51
|
Wang J, Xia Y, Zuo Q, Chen T. Molecular mechanisms underlying the antimetastatic activity of bufalin. Mol Clin Oncol 2018; 8:631-636. [PMID: 29732152 DOI: 10.3892/mco.2018.1591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 12/14/2022] Open
Abstract
Bufalin is a monomer compound extract from Chansu, which is a traditional Chinese medicine obtained from the skin and parotid venom glands of toads, such as Bufo bufo gargarizans Cantor and Bufo melanostictus Schneider. Chansu had been used in traditional Chinese medicine for >1,000 years due to its cardiac, anti-inflammatory and anticancer properties. Previous studies identified bufalin as the main anticancer compound of Chansu, and recent evidence has corroborated its anticancer properties. Bufalin inhibits cancer cell proliferation, induces cell cycle arrest, induces cancer cell apoptosis, inhibits neovascularization, induces cell differentiation, inhibits cancer metastasis and invasion, and enhances chemotherapeutic drug sensitivity. However, the function and mechanism of bufalin in metastatic cancer cells have not yet been expounded. The aim of the present review was to discuss the recent progress and prospects of bufalin in the prevention of cancer metastasis, particularly in inhibiting epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Jie Wang
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Yue Xia
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Qingshong Zuo
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Teng Chen
- Department of Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
52
|
Zhao M, Li L, Zhou J, Cui X, Tian Q, Jin Y, Zhu Y. MiR-2861 Behaves as a Biomarker of Lung Cancer Stem Cells and Regulates the HDAC5-ERK System Genes. Cell Reprogram 2018; 20:99-106. [PMID: 29620443 DOI: 10.1089/cell.2017.0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer initiating, recurrence, and drug resistance. Discovery of novel biomarkers for CSCs is helpful for early diagnosis and prognosis. Lung cancer stem cells (LCSCs) were closely related to the occurrence and development of lung cancer. In our study, the important role of miR-2861 in maintaining the stemness of LCSCs was investigated. The LCSC differentiation model was established through introducing serum into the medium of H460 spheres. miR-2861 expression was significantly higher in LCSCs no matter compared to the differentiation cells or normal cells. HDAC5 expression was positively correlated with miR-2861 in LCSCs, and knockdown of miR-2861 decreased the expression of HDAC5, which implied that HDAC5 may be involved in the differentiation of LCSCs mediated by miR-2861. The role of HDAC5 in the regulation of LCSC differentiation was further verified by the inhibitory effect of LMK-235 on the phosphorylation of ERK1/2, which was recognized as the regulator of CSC differentiation. Our study provided a better understanding of miR-2861 and HDAC5 axis in maintaining the stemness of LCSCs and laid a foundation for molecular targeted therapy.
Collapse
Affiliation(s)
- Mengya Zhao
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Lin Li
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| | - Jundong Zhou
- 3 Department of Radio Oncology, Affiliated Suzhou Hospital, Nanjing Medical University , Suzhou, China
| | - Xueyuan Cui
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Qingmei Tian
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,4 School of Pharmacy, Xi'an Jiaotong University , Xi'an, China
| | - Yaqing Jin
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,5 University of Chinese Academy of Sciences , Beijing, China
| | - Yimin Zhu
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
53
|
Lu Y, Yan B, Guo H, Qiu L, Sun X, Wang X, Shi Q, Bao Y. Effect of midkine on gemcitabine resistance in biliary tract cancer. Int J Mol Med 2018; 41:2003-2011. [PMID: 29344648 PMCID: PMC5810218 DOI: 10.3892/ijmm.2018.3399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/04/2018] [Indexed: 12/19/2022] Open
Abstract
Gemcitabine-based chemotherapy is one of the most effective and commonly used chemotherapeutic regimens for biliary tract cancer (BTC). However, development of resistance to this drug limits its efficacy. The present study aimed to explore the effects of midkine (MDK) on the resistance of BTC cells to gemcitabine. Cell viability and proliferation were measured by a Cell Counting Kit-8 assay and 5-ethynyl-2′-deoxyuridine staining, respectively. Western blot analysis was used to detect the expression of E-cadherin and vimentin. The results indicated that BTC cell lines were more resistant to gemcitabine plus MDK compared with gemcitabine alone. In terms of the underlying mechanism, MDK promoted the epithelial to mesenchymal transition (EMT) of BTC cells and the enhancing effect of MDK on gemcitabine resistance was abrogated when the EMT was blocked with small interfering (si)RNA targeting Twist. In addition, MDK promoted the expression of Notch-1, while knockdown of Notch-1 by siRNA blocked the EMT process in the BTC cell lines. Taken together, these results indicated that MDK promoted gemcitabine resistance of BTC through inducing EMT via upregulating Notch-1. It was suggested that inhibition of the EMT is a promising strategy to overcome MDK-induced drug resistance.
Collapse
Affiliation(s)
- Yongliang Lu
- Department of Medicine, Huzhou University, Huzhou, Zhejiang 313000, P.R. China
| | - Bing Yan
- Department of Pharmacy, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Huihui Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Li Qiu
- Department of Pharmacy, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Xinrong Sun
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Xiang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Qian Shi
- Department of Laboratory Medicine, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| | - Ying Bao
- Department of Surgery, The First Affiliated Hospital of Huzhou University, The First People's Hospital of Huzhou, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
54
|
Smigiel JM, Parameswaran N, Jackson MW. Targeting Pancreatic Cancer Cell Plasticity: The Latest in Therapeutics. Cancers (Basel) 2018; 10:cancers10010014. [PMID: 29320425 PMCID: PMC5789364 DOI: 10.3390/cancers10010014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 02/07/2023] Open
Abstract
Mortality remains alarmingly high for patients diagnosed with pancreatic ductal adenocarcinoma (PDAC), with 93% succumbing to the disease within five years. The vast majority of PDAC cases are driven by activating mutations in the proto-oncogene KRAS, which results in constitutive proliferation and survival signaling. As efforts to target RAS and its downstream effectors continue, parallel research aimed at identifying novel targets is also needed in order to improve therapeutic options and efficacy. Recent studies demonstrate that self-renewing cancer stem cells (CSCs) contribute to metastatic dissemination and therapy failure, the causes of mortality from PDAC. Here, we discuss current challenges in PDAC therapeutics, highlight the contribution of mesenchymal/CSC plasticity to PDAC pathogenesis, and propose that targeting the drivers of plasticity will prove beneficial. Increasingly, intrinsic oncogenic and extrinsic pro-growth/survival signaling emanating from the tumor microenvironment (TME) are being implicated in the de novo generation of CSC and regulation of tumor cell plasticity. An improved understanding of key regulators of PDAC plasticity is providing new potential avenues for targeting the properties associated with CSC (including enhanced invasion and migration, metastatic outgrowth, and resistance to therapy). Finally, we describe the growing field of therapeutics directed at cancer stem cells and cancer cell plasticity in order to improve the lives of patients with PDAC.
Collapse
Affiliation(s)
- Jacob M Smigiel
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Neetha Parameswaran
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Mark W Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
55
|
Hira VVV, Wormer JR, Kakar H, Breznik B, van der Swaan B, Hulsbos R, Tigchelaar W, Tonar Z, Khurshed M, Molenaar RJ, Van Noorden CJF. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem 2018; 66:155-173. [PMID: 29297738 DOI: 10.1369/0022155417749174] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In glioblastoma, a fraction of malignant cells consists of therapy-resistant glioblastoma stem cells (GSCs) residing in protective niches that recapitulate hematopoietic stem cell (HSC) niches in bone marrow. We have previously shown that HSC niche proteins stromal cell-derived factor-1α (SDF-1α), C-X-C chemokine receptor type 4 (CXCR4), osteopontin (OPN), and cathepsin K (CatK) are expressed in hypoxic GSC niches around arterioles in five human glioblastoma samples. In HSC niches, HSCs are retained by binding of SDF-1α and OPN to their receptors CXCR4 and CD44, respectively. Protease CatK cleaves SDF-1α to release HSCs out of niches. The aim of the present study was to reproduce the immunohistochemical localization of these GSC markers in 16 human glioblastoma samples with the addition of three novel markers. Furthermore, we assessed the type of blood vessels associated with GSC niches. In total, we found seven GSC niches containing CD133-positive and nestin-positive GSCs as a single-cell layer exclusively around the tunica adventitia of 2% of the CD31-positive and SMA-positive arterioles and not around capillaries and venules. Niches expressed SDF-1α, CXCR4, CatK, OPN, CD44, hypoxia-inducible factor-1α, and vascular endothelial growth factor. In conclusion, we show that GSC niches are present around arterioles and express bone marrow HSC niche proteins.
