51
|
Masterson AN, Chowdhury NN, Fang Y, Yip-Schneider MT, Hati S, Gupta P, Cao S, Wu H, Schmidt CM, Fishel ML, Sardar R. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens 2023; 8:1085-1100. [PMID: 36853001 DOI: 10.1021/acssensors.2c02105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is often detected at an advanced stage. Earlier diagnosis of PDAC is key to reducing mortality. Circulating biomarkers such as microRNAs are gaining interest, but existing technologies require large sample volumes, amplification steps, extensive biofluid processing, lack sensitivity, and are low-throughput. Here, we present an advanced nanoplasmonic sensor for the highly sensitive, amplification-free detection and quantification of microRNAs (microRNA-10b, microRNA-let7a) from unprocessed plasma microsamples. The sensor construct utilizes uniquely designed -ssDNA receptors attached to gold triangular nanoprisms, which display unique localized surface plasmon resonance (LSPR) properties, in a multiwell plate format. The formation of -ssDNA/microRNA duplex controls the nanostructure-biomolecule interfacial electronic interactions to promote the charge transfer/exciton delocalization processes and enhance the LSPR responses to achieve attomolar (10-18 M) limit of detection (LOD) in human plasma. This improve LOD allows the fabrication of a high-throughput assay in a 384-well plate format. The performance of nanoplasmonic sensors for microRNA detection was further assessed by comparing with the qRT-PCR assay of 15 PDAC patient plasma samples that shows a positive correlation between these two assays with the Pearson correlation coefficient value >0.86. Evaluation of >170 clinical samples reveals that oncogenic microRNA-10b and tumor suppressor microRNA-let7a levels can individually differentiate PDAC from chronic pancreatitis and normal controls with >94% sensitivity and >94% specificity at a 95% confidence interval (CI). Furthermore, combining both oncogenic and tumor suppressor microRNA levels significantly improves differentiation of PDAC stages I and II versus III and IV with >91% and 87% sensitivity and specificity, respectively, in comparison to the sensitivity and specificity values for individual microRNAs. Moreover, we show that the level of microRNAs varies substantially in pre- and post-surgery PDAC patients (n = 75). Taken together, this ultrasensitive nanoplasmonic sensor with excellent sensitivity and specificity is capable of assaying multiple biomarkers simultaneously and may facilitate early detection of PDAC to improve patient care.
Collapse
Affiliation(s)
- Adrianna N Masterson
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Nayela N Chowdhury
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Yue Fang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Michele T Yip-Schneider
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Sumon Hati
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
| | - Prashant Gupta
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Huangbing Wu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - C Max Schmidt
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L Fishel
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Rajesh Sardar
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University, Indianapolis, Indiana 46202, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
52
|
The Role of Exosomes in Pancreatic Ductal Adenocarcinoma Progression and Their Potential as Biomarkers. Cancers (Basel) 2023; 15:cancers15061776. [PMID: 36980662 PMCID: PMC10046651 DOI: 10.3390/cancers15061776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is an aggressive and lethal cancer with a dismal five-year survival rate. Despite remarkable improvements in cancer therapeutics, the clinical outcome of PDAC patients remains poor due to late diagnosis of the disease. This highlights the importance of early detection, wherein biomarker evaluation including exosomes would be helpful. Exosomes, small extracellular vesicles (sEVs), are cell-secreted entities with diameters ranging from 50 to 150 nm that deliver cellular contents (e.g., proteins, lipids, and nucleic acids) from parent cells to regulate the cellular processes of targeted cells. Recently, an increasing number of studies have reported that exosomes serve as messengers to facilitate stromal-immune crosstalk within the PDAC tumor microenvironment (TME), and their contents are indicative of disease progression. Moreover, evidence suggests that exosomes with specific surface markers are capable of distinguishing patients with PDAC from healthy individuals. Detectable exosomes in bodily fluids (e.g., blood, urine, saliva, and pancreatic juice) are omnipresent and may serve as promising biomarkers for improving early detection and evaluating patient prognosis. In this review, we shed light on the involvement of exosomes and their cargos in processes related to disease progression, including chemoresistance, angiogenesis, invasion, metastasis, and immunomodulation, and their potential as prognostic markers. Furthermore, we highlight feasible clinical applications and the limitations of exosomes in liquid biopsies as tools for early diagnosis as well as disease monitoring. Taking advantage of exosomes to improve diagnostic capacity may provide hope for PDAC patients, although further investigation is urgently needed.
Collapse
|
53
|
Zhao Y, Tang J, Jiang K, Liu SY, Aicher A, Heeschen C. Liquid biopsy in pancreatic cancer - Current perspective and future outlook. Biochim Biophys Acta Rev Cancer 2023; 1878:188868. [PMID: 36842769 DOI: 10.1016/j.bbcan.2023.188868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 02/27/2023]
Abstract
Pancreatic cancer is a lethal condition with a rising incidence and often presents at an advanced stage, contributing to abysmal five-year survival rates. Unspecific symptoms and the current lack of biomarkers and screening tools hamper early diagnosis. New technologies for liquid biopsies and their respective evaluation in pancreatic cancer patients have emerged over recent years. The term liquid biopsy summarizes the sampling and analysis of circulating tumor cells (CTCs), small extracellular vesicles (sEVs), and tumor DNA (ctDNA) from body fluids. The major advantages of liquid biopsies rely on their minimal invasiveness and repeatability, allowing serial sampling for dynamic insights to aid diagnosis, particularly early detection, risk stratification, and precision medicine in pancreatic cancer. However, liquid biopsies have not yet developed into a new pillar for clinicians' routine armamentarium. Here, we summarize recent findings on the use of liquid biopsy in pancreatic cancer patients. We discuss current challenges and future perspectives of this potentially powerful alternative to conventional tissue biopsies.
Collapse
Affiliation(s)
- Yaru Zhao
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Jiang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shin-Yi Liu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; Research and Development Center for Immunology, China Medical University, Taichung, Taiwan
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy.
| |
Collapse
|
54
|
Raufi AG, May MS, Hadfield MJ, Seyhan AA, El-Deiry WS. Advances in Liquid Biopsy Technology and Implications for Pancreatic Cancer. Int J Mol Sci 2023; 24:4238. [PMID: 36835649 PMCID: PMC9958987 DOI: 10.3390/ijms24044238] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/23/2023] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy with a climbing incidence. The majority of cases are detected late, with incurable locally advanced or metastatic disease. Even in individuals who undergo resection, recurrence is unfortunately very common. There is no universally accepted screening modality for the general population and diagnosis, evaluation of treatment response, and detection of recurrence relies primarily on the use of imaging. Identification of minimally invasive techniques to help diagnose, prognosticate, predict response or resistance to therapy, and detect recurrence are desperately needed. Liquid biopsies represent an emerging group of technologies which allow for non-invasive serial sampling of tumor material. Although not yet approved for routine use in pancreatic cancer, the increasing sensitivity and specificity of contemporary liquid biopsy platforms will likely change clinical practice in the near future. In this review, we discuss the recent technological advances in liquid biopsy, focusing on circulating tumor DNA, exosomes, microRNAs, and circulating tumor cells.
Collapse
Affiliation(s)
- Alexander G. Raufi
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
| | - Michael S. May
- Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Matthew J. Hadfield
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
| | - Attila A. Seyhan
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Division of Hematology/Oncology, Department of Medicine, Lifespan Health System, Providence, RI 02903, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Brown University, Providence, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
55
|
Montalvo-Javé EE, Nuño-Lámbarri N, López-Sánchez GN, Ayala-Moreno EA, Gutierrez-Reyes G, Beane J, Pawlik TM. Pancreatic Cancer: Genetic Conditions and Epigenetic Alterations. J Gastrointest Surg 2023; 27:1001-1010. [PMID: 36749558 DOI: 10.1007/s11605-022-05553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pancreatic cancer is a lethal proliferative disease driven by multiple genetic and epigenetic alterations. Microarrays and omics-based sequencing techniques are potent tools that have facilitated a broader understanding of the complex biological processes that drive pancreatic ductal adenocarcinoma (PDAC). In turn, these tools have resulted in the identification of novel disease markers, prognostic factors, and therapeutic targets. Herein, we provide a review of the genetic and epigenetic drivers of PDAC relative to recent discoveries that impact patient management. METHODS A review of PubMed, Medline, Clinical Key, and Index Medicus was conducted to identify literature from January 1995 to July 2022 that is related to PDAC genetics and epigenetics. Articles in Spanish and English were considered during selection. RESULTS Molecular, genetic, and epigenetic diagnostic tools, novel biomarkers, and promising therapeutic targets have emerged in the treatment of pancreatic cancer. The implementation of microarray technology and application of large omics-based data repositories have facilitated recent discoveries in PDAC. Multiple molecular analyses based on RNA interference have been instrumental in the identification of novel therapeutic targets for patients with PDAC. Moreover, microarrays and next-generation omics-based discoveries have been instrumental in the characterization of subtypes of pancreatic cancer, thereby improving prognostication and refining patient selection for available targeted therapies. CONCLUSION Advances in molecular biology, genetics, and epigenetics have ushered in a new era of discovery in the pathobiology of PDAC. Current efforts are underway to translate these findings into clinical tools and therapies to improve outcomes in patients with PDAC.
