
- CSIRO Materials Science & Engineering, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia; Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
61
|
Brassai A, Suvanjeiev RG, Bán EG, Lakatos M. Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 2015; 112:1-6. [DOI: 10.1016/j.brainresbull.2014.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 11/17/2022]
|
62
|
High therapeutic potential of positive allosteric modulation of α7 nAChRs in a rat model of traumatic brain injury: proof-of-concept. Brain Res Bull 2015; 112:35-41. [PMID: 25647232 DOI: 10.1016/j.brainresbull.2015.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/25/2022]
Abstract
There are currently no clinically efficacious drug therapies to treat brain damage secondary to traumatic brain injury (TBI). In this proof-of-concept study, we used a controlled cortical impact model of TBI in young adult rats to explore a novel promising approach that utilizes PNU-120596, a previously reported highly selective Type-II positive allosteric modulator (α7-PAM) of α7 nicotinic acetylcholine receptors (nAChRs). α7-PAMs enhance and prolong α7 nAChR activation, but do not activate α7 nAChRs when administered without an agonist. The rational basis for the use of an α7-PAM as a post-TBI treatment is tripartite and arises from: (1) the intrinsic ability of brain injury to elevate extracellular levels of choline (a ubiquitous cell membrane-building material and a selective endogenous agonist of α7 nAChRs) due to the breakdown of cell membranes near the site and time of injury; (2) the ubiquitous expression of functional α7 nAChRs in neuronal and glial/immune brain cells; and (3) the potent neuroprotective and anti-inflammatory effects of α7 nAChR activation. Therefore, both neuroprotective and anti-inflammatory effects can be achieved post-TBI by targeting only a single player (i.e., the α7 nAChR) using α7-PAMs to enhance the activation of α7 nAChRs by injury-elevated extracellular choline. Our data support this hypothesis and demonstrate that subcutaneous administration of PNU-120596 post-TBI in young adult rats significantly reduces both brain cell damage and reactive gliosis. Therefore, our results introduce post-TBI systemic administration of α7-PAMs as a promising therapeutic intervention that could significantly restrict brain injury post-TBI and facilitate recovery of TBI patients.
Collapse
|
63
|
Quik M, Bordia T, Zhang D, Perez XA. Nicotine and Nicotinic Receptor Drugs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:247-71. [DOI: 10.1016/bs.irn.2015.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
64
|
Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: A new target for a privileged structure. Eur J Med Chem 2014; 86:724-39. [DOI: 10.1016/j.ejmech.2014.09.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
|
65
|
Development of (18)F-labeled radiotracers for neuroreceptor imaging with positron emission tomography. Neurosci Bull 2014; 30:777-811. [PMID: 25172118 DOI: 10.1007/s12264-014-1460-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022] Open
Abstract
Positron emission tomography (PET) is an in vivo molecular imaging tool which is widely used in nuclear medicine for early diagnosis and treatment follow-up of many brain diseases. PET uses biomolecules as probes which are labeled with radionuclides of short half-lives, synthesized prior to the imaging studies. These probes are called radiotracers. Fluorine-18 is a radionuclide routinely used in the radiolabeling of neuroreceptor ligands for PET because of its favorable half-life of 109.8 min. The delivery of such radiotracers into the brain provides images of transport, metabolic, and neurotransmission processes on the molecular level. After a short introduction into the principles of PET, this review mainly focuses on the strategy of radiotracer development bridging from basic science to biomedical application. Successful radiotracer design as described here provides molecular probes which not only are useful for imaging of human brain diseases, but also allow molecular neuroreceptor imaging studies in various small-animal models of disease, including genetically-engineered animals. Furthermore, they provide a powerful tool for in vivo pharmacology during the process of pre-clinical drug development to identify new drug targets, to investigate pathophysiology, to discover potential drug candidates, and to evaluate the pharmacokinetics and pharmacodynamics of drugs in vivo.