Collapse
Affiliation(s)
- Vashendriya V V Hira
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Jill R Wormer
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Hala Kakar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Britt van der Swaan
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Renske Hulsbos
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Wikky Tigchelaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Zbynek Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mohammed Khurshed
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Remco J Molenaar
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F Van Noorden
- Department of Medical Biology, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
56
|
Pan Y, Mao Y, Jin R, Jiang L. Crosstalk between the Notch signaling pathway and non-coding RNAs in gastrointestinal cancers. Oncol Lett 2018; 15:31-40. [PMID: 29285185 PMCID: PMC5738678 DOI: 10.3892/ol.2017.7294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
The Notch signaling pathway is one of the main signaling pathways that mediates direct contact between cells, and is essential for normal development. It regulates various cellular processes, including cell proliferation, apoptosis, migration, invasion, angiogenesis and metastasis. It additionally serves an important function in tumor progression. Non-coding RNAs mainly include small microRNAs, long non-coding RNAs and circular RNAs. At present, a large body of literature supports the biological significance of non-coding RNAs in tumor progression. It is also becoming increasingly evident that cross-talk exists between Notch signaling and non-coding RNAs. The present review summarizes the current knowledge of Notch-mediated gastrointestinal cancer cell processes, and the effect of the crosstalk between the three major types of non-coding RNAs and the Notch signaling pathway on the fate of gastrointestinal cancer cells.
Collapse
Affiliation(s)
- Yangyang Pan
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yuyan Mao
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rong Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lei Jiang
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
57
|
Challa S, Ajumeera R, Venna N. Phytoestrogens as a Natural Source for the Possible Colon Cancer Treatment. ANTICANCER PLANTS: MECHANISMS AND MOLECULAR INTERACTIONS 2018:259-281. [DOI: 10.1007/978-981-10-8417-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
58
|
Yang L, Lv Z, Xia W, Zhang W, Xin Y, Yuan H, Chen Y, Hu X, Lv Y, Xu Q, Weng X, Ni C. The effect of aspirin on circulating tumor cells in metastatic colorectal and breast cancer patients: a phase II trial study. Clin Transl Oncol 2017; 20:912-921. [PMID: 29243075 DOI: 10.1007/s12094-017-1806-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Aspirin could reduce the risk of cancer metastasis. Circulating tumor cells (CTCs) are a key factor of cancer metastasis, but no evidence has revealed how aspirin affects CTCs and its epithelial-mesenchymal transition (EMT). Here, we conducted a clinical trial to investigate how aspirin affects CTCs in metastatic colorectal cancer (MCC) and breast cancer patients (MBC). METHODS The trial is retrospective registered at clinicaltrials.gov (NCT02602938). The eligible patients are given 100 mg aspirin q.d. for 8 weeks, and CTCs are evaluated at baseline, 4 and 8 weeks for absolute number, phenotype (epithelial type, E+, mesenchymal type, M+, and biophenotypic type, B+), and vimentin expression. RESULTS Data on 21 MCC and 19 MBC patients are analyzed, and it revealed that the CTC numbers decreased with aspirin treatment in MCC (p < 0.001) but not MBC (p = 0.0532); besides, ratio of E+ CTCs increased (p = 0.037) and M+ CTCs decreased at 2 months in MCC (p = 0.013), but neither the ratio of E+ or M+ CTCs changes significantly in MBC; vimentin expression of M+ CTCs is higher than E+ and B+ CTCs either in MBC or MCC patients at baseline (p < 0.01); and aspirin suppresses the vimentin expression in M+ (p = 0.002)and B+ (p = 0.006) CTCs of MCC and M+ CTCs of MBC (p = 0.004); besides it find vimentin expression in B+ (p = 0.004) or M+ (p < 0.001), CTCs are markedly decreased in patients with total CTC numbers declined. CONCLUSION Aspirin could decrease CTCs numbers and block EMT transition in MCC patients and part of MBC patients.
Collapse
Affiliation(s)
- L Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medicine College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Z Lv
- Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - W Xia
- Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - W Zhang
- Department of Endocrinology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People's Republic of China
| | - Y Xin
- Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - H Yuan
- Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Y Chen
- Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - X Hu
- Department of Anus and Intestine Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Y Lv
- SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, Guangzhou, People's Republic of China
| | - Q Xu
- Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - X Weng
- Department of General Surgery, Central Hospital of Haining, Zhejiang, 310000, People's Republic of China
| | - C Ni
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou Medicine College, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Department of Breast and Thyroid Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
59
|
Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial-to-mesenchymal via a Notch1/NF-κB/slug/E-cadherin pathway. BMC Cancer 2017; 17:813. [PMID: 29202800 PMCID: PMC5715491 DOI: 10.1186/s12885-017-3829-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 01/20/2023] Open
Abstract
Background Genistein has been known to inhibit proliferation and induce apoptosis in several kinds of cancer cells. While knowledge of genistein in regulating epithelial mesenchymal transition (EMT) of colon cancer cells is unknown. Methods To investigate the effects and mechanisms of genistein on EMT of colon cancer cells, HT-29 cells were used and treated by genistein and TNF-α in this paper. EMT was determined by cell invasion assays using a transwell chamber and the expression changes of EMT-related markers were confirmed by RT–PCR, Western blotting, and immunofluorescence staining. Results Genistein inhibited cell migration at 200 μmol/L. Genistein reversed the EMT of colon cancer cells by upregulation of E-cadherin and downregulation of N-cadherin, accompanied by the suppression of EMT related makers, such as Snail2/slug, ZEB1, ZEB2, FOXC1, FOXC2 and TWIST1. Moreover, genistein can inhibit the expression of notch-1, p-NF-κB and NF-κB, while promote the expression of Bax/Bcl-2 and caspase-3 in HT-29 cells. Conclusion The present study demonstrated that genistein suppressed the migration of colon cancer cells by reversal the EMT via suppressing the Notch1/NF-κB/slug/E-cadherin pathway. Genistein may be developed as a potential antimetastasis agent to colon cancer.
Collapse
Affiliation(s)
- Panpan Zhou
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China.,Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zebin Hu
- Institue for In Vitro Diagnostic Reagents Control, the National Institutes for food and drug Control (NIFDC), Beijing, 100050, People's Republic of China
| | - Wenruo Chen
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| | - Wentao Qi
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China.
| | - Aike Li
- Cereals & Oils Nutrition Research Group, Academy of State Administration of Grain (ASAG), No.11 Baiwanzhuang Street, Beijing, 100037, People's Republic of China
| |
Collapse
|
60
|
Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, Yang Y, Katz JP, Wileyto EP, Basu D, Kita Y, Natsugoe S, Naganuma S, Klein-Szanto AJ, Diehl JA, Bass AJ, Wong KK, Rustgi AK, Nakagawa H. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun 2017; 8:1758. [PMID: 29170450 PMCID: PMC5700926 DOI: 10.1038/s41467-017-01500-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial–mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC. Notch receptors can exert different roles in cancer. In this manuscript, the authors reveal that Notch1 activation and EMT promote tumor initiation and cancer cell heterogeneity in squamous cell carcinoma, while the repression of Notch3 by ZEB1 limits Notch1-induced differentiation, permitting Notch1-mediated EMT.
Collapse
Affiliation(s)
- Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Kelly A Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, 260-0856, Japan
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Surgery, Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Prasanna M Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Apple Long
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Varun Sahu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jianwen Que
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Yizeng Yang
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan P Katz
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - E Paul Wileyto
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Devraj Basu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Nankoku-shi, Kochi, 783-8505, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam J Bass
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Kwok-Kin Wong
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Hematology and Medical Oncology, New York University, New York, NY, 10016, USA.
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hiroshi Nakagawa
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
61
|
Shi Y, Cao T, Huang H, Lian C, Yang Y, Wang Z, Ma J, Xia J. Arsenic trioxide inhibits cell growth and motility via up-regulation of let-7a in breast cancer cells. Cell Cycle 2017; 16:2396-2403. [PMID: 28980872 DOI: 10.1080/15384101.2017.1387699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arsenic trioxide (ATO) has been reported to exert its anti-cancer activities in human cancers. However, the molecular mechanism of ATO-triggered anti-tumor activity has not been fully elucidated. Recently, multiple studies demonstrated that ATO could regulate miRNAs in human cancers. Therefore, in this study, we investigated whether ATO regulated let-7a in breast cancer cells. We found that ATO upregulated let-7a level in breast cancer cells. We also found that up-regulation of let-7a inhibited cell growth and induced apoptosis and retarded cell migration and invasion. We also observed that up-regulation of let-7a enhanced cell growth inhibition and invasion suppression induced by ATO treatment. Our findings suggest that ATO suppressed cell growth, stimulated apoptosis, and retarded cell invasion partly via upregulation of let-7a in breast cancer cells. Our study provides a new anti-tumor mechanism of ATO treatment in breast cancer.