Collapse
Affiliation(s)
- Eduardo E Montalvo-Javé
- Hepatopancreatobiliary Clinic, Department of Surgery, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico. .,Department of Surgery, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | | | | | - Edwin A Ayala-Moreno
- Department of Surgery, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Gabriela Gutierrez-Reyes
- Liver, Pancreas and Motility Laboratory, Unit of Experimental Medicine, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Joal Beane
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
56
|
Barrera LN, Ridley PM, Bermejo-Rodriguez C, Costello E, Perez-Mancera PA. The role of microRNAs in the modulation of cancer-associated fibroblasts activity during pancreatic cancer pathogenesis. J Physiol Biochem 2023; 79:193-204. [PMID: 35767180 PMCID: PMC9905185 DOI: 10.1007/s13105-022-00899-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/17/2022] [Indexed: 02/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest of the common cancers. A major hallmark of PDAC is an abundant and dense fibrotic stroma, the result of a disproportionate deposition of extracellular matrix (ECM) proteins. Cancer-associated fibroblasts (CAFs) are the main mediators of PDAC desmoplasia. CAFs represent a heterogenous group of activated fibroblasts with different origins and activation mechanisms. microRNAs (miRNAs) are small non-coding RNAs with critical activity during tumour development and resistance to chemotherapy. Increasing evidence has revealed that miRNAs play a relevant role in the differentiation of normal fibroblasts into CAFs in PDAC. In this review, we discuss recent findings on the role of miRNAs in the activation of CAFs during the progression of PDAC and its response to therapy, as well as the potential role that PDAC-derived exosomal miRNAs may play in the activation of hepatic stellate cells (HSCs) and formation of liver metastasis. Since targeting of CAF activation may be a viable strategy for PDAC therapy, and miRNAs have emerged as potential therapeutic targets, understanding the biology underpinning miRNA-mediated tumour cell-CAF interactions is an important component in guiding rational approaches to treating this deadly disease.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- Department of Molecular Cell Biology, School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 1JQ, UK
| | - P Matthew Ridley
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| | - Pedro A Perez-Mancera
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
57
|
Bai JJ, Zhang X, Wei X, Wang Y, Du C, Wang ZJ, Chen ML, Wang JH. Dean-Flow-Coupled Elasto-Inertial Focusing Accelerates Exosome Purification to Facilitate Single Vesicle Profiling. Anal Chem 2023; 95:2523-2531. [PMID: 36657481 DOI: 10.1021/acs.analchem.2c04898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Exosomes are recognized as noteworthy biomarkers playing unprecedented roles in intercellular communication and disease diagnosis and treatment. It is a prerequisite to obtain high-purity exosomes for the comprehension of exosome biochemistry and further illustration of their functionality/mechanisms. However, the isolation of nanoscale exosomes from endogenous proteins is particularly challenging for small-volume biological samples. Herein, a Dean-flow-coupled elasto-inertial microfluidic chip (DEIC) was developed. It consists of a spiral microchannel with dimensional confined concave structures and facilitates elasto-inertial separation of exosomes with lower protein contaminants from cell culture medium and human serum. The presence of 0.15% (w/v) poly-(oxyethylene) controls the elastic lift force acting on suspended nanoscale particles and makes it feasible for field-free purification of integrity exosomes with a 70.6% recovery and a 91.4% removal rate for proteins. As a proof of concept, the technique demonstrated the individual-vesicle-level biomarker (EpCAM and PD-L1) profiling in combination with simultaneous aptamer-mediated analysis to disclose the sensibility for immune response. Overall, DEIC enables the collection of high-purity exosomes and exhibits potential in integration with downstream analyses of exosomes.
Collapse
Affiliation(s)
- Jun-Jie Bai
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Yu Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning110819, P. R. China
| | - Ze-Jun Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning110819, P. R. China
| |
Collapse
|
58
|
Plasma Extracellular Vesicle Characteristics as Biomarkers of Resectability and Radicality of Surgical Resection in Pancreatic Cancer-A Prospective Cohort Study. Cancers (Basel) 2023; 15:cancers15030605. [PMID: 36765562 PMCID: PMC9913838 DOI: 10.3390/cancers15030605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Due to possible diagnostic misjudgment of tumor resectability, patients with pancreatic ductal adenocarcinoma (PDAC) might be exposed to non-radical resection or unnecessary laparotomy. With small extracellular vesicles (sEV) obtained by liquid biopsy, we aimed to evaluate their potential as biomarkers of tumor resectability, radicality of resection and overall survival (OS). Our prospective study included 83 PDAC patients undergoing surgery with curative intent followed-up longitudinally. sEV were isolated from plasma, and their concentration and size were determined. Fifty patients underwent PDAC resection, and thirty-three had no resection. Preoperatively, patients undergoing resection had higher sEV concentrations than those without resection (p = 0.023). Resection was predicted at the cutoff value of 1.88 × 109/mL for preoperative sEV concentration (p = 0.023) and the cutoff value of 194.8 nm for preoperative mean diameter (p = 0.057). Furthermore, patients with R0 resection demonstrated higher preoperative plasma sEV concentrations than patients with R1/R2 resection (p = 0.014). If sEV concentration was above 1.88 × 109/mL or if the mean diameter was below 194.8 nm, patients had significantly longer OS (p = 0.018 and p = 0.030, respectively). Our proof-of-principle study identified preoperative sEV characteristics as putative biomarkers of feasibility and radicality of PDAC resection that also enable discrimination of patients with worse OS. Liquid biopsy with sEV could aid in PDAC patient stratification and treatment optimization in the future.
Collapse
|
59
|
Xu B, Chen Y, Peng M, Zheng JH, Zuo C. Exploring the potential of exosomes in diagnosis and drug delivery for pancreatic ductal adenocarcinoma. Int J Cancer 2023; 152:110-122. [PMID: 35765844 PMCID: PMC9796664 DOI: 10.1002/ijc.34195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer (PC) is a cancer of the digestive system, and pancreatic ductal adenocarcinoma (PDAC) accounts for approximately 90% of all PC cases. Exosomes derived from PDAC (PDAC-exosomes) promote PDAC development and metastasis. Exosomes are nanoscale vesicles secreted by most cells, which can carry biologically active molecules and mediate communication and cargo transportation among cells. Recent studies have focused on transforming exosomes into good drug delivery systems (DDSs) to improve the clinical treatment of PDAC. This review considers PDAC as the main research object to introduce the role of PDAC-exosomes in PDAC development and metastasis. This review focuses on the following two themes: (a) the great potential of PDAC-exosomes as new diagnostic markers for PDAC, and (b) the transformation of exosomes into potential DDSs.
Collapse
Affiliation(s)
- Biaoming Xu
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Yu Chen
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Mingjing Peng
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| | - Jin Hai Zheng
- Institute of Pathogen Biology and Immunology of College of BiologyHunan Provincial Key Laboratory of Medical Virology, Hunan UniversityChangshaChina
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic SurgeryTranslational Medicine Joint Research Center of Liver Cancer of Hunan University, Laboratory of Digestive Oncology, Affiliated Cancer Hospital of Xiangya Medical School & Hunan Cancer Hospital, Central South UniversityChangshaChina
| |
Collapse
|
60
|
Punetha A, Kotiya D. Advancements in Oncoproteomics Technologies: Treading toward Translation into Clinical Practice. Proteomes 2023; 11:2. [PMID: 36648960 PMCID: PMC9844371 DOI: 10.3390/proteomes11010002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Proteomics continues to forge significant strides in the discovery of essential biological processes, uncovering valuable information on the identity, global protein abundance, protein modifications, proteoform levels, and signal transduction pathways. Cancer is a complicated and heterogeneous disease, and the onset and progression involve multiple dysregulated proteoforms and their downstream signaling pathways. These are modulated by various factors such as molecular, genetic, tissue, cellular, ethnic/racial, socioeconomic status, environmental, and demographic differences that vary with time. The knowledge of cancer has improved the treatment and clinical management; however, the survival rates have not increased significantly, and cancer remains a major cause of mortality. Oncoproteomics studies help to develop and validate proteomics technologies for routine application in clinical laboratories for (1) diagnostic and prognostic categorization of cancer, (2) real-time monitoring of treatment, (3) assessing drug efficacy and toxicity, (4) therapeutic modulations based on the changes with prognosis and drug resistance, and (5) personalized medication. Investigation of tumor-specific proteomic profiles in conjunction with healthy controls provides crucial information in mechanistic studies on tumorigenesis, metastasis, and drug resistance. This review provides an overview of proteomics technologies that assist the discovery of novel drug targets, biomarkers for early detection, surveillance, prognosis, drug monitoring, and tailoring therapy to the cancer patient. The information gained from such technologies has drastically improved cancer research. We further provide exemplars from recent oncoproteomics applications in the discovery of biomarkers in various cancers, drug discovery, and clinical treatment. Overall, the future of oncoproteomics holds enormous potential for translating technologies from the bench to the bedside.