Collapse
|
66
|
Zhang D, McGregor M, Decker MW, Quik M. The α7 nicotinic receptor agonist ABT-107 decreases L-Dopa-induced dyskinesias in parkinsonian monkeys. J Pharmacol Exp Ther 2014; 351:25-32. [PMID: 25034405 DOI: 10.1124/jpet.114.216283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies in Parkinsonian rats and monkeys have shown that β2-selective nicotinic acetylcholine receptor (nAChR) agonists reduce l-Dopa-induced dyskinesias (LIDs), a serious complication of l-Dopa therapy for Parkinson's disease. Since rodent studies also suggested an involvement of α7 nAChRs in LIDs, we tested the effect of the potent, selective α7 agonist ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole]. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-lesioned monkeys were gavaged with l-Dopa/carbidopa (10 and 2.5 mg/kg, respectively) twice daily, which resulted in stable LIDs. A dose-response study (0.03-1.0 mg/kg) showed that oral ABT-107 decreased LIDs by 40-60%. LIDs returned to control levels only after a 6-week ABT-107 washout, suggesting that long-term molecular changes were involved. Subsequent readministration of ABT-107 decreased LIDs by 50-60%, indicating that tolerance did not develop. ABT-107 had no effect on Parkinsonism or cognitive performance. We next tested ABT-107 together with the β2 agonist ABT-894 [(3-(5,6-dichloro-pyridin-3-yl)-1(S),5 (S)-3,6-diazabicyclo[3.2.0]heptane], previously shown to reduce LIDs in Parkinsonian monkeys. In one study, the monkeys were first given oral ABT-894 (0.01 mg/kg), which maximally decreased LIDs by 50-60%; they were then also treated with 0.1 mg/kg ABT-107, a dose that maximally reduced LIDs. The effect of combined treatment on LIDs was similar to that with either drug alone. Comparable results were observed in a group of monkeys first treated with ABT-107 and then also given ABT-894. Thus, α7 and β2 nAChR-selective drugs may function via a final common mechanism to reduce LIDs. The present results suggest that drugs targeting either α7 or β2 nAChRs may be useful as antidyskinetic agents in Parkinson's disease.
Collapse
Affiliation(s)
- Danhui Zhang
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| | - Matthew McGregor
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| | - Michael W Decker
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| | - Maryka Quik
- Center for Health Sciences, SRI International, Menlo Park, California (D.Z., M.M., M.Q.); and AbbVie, Inc., North Chicago, Illinois (M.W.D.)
| |
Collapse
|
67
|
Design of α7 nicotinic acetylcholine receptor ligands in quinuclidine, tropane and quinazoline series. Chemistry, molecular modeling, radiochemistry, in vitro and in rats evaluations of a [18F] quinuclidine derivative. Eur J Med Chem 2014; 82:214-24. [DOI: 10.1016/j.ejmech.2014.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/17/2014] [Accepted: 04/19/2014] [Indexed: 12/23/2022]
|
68
|
Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacology (Berl) 2014; 231:1975-85. [PMID: 24311357 DOI: 10.1007/s00213-013-3340-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
RATIONALE Neuronal nicotinic acetylcholine receptors (nAChRs) play a modulatory role in cognition, and zebrafish provide a preclinical model to study learning and memory. OBJECTIVES We investigated the effect of nicotine (NIC) and some new cytisine-derived partial agonists (CC4 and CC26) on spatial memory in zebrafish using a rapid assay on T-maze task. The role of α4/α6β2 and the α7 nAChRs in NIC-induced memory enhancement was evaluated using selective nAChR antagonists. RESULTS Low and high doses of NIC, cytisine (CYT), CC4 and CC26 respectively improved and worsened the mean running time, showing an inverted U dose-response function. The effective dose (ED50) (×10⁻⁵ mg/kg) was 0.4 for CC4, 4.5 for CYT, 140 for NIC and 200 for CC26. NIC-induced cognitive enhancement was reduced by the selective nAChR subtype antagonists: methyllycaconitine (MLA) for α7, α-conotoxin (MII) for α6β2, dihydro-β-erythroidine (DhβE) for α4β2, the nonselective antagonist mecamylamine (MEC) and the muscarinic antagonist scopolamine (SCOP), with DhβE being more active than MLA or MII. All the partial agonists blocked the cognitive enhancement. The improvement with the maximal active dose of each partial agonist was blocked by low doses of DhβE (0.001 mg/kg) and MII (0.01 mg/kg). MLA reduced the effects of CC26 and CC4 at doses of 0.01 and 1 mg/kg, respectively, but did not antagonize CYT-induced memory improvement at any of the tested dose. No change in swimming activity was observed. CONCLUSIONS Our findings demonstrate that zebrafish make a useful model for the rapid screening of the effect of new α4β2 nAChR compounds on spatial memory.