Collapse
Affiliation(s)
- Ying Shi
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Tong Cao
- b Research Center of Clinical Laboratory Science , Bengbu Medical College , Bengbu , Anhui , China
| | - Hua Huang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Chaoqun Lian
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Ying Yang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Zhiwei Wang
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China.,c Department of Pathology , Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA , USA.,d The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology , Soochow University , Suzhou , Jiangsu , China
| | - Jia Ma
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| | - Jun Xia
- a Department of Biochemistry and Molecular Biology , Bengbu Medical College, Bengbu , Anhui , China
| |
Collapse
|
62
|
Tveitarås MK, Reigstad I, Leiss L, Reed RK, Stuhr L. Single factors alone can induce mesenchymal-like morphology, but not promote full EMT in breast cancer cell lines with different hormone statuses. Exp Cell Res 2017; 359:257-265. [DOI: 10.1016/j.yexcr.2017.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
|
63
|
Yoneyama T, Arai MA, Akamine R, Koryudzu K, Tsuchiya A, Sadhu SK, Ahmed F, Itoh M, Okamoto R, Ishibashi M. Notch Inhibitors from Calotropis gigantea That Induce Neuronal Differentiation of Neural Stem Cells. JOURNAL OF NATURAL PRODUCTS 2017; 80:2453-2461. [PMID: 28817274 DOI: 10.1021/acs.jnatprod.7b00282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease occur due to loss of the structure and function of neurons. For the potential treatment of neurodegenerative diseases, accelerators of neuronal differentiation of neural stem cells (NSCs) have been focused on and a cell-based assay system for measuring Notch signaling pathway activity was constructed. Using this assay system, eight compounds isolated from Calotropis gigantea were identified as inhibitors of the Notch signaling pathway. Hes1 and Hes5 are target genes of the Notch signaling pathway, and compound 1, called uscharin, decreased the protein levels of Hes1 and Hes5 in assay cells and MEB5 cells (mouse NSCs). Furthermore, uscharin (1) enhanced the differentiation of MEB5 cells into neurons. The mechanism of uscharin (1) for the Notch signaling inhibitory activity would be acceleration of the degradation of the Notch intracellular domain (NICD) in the MEB5 cells.
Collapse
Affiliation(s)
- Tatsuro Yoneyama
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Midori A Arai
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryuta Akamine
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kazune Koryudzu
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Anna Tsuchiya
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Samir K Sadhu
- Pharmacy Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Firoj Ahmed
- Department of Pharmaceutical Chemistry, University of Dhaka , Dhaka 1000, Bangladesh
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University , 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University , 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
64
|
McCubrey JA, Fitzgerald TL, Yang LV, Lertpiriyapong K, Steelman LS, Abrams SL, Montalto G, Cervello M, Neri LM, Cocco L, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Nicoletti F, Falzone L, Candido S, Libra M. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget 2017; 8:14221-14250. [PMID: 27999207 PMCID: PMC5355173 DOI: 10.18632/oncotarget.13991] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
Various signaling pathways exert critical roles in the epithelial to mesenchymal transition (EMT) and cancer stem cells (CSCs). The Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, hedgehog (Hh), Notch and TP53 pathways elicit essential regulatory influences on cancer initiation, EMT and progression. A common kinase involved in all these pathways is moon-lighting kinase glycogen synthase kinase-3 (GSK-3). These pathways are also regulated by micro-RNAs (miRs). TP53 and components of these pathways can regulate the expression of miRs. Targeting members of these pathways may improve cancer therapy in those malignancies that display their abnormal regulation. This review will discuss the interactions of the multi-functional GSK-3 enzyme in the Wnt/beta-catenin, PI3K/PTEN/Akt/mTORC, Ras/Raf/MEK/ERK, Hh, Notch and TP53 pathways. The regulation of these pathways by miRs and their effects on CSC generation, EMT, invasion and metastasis will be discussed.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| |
Collapse
|
65
|
Murtas D, Maxia C, Diana A, Pilloni L, Corda C, Minerba L, Tomei S, Piras F, Ferreli C, Perra MT. Role of epithelial–mesenchymal transition involved molecules in the progression of cutaneous melanoma. Histochem Cell Biol 2017; 148:639-649. [PMID: 28828681 DOI: 10.1007/s00418-017-1606-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2017] [Indexed: 12/25/2022]
|
66
|
An L, Li DD, Chu HX, Zhang Q, Wang CL, Fan YH, Song Q, Ma HD, Feng F, Zhao QC. Terfenadine combined with epirubicin impedes the chemo-resistant human non-small cell lung cancer both in vitro and in vivo through EMT and Notch reversal. Pharmacol Res 2017; 124:105-115. [PMID: 28754458 DOI: 10.1016/j.phrs.2017.07.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/21/2017] [Accepted: 07/24/2017] [Indexed: 01/22/2023]
Abstract
The acquired resistance of non-small cell lung cancer (NSCLC) to taxanes eventually leads to the recurrence and metastasis of tumours. Thus, the development of therapeutic strategies based on the mechanisms by which cells acquire resistance to prolong their survival rate in chemotherapy drug treatment failure patients are warranted. In this study, we found that the resistant cells acquired increased migratory and invasive capabilities, and this transformation was correlated with epithelial-mesenchymal transition (EMT) and Notch pathway deregulation in the resistant cells. Finally, we reported for the first time that terfenadine augmented the effect of epirubicin (EPI) better than Taxol and cisplatin (DDP) by inhibiting migration, invasion, and the EMT phenotype, and the combination therapy also reversed Notch signalling pathway and enhanced the accumulation of fluorescent P-gp substrate rhodamine 123 (Rh123). Similar activities of terfenadine on EPI were observed in xenografts. All of our results confirmed that terfenadine combined with EPI synergistically inhibits the growth and metastatic processes of resistant cells both in vitro and in vivo. Therefore, terfenadine or its derivatives are a promising approach for the clinical challenge of resistance in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Li An
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China; Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Dan-Dan Li
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hai-Xiao Chu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiao Zhang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chang-Li Wang
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Yan-Hua Fan
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Qi Song
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hong-Da Ma
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China
| | - Fan Feng
- Research Center for Clinical and Translational Medicine, The 302nd Hospital of PLA, Beijing, China.
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang, China.
| |
Collapse
|
67
|
He SJ, Xiang CQ, Zhang Y, Lu XT, Chen HW, Xiong LX. Recent progress on the effects of microRNAs and natural products on tumor epithelial-mesenchymal transition. Onco Targets Ther 2017; 10:3435-3451. [PMID: 28744148 PMCID: PMC5513877 DOI: 10.2147/ott.s139546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3′ untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.
Collapse
Affiliation(s)
- Shu-Jin He
- Department of Pathophysiology, Medical College, Nanchang University.,Second Clinical Medical College, Nanchang University
| | - Chu-Qi Xiang
- Department of Pathophysiology, Medical College, Nanchang University.,First Clinical Medical College, Nanchang University
| | - Yu Zhang
- First Clinical Medical College, Nanchang University
| | - Xiang-Tong Lu
- Department of Pathophysiology, Medical College, Nanchang University
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| |
Collapse
|
68
|
Neoadjuvant treatment for borderline and resectable pancreatic ductal adenocarcinoma. Clin Transl Oncol 2017; 19:1193-1198. [PMID: 28612203 DOI: 10.1007/s12094-017-1680-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/15/2017] [Indexed: 12/18/2022]
Abstract
Nowadays and given the improvement in response rate with the new schemes of treatment with chemotherapy, the interest in neoadjuvant treatment for pancreatic ductal adenocarcinoma, allowing the early application of systemic therapies, has also increased. However, treatment selection fundamentally depends on decisions taken by multidisciplinary committees due to the absence of randomized trials on this indication and because the available evidence is based primarily on small studies. The present manuscript tries to establish recommendations based on the available evidence and expert opinion to correctly select the indication, the type of treatment, as well as its duration and how to correctly follow-up patients during treatment with chemotherapy.
Collapse
|
69
|
Zhang J, Gao H, Zhang Y. Differential expression of the Notch1 receptor, and its ligands Dll1, Dll3 and Dll4 in distinct human pituitary adenoma subtypes. Oncol Lett 2017; 13:4533-4539. [PMID: 28599454 DOI: 10.3892/ol.2017.5997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Pituitary adenoma (PA) is a common type of benign tumor of the pituitary gland that is characterized by specific signs and symptoms, primarily associated with hypersecretion of pituitary glycoprotein hormones (thyroid-stimulating, growth and adrenocorticotrophic hormones, and prolactin). Surgery is the first-line treatment, although postoperative residual tissues/cells and subsequent recurrence remain notable complications. Gene therapy is an effective approach for treatment, as previous studies have demonstrated that the Notch signaling pathway participates in the pathogenesis of PA. The focus of the present study was on the associations between the expression of the Notch1 receptor and its ligands δ-like canonical Notch ligand (Dll) 1, Dll3 and Dll4 in patients with PA. Using reverse transcription-quantitative polymerase chain reaction and western blot analyses, to the best of our knowledge, this is the first study to provide a description of the differential expression of the Notch1 receptor and its ligands Dll1, Dll3, and Dll4 in various types of human PA at the mRNA and protein levels. The results of the present study demonstrated that Notch1 protein expression was positively correlated with Dll4 protein expression, but negatively correlated with Dll3 protein expression, indicating synergistic effects between the Notch1 receptor and Dll4 ligand. Furthermore, the Dll3 ligand may be an inhibitor of the Notch1 receptor, indicating an antagonistic association between Notch1 and the Dll3 ligand. These results have identified a potential target for the treatment of patients with PA.