Collapse
Affiliation(s)
- Ankita Punetha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers University, 225 Warren St., Newark, NJ 07103, USA
| | - Deepak Kotiya
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, 900 South Limestone St., Lexington, KY 40536, USA
| |
Collapse
|
61
|
Bamankar S, Londhe VY. The Rise of Extracellular Vesicles as New Age Biomarkers in Cancer Diagnosis: Promises and Pitfalls. Technol Cancer Res Treat 2023; 22:15330338221149266. [PMID: 36604966 PMCID: PMC9830000 DOI: 10.1177/15330338221149266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell-to-cell interactions in the intricate microenvironment of tissue have a significant impact on the progression of cancer at every stage. Both cancer cells and stromal cells are responsible for the secretion of soluble chemical compounds as well as membrane-encased components, which both influence and govern the cell-to-cell interactions within the micro-environment of tumor cells. These membrane structures are identified as extracellular vesicles (EVs), which include exosomes and microvesicles. These nanosized vesicles are made up of bilayered proteolipids and have dimensions ranging from 50 to 1000 nm. It has been speculated that extracellular vesicles that originate from cancer cells perform a variety of functions in the development and progression of cancer which may involve the transport of regulatory materials, such as oncogenic proteins between nearby cells and to distant biological locations. In addition, their level in the serum of cancer patients is noticeably higher than those of healthy controls. The release of extracellular vesicles into the extracellular space is a continual process in both healthy and diseased cells. These extracellular vesicles hold molecular signatures that are defining features of health as well as disease. And hence, the EVs present in biological fluids provide unparalleled and noninvasive access to the necessary molecular details about the health status of the cells. Recent discoveries about these complex extracellular organelles have accelerated the discovery of cancer-specific biological markers as well as the development of unique diagnostic tools based on extracellular vesicles. In this mini-review, we aim to highlight the hopes and hypes associated with the applications of extracellular vesicles as biomarkers for cancer diagnosis.
Collapse
Affiliation(s)
- Suraj Bamankar
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology
Management, SVKM's NMIMS, Mumbai,
Maharashtra, India
| | - Vaishali Yogesh Londhe
- Shobhaben
Pratapbhai Patel School of Pharmacy & Technology
Management, SVKM's NMIMS, Mumbai,
Maharashtra, India,Vaishali Yogesh Londhe, Shobhaben
Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS
University, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
62
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
63
|
Visan KS, Wu LY, Voss S, Wuethrich A, Möller A. Status quo of Extracellular Vesicle isolation and detection methods for clinical utility. Semin Cancer Biol 2023; 88:157-171. [PMID: 36581020 DOI: 10.1016/j.semcancer.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized particles that hold tremendous potential in the clinical space, as their biomolecular profiles hold a key to non-invasive liquid biopsy for cancer diagnosis and prognosis. EVs are present in most bodily fluids, hence are easily obtainable from patients, advantageous to that of traditional, invasive tissue biopsies and imaging techniques. However, there are certain constraints that hinder clinical use of EVs. The translation of EV biomarkers from "bench-to-bedside" is encumbered by the methods of EV isolation and subsequent biomarker detection currently implemented in laboratories. Although current isolation and detection methods are effective, they lack practicality, with their requirement for high bodily fluid volumes, low equipment availability, slow turnaround times and high costs. The high demand for techniques that overcome these limitations has resulted in significant advancements in nanotechnological devices. These devices are designed to integrate EV isolation and biomarker detection into a one-step method of direct EV detection from bodily fluids. This provides promise for the acceleration of EVs into current clinical standards. This review highlights the importance of EVs as cancer biomarkers, the methodological obstacles currently faced in clinical studies and how novel nanodevices could advance clinical translation.
Collapse
Affiliation(s)
- Kekoolani S Visan
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Li-Ying Wu
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Sarah Voss
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andreas Möller
- Tumour Microenvironment Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
64
|
Watanabe F, Suzuki K, Noda H, Rikiyama T. Liquid biopsy leads to a paradigm shift in the treatment of pancreatic cancer. World J Gastroenterol 2022; 28:6478-6496. [PMID: 36569270 PMCID: PMC9782840 DOI: 10.3748/wjg.v28.i46.6478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most cancers. Its 5-year survival rate is very low. The recent induction of neoadjuvant chemotherapy and improvements in chemotherapy for patients with pancreatic cancer have resulted in improved survival outcomes. However, the prognosis of pancreatic cancer is still poor. To dramatically improve the prognosis, we need to develop more tools for early diagnosis, treatment selection, disease monitoring, and response rate evaluation. Recently, liquid biopsy (circulating free DNA, circulating tumor DNA, circulating tumor cells, exosomes, and microRNAs) has caught the attention of many researchers as a new biomarker that is minimally invasive, confers low-risk, and displays an overall state of the tumor. Thus, liquid biopsy does not employ the traditional difficulties of obtaining tumor samples from patients with advanced PDAC to investigate their molecular biological status. In addition, it allows for long-term monitoring of the molecular profile of tumor progression. These could help in identifying tumor-specific alterations that use the target structure for tailor-made therapy. Through this review, we highlighted the latest discoveries and advances in liquid biopsy technology in pancreatic cancer research and showed how it can be applied in clinical practice.
Collapse
Affiliation(s)
- Fumiaki Watanabe
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Koichi Suzuki
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Hiroshi Noda
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| | - Toshiki Rikiyama
- Department of Surgery, Saitama Medical Center, Jichi Medical University, Saitama 330-8503, Japan
| |
Collapse
|
65
|
Sarcar B, Fang B, Izumi V, O Nunez Lopez Y, Tassielli A, Pratley R, Jeong D, Permuth JB, Koomen JM, Fleming JB, Stewart PA. A comparative Proteomics Analysis Identified Differentially Expressed Proteins in Pancreatic Cancer-Associated Stellate Cell Small Extracellular Vesicles. Mol Cell Proteomics 2022; 21:100438. [PMID: 36332889 PMCID: PMC9792568 DOI: 10.1016/j.mcpro.2022.100438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/03/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography-tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1-like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.
Collapse
Affiliation(s)
- Bhaswati Sarcar
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bin Fang
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | | | - Alexandra Tassielli
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Richard Pratley
- Translational Research Institute, Advent Health, Orlando, Florida, USA
| | - Daniel Jeong
- Department of Diagnostic and Interventional Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jennifer B Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - John M Koomen
- Proteomics and Metabolomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.
| |
Collapse
|
66
|
Sha M, Kunduzi B, Froghi S, Quaglia A, Davidson B, Fusai GK. Role of circulating exosomal biomarkers and their diagnostic accuracy in pancreatic cancer. JGH Open 2022; 7:30-39. [PMID: 36660044 PMCID: PMC9840196 DOI: 10.1002/jgh3.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Background and Aim New biomarkers have the potential to facilitate early diagnosis of pancreatic cancer (PC). Circulating exosomes are cell-derived protein complexes containing RNA that can be used as indicators of cancer development. The aim of this review is to evaluate the current literature involving PC patient groups for highly accurate exosomal biomarkers. Methods The literature search followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eight-hundred and seventy-five studies were identified across various databases (Ovid MEDLINE, Embase, and Cochrane) published between 2009 and 2020. Nine studies fulfilled the inclusion criteria: human PC patients, diagnosis as outcome of interest, serum biomarker of exosomal content, reporting of diagnostic values, and disease progress. Area under the curve (AUC) of the exosomal biomarker was compared against that of CA19-9. Results Nine papers were reviewed for relevant outcomes based on the inclusion criteria. These studies involved 565 participants (331 PC, 234 controls; male/female ratio 1.21; mean age 64.1). Tumor staging was reported in all studies, with 45.6% of PC patients diagnosed with early-stage PC (T1-2). The mRNA panel (ARG1, CD63, CK18, Erbb3, GAPDH, H3F3A, KRAS, ODC1) and GPC 1 reported the highest performing sensitivity and specificity at 100% each. The microRNA panel (miR-10b, miR-21, miR-30c, miR-181a, and miR-let7a), mRNA panel (ARG1, CD63, CK18, Erbb3, GAPDH, H3F3A, KRAS, ODC1), and GPC 1 showed a perfect AUC of 1.0. Five studies compared the AUC of the exosomal biomarker against CA19-9, each being superior to that of CA19-9. Conclusion The potential of exosomal biomarkers remains promising in PC diagnosis. Standardization of future studies will allow for larger comparative analyses and overcoming contrasting findings.
Collapse
Affiliation(s)
- Menazir Sha
- University College London, Medical SchoolLondonUK,Division of Surgery and Interventional Sciences/UCLRoyal Free HospitalLondonUK
| | | | - Saied Froghi
- Division of Surgery and Interventional Sciences/UCLRoyal Free HospitalLondonUK,Department of HPB and Liver TransplantationRoyal Free HospitalLondonUK
| | | | - Brian Davidson
- Division of Surgery and Interventional Sciences/UCLRoyal Free HospitalLondonUK,Department of HPB and Liver TransplantationRoyal Free HospitalLondonUK
| | - Giuseppe K Fusai
- Division of Surgery and Interventional Sciences/UCLRoyal Free HospitalLondonUK,Department of HPB and Liver TransplantationRoyal Free HospitalLondonUK
| |
Collapse
|
67
|
Wang SE. Extracellular vesicles in cancer therapy. Semin Cancer Biol 2022; 86:296-309. [PMID: 35688334 PMCID: PMC10431950 DOI: 10.1016/j.semcancer.2022.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), including a variety of membrane-enclosed nanosized particles carrying cell-derived cargo, mediate a major type of intercellular communication in physiological and pathological processes. Both cancer and non-cancer cells secrete EVs, which can travel to and influence various types of cells at the primary tumor site as well as in distant organs. Tumor-derived EVs contribute to cancer cell plasticity and resistance to therapy, adaptation of tumor microenvironment, local and systemic vascular remodeling, immunomodulation, and establishment of pre-metastatic niches. Therefore, targeting the production, uptake, and function of tumor-derived EVs has emerged as a new strategy for stand-alone or combinational therapy of cancer. On the other hand, as EV cargo partially reflects the genetic makeup and phenotypic properties of the secreting cell, EV-based biomarkers that can be detected in biofluids are being developed for cancer diagnosis and for predicting and monitoring tumor response to therapy. Meanwhile, EVs from presumably safe sources are being developed as delivery vehicles for anticancer therapeutic agents and as anticancer vaccines. Numerous reviews have discussed the biogenesis and characteristics of EVs and their functions in cancer. Here, I highlight recent advancements in translation of EV research outcome towards improved care of cancer, including developments of non-invasive EV-based biomarkers and therapeutic agents targeting tumor-derived EVs as well as engineering of therapeutic EVs.