Collapse
|
69
|
Brown JL, Wonnacott S. Sazetidine-A Activates and Desensitizes Native α7 Nicotinic Acetylcholine Receptors. Neurochem Res 2014; 40:2047-54. [PMID: 24728867 PMCID: PMC4630245 DOI: 10.1007/s11064-014-1302-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/24/2022]
Abstract
The aim of this study was to investigate the ability of sazetidine-A, a novel partial agonist at α4β2 nicotinic acetylcholine receptors (nAChRs), to affect the function of native α7 nAChRs in SH-SY5Y cells and primary cortical cultures. The α7-selective positive allosteric modulator PNU-120596 was used to reveal receptor activation, measured as an increase in intracellular calcium using fluorescent indicators. In the absence of PNU-120596, sazetidine-A elicited mecamylamine-sensitive increases in fluorescence in SH-SY5Y cells (EC50 4.2 µM) but no responses from primary cortical neurons. In the presence on PNU-120596, an additional response to sazetidine-A was observed in SH-SY5Y cells (EC50 0.4 µM) and robust responses were recorded in 14 % of cortical neurons. These PNU-120596-dependent responses were blocked by methyllycaconitine, consistent with the activation of α7 nAChRs. Preincubtion with sazetidine-A concentration-dependently attenuated subsequent responses to the α7-selective agonist PNU-282987 in SH-SY5Y cells (IC50 476 nM) and cortical cultures. These findings support the ability of sazetidine-A to interact with α7 nAChRs, which may contribute to sazetidine-A’s actions in complex physiological systems.
Collapse
Affiliation(s)
- Jack L Brown
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Susan Wonnacott
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
70
|
Uteshev VV. The therapeutic promise of positive allosteric modulation of nicotinic receptors. Eur J Pharmacol 2014; 727:181-5. [PMID: 24530419 DOI: 10.1016/j.ejphar.2014.01.072] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 12/11/2022]
Abstract
In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
71
|
Pesti K, Szabo AK, Mike A, Vizi ES. Kinetic properties and open probability of α7 nicotinic acetylcholine receptors. Neuropharmacology 2014; 81:101-15. [PMID: 24486379 DOI: 10.1016/j.neuropharm.2014.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 12/23/2022]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) has some peculiar kinetic properties. From the literature of α7 nAChR-mediated currents we concluded that experimentally measured kinetic properties reflected properties of the solution exchange system, rather than genuine kinetic properties of the receptors. We also concluded that all experimentally measured EC50 values for agonists must inherently be inaccurate. The aim of this study was to assess the undistorted kinetic properties of α7 nAChRs, and to construct an improved kinetic model, which can also serve as a basis of modeling the effect of the positive allosteric modulator PNU-120596, as it is described in the accompanying paper. Agonist-evoked currents were recorded from GH4C1 cells stably transfected with pCEP4/rat α7 nAChR using patch-clamp and fast solution exchange. We used two approaches to circumvent the problem of insufficient solution exchange rate: extrapolation and kinetic modeling. First, using different solution exchange rates we recorded evoked currents, and extrapolated their amplitude and kinetics to instantaneous solution exchange. Second, we constructed a kinetic model that reproduced concentration-dependence and solution exchange rate-dependence of receptors, and then we simulated receptor behavior at experimentally unattainably fast solution exchange. We also determined open probabilities during choline-evoked unmodulated and modulated currents using nonstationary fluctuation analysis. The peak open probability of 10 mM choline-evoked currents was 0.033 ± 0.006, while in the presence of choline (10 mM) and PNU-120596 (10 μM), it was increased to 0.599 ± 0.058. Our kinetic model could adequately reproduce low open probability, fast kinetics, fast recovery and solution exchange rate-dependent kinetics.
Collapse
Affiliation(s)
- Krisztina Pesti
- Semmelweis University, School of Ph.D. Studies, Üllői út 26, H-1085 Budapest, Hungary; Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary
| | - Anett K Szabo
- Semmelweis University, School of Ph.D. Studies, Üllői út 26, H-1085 Budapest, Hungary; Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary
| | - Arpad Mike
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary.
| | - E Sylvester Vizi
- Laboratory of Drug Research, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary
| |
Collapse
|
72
|
Non-invasive brain stimulation (rTMS and tDCS) in patients with aphasia: Mode of action at the cellular level. Brain Res Bull 2013; 98:30-5. [DOI: 10.1016/j.brainresbull.2013.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
|
73
|
Kroker KS, Moreth J, Kussmaul L, Rast G, Rosenbrock H. Restoring long-term potentiation impaired by amyloid-beta oligomers: Comparison of an acetylcholinesterase inhibitior and selective neuronal nicotinic receptor agonists. Brain Res Bull 2013; 96:28-38. [DOI: 10.1016/j.brainresbull.2013.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 12/25/2022]
|