Collapse
Affiliation(s)
- Jianfu Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China.,Neurosurgical Department, Weihai Municipal Hospital, Huancui, Weihai 264200, P.R. China
| | - Hua Gao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Yazhuo Zhang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
70
|
Zeng Y, Rucki AA, Che X, Zheng L. Shifting paradigm of developing biologics for the treatment of pancreatic adenocarcinoma. J Gastrointest Oncol 2017; 8:441-448. [PMID: 28736631 DOI: 10.21037/jgo.2016.10.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pancreatic adenocarcinoma is still widely considered as a deadly disease even though there are substantial therapeutic developments in the past decade. Using combinational chemotherapy regimens, represented by gemcitabine plus nab-paclitaxel and FOLFIRINOX, was able to improve overall survival in patients with advanced disease to a limited extent. It has been a challenge to develop targeted therapies that are focused on the neoplasm cells of pancreatic adenocarcinoma. Recently, targeting the stroma and immune compartments of pancreatic adenocarcinoma has shown promising results. The paradigm of biologics drug development therefore has been shifted by extending to these exciting areas. Although some of the preclinical and clinical researches in targeting the tumor microenvironment of pancreatic adenocarcinoma have shown promising results, others have resulted in controversial findings. Both comprehensive and in-depth researches on the basic science of the tumor microenvironment of pancreatic adenocarcinoma are thus warranted for the development of effective biologics that target the tumor microenvironment. Moreover, an ideal treatment for pancreatic adenocarcinoma shall be a combination of targeting both neoplastic cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Medical Oncology, Geisinger Medical Center, Danville, PA 17822, USA
| | - Agnieszka A Rucki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xu Che
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Abdominal Surgery, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
71
|
Khalafalla FG, Khan MW. Inflammation and Epithelial-Mesenchymal Transition in Pancreatic Ductal Adenocarcinoma: Fighting Against Multiple Opponents. CANCER GROWTH AND METASTASIS 2017; 10:1179064417709287. [PMID: 28579826 PMCID: PMC5436837 DOI: 10.1177/1179064417709287] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/06/2017] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer and one of the most lethal human cancers. Inflammation is a critical component in PDAC initiation and progression. Inflammation also contributes to the aggressiveness of PDAC indirectly via induction of epithelial-mesenchymal transition (EMT), altogether leading to enhanced resistance to chemotherapy and poor survival rates. This review gives an overview of the key pro-inflammatory signaling pathways involved in PDAC pathogenesis and discusses the role of inflammation in induction of EMT and development of chemoresistance in patients with PDAC.
Collapse
|
72
|
The role of Notch signaling in gastric carcinoma: molecular pathogenesis and novel therapeutic targets. Oncotarget 2017; 8:53839-53853. [PMID: 28881855 PMCID: PMC5581154 DOI: 10.18632/oncotarget.17809] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/17/2017] [Indexed: 12/14/2022] Open
Abstract
Notch signaling, an evolutionarily conserved signaling cascade system, is involved in promoting the progression of different types of cancers. Within the past decades, the Notch signaling pathway has increasingly been shown to have a primary role in deciding the fate of cancer cells and cancer stem cells in the stomach. Most components of Notch signaling are strongly expressed at different levels in gastric carcinoma tissue samples and are associated with a considerable number of clinical parameters. Moreover, crosstalk signaling between the Notch pathway and the Wnt, Ras, and NF-κB pathways promotes the process of gastric carcinogenesis. Consequently, this increases proliferation and prevents apoptosis in gastric cancer cells, and it contributes to the induction of angiogenesis and accelerates the progression of the epithelial-to-mesenchymal transition. Although the Notch signaling pathway presents novel therapeutic targets for cancer therapeutic intervention, there is still a dearth of in-depth understanding of the molecular mechanisms of Notch signaling in gastric carcinoma. In this review, we summarize the landscape of the Notch signaling pathway and recent findings on Notch signaling in gastric cancer. Furthermore, advanced studies and clinical treatments targeting the Notch signaling pathway arediscussed.
Collapse
|
73
|
Zhao J, Wang Y, Mu C, Xu Y, Sang J. MAGEA1 interacts with FBXW7 and regulates ubiquitin ligase-mediated turnover of NICD1 in breast and ovarian cancer cells. Oncogene 2017; 36:5023-5034. [DOI: 10.1038/onc.2017.131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
|
74
|
Wang W, Wang L, Mizokami A, Shi J, Zou C, Dai J, Keller ET, Lu Y, Zhang J. Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. CHINESE JOURNAL OF CANCER 2017; 36:35. [PMID: 28356132 PMCID: PMC5372329 DOI: 10.1186/s40880-017-0203-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/23/2017] [Indexed: 01/09/2023]
Abstract
Background The chemoresistance of prostate cancer (PCa) is invariably associated with the aggressiveness and metastasis of this disease. New emerging evidence indicates that the epithelial-to-mesenchymal transition (EMT) may play pivotal roles in the development of chemoresistance and metastasis. As a hallmark of EMT, E-cadherin is suggested to be a key marker in the development of chemoresistance. However, the molecular mechanisms underlying PCa chemoresistance remain unclear. The current study aimed to explore the association between EMT and chemoresistance in PCa as well as whether changing the expression of E-cadherin would affect PCa chemoresistance. Methods Parental PC3 and DU145 cells and their chemoresistant PC3-TxR and DU145-TxR cells were analyzed. PC3-TxR and DU145-TxR cells were transfected with E-cadherin-expressing lentivirus to overexpress E-cadherin; PC3 and DU145 cells were transfected with small interfering RNA to silence E-cadherin. Changes of EMT phenotype-related markers and signaling pathways were assessed by Western blotting and quantitative real-time polymerase chain reaction. Tumor cell migration, invasion, and colony formation were then evaluated by wound healing, transwell, and colony formation assays, respectively. The drug sensitivity was evaluated using MTS assay. Results Chemoresistant PC3-TxR and DU145-TxR cells exhibited an invasive and metastatic phenotype that associated with EMT, including the down-regulation of E-cadherin and up-regulation of Vimentin, Snail, and N-cadherin, comparing with that of parental PC3 and DU145 cells. When E-cadherin was overexpressed in PC3-TxR and DU145-TxR cells, the expression of Vimentin and Claudin-1 was down-regulated, and tumor cell migration and invasion were inhibited. In particular, the sensitivity to paclitaxel was reactivated in E-cadherin-overexpressing PC3-TxR and DU145-TxR cells. When E-cadherin expression was silenced in parental PC3 and DU145 cells, the expression of Vimentin and Snail was up-regulated, and, particularly, the sensitivity to paclitaxel was decreased. Interestingly, Notch-1 expression was up-regulated in PC3-TxR and DU145-TxR cells, whereas the E-cadherin expression was down-regulated in these cells comparing with their parental cells. The use of γ-secretase inhibitor, a Notch signaling pathway inhibitor, significantly increased the sensitivity of chemoresistant cells to paclitaxel. Conclusion The down-regulation of E-cadherin enhances PCa chemoresistance via Notch signaling, and inhibiting the Notch signaling pathway may reverse PCa chemoresistance.
Collapse
Affiliation(s)
- Wenchu Wang
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China.,Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lihui Wang
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China
| | - Atsushi Mizokami
- Department of Urology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junlin Shi
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China
| | - Chunlin Zou
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China.,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China
| | - Jinlu Dai
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Evan T Keller
- Department of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yi Lu
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China. .,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China.
| | - Jian Zhang
- Center for Translational Medicine, Guangxi Medical University, 12th Floor, Medical Science Research Building, No. 22 Shuangyong Road, Nanning, Guangxi, 530021, P. R. China. .,Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, Guangxi, 530021, P. R. China. .,Department of Biology and School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China. .,Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15232, USA.
| |
Collapse
|
75
|
Gao J, Long B, Wang Z. Role of Notch signaling pathway in pancreatic cancer. Am J Cancer Res 2017; 7:173-186. [PMID: 28337369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 09/28/2022] Open
Abstract
Pancreatic cancer (PC) is one of the highly aggressive malignancies in the United States. It has been shown that multiple signaling pathways are involved in the pathogenesis of PC, such as JNK, PI3K/AKT, Rho GTPase, Hedgehog (Hh) and Skp2. In recent years, accumulated evidence has demonstrated that Notch signaling pathway plays critical roles in the development and progression of PC. Therefore, in this review we discuss the recent literature regarding the function and regulation of Notch in the pathogenesis of PC. Moreover, we describe that Notch signaling pathway could be down-regulated by its inhibitors or natural compounds, which could be a novel approach for the treatment of PC patients.