Collapse
Affiliation(s)
- Shizhen Emily Wang
- Department of Pathology, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
68
|
Zhang W, Campbell DH, Walsh BJ, Packer NH, Liu D, Wang Y. Cancer-derived small extracellular vesicles: emerging biomarkers and therapies for pancreatic ductal adenocarcinoma diagnosis/prognosis and treatment. J Nanobiotechnology 2022; 20:446. [PMID: 36242076 PMCID: PMC9563798 DOI: 10.1186/s12951-022-01641-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/11/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal cancers worldwide with high mortality, which is mainly due to the lack of reliable biomarkers for PDAC diagnosis/prognosis in the early stages and effective therapeutic strategies for the treatment. Cancer-derived small extracellular vesicles (sEVs), which carry various messages and signal biomolecules (e.g. RNAs, DNAs, proteins, lipids, and glycans) to constitute the key features (e.g. genetic and phenotypic status) of cancer cells, are regarded as highly competitive non-invasive biomarkers for PDAC diagnosis/prognosis. Additionally, new insights on the biogenesis and molecular functions of cancer-derived sEVs pave the way for novel therapeutic strategies based on cancer-derived sEVs for PDAC treatment such as inhibition of the formation or secretion of cancer-derived sEVs, using cancer-derived sEVs as drug carriers and for immunotherapy. This review provides a comprehensive overview of the most recent scientific and clinical research on the discovery and involvement of key molecules in cancer-derived sEVs for PDAC diagnosis/prognosis and strategies using cancer-derived sEVs for PDAC treatment. The current limitations and emerging trends toward clinical application of cancer-derived sEVs in PDAC diagnosis/prognosis and treatment have also been discussed.
Collapse
Affiliation(s)
- Wei Zhang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | | | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, 2113, Sydney, NSW, Australia
| | - Nicolle H Packer
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, 300071, Tianjin, China.
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, 2109, Sydney, NSW, Australia.
| |
Collapse
|
69
|
Wang D, Zhang W, Zhang C, Wang L, Chen H, Xu J. Exosomal non-coding RNAs have a significant effect on tumor metastasis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:16-35. [PMID: 35784014 PMCID: PMC9207556 DOI: 10.1016/j.omtn.2022.05.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
Exosomes are produced by the majority of eukaryotic cells and are capable of transporting a variety of substances, including non-coding RNAs, between cells. Metastasis is a significant cause of death from cancer. Numerous studies have established an important role for exosomal non-coding RNAs in tumor metastasis. Exosomal non-coding RNAs from a variety of cells have been shown to affect tumor metastasis via several mechanisms. Exosomes transmit non-coding RNAs between tumor cells, fibroblasts, endothelial cells, and immune cells within the tumor microenvironment. Exosomal non-coding RNAs also have an effect on epithelial-mesenchymal transition, angiogenesis, and lymphangiogenesis. Exosomes derived from tumor cells have the ability to transport non-coding RNAs to distant organs, thereby facilitating the formation of the metastatic niche. Due to their role in tumor metastasis, exosomal non-coding RNAs have the potential to serve as diagnostic or prognostic markers as well as therapeutic targets for tumors. The purpose of this paper is to review and discuss the mechanisms of exosomal non-coding RNAs, their role in tumor metastasis, and their clinical utility, aiming to establish new directions for tumor metastasis, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Di Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Wei Zhang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chunxi Zhang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P.R. China
| | - Liwei Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Heng Chen
- Shenzhen Key Laboratory of Special Functional Materials, College of Materials Science and Engineering, Shenzhen University, Nanshan District, Shenzhen 518060, P.R. China
| | - Jianbin Xu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
70
|
Chu X, Yang Y, Tian X. Crosstalk between Pancreatic Cancer Cells and Cancer-Associated Fibroblasts in the Tumor Microenvironment Mediated by Exosomal MicroRNAs. Int J Mol Sci 2022; 23:ijms23179512. [PMID: 36076911 PMCID: PMC9455258 DOI: 10.3390/ijms23179512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant digestive tumors, characterized by a low rate of early diagnosis, strong invasiveness, and early metastasis. The abundant stromal cells, dense extracellular matrix, and lack of blood supply in PDAC limit the penetration of chemotherapeutic drugs, resulting in poor efficacy of the current treatment regimens. Cancer-associated fibroblasts (CAFs) are the major stromal cells in the tumor microenvironment. Tumor cells can secrete exosomes to promote the generation of activated CAFs, meanwhile exosomes secreted by CAFs help promote tumor progression. The aberrant expression of miRNAs in exosomes is involved in the interaction between tumor cells and CAFs, which provides the possibility for the application of exosomal miRNAs in the diagnosis and treatment of PDAC. The current article reviews the mechanism of exosomal miRNAs in the crosstalk between PDAC cells and CAFs in the tumor microenvironment, in order to improve the understanding of TME regulation and provide evidence for designing diagnostic and therapeutic targets against exosome miRNA in human PDAC.
Collapse
|
71
|
Nigri J, Leca J, Tubiana SS, Finetti P, Guillaumond F, Martinez S, Lac S, Iovanna JL, Audebert S, Camoin L, Vasseur S, Bertucci F, Tomasini R. CD9 mediates the uptake of extracellular vesicles from cancer-associated fibroblasts that promote pancreatic cancer cell aggressiveness. Sci Signal 2022; 15:eabg8191. [PMID: 35917363 DOI: 10.1126/scisignal.abg8191] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), signaling from stromal cells is implicated in metastatic progression. Tumor-stroma cross-talk is often mediated through extracellular vesicles (EVs). We previously reported that EVs derived from cancer-associated stromal fibroblasts (CAFs) that are abundant in annexin A6 (ANXA6+ EVs) support tumor cell aggressiveness in PDAC. Here, we found that the cell surface glycoprotein and tetraspanin CD9 is a key component of CAF-derived ANXA6+ EVs for mediating this cross-talk. CD9 was abundant on the surface of ANXA6+ CAFs isolated from patient PDAC samples and from various mouse models of PDAC. CD9 colocalized with CAF markers in the tumor stroma, and CD9 abundance correlated with tumor stage. Blocking CD9 impaired the uptake of ANXA6+ EVs into cultured PDAC cells. Signaling pathway arrays and further analyses revealed that the uptake of CD9+ANXA6+ EVs induced mitogen-activated protein kinase (MAPK) pathway activity, cell migration, and epithelial-to-mesenchymal transition (EMT). Blocking either CD9 or p38 MAPK signaling impaired CD9+ANXA6+ EV-induced cell migration and EMT in PDAC cells. Analysis of bioinformatic datasets indicated that CD9 abundance was an independent marker of poor prognosis in patients with PDAC. Our findings suggest that CD9-mediated stromal cell signaling promotes PDAC progression.
Collapse
Affiliation(s)
- Jérémy Nigri
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - Julie Leca
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sarah-Simha Tubiana
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - Pascal Finetti
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - Fabienne Guillaumond
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - Sébastien Martinez
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France.,Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sophie Lac
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - Juan L Iovanna
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - Stéphane Audebert
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France.,Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Protéomique, Marseille, France
| | - Luc Camoin
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France.,Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, CRCM, Protéomique, Marseille, France
| | - Sophie Vasseur
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| | - François Bertucci
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France.,Department of Medical Oncology, Institut Paoli-Calmettes, Marseille, France
| | - Richard Tomasini
- INSERM, U1068, Cancer Research Center of Marseille, Institut Paoli-Calmettes, CNRS, UMR7258, University Aix-Marseille, Marseille, France
| |
Collapse
|
72
|
Abstract
OBJECTIVES Extracellular vesicles (EVs) are lipid bound vesicles secreted by cells into the extracellular environment. Studies have implicated EVs in cell proliferation, epithelial-mesenchymal transition, metastasis, angiogenesis, and mediating the interaction of tumor cells and microenvironment. A systematic characterization of EVs from pancreatic cancer cells and cancer-associated fibroblasts (CAFs) would be valuable for studying the roles of EV proteins in pancreatic tumorigenesis. METHODS Proteomic and functional analyses were applied to characterize the proteomes of EVs released from 5 pancreatic cancer lines, 2 CAF cell lines, and a normal pancreatic epithelial cell line (HPDE). RESULTS More than 1400 nonredundant proteins were identified in each EV derived from the cell lines. The majority of the proteins identified in the EVs from the cancer cells, CAFs, and HPDE were detected in all 3 groups, highly enriched in the biological processes of vesicle-mediated transport and exocytosis. Protein networks relevant to pancreatic tumorigenesis, including epithelial-mesenchymal transition, complement, and coagulation components, were significantly enriched in the EVs from cancer cells or CAFs. CONCLUSIONS These findings support the roles of EVs as a potential mediator in transmitting epithelial-mesenchymal transition signals and complement response in the tumor microenvironment and possibly contributing to coagulation defects related to cancer development.
Collapse
|
73
|
The Exosome Journey: From Biogenesis to Regulation and Function in Cancers. JOURNAL OF ONCOLOGY 2022; 2022:9356807. [PMID: 35898929 PMCID: PMC9313905 DOI: 10.1155/2022/9356807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 06/20/2022] [Indexed: 12/26/2022]
Abstract
Exosomes are a type of small endosomal-derived vesicles ranging from 30 to 150 nm, which can serve as functional mediators in cell-to-cell communication and various physiological and pathological processes. In recent years, exosomes have emerged as crucial mediators of intracellular communication among tumor cells, immune cells, and stromal cells, which can shuttle bioactive molecules, such as proteins, lipids, RNA, and DNA. Exosomes exhibit the high bioavailability, biological stability, targeting specificity, low toxicity, and immune characteristics, suggesting their potentials in the diagnosis and treatment of cancers. They can be applied as an effective tool in the diagnostics, therapeutics, and drug delivery in cancers. This review summarizes the regulation and functions of exosomes in various cancers to augment our understanding of exosomes, which paves the way for parallel advancements in the therapeutic approach of cancers. In this review, we also discuss the challenges and prospects for clinical application of exosome-based diagnostics and therapeutics for cancers.
Collapse
|
74
|
Moutinho-Ribeiro P, Adem B, Batista I, Silva M, Silva S, Ruivo CF, Morais R, Peixoto A, Coelho R, Costa-Moreira P, Lopes S, Vilas-Boas F, Durães C, Lopes J, Barroca H, Carneiro F, Melo SA, Macedo G. Exosomal glypican-1 discriminates pancreatic ductal adenocarcinoma from chronic pancreatitis. Dig Liver Dis 2022; 54:871-877. [PMID: 34840127 DOI: 10.1016/j.dld.2021.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Pancreatic ductal adenocarcinoma (PDAC) diagnosis can be difficult in a chronic pancreatitis (CP) background, especially in its mass forming presentation. We aimed to assess the accuracy of glypican-1-positive circulating exosomes (GPC1+crExos) to distinguish PDAC from CP versus the state-of-the-art CA 19-9 biomarker. METHODS This was a unicentric prospective cohort. Endoscopic ultrasound with fine-needle aspiration or biopsy and blood tests (GPC1+crExos and serum CA 19-9) were performed. RESULTS The cohort comprised 60 PDAC and 29 CP (7 of which mass forming - MF) patients. Median levels of GPC1+crExos were significantly higher in PDAC (99.7%) versus CP (28.4%; p<0.0001) with an AUROC of 0.96 with 98.3% sensitivity and 86.2% specificity for a cut-off of 45.0% (p<0.0001); this outperforms CA 19-9 AUROC of 0.82 with 78.3% sensitivity and 65.5% specificity at a cut-off of 37 U/mL (p<0.0001). The superiority of% GPC1+crExos over CA 19-99 in differentiating PDAC from CP was observed in both early (stage I) and advanced tumors (stages II-IV). CONCLUSION Levels of GPC1+crExos coupled to beads enable differential diagnosis between PDAC and CP including its mass-forming presentation.
Collapse
Affiliation(s)
- P Moutinho-Ribeiro
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - B Adem
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - I Batista
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - M Silva
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - S Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; iBiMED - Institute of Biomedicine, University of Aveiro
| | - C F Ruivo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - R Morais
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - A Peixoto
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - R Coelho
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - P Costa-Moreira
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - S Lopes
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - F Vilas-Boas
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal
| | - C Durães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - J Lopes
- Serviço de Anatomia Patológica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - H Barroca
- Serviço de Anatomia Patológica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - F Carneiro
- Medical Faculty of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal; Serviço de Anatomia Patológica, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - S A Melo
- Medical Faculty of the University of Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - G Macedo
- Serviço de Gastrenterologia, Centro Hospitalar Universitário de São João, Porto, Portugal; Medical Faculty of the University of Porto, Porto, Portugal.
| |
Collapse
|
75
|
Chen H, Tu W, Lu Y, Zhang Y, Xu Y, Chen X, Zhu M, Liu Y. Low-dose X-ray irradiation combined with FAK inhibitors improves the immune microenvironment and confers sensitivity to radiotherapy in pancreatic cancer. Biomed Pharmacother 2022; 151:113114. [PMID: 35594704 DOI: 10.1016/j.biopha.2022.113114] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022] Open
Abstract
Radiation therapy offers limited clinical benefits for patients with pancreatic cancer, partly as a result of the predominantly immunosuppressive microenvironment characteristic of this specific type of cancer. A large number of abnormal blood vessels and high-density fibrous matrices in pancreatic cancer will lead to hypoxia within tumor tissue and hinder immune cell infiltration. We used low-dose X-ray irradiation, also known as low-dose radiation therapy (LDRT), to normalize the blood vessels in pancreatic cancer, while simultaneously administering an inhibitor of focal adhesion kinase (FAK) to reduce pancreatic cancer fibrosis. We found that this treatment successfully reduced pancreatic cancer hypoxia, increased immune cell infiltration, and increased sensitivity to radiation therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Huanliang Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yue Lu
- Department of Radiotherapy, Huangpu Branch of the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200002, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
76
|
Zhang W, Wang L, Li D, Campbell DH, Walsh BJ, Packer NH, Dong Q, Wang E, Wang Y. Phenotypic profiling of pancreatic ductal adenocarcinoma plasma-derived small extracellular vesicles for cancer diagnosis and cancer stage prediction: a proof-of-concept study. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2255-2265. [PMID: 35612592 DOI: 10.1039/d2ay00536k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Circulating pancreatic ductal adenocarcinoma (PDAC) derived small extracellular vesicles (sEVs) are nano-sized membranous vesicles secreted from PDAC cells and released into surrounding body fluids, such as blood. The use of plasma-derived sEVs for cancer diagnosis is particularly appealing in biomedical research because the sEVs reflect some key features (e.g. genetic and phenotypic status) related to the organs from which they originate. For example, the surface membrane proteins and their expression level on sEVs were reported to be related to the presence and progression of PDAC. However, difficulty in sEVs isolation and lack of ultrasensitive assays for simultaneous analysis of multiple protein biomarkers on patient plasma-derived sEVs hinder their application in the clinic. In our previous study, we have demonstrated the application of magnetic beads (MBs) and surface-enhanced Raman scattering (SERS) assay for phenotypic analysis of cancer cells-derived sEVs using different cell lines. To further demonstrate the clinical application of the proposed assay, we have profiled the sEVs' phenotypes (relative expression of biomarker Glypican 1, EpCAM and CD44V6) of healthy donors and PDAC patients to enable simultaneous detection of multiple surface membrane proteins on plasma-derived sEVs. We discovered that the PDAC sEVs' phenotype signatures had high accuracy for PDAC diagnosis (100%) and showed strong correlation with cancer stages, which were further validated by the imaging techniques (e.g. computerized tomography and magnetic resonance imaging) and also the correlation of cancer stages with CA19-9 (gold standard biomarker) and the sEVs' phenotype signatures. The present proof-of-concept study thus provides an initial investigation of using the proposed SERS assay for PDAC diagnosis and early cancer stage prediction in the clinic.
Collapse
Affiliation(s)
- Wei Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Ling Wang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130041, Jilin, P. R. China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.
| | | | - Bradley J Walsh
- Minomic International Ltd, Macquarie Park, NSW 2113, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Qing Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China.