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Tranditional Chinese Medicine Mianyang, Sichuan, China
| | - Bo Long
- Department of Infectious Diseases, Mianyang 404 Hospital Mianyang, Sichuan, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow UniversitySuzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical SchoolMA 02215, USA
| |
Collapse
|
76
|
Wang XP, Zhou J, Han M, Chen CB, Zheng YT, He XS, Yuan XP. MicroRNA-34a regulates liver regeneration and the development of liver cancer in rats by targeting Notch signaling pathway. Oncotarget 2017; 8:13264-13276. [PMID: 28129650 PMCID: PMC5355094 DOI: 10.18632/oncotarget.14807] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/13/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the role of microRNA-34a (miR-34a) in regulating liver regeneration (LR) and the development of liver cancer in rats by targeting Notch signaling pathway. METHODS Thirty male Sprague-Dawley (SD) rats were randomly assigned into partial hepatectomy (PH) group and sham hepatectomy (SH) group. Hematoxylin and eosin (HE) staining was used to observe the histological change in liver tissues. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) levels. Dual-luciferase reporter gene assay was performed to examine whether miR-34a targeted Notch1 gene. Human liver cancer Huh7 cells were transfected and divided into blank, negative control (NC), miR-34a mimics and miR-34a inhibitors groups. MTT and flow cytometry were used to detect cell growth, and cell cycle and apoptosis, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied detect to the expressions of miR-34a and Notch receptor mRNA. Western blotting was performed to detect the protein expressions of Notch receptors, P21, Bax, Bcl-2 and Bcl-xL. Tumor xenograft in nude mice was done to observe tumor formation in different groups. RESULTS Compared to the SH group, miR-34a expression in liver tissues in the PH group decreased first and then increased to the normal level during LR. In early stage of LR, the expressions of Notch receptors and miR-34a were negatively correlated. Compared to the blank and NC groups, the cell growth was inhibited, cell cycle was mainly arrested in the G2/M phase and cell apoptosis rate increased in the miR-34a mimics group. Moreover, the expressions of miR-34a, P21 and Bax were up-regulated, while the expressions of Notch receptors, and Bcl-2 and Bcl-xL were down-regulated in this group. Additionally, the tumor growth in the miR-34a mimics group was reduced. The miR-34a inhibitors group showed contrary tendencies. CONCLUSION Our study demonstrates that miR-34a regulated LR and the development of liver cancer by inhibiting Notch signaling pathway.
Collapse
Affiliation(s)
- Xiao-Ping Wang
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Jian Zhou
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Ming Han
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Chuan-Bao Chen
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Yi-Tao Zheng
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Xiao-Shun He
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| | - Xiao-Peng Yuan
- Third Division of Organ Transplant Center, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P. R. China
| |
Collapse
|
77
|
Träger MM, Dhayat SA. Epigenetics of epithelial-to-mesenchymal transition in pancreatic carcinoma. Int J Cancer 2017; 141:24-32. [DOI: 10.1002/ijc.30626] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Max M. Träger
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| | - Sameer A. Dhayat
- Department of General and Visceral Surgery; University Hospital of Muenster; Muenster Germany
| |
Collapse
|
78
|
Liu CH, Huang Q, Jin ZY, Zhu CL, Liu Z, Wang C. miR-21 and KLF4 jointly augment epithelial‑mesenchymal transition via the Akt/ERK1/2 pathway. Int J Oncol 2017; 50:1109-1115. [PMID: 28197636 PMCID: PMC5363879 DOI: 10.3892/ijo.2017.3876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/20/2016] [Indexed: 01/29/2023] Open
Abstract
miR-21 induces epithelial-mesenchymal transition (EMT) of human cholangiocarcinoma (CCA) cells. However, the mechanism by which this occurs remains unclear. In the present study, high throughput platform was employed to detect the genes that are differential expressed in QBC939 cells transfected with a hsa-miR-21 antagomir or control vectors. The EMT-related Krüppel-like factor 4 (KLF4) gene was down-regulated after miR-21 was knocked down. Overexpression of miR-21 upregulated KLF4, Akt, ERK and mesenchymal cell markers (N-cadherin and vimentin), downregulated the expression of epithelial cell marker E-cadherin and reduced cell migration and invasion. Immunohistochemistry showed that KLF4, pAkt and pERK were upregulated in tumor xenografts transfected with miR-21 mimics. Inhibitors of the PI3K-Akt and ERK1/2 pathways, LY294002 and U0126, significantly suppressed the EMT phenotype. The present data demonstrated that overexpression of miR-21, accompanied with KLF4, augmented the EMT via inactivation of Akt and ERK1/2 pathways. In conclusion, we have identified a novel mechanism that may be targeted in an attempt to relieve the malignant biological behavior of CCA cells.
Collapse
Affiliation(s)
- Chen-Hai Liu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Qiang Huang
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Zhi-Yuan Jin
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Cheng-Lin Zhu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Zhen Liu
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| | - Chao Wang
- Department of General Surgery, Anhui Provincial Hospital of Anhui Medical University, Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
79
|
Chen J, Yuan W, Wu L, Tang Q, Xia Q, Ji J, Liu Z, Ma Z, Zhou Z, Cheng Y, Shu X. PDGF-D promotes cell growth, aggressiveness, angiogenesis and EMT transformation of colorectal cancer by activation of Notch1/Twist1 pathway. Oncotarget 2017; 8:9961-9973. [PMID: 28035069 PMCID: PMC5354784 DOI: 10.18632/oncotarget.14283] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Platelet-derived growth factor-D (PDGF-D) plays a crucial role in the progression of several cancers. However, its role in colorectal cancer (CRC) remains unclear. Our study showed that PDGF-D was highly expressed in CRC tissues and was positively associated with the clinicopathological features. Down-regulation of PDGF-D inhibited the tumor growth, migration and angiogenesis of SW480 cells in vitro and in vivo. Whereas up-regulation of PDGF-D promoted the malignant behaviors of HCT116 cells. Moreover, PDGF-D up-regulated the expression of Notch1 and Twist1 in CRC cells. In addition, PDGF-D expression promoted Epithelial to mesenchymal transition (EMT), which was accompanied with decreased E-cadherin and increased Vimentin expression. Consistently, PDGF-D, Notch1, and Twist1 are obviously up-regulated in transforming growth factor-beta 1 (TGF-β1) treated HCT116 cells. Since Notch1 and Twist1 play an important role in EMT and tumor progression, we examined whether there is a correlation between Notch1 and Twist1 in EMT status. Our results showed that up-regulation of Notch1 was able to rescue the effects of PDGF-D down-regulation on Twist1 expression in SW480 cells, whereas down-regulation of Notch1 reduced Twist1 expression in HCT116 cells. Furthermore, we found that Twist1 promoted EMT and aggressiveness of CRC cells. These results suggest that PDGF-D promotes tumor growth and aggressiveness of CRC, moreover, down-regulation of PDGF-D inactivates Notch1/Twist1 axis, which could reverse EMT and prevent CRC progression.
Collapse
Affiliation(s)
- Jinhuang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzheng Yuan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Tang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Xia
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintong Ji
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijun Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifeng Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
80
|
Torquato HFV, Goettert MI, Justo GZ, Paredes-Gamero EJ. Anti-Cancer Phytometabolites Targeting Cancer Stem Cells. Curr Genomics 2017; 18:156-174. [PMID: 28367074 PMCID: PMC5345336 DOI: 10.2174/1389202917666160803162309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022] Open
Abstract
Medicinal plants are a plentiful source of bioactive molecules with much structural diversity. In cancer treatment, molecules obtained from plants represent an attractive alternative to other treatments because several plant-derived compounds have exhibited lower toxicity and higher selectivity against cancer cells. In this review, we focus on the possible application of bioactive molecules obtained from plants against more primitive cell populations in cancers, cancer stem cells. Cancer stem cells are present in several kinds of tumors and are responsible for recurrences and metastases. Common anti-cancer drugs exhibit lower effectiveness against cancer stem cells because of their biological features. However, recently discovered natural phytometabolites exert cytotoxic effects on this rare population of cells in cancers. Therefore, this review presents the latest research on promising compounds from plants that can act as antitumor drugs and that mainly affect stem cell populations in cancers.