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
77
|
Richards KE, Xiao W, Hill R. Cancer-Associated Fibroblasts Confer Gemcitabine Resistance to Pancreatic Cancer Cells through PTEN-Targeting miRNAs in Exosomes. Cancers (Basel) 2022; 14:cancers14112812. [PMID: 35681792 PMCID: PMC9179363 DOI: 10.3390/cancers14112812] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Previous studies have shown that cancer associated fibroblasts exposed to chemotherapy release exosomes which promote chemoresistance in recipient cells. However, the molecular mechanism responsible for this has not been fully elucidated. In this study, we found that gemcitabine treatment caused fibroblasts to release exosome which contain PTEN-targeting miRNAs. These findings shed light on how fibroblasts exposed to chemotherapy promote tumor growth and drug resistance. Abstract Pancreatic ductal adenocarcinoma (PDAC) is currently the third leading cause of cancer-related death in the United States. Even though the poor prognosis of PDAC is often attributed to late diagnosis, patients with an early diagnosis who undergo tumor resection and adjuvant chemotherapy still show tumor recurrence, highlighting a need to develop therapies which can overcome chemoresistance. Chemoresistance has been linked to the high expression of microRNAs (miRs), such as miR-21, within tumor cells. Tumor cells can collect miRs through the uptake of miR-containing lipid extracellular vesicles called exosomes. These exosomes are secreted in high numbers from cancer-associated fibroblasts (CAFs) within the tumor microenvironment during gemcitabine treatment and can contribute to cell proliferation and chemoresistance. Here, we show a novel mechanism in which CAF-derived exosomes may promote proliferation and chemoresistance, in part, through suppression of the tumor suppressor PTEN. We identified five microRNAs: miR-21, miR-181a, miR-221, miR-222, and miR-92a, that significantly increased in number within the CAF exosomes secreted during gemcitabine treatment which target PTEN. Furthermore, we found that CAF exosomes suppressed PTEN expression in vitro and that treatment with the exosome inhibitor GW4869 blocked PTEN suppression in vivo. Collectively, these findings highlight a mechanism through which the PTEN expression loss, often seen in PDAC, may be attained and lend support to investigations into the use of exosome inhibitors as potential therapeutics to improve the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Katherine E. Richards
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 45556, USA;
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Weikun Xiao
- Lawrence J. Ellison Institute of Transformative Medicine, Los Angeles, CA 90064, USA;
| | - Reginald Hill
- Lawrence J. Ellison Institute of Transformative Medicine, Los Angeles, CA 90064, USA;
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
- Correspondence:
| | | |
Collapse
|
78
|
Jia E, Ren N, Shi X, Zhang R, Yu H, Yu F, Qin S, Xue J. Extracellular vesicle biomarkers for pancreatic cancer diagnosis: a systematic review and meta-analysis. BMC Cancer 2022; 22:573. [PMID: 35606727 PMCID: PMC9125932 DOI: 10.1186/s12885-022-09463-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/28/2022] [Indexed: 02/14/2023] Open
Abstract
BACKGROUND Extracellular vesicle (EV) biomarkers have promising diagnosis and screening capacity for several cancers, but the diagnostic value for pancreatic cancer (PC) is controversial. The aim of our study was to review the diagnostic performance of EV biomarkers for PC. METHODS We performed a systematic review of PubMed, Medline, and Web Of Science databases from inception to 18 Feb 2022. We identified studies reporting the diagnostic performance of EV biomarkers for PC and summarized the information of sensitivity, specificity, area under the curve (AUC), or receiver operator characteristic (ROC) curve) in according to a pre-designed data collection form. Pooled sensitivity and specificity was calculated using a random-effect model. RESULTS We identified 39 studies, including 2037 PC patients and 1632 noncancerous, seven of which were conducted independent validation tests. Seventeen studies emphasized on EV RNAs, sixteen on EV proteins, and sixteen on biomarker panels. MiR-10b, miR-21, and GPC1 were the most frequently reported RNA and protein for PC diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 79% (95% CI: 77-81%) and 87% (95% CI: 85-89%), 72% (95% CI: 69-74%) and 77% (95% CI: 74-80%), respectively. the pooled sensitivity and specificity of EV RNA combined with protein panels were 84% (95% CI: 81-86%) and 89% (95% CI: 86-91%), respectively. Surprisingly, for early stage (stage I and II) PC EV biomarkers showed excellent diagnostic performance with the sensitivity of 90% (95% CI: 87-93%) and the specificity of 94% (95% CI: 92-95%). Both in sensitivity and subgroup analyses, we did not observe notable difference in pooled sensitivity and specificity. Studies might be limited by the isolation and detection techniques of EVs to a certain extent. CONCLUSIONS EV biomarkers showed appealing diagnostic preference for PC, especially for early stage PC. Solving the deficiency of technologies of isolation and detection EVs has important implications for application these novel noninvasive biomarkers in clinical practice.
Collapse
Affiliation(s)
- Erna Jia
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Na Ren
- Department of Thoracic Surgery, The Third Hospital of Jilin University, No. 126, Xiantai Street, Jilin, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Rongkui Zhang
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Haixin Yu
- Department of General Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yu
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Shaoyou Qin
- Department of Gastroenterology, The Third Hospital of Jilin University, Changchun, China
| | - Jinru Xue
- Department of Thoracic Surgery, The Third Hospital of Jilin University, No. 126, Xiantai Street, Jilin, Changchun, China.
| |
Collapse
|
79
|
Wu J, Feng Z, Wang R, Li A, Wang H, He X, Shen Z. Integration of bioinformatics analysis and experimental validation identifies plasma exosomal miR-103b/877-5p/29c-5p as diagnostic biomarkers for early lung adenocarcinoma. Cancer Med 2022; 11:4411-4421. [PMID: 35585716 PMCID: PMC9741994 DOI: 10.1002/cam4.4788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/22/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to identify miRNAs in plasma exosomes as noninvasive biomarkers for the early diagnosis of lung adenocarcinoma (LUAD). First, exosomal miRNA profiling of three patients with early LUAD and three patients with benign lung disease were screened by next-generation sequencing (NGS) method. Sequencing results showed that 154 exosomal miRNAs were differentially expressed in the plasma of LUAD patients, among which 68 miRNAs were up-regulated and 86 miRNAs were down-regulated. GSE137140 is a GEO database containing serum miRNAs sequencing data from 1566 lung cancer patients and 1774 non-cancer patients controls. When comparing the sequencing data, it was found that most miRNAs (37/68) up-regulated in our LUAD group were also significantly up-regulated in GSE137140, suggesting that circulating miRNAs in lung cancer patients may be enriched in plasma exosomes. In GSE137140, the AUC of the combination of hsa-miR-103b, hsa-miR-29c-5p and hsa-miR-877-5p was 0.873, showing great potential as new tumor markers. To our knowledge, these three exosomal miRNAs have not been reported in lung cancer research. Furthermore, bioinformatics tools were used to analyze the target genes of three candidate miRNAs, which were indeed closely related to the occurrence and development of lung cancer. Bioinformatics algorithms deduced a highly conserved sequence in the 3'-UTR of SFRP4, FOXM1 and TMEM98 that could be bound with miR-103b/877-5p/29c-5p. A luciferase assay indicated that miR-103b/877-5p/29c-5p directly targeted the 3'-UTR of SFRP4, FOXM1 and TMEM98, respectively. Finally, three candidate miRNAs were validated by qRT-PCR in 17 early LUAD samples and 17 control plasma samples. Integration of bioinformatics analysis and experimental validation identifies, this study provides novel insights into miRNA-related networks in LUAD. Hsa-miR-103b, hsa-miR-29c-5p, and hsa-miR-877-5p may be used as diagnostic biomarkers for early LUAD.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical LaboratoryAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Zian Feng
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Rui Wang
- Department of Clinical LaboratoryAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina
| | - Ang Li
- Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Hong Wang
- Department of Radiation OncologyThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Xiaodong He
- Anhui Provincial Center for Clinical LaboratoriesHefeiAnhuiChina
| | - Zuojun Shen
- Department of Clinical LaboratoryAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhuiChina,Department of Clinical LaboratoryThe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
80
|
Small extracellular vesicles derived from patients with persistent atrial fibrillation exacerbate arrhythmogenesis via miR-30a-5p. Clin Sci (Lond) 2022; 136:621-637. [PMID: 35411927 DOI: 10.1042/cs20211141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Small extracellular vesicles (sEVs) are nanometer-sized membranous vesicles that contribute to the pathogenesis of atrial fibrillation (AF). Here, we investigated the role of sEVs derived from patients with persistent AF in the pathophysiology of AF. First, we evaluated the pathological effects of sEVs derived from the peripheral blood of patients with persistent AF (AF-sEVs). AF-sEVs treatment reduced cell viability, caused abnormal Ca2+ handling, induced reactive oxygen species (ROS) production, and led to increased CaMKII activation of non-paced and paced atrial cardiomyocytes. Next, we analyzed the miRNA profile of AF-sEVs to investigate which components of AF-sEVs promote arrhythmias, and we selected six miRNAs that correlated with CaMKII activation. qRT-PCR experiment identified that miR-30a-5p was significantly downregulated in AF-sEVs, paced cardiomyocytes, and atrial tissues of patients with persistent AF. CaMKII was predicted by bioinformatics analysis as a miR-30a-5p target gene and validated by a dual luciferase reporter; hence, we evaluated the effects of miR-30a-5p on paced cardiomyocytes and validated miR-30a-5p as a pro-arrhythmic signature of AF-sEVs. Consequently, AF-sEVs-loaded with miR-30a-5p attenuated pacing-induced Ca2+-handling abnormalities, whereas AF-sEVs-loaded with anti-miR-30a-5p reversed the change in paced cardiomyocytes. Taken together, the regulation of CaMKII by miR-30a-5p revealed that miR-30a-5p is a major mediator for AF-sEVs-mediated AF pathogenesis. Accordingly, these findings suggest that sEVs derived from patients with persistent AF exacerbate arrhythmogenesis via miR-30a-5p.
Collapse
|
81
|
Application of exosomes in the diagnosis and treatment of pancreatic diseases. Stem Cell Res Ther 2022; 13:153. [PMID: 35395948 PMCID: PMC8994331 DOI: 10.1186/s13287-022-02826-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic diseases, a serious threat to human health, have garnered considerable research interest, as they are associated with a high mortality rate. However, owing to the uncertain etiology and complex pathophysiology, the treatment of pancreatic diseases is a challenge for clinicians and researchers. Exosomes, carriers of intercellular communication signals, play an important role in the diagnosis and treatment of pancreatic diseases. Exosomes are involved in multiple stages of pancreatic disease development, including apoptosis, immune regulation, angiogenesis, cell migration, and cell proliferation. Thus, extensive alterations in the quantity and variety of exosomes may be indicative of abnormal biological behaviors of pancreatic cells. This phenomenon could be exploited for the development of exosomes as a new biomarker or target of new treatment strategies. Several studies have demonstrated the diagnostic and therapeutic effects of exosomes in cancer and inflammatory pancreatic diseases. Herein, we introduce the roles of exosomes in the diagnosis and treatment of pancreatic diseases and discuss directions for future research and perspectives of their applications.