Collapse
Affiliation(s)
- Heron F V Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil
| | - Márcia I Goettert
- Programa de Pós-Graduação em Biotecnologia, Centro Universitário Univates, Rio Grande do Sul, Brazil
| | - Giselle Z Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Departamento de Ciências Biológicas (Campus Diadema), Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edgar J Paredes-Gamero
- Departamento de Bioquímica, Universidade Federal de São Paulo (Campus São Paulo), São Paulo, Brazil;; Centro Interdisciplinar de Investigação Bioquímica, Universidade de Mogi das Cruzes, São Paulo, Brazil
| |
Collapse
|
81
|
Xu YF, Hannafon BN, Ding WQ. microRNA regulation of human pancreatic cancer stem cells. Stem Cell Investig 2017; 4:5. [PMID: 28217707 DOI: 10.21037/sci.2017.01.01] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022]
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that function primarily in the post transcriptional regulation of gene expression in plants and animals. Deregulation of miRNA expression in cancer cells, including pancreatic cancer cells, is well documented, and the involvement of miRNAs in orchestrating tumor genesis and cancer progression has been recognized. This review focuses on recent reports demonstrating that miRNAs are involved in regulation of pancreatic cancer stem cells (CSCs). A number of miRNA species have been identified to be involved in regulating pancreatic CSCs, including miR-21, miR-34, miR-1246, miR-221, the miR-17-92 cluster, the miR-200 and let-7 families. Furthermore, the Notch-signaling pathway and epithelial-mesenchymal transition (EMT) process are associated with miRNA regulation of pancreatic CSCs. Given the significant contribution of CSCs to chemo-resistance and tumor progression, a better understanding of how miRNAs function in pancreatic CSCs could provide novel strategies for the development of therapeutics and diagnostics for this devastating disease.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Bethany N Hannafon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| | - Wei-Qun Ding
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA
| |
Collapse
|
82
|
Guo Q. Changes in mitochondrial function during EMT induced by TGFβ-1 in pancreatic cancer. Oncol Lett 2017; 13:1575-1580. [PMID: 28454293 PMCID: PMC5403440 DOI: 10.3892/ol.2017.5613] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 10/13/2016] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial dysfunction is linked to cancer. Differences in the number, morphology and function of mitochondria have been observed between normal cells and cancer cells. However, changes in mitochondrial function during epithelial-mesenchymal transition (EMT) in pancreatic cancer are less known. In the present study, the cultured human pancreatic cancer cell line Panc-1 was treated with transforming growth factor (TGF)β-1. Mitochondrial functions following TGFβ-1 exposure in pancreatic cancer were investigated. It was noticed that TGFβ-1 treatment induces morphologic changes and a shift from epithelial to mesenchymal phenotype in pancreatic cancer. Furthermore, increased mitochondrial mass was detected in pancreatic cancer following TGFβ-1 treatment. Besides, the production of reactive oxygen species in TGFβ-1-treated pancreatic cancer cells significantly increased compared with the control cells. Our results indicate that the phenomenon of EMT in pancreatic cancer has an association with mitochondrial dysfunction. Mitochondrial dysfunction may be a cause of EMT in pancreatic cancer, which leads to heterogeneity in pancreatic cancer, and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Qingqu Guo
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
83
|
Huang T, Zhou Y, Cheng ASL, Yu J, To KF, Kang W. NOTCH receptors in gastric and other gastrointestinal cancers: oncogenes or tumor suppressors? Mol Cancer 2016; 15:80. [PMID: 27938406 PMCID: PMC5148895 DOI: 10.1186/s12943-016-0566-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Gastric cancer (GC) ranks the most common cancer types and is one of the leading causes of cancer-related death. Due to delayed diagnosis and high metastatic frequency, 5-year survival rate of GC is rather low. It is a complex disease resulting from the interaction between environmental factors and host genetic alterations that deregulate multiple signaling pathways. The Notch signaling pathway, a highly conserved system in the regulation of the fate in several cell types, plays a pivotal role in cell differentiation, survival and proliferation. Notch is also one of the most commonly activated signaling pathways in tumors and its aberrant activation plays a key role in cancer advancement. Whether Notch cascade exerts oncogenic or tumor suppressive function in different cancer types depends on the cellular context. Mammals have four NOTCH receptors that modulate Notch pathway activity. In this review, we provide a comprehensive summary on the functional role of NOTCH receptors in gastric and other gastrointestinal cancers. Increasing knowledge of NOTCH receptors in gastrointestinal cancers will help us recognize the underlying mechanisms of Notch signaling and develop novel therapeutic strategies for GC.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Yuhang Zhou
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China.,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Alfred S L Cheng
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jun Yu
- Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, SAR, People's Republic of China. .,Institute of Digestive Disease, Partner State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.
| |
Collapse
|
84
|
Molecular Profiling of Circulating Tumour Cells Identifies Notch1 as a Principal Regulator in Advanced Non-Small Cell Lung Cancer. Sci Rep 2016; 6:37820. [PMID: 27901069 PMCID: PMC5129014 DOI: 10.1038/srep37820] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/31/2016] [Indexed: 12/11/2022] Open
Abstract
Knowledge on the molecular mechanisms underlying metastasis colonization in Non-Small Cell Lung Cancer (NSCLC) remains incomplete. A complete overview integrating driver mutations, primary tumour heterogeneity and overt metastasis lacks the dynamic contribution of disseminating metastatic cells due to the inaccessibility to the molecular profiling of Circulating Tumour Cells (CTCs). By combining immunoisolation and whole genome amplification, we performed a global gene expression analysis of EpCAM positive CTCs from advanced NSCLC patients. We identified an EpCAM+ CTC-specific expression profile in NSCLC patients mostly associated with cellular movement, cell adhesion and cell-to-cell signalling mediated by PI3K/AKT, ERK1/2 and NF-kB pathways. NOTCH1 emerged as a driver connecting active signalling pathways, with a reduced number of related candidate genes (NOTCH1, PTP4A3, LGALS3 and ITGB3) being further validated by RT-qPCR on an independent cohort of NSCLC patients. In addition, these markers demonstrated high prognostic value for Progression-Free Survival (PFS). In conclusion, molecular characterization of EpCAM+ CTCs from advanced NSCLC patients provided with highly specific biomarkers with potential applicability as a “liquid biopsy” for monitoring of NSCLC patients and confirmed NOTCH1 as a potential therapeutic target to block lung cancer dissemination.
Collapse
|
85
|
Zhang X, Liu X, Luo J, Xiao W, Ye X, Chen M, Li Y, Zhang GJ. Notch3 inhibits epithelial-mesenchymal transition by activating Kibra-mediated Hippo/YAP signaling in breast cancer epithelial cells. Oncogenesis 2016; 5:e269. [PMID: 27841855 PMCID: PMC5141289 DOI: 10.1038/oncsis.2016.67] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
Invasion, metastasis and chemoresistance are leading causes of death in breast cancer patients. A vital change of epithelial cells, epithelial-mesenchymal transition (EMT), is involved in these processes. Unfortunately, the molecular mechanisms controlling EMT remain to be elucidated. Our previous studies have shown that ectopic N3ICD expression inhibits EMT in MDA-MB-231, a triple-negative breast cancer (TNBC) epithelial cell line. To decipher the mechanism, we performed in-depth studies. Specifically, we found that overexpressing N3ICD transcriptionally upregulated the expression of Kibra, an upstream member of the Hippo pathway. Correspondingly, we also observed that phosphorylated Hippo pathway core kinases, including Lats1/2 and MST1/2, were increased and decreased by overexpressing and knocking down Notch3, respectively. Furthermore, we found that the oncogenic transcriptional coactivator yes-associated protein (YAP), which is negatively regulated by the Hippo pathway, was inhibited by overexpressing N3ICD in breast cancer epithelial cells. The ability of Kibra to inhibit EMT has been previously reported. We thus speculated that Notch3 inhibition of EMT is mediated by upregulated Kibra. To verify this hypothesis, a rescue experiment was performed. Evidently, the ability of Notch3 to inhibit EMT can be countered by knocking down Kibra expression. These data suggest that Notch3 inhibits EMT by activating the Hippo/YAP pathway by upregulating Kibra in breast cancer epithelial cells, and Kibra may be a downstream effector of Notch3. These findings deepen our understanding of EMT in both development and disease, and will undoubtedly help to provide new therapeutic strategies for interfering with cancer invasion and metastasis, especially for TNBC.
Collapse
Affiliation(s)
- X Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - X Liu
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - J Luo
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - W Xiao
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - X Ye
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - M Chen
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Y Li
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China. E-mail: or
| | - G-J Zhang
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
- Changjiang Scholar's Laboratory, Cancer Hospital of Shantou University Medical College, 7 Raoping Road, Shantou 515041, China. E-mail: or
| |
Collapse
|
86
|
Bi YL, Min M, Shen W, Liu Y. Numb/Notch signaling pathway modulation enhances human pancreatic cancer cell radiosensitivity. Tumour Biol 2016; 37:15145-15155. [PMID: 27677287 DOI: 10.1007/s13277-016-5311-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/05/2016] [Indexed: 02/05/2023] Open
Abstract
The present study aims to evaluate whether repression of the Numb/Notch signaling pathway affects the radiosensitivity of human pancreatic cancer cell lines. Different doses of X-rays (0, 2, 3, 4, and 5 Gy) were applied to the PANC-1, SW1990, and MIA PaCa-2 human pancreatic cancer cell lines, and the Numb/Notch pathway inhibitor DAPT was added at different doses (0, 1, 3, and 5 μmol/l). MTT assay, colony formation assay, flow cytometry, scratch assay, and Transwell experiments were performed, and qRT-PCR and Western blot were conducted for the detection of Numb expression. Tumorigenicity assay in nude mice was carried out to verify the influence of blocker of the Numb/Notch signaling pathway on the radiosensitivity of xenograft tumors. The MTT assay, colony formation assay and flow cytometry experiments revealed that proliferation decreased as radiation dose increased. The viability of PANC-1 cells at 5 Gy, SW 1990 cells at 4 Gy and 5 Gy, and MIA PaCa-2 cells at 2-5 Gy was significantly lower than that of non-irradiated cells (all P < 0.05). The migration and invasion assays indicated that the PANC-1 cell line was least radiosensitive, while the MIA PaCa-2 cell line was the most radiosensitive. Numb expression significantly increased with increasing radiation dose, whereas the expression of Hes1, Notch1, and Hes5 significantly decreased compared to non-irradiated cells (P < 0.05). Compared to untreated control cells, DAPT dose dependently increased Numb expression and inhibited Notch1, Hes1, and Hes5 expressions at 2 Gy (P < 0.05). Subcutaneous tumorigenicity assay in nude mice demonstrated that DAPT increased the radiosensitivity of PANC-1, SW 1990, and MIA PaCa-2 cells. These findings suggest that Numb/Notch signaling in pancreatic cancer cells is associated with X-ray radiation and that inhibition of the Numb/Notch signaling pathway can enhance radiosensitivity, suggesting that inhibition of the Numb/Notch signaling pathway may serve as a potential target for clinical improvement of the radiosensitivity of pancreatic cancer.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/radiation effects
- Blotting, Western
- Cell Proliferation/drug effects
- Cell Proliferation/radiation effects
- Diamines/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/radiation effects
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/radiotherapy
- RNA, Messenger/genetics
- Radiation Tolerance
- Radiation, Ionizing
- Real-Time Polymerase Chain Reaction
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/radiation effects
- Thiazoles/pharmacology
- Transcription Factor HES-1/genetics
- Transcription Factor HES-1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yi-Liang Bi
- Department of Gastroenterology, 307th Hospital of PLA, Academy of Military Medical Science, No.8 East Street, Feng Tai District, Beijing, 100071, China
| | - Min Min
- Department of Gastroenterology, 307th Hospital of PLA, Academy of Military Medical Science, No.8 East Street, Feng Tai District, Beijing, 100071, China
| | - Wei Shen
- Department of Gastroenterology, 307th Hospital of PLA, Academy of Military Medical Science, No.8 East Street, Feng Tai District, Beijing, 100071, China
| | - Yan Liu
- Department of Gastroenterology, 307th Hospital of PLA, Academy of Military Medical Science, No.8 East Street, Feng Tai District, Beijing, 100071, China.
| |
Collapse
|
87
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010]available] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
88
|
Ito T, Kudoh S, Ichimura T, Fujino K, Hassan WAMA, Udaka N. Small cell lung cancer, an epithelial to mesenchymal transition (EMT)-like cancer: significance of inactive Notch signaling and expression of achaete-scute complex homologue 1. Hum Cell 2016; 30:1-10. [DOI: 10.1007/s13577-016-0149-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022]
|
89
|
Goyal S, Nangia-Makker P, Farhana L, Yu Y, Majumdar APN. Racial disparity in colorectal cancer: Gut microbiome and cancer stem cells. World J Stem Cells 2016; 8:279-287. [PMID: 27679684 PMCID: PMC5031889 DOI: 10.4252/wjsc.v8.i9.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 06/28/2016] [Accepted: 07/22/2016] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades there has been remarkable progress in cancer diagnosis, treatment and screening. The basic mechanisms leading to pathogenesis of various types of cancers are also understood better and some patients, if diagnosed at a particular stage go on to lead a normal pre-diagnosis life. Despite these achievements, racial disparity in some cancers remains a mystery. The higher incidence, aggressiveness and mortality of breast, prostate and colorectal cancers (CRCs) in African-Americans as compared to Caucasian-Americans are now well documented. The polyp-carcinoma sequence in CRC and easy access to colonic epithelia or colonic epithelial cells through colonoscopy/colonic effluent provides the opportunity to study colonic stem cells early in course of natural history of the disease. With the advent of metagenomic sequencing, uncultivable organisms can now be identified in stool and their numbers correlated with the effects on colonic epithelia. It would be expected that these techniques would revolutionize our understanding of the racial disparity in CRC and pave a way for the same in other cancers as well. Unfortunately, this has not happened. Our understanding of the underlying factors responsible in African-Americans for higher incidence and mortality from colorectal carcinoma remains minimal. In this review, we aim to summarize the available data on role of microbiome and cancer stem cells in racial disparity in CRC. This will provide a platform for further research on this topic.
Collapse
|
90
|
Wang Y, Yu S, Huang D, Cui M, Hu H, Zhang L, Wang W, Parameswaran N, Jackson M, Osborne B, Bedogni B, Li C, Sy MS, Xin W, Zhou L. Cellular Prion Protein Mediates Pancreatic Cancer Cell Survival and Invasion through Association with and Enhanced Signaling of Notch1. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2945-2956. [PMID: 27639164 DOI: 10.1016/j.ajpath.2016.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 01/06/2023]
Abstract
Up-regulation of human prion protein (PrP) in patients with pancreatic ductal adenocarcinoma (PDAC) is associated with a poor prognosis. However, the underlying molecular mechanism of PrP-mediated tumorigenesis is not completely understood. In this study, we found that PDAC cell lines can be divided into either PrP high expresser or PrP low expresser. In addition to filamin A (FLNA), PrP interacts with Notch1, forming a PrP/FLNA/Notch1 complex. Silencing PrP in high-expresser cells decreases Notch1 expression and Notch1 signaling. These cells exhibited decreased proliferation, xenograft growth, and tumor invasion but show increased tumor apoptosis. These phenotypes were rescued by ectopically expressed and activated Notch1. By contrast, overexpression of PrP in low expressers increases Notch1 expression and signaling, enhances proliferation, and increases tumor invasion and xenograft growth that can be blocked by a Notch inhibitor. Our data further suggest that PrP increases Notch1 stability likely through suppression of Notch proteosome degradation. Additionally, we found that targeting PrP combined with anti-Notch is much more effective than singularly targeted therapy in retarding PDAC growth. Finally, we show that coexpression of PrP and Notch1 confers an even poorer prognosis than PrP expression alone. Taken together, our results have unraveled a novel molecular pathway driven by interactions between PrP and Notch1 in the progression of PDAC, supporting a critical tumor-promoting role of Notch1 in PrP-expressing PDAC tumors.
Collapse
Affiliation(s)
- Yiwei Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Shuiliang Yu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Dan Huang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Min Cui
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Huankai Hu
- Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Weihuan Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - Mark Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Barbara Osborne
- Molecular & Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts
| | - Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio
| | - Chaoyang Li
- State Key Laboratory of Virology and Department of Molecular Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Man-Sun Sy
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Wei Xin
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, University Hospitals Case Medical Center, Cleveland, Ohio.
| |
Collapse
|
91
|
Kim HJ, Kim MJ, Kim A, Jung CW, Park S, Koh JS, Myung JK. The Role of Notch1 Signaling in Anaplastic Thyroid Carcinoma. Cancer Res Treat 2016; 49:509-517. [PMID: 27586674 PMCID: PMC5398404 DOI: 10.4143/crt.2016.214] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/12/2016] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The Notch signaling pathway is widely expressed in normal, reactive, and neoplastic tissues; however, its role in thyroid tissues has not been fully elucidated. Therefore, this study was conducted to characterize the expression of the Notch signaling pathway in papillary thyroid cancer (PTC) cells and anaplastic thyroid cancer (ATC) cells. MATERIALS AND METHODS Expression of activated Notch1 in ATC and PTC paraffin-embedded tissues was determined by immunohistochemistry. The small interfering RNA techniquewas employed to knock down Notch1 expression in ATC and PTC cell lines. RESULTS The expression of activated Notch1 was higher in ATC cases than in PTC cases. Inhibition of Notch1 significantly reduced proliferation and migration of ATC cells, but not PTC cells. In addition, inhibition of Notch1 in ATC cells significantly reduced the expression of key markers of epithelial-mesenchymal transition and cancer stem cells. Conversely, changes in the expression of these proteins were not observed in PTC cells. CONCLUSION The results of this study suggest that Notch1 expression plays different roles in tumor progression in ATC and PTC cells. We also found that Notch1 expression was significantly related to the highly invasive or proliferative activity of ATC cells.
Collapse
Affiliation(s)
- Hyeon Jin Kim
- Laboratory of Radiation Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Min-Jung Kim
- Laboratory of Radiation Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Areumnuri Kim
- Laboratory of Radiation Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Chang Won Jung
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Radiation Pathology, Korea Cancer Center Hospital, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Soo Koh
- Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Pathology, Korea Cancer Center Hospital, Seoul, Korea.,Department of Pathology, Korea Cancer Center Hospital, Seoul, Korea
| |
Collapse
|
92
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
93
|
Polireddy K, Chen Q. Cancer of the Pancreas: Molecular Pathways and Current Advancement in Treatment. J Cancer 2016; 7:1497-514. [PMID: 27471566 PMCID: PMC4964134 DOI: 10.7150/jca.14922] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most lethal cancers among all malignances, with a median overall survival of <1 year and a 5-year survival of ~5%. The dismal survival rate and prognosis are likely due to lack of early diagnosis, fulminant disease course, high metastasis rate, and disappointing treatment outcome. Pancreatic cancers harbor a variety of genetic alternations that render it difficult to treat even with targeted therapy. Recent studies revealed that pancreatic cancers are highly enriched with a cancer stem cell (CSC) population, which is resistant to chemotherapeutic drugs, and therefore escapes chemotherapy and promotes tumor recurrence. Cancer cell epithelial to mesenchymal transition (EMT) is highly associated with metastasis, generation of CSCs, and treatment resistance in pancreatic cancer. Reviewed here are the molecular biology of pancreatic cancer, the major signaling pathways regulating pancreatic cancer EMT and CSCs, and the advancement in current clinical and experimental treatments for pancreatic cancer.