Collapse
|
82
|
Endometrial epithelial cells-derived exosomes deliver microRNA-30c to block the BCL9/Wnt/CD44 signaling and inhibit cell invasion and migration in ovarian endometriosis. Cell Death Dis 2022; 8:151. [PMID: 35368023 PMCID: PMC8976844 DOI: 10.1038/s41420-022-00941-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
Endometriosis (EMs) is a benign gynecological disorder showing some tumor-like migratory and invasive phenotypes. This study intended to investigate the role of microRNA-30c (miR-30c) in EMs, which is involved with B-cell lymphoma 9 (BCL9), an activator of the Wnt/β-catenin signaling pathway. EMs specimens were clinically collected for determination of miR-30c and BCL9 expression. Exosomes were isolated from endometrial epithelial cells (EECs), and the uptake of exosomes by ectopic EECs (ecto-EECs) was characterized using fluorescence staining and confocal microscopy. The binding of miR-30c to BCL9 was validated by dual-luciferase reporter assay. Artificial modulation (up- and down-regulation) of the miR-30c/BCL9/Wnt/CD44 regulatory cascade was performed to evaluate its effect on ecto-EEC invasion and migration, as detected by Transwell and wound healing assays. A mouse model of EMs was further established for in vivo substantiation. Reduced miR-30c expression and elevated BCL9 expression was revealed in EMs ectopic tissues and ecto-EECs. Normal EECs-derived exosomes delivered miR-30c to ecto-EECs to suppress their invasive and migratory potentials. Then, miR-30c was observed to inhibit biological behaviors of ecto-EECs by targeting BCL9, and the miR-30c-induced inhibitory effect was reversed by BCL9 overexpression. Further, miR-30c diminished the invasion and migration of ecto-EECs by blocking the BCL9/Wnt/CD44 axis. Moreover, miR-30c-loaded exosomes attenuated the metastasis of ecto-EEC ectopic nodules. miR-30c delivered by EECs-derived exosomes repressed BCL9 expression to block the Wnt/β-catenin signaling pathway, thus attenuating the tumor-like behaviors of ecto-EECs in EMs.
Collapse
|
83
|
Buenafe AC, Dorrell C, Reddy AP, Klimek J, Marks DL. Proteomic analysis distinguishes extracellular vesicles produced by cancerous versus healthy pancreatic organoids. Sci Rep 2022; 12:3556. [PMID: 35241737 PMCID: PMC8894448 DOI: 10.1038/s41598-022-07451-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are produced and released by both healthy and malignant cells and bear markers indicative of ongoing biological processes. In the present study we utilized high resolution flow cytometry to detect EVs in the plasma of patients with pancreatic ductal adenocarcinoma (PDAC) and in the supernatants of PDAC and healthy control (HC) pancreatic organoid cultures. Using ultrafiltration and size exclusion chromatography, PDAC and HC pancreatic organoid EVs were isolated for mass spectrometry analysis. Proteomic and functional protein network analysis showed a striking distinction in that EV proteins profiled in pancreatic cancer organoids were involved in vesicular transport and tumorigenesis while EV proteins in healthy organoids were involved in cellular homeostasis. Thus, the most abundant proteins identified in either case represented non-overlapping cellular programs. Tumor-promoting candidates LAMA5, SDCBP and TENA were consistently upregulated in PDAC EVs. Validation of specific markers for PDAC EVs versus healthy pancreatic EVs will provide the biomarkers and enhanced sensitivity necessary to monitor early disease or disease progression, with or without treatment. Moreover, disease-associated changes in EV protein profiles provide an opportunity to investigate alterations in cellular programming with disease progression.
Collapse
Affiliation(s)
- Abigail C Buenafe
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Craig Dorrell
- Oregon Stem Cell Center, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - Ashok P Reddy
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, USA
| | - John Klimek
- Proteomics Shared Resource, Oregon Health and Science University, Portland, OR, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
84
|
Cappello F, Fais S. Extracellular vesicles in cancer pros and cons: the importance of the evidence-based medicine. Semin Cancer Biol 2022; 86:4-12. [DOI: 10.1016/j.semcancer.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/18/2022] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
|
85
|
Comandatore A, Immordino B, Balsano R, Capula M, Garajovà I, Ciccolini J, Giovannetti E, Morelli L. Potential Role of Exosomes in the Chemoresistance to Gemcitabine and Nab-Paclitaxel in Pancreatic Cancer. Diagnostics (Basel) 2022; 12:286. [PMID: 35204377 PMCID: PMC8871170 DOI: 10.3390/diagnostics12020286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, a growing number of studies have evaluated the role of exosomes in pancreatic ductal adenocarcinoma cancer (PDAC) demonstrating their involvement in a multitude of pathways, including the induction of chemoresistance. The aim of this review is to present an overview of the current knowledge on the role of exosomes in the resistance to gemcitabine and nab-paclitaxel, which are two of the most commonly used drugs for the treatment of PDAC patients. Exosomes are vesicular cargos that transport multiple miRNAs, mRNAs and proteins from one cell to another cell and some of these factors can influence specific determinants of gemcitabine activity, such as the nucleoside transporter hENT1, or multidrug resistance proteins involved in the resistance to paclitaxel. Additional mechanisms underlying exosome-mediated resistance include the modulation of apoptotic pathways, cellular metabolism, or the modulation of oncogenic miRNA, such as miR-21 and miR-155. The current status of studies on circulating exosomal miRNA and their possible role as biomarkers are also discussed. Finally, we integrated the preclinical data with emerging clinical evidence, showing how the study of exosomes could help to predict the resistance of individual tumors, and guide the clinicians in the selection of innovative therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Benoit Immordino
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385 Marseille, France;
| | - Rita Balsano
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| | - Mjriam Capula
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
| | - Ingrid Garajovà
- Medical Oncology Unit, University Hospital of Parma, 43100 Parma, Italy;
| | - Joseph Ciccolini
- SMARTc Unit, Centre de Recherche en Cancérologie de Marseille, Inserm U1068 Aix Marseille Université, 13385 Marseille, France;
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands;
- Fondazione Pisana per La Scienza, 56124 Pisa, Italy; (B.I.); (M.C.)
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy;
| |
Collapse
|
86
|
Zhang H, Xing J, Dai Z, Wang D, Tang D. Exosomes: the key of sophisticated cell-cell communication and targeted metastasis in pancreatic cancer. Cell Commun Signal 2022; 20:9. [PMID: 35033111 PMCID: PMC8760644 DOI: 10.1186/s12964-021-00808-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most common malignancies. Unfortunately, the lack of effective methods of treatment and diagnosis has led to poor prognosis coupled with a very high mortality rate. So far, the pathogenesis and progression mechanisms of pancreatic cancer have been poorly characterized. Exosomes are small vesicles secreted by most cells, contain lipids, proteins, and nucleic acids, and are involved in diverse functions such as intercellular communications, biological processes, and cell signaling. In pancreatic cancer, exosomes are enriched with multiple signaling molecules that mediate intercellular communication with control of immune suppression, mutual promotion between pancreas stellate cells and pancreatic cancer cells, and reprogramming of normal cells. In addition, exosomes can regulate the pancreatic cancer microenvironment and promote the growth and survival of pancreatic cancer. Exosomes can also build pre-metastatic micro-ecological niches and facilitate the targeting of pancreatic cancer. The ability of exosomes to load cargo and target allows them to be of great clinical value as a biomarker mediator for targeted drugs in pancreatic cancer. Video Abstract.
Collapse
Affiliation(s)
- Huan Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Juan Xing
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Zhujiang Dai
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Daorong Wang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| |
Collapse
|
87
|
Chen J, Yao D, Chen W, Li Z, Guo Y, Zhu F, Hu X. Serum exosomal miR-451a acts as a candidate marker for pancreatic cancer. Int J Biol Markers 2022; 37:74-80. [PMID: 35001683 DOI: 10.1177/17246008211070018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this study was to explore the diagnostic efficiency of serum exosomal miR-451a as a novel biomarker for pancreatic cancer. METHODS Serum samples were collected prior to treatment. First, we analyzed microRNA (miRNA) profiles in serum exosomes from eight pancreatic cancer patients and eight healthy volunteers. We then validated the usefulness of the selected exosomal miRNAs as biomarkers in another 191 pancreatic cancer patients, 95 pancreatic benign disease (PB) patients, and 90 healthy controls. RESULTS The expression of miR-451a in serum-derived exosomes from pancreatic cancer patients was significantly upregulated compared with those from PB patients and healthy individuals. Serum exosomal miR-451a showed excellent diagnostic power in identifying pancreatic cancer patients. In addition, exosomal miR-451a showed a significant association with clinical stage and distant metastasis in pancreatic cancer, and the expression level of serum exosomal miR-451a was sensitive to therapy and relapse. CONCLUSIONS Serum exosomal miR-451a might serve as a novel diagnostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jia Chen
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Co-first author
| | - Dongting Yao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.,Co-first author
| | - Weiqin Chen
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhen Li
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuanyuan Guo
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming 650000, China
| | - Fan Zhu
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming Medical University, Kunming 650000, China
| | - Xiaobo Hu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
88
|
Liquid Biopsies: Flowing Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:341-368. [DOI: 10.1007/978-3-031-04039-9_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
89
|
Yan TB, Huang JQ, Huang SY, Ahir BK, Li LM, Mo ZN, Zhong JH. Advances in the Detection of Pancreatic Cancer Through Liquid Biopsy. Front Oncol 2021; 11:801173. [PMID: 34993149 PMCID: PMC8726483 DOI: 10.3389/fonc.2021.801173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer refers to the development of malignant tumors in the pancreas: it is associated with high mortality rates and mostly goes undetected in its early stages for lack of symptoms. Currently, surgical treatment is the only effective way to improve the survival of pancreatic cancer patients. Therefore, it is crucial to diagnose the disease as early as possible in order to improve the survival rate of patients with pancreatic cancer. Liquid biopsy is a unique in vitro diagnostic technique offering the advantage of earlier detection of tumors. Although liquid biopsies have shown promise for screening for certain cancers, whether they are effective for early diagnosis of pancreatic cancer is unclear. Therefore, we reviewed relevant literature indexed in PubMed and collated updates and information on advances in the field of liquid biopsy with respect to the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Tian-Bao Yan
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jia-Qi Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Shi-Yun Huang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Bhavesh K. Ahir
- Section of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Long-Man Li
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Zeng-Nan Mo
- Center for Genomics and Personalized Medicine, Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Jian-Hong Zhong,
| |
Collapse
|
90
|
Cao D, Cao X, Jiang Y, Xu J, Zheng Y, Kang D, Xu C. Circulating exosomal microRNAs as diagnostic and prognostic biomarkers in patients with diffuse large B-cell lymphoma. Hematol Oncol 2021; 40:172-180. [PMID: 34874565 PMCID: PMC9299807 DOI: 10.1002/hon.2956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023]
Abstract
Exosomal microRNAs (miRNAs) are potential biomarkers for a variety of tumors, but have not yet been studied in diffuse large B-cell lymphoma (DLBCL). Here, we investigated the use of exosomal miRNAs in DLBCL diagnosis and prognosis. A total of 256 individuals, including 133 DLBCL patients, 94 healthy controls (HCs), and 29 non-DLBCL concurrent controls (CCs), were enrolled. Exosomal miRNAs were profiled in the screening stage using microarray analysis, and miRNA candidates were confirmed in training, testing, and external testing stages using qRT-PCR. Follow-up information on the DLBCL patients was collected, and miRNAs were used to develop diagnostic and prognostic models for these patients. Five exosomal miRNAs (miR-379-5p, miR-135a-3p, miR-4476, miR-483-3p, and miR-451a) were differentially expressed between DLBCL patients and HCs with areas under the receiver operating characteristic curve (AUC) of 0.86, 0.90, and 0.86 for the training, testing, and external testing stages, respectively. Four exosomal miRNAs (miR-379-5p, miR-135a-3p, miR-4476, and miR-451a) were differentially expressed between patients with DLBCL and CCs, with an AUC of 0.78. One miRNA (miR-451a) was significantly associated with both progression-free survival (PFS) and overall survival (OS) of DLBCL patients, R analysis indicated the combination of miR-451a with international prognostic index was a better predictor of PFS and OS for these patients. Our study suggests that subsets of circulating exosomal miRNAs can be useful noninvasive biomarkers for the diagnosis of DLBCL and that the use of circulating exosomal miRNAs improves the identification of patients with newly diagnosed DLBCL with poor outcomes.