Collapse
Affiliation(s)
- Kishore Polireddy
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| | - Qi Chen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, USA 66160
| |
Collapse
|
94
|
3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep 2016; 6:28858. [PMID: 27345219 PMCID: PMC4921838 DOI: 10.1038/srep28858] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/10/2016] [Indexed: 02/07/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a critical developmental program in cancer stem cell (CSC) maintenance and in cancer metastasis. Here, our study found that 3,6-DHF could effectively inhibit EMT in BC cells in vitro and in vivo. 3,6-DHF effectively inhibits the formation and proliferation of BCSCs, and consequently reduces the tumor-initiating capacity of tumor cells in NOD/SCID mice. Optical in vivo imaging of cancer metastasis showed that 3,6-DHF administration suppresses the lung metastasis of BC cells in vivo. Further studies indicated that 3,6-DHF down-regulates Notch1, NICD, Hes-1 and c-Myc, consequently decreasing the formation of the functional transcriptional unit of NICD-CSL-MAML, causing Notch signaling inactivation in BC cells. Over-expression of Notch1 or inhibition of miR-34a significantly reduced the inhibitory effects of 3,6-DHF on EMT, CSCs, as well as cells migration and invasion in BC cells. These data indicated that 3,6-DHF effectively inhibits EMT and CSCs, as well as cells migration and invasion in BC cells, in which miR-34a-mediated Notch1 down-regulation plays a crucial role.
Collapse
|
95
|
Chen YC, Ingram PN, Fouladdel S, McDermott SP, Azizi E, Wicha MS, Yoon E. High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis. Sci Rep 2016; 6:27301. [PMID: 27292795 PMCID: PMC4904376 DOI: 10.1038/srep27301] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
Considerable evidence suggests that many malignancies are driven by a cellular compartment that displays stem cell properties. Cancer stem-like cells (CSCs) can be identified by expression of cell surface markers or enzymatic activity, but these methods are limited by phenotypic heterogeneity and plasticity of CSCs. An alternative phenotypic methodology based on in-vitro sphere formation has been developed, but it is typically labor-intensive and low-throughput. In this work, we present a 1,024-microchamber microfluidic platform for single-cell derived sphere formation. Utilizing a hydrodynamic capturing scheme, more than 70% of the microchambers capture only one cell, allowing for monitoring of sphere formation from heterogeneous cancer cell populations for identification of CSCs. Single-cell derived spheres can be retrieved and dissociated for single-cell analysis using a custom 96-gene panel to probe heterogeneity within the clonal CSC spheres. This microfluidic platform provides reliable and high-throughput sphere formation for CSC identification and downstream clonal analysis.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Female
- Humans
- Hydrogels/chemistry
- Lab-On-A-Chip Devices
- MCF-7 Cells
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Microfluidics/instrumentation
- Microfluidics/methods
- Microscopy, Electron, Scanning
- Neoplastic Stem Cells/cytology
- Neoplastic Stem Cells/metabolism
- Polyhydroxyethyl Methacrylate/chemistry
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Single-Cell Analysis/methods
- Spheroids, Cellular/cytology
- Spheroids, Cellular/metabolism
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5940, USA
| | - Patrick N. Ingram
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109-2099, USA
| | - Shamileh Fouladdel
- University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5940, USA
| | - Sean P. McDermott
- University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5940, USA
| | - Ebrahim Azizi
- University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5940, USA
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center, 1500 East Medical Center Drive, Ann Arbor, MI 48109-5940, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, MI 48109-2122, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd, Ann Arbor, MI 48109-2099, USA
| |
Collapse
|
96
|
Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis. Toxins (Basel) 2016; 8:toxins8060162. [PMID: 27231938 PMCID: PMC4926129 DOI: 10.3390/toxins8060162] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a key role in tumor progression. The cells undergoing EMT upregulate the expression of cell motility-related proteins and show enhanced migration and invasion. The hallmarks of EMT in cancer cells include changed cell morphology and increased metastatic capabilities in cell migration and invasion. Therefore, prevention of EMT is an important tool for the inhibition of tumor metastasis. A novel preventive therapy is needed, such as treatment of natural dietary substances that are nontoxic to normal human cells, but effective in inhibiting cancer cells. Phytoestrogens, such as genistein, resveratrol, kaempferol and 3,3′-diindolylmethane (DIM), can be raised as possible candidates. They are plant-derived dietary estrogens, which are found in tea, vegetables and fruits, and are known to have various biological efficacies, including chemopreventive activity against cancers. Specifically, these phytoestrogens may induce not only anti-proliferation, apoptosis and cell cycle arrest, but also anti-metastasis by inhibiting the EMT process in various cancer cells. There have been several signaling pathways found to be associated with the induction of the EMT process in cancer cells. Phytoestrogens were demonstrated to have chemopreventive effects on cancer metastasis by inhibiting EMT-associated pathways, such as Notch-1 and TGF-beta signaling. As a result, phytoestrogens can inhibit or reverse the EMT process by upregulating the expression of epithelial phenotypes, including E-cadherin, and downregulating the expression of mesenchymal phenotypes, including N-cadherin, Snail, Slug, and vimentin. In this review, we focused on the important roles of phytoestrogens in inhibiting EMT in many types of cancer and suggested phytoestrogens as prominent alternative compounds to chemotherapy.
Collapse
|
97
|
Metastasis: new functional implications of platelets and megakaryocytes. Blood 2016; 128:24-31. [PMID: 27154188 DOI: 10.1182/blood-2016-01-636399] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023] Open
Abstract
Platelets are essential components of hemostasis. Due to a plethora of factors released on activation, platelet functions are also connected to tumor growth, notably by acting on angiogenesis. It is now well recognized that major roles of platelets in the poor outcome of cancer patients occurs during hematogenous dissemination of cancer cells. In this review, we describe recent insights into the molecular mechanisms supporting the prometastatic activity of platelets. Platelets have been shown to promote survival of circulating tumor cells (CTCs) in the bloodstream by conferring resistance to the shear stress and attack from natural killer cells. Recently, platelets were found to promote and/or maintain the state of epithelial to mesenchymal transition on CTCs through platelet secretion of transforming growth factor β in response to CTC activation. At a later stage in the metastatic process, platelets promote extravasation and establishment of metastatic cells in distant organs as observed in bone. This particular environment is also the site of hematopoiesis, megakaryocytopoiesis, and platelet production. Increasing the number of megakaryocytes (MKs) in the bone marrow results in a high bone mass phenotype and inhibits skeletal metastasis formation of prostate cancer cells. As a result of their specific location in vascular niches in the bone marrow, MK activity might contribute to the "seed and soil" suitability between CTCs and bone. In conclusion, recent findings have made a great advance in our knowledge on how platelets contribute to the metastatic dissemination of cancer cells and that may support the development of new antimetastasis therapies.
Collapse
|
98
|
Vitale P, Panella A, Scilimati A, Perrone MG. COX-1 Inhibitors: Beyond Structure Toward Therapy. Med Res Rev 2016; 36:641-71. [DOI: 10.1002/med.21389] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/21/2016] [Accepted: 02/15/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Paola Vitale
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Andrea Panella
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Antonio Scilimati
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences; University of Bari “A. Moro”; 70125 Bari Italy
| |
Collapse
|
99
|
NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Sci Rep 2016; 6:24704. [PMID: 27108536 PMCID: PMC4842967 DOI: 10.1038/srep24704] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are considered responsible for tumor initiation and chemoresistance. This study was aimed to investigate the possibility of targeting head neck squamous cell carcinoma (HNSCC) by NOTCH1 pathway inhibition and explore the synergistic effect of combining NOTCH inhibition with conventional chemotherapy. NOTCH1/HES1 elevation was found in human HNSCC, especially in tissue post chemotherapy and lymph node metastasis, which is correlated with CSCs markers. NOTCH1 inhibitor DAPT (GSI-IX) significantly reduces CSCs population and tumor self-renewal ability in vitro and in vivo. Flow cytometry analysis showed that NOTCH1 inhibition reduces CSCs frequency either alone or in combination with chemotherapeutic agents, namely, cisplatin, docetaxel, and 5-fluorouracil. The combined strategy of NOTCH1 blockade and chemotherapy synergistically attenuated chemotherapy-enriched CSC population, promising a potential therapeutic exploitation in future clinical trial.
Collapse
|
100
|
miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl) 2016; 94:629-44. [PMID: 27094812 DOI: 10.1007/s00109-016-1420-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are 20-22-nucleotide small endogenous non-coding RNAs which regulate gene expression at post-transcriptional level. In the last two decades, identification of almost 2600 miRNAs in human and their potential to be modulated opened a new avenue to target almost all hallmarks of cancer. miRNAs have been classified as tumor suppressors or oncogenes depending on the phenotype they induce, the targets they modulate, and the tissue where they function. miR-200c, an illustrious tumor suppressor, is one of the highly studied miRNAs in terms of development, stemness, proliferation, epithelial-mesenchymal transition (EMT), therapy resistance, and metastasis. In this review, we first focus on the regulation of miR-200c expression and its role in regulating EMT in a ZEB1/E-cadherin axis-dependent and ZEB1/E-cadherin axis-independent manner. We then describe the role of miR-200c in therapy resistance in terms of multidrug resistance, chemoresistance, targeted therapy resistance, and radiotherapy resistance in various cancer types. We highlight the importance of miR-200c at the intersection of EMT and chemoresistance. Furthermore, we show how miR-200c coordinates several important signaling cascades such as TGF-β signaling, PI3K/Akt signaling, Notch signaling, VEGF signaling, and NF-κB signaling. Finally, we discuss miR-200c as a potential prognostic/diagnostic biomarker in several diseases, but mainly focusing on cancer and its potential application in future therapeutics.
Collapse
|