Collapse
Affiliation(s)
- Di Cao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Xia Cao
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Jiang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.,Department of Hematology, The Affiliated Hospital of Yunnan University, Kunming, China
| | - Juan Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Deying Kang
- Department of Evidence-Based Medicine and Clinical Epidemiology, Sichuan University, Chengdu, China
| | - Caigang Xu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
91
|
Xu YF, Xu X, Bhandari K, Gin A, Rao CV, Morris KT, Hannafon BN, Ding WQ. Isolation of extra-cellular vesicles in the context of pancreatic adenocarcinomas: Addition of one stringent filtration step improves recovery of specific microRNAs. PLoS One 2021; 16:e0259563. [PMID: 34784377 PMCID: PMC8594802 DOI: 10.1371/journal.pone.0259563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
microRNAs (miRNA) in extracellular vesicles (EVs) have been investigated as potential biomarkers for pancreatic ductal adenocarcinoma (PDAC). However, a mixed population of EVs is often obtained using conventional exosome isolation methods for biomarker development. EVs are derived from different cellular processes and present in various sizes, therefore miRNA expression among them is undoubtedly different. We developed a simple protocol utilizing sequential filtration and ultracentrifugation to separate PDAC EVs into three groups, one with an average diameter of more than 220 nm, named operational 3 (OP3); one with average diameters between 100-220 nm, named operational 2 (OP2); and another with average diameters around 100 nm, named operational 1 (OP1)). EVs were isolated from conditioned cell culture media and plasma of human PDAC xenograft mice and early stage PDAC patients, and verified by nanoparticle tracking, western blot, and electronic microscopy. We demonstrate that exosome specific markers are only enriched in the OP1 group. qRT-PCR analysis of miRNA expression in EVs from PDAC cells revealed that expression of miR-196a and miR-1246, two previously identified miRNAs highly enriched in PDAC cell-derived exosomes, is significantly elevated in the OP1 group relative to the other EV groups. This was confirmed using plasma EVs from PDAC xenograft mice and patients with localized PDAC. Our results indicate that OP1 can be utilized for the identification of circulating EV miRNA signatures as potential biomarkers for PDAC.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Xiaohui Xu
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of General Surgery, First People’s Hospital of Taicang City, Taicang Affiliated Hospital of Soochow University, Suzhou, China
| | - Kritisha Bhandari
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Amy Gin
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Chinthalapally V. Rao
- Department of Medicine, Hematologic Oncology Section, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Katherine T. Morris
- Department of Surgery, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Bethany N. Hannafon
- Department of Obstetrics and Gynecology, Gynecologic Oncology Section, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wei-Qun Ding
- Department of Pathology, Stephenson Cancer Centre, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
92
|
Liu SY, Liao Y, Hosseinifard H, Imani S, Wen QL. Diagnostic Role of Extracellular Vesicles in Cancer: A Comprehensive Systematic Review and Meta-Analysis. Front Cell Dev Biol 2021; 9:705791. [PMID: 34722499 PMCID: PMC8555429 DOI: 10.3389/fcell.2021.705791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Cancer-derived extracellular vesicles (EVs) are regarded to have significant function in most steps during cancer progression. This meta-analysis aims to investigate the accuracy of EVs as a biomarker in cancer diagnosis. Methods: The diagnostic efficacy of EVs for different cancers was assessed using pooled sensitivity and specificity, diagnostic odds ratio (DOR), and overall area under the curve (AUC) of the summary receiver operating characteristic (SROC). The positive likelihood ratio (PLR) and negative likelihood ratio (NLR) were verified to estimate the diagnostic efficacy of EV at a clinical level. Results: In all, 6,183 cancer patients and 2,437 healthy controls from 75 eligible studies reported in 42 publications were included in the study. The overall pooled sensitivity, specificity, PLR, NLR, and DOR were 0.62 (95% CI: 0.60–0.63), 0.76 (95% CI: 0.75–0.78), 3.07 (95% CI: 2.52–3.75), 0.34 (95% CI: 0.28–0.41), and 10.98 (95% CI: 7.53–16.00), respectively. Similarly, the AUC of the SROC was 0.88, indicating a high conservation of EVs as an early diagnostic marker. Furthermore, subgroup analysis suggested that the use of small EVs as a biomarker was more accurate in serum-based samples of nervous system cancer (p < 0.001). As a result, ultracentrifugation and quantification and size determination methods, such as Western blotting and ELISA were the most reliable identification methods for EV detection. We also indicated that increased secretion of EVs made them a capable biomarker for diagnosing cancer in elderly European individuals. Conclusions: Our study provides evidence that EVs are a promising non-invasive biomarker for cancer diagnosis. Well-designed cohort studies should be conducted to warrant the clinical diagnostic value of EVs.
Collapse
Affiliation(s)
- Shu-Ya Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Oncology, Chengdu Jinniu District People's Hospital, Chengdu, China
| | - Yin Liao
- Department of Oncology, People's Hospital of Renshou, Meishan, China
| | - Hossein Hosseinifard
- Research Center for Evidence Based Medicine (RCEBM), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Lian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
93
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
94
|
Ge P, Luo Y, Chen H, Liu J, Guo H, Xu C, Qu J, Zhang G, Chen H. Application of Mass Spectrometry in Pancreatic Cancer Translational Research. Front Oncol 2021; 11:667427. [PMID: 34707986 PMCID: PMC8544753 DOI: 10.3389/fonc.2021.667427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignant tumors in the digestive tract worldwide, with increased morbidity and mortality. In recent years, with the development of surgery, chemotherapy, radiotherapy, targeted therapy, and immunotherapy, and the change of the medical thinking model, remarkable progress has been made in researching comprehensive diagnosis and treatment of PC. However, the present situation of diagnostic and treatment of PC is still unsatisfactory. There is an urgent need for academia to fully integrate the basic research and clinical data from PC to form a research model conducive to clinical translation and promote the proper treatment of PC. This paper summarized the translation progress of mass spectrometry (MS) in the pathogenesis, diagnosis, prognosis, and PC treatment to promote the basic research results of PC into clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Peng Ge
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yalan Luo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Haiyang Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiayue Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Haoya Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Caiming Xu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jialin Qu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China.,Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guixin Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Hailong Chen
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
95
|
Chang CH, Pauklin S. Extracellular vesicles in pancreatic cancer progression and therapies. Cell Death Dis 2021; 12:973. [PMID: 34671031 PMCID: PMC8528925 DOI: 10.1038/s41419-021-04258-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
96
|
Perales S, Torres C, Jimenez-Luna C, Prados J, Martinez-Galan J, Sanchez-Manas JM, Caba O. Liquid biopsy approach to pancreatic cancer. World J Gastrointest Oncol 2021; 13:1263-1287. [PMID: 34721766 PMCID: PMC8529923 DOI: 10.4251/wjgo.v13.i10.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/18/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) continues to pose a major clinical challenge. There has been little improvement in patient survival over the past few decades, and it is projected to become the second leading cause of cancer mortality by 2030. The dismal 5-year survival rate of less than 10% after the diagnosis is attributable to the lack of early symptoms, the absence of specific biomarkers for an early diagnosis, and the inadequacy of available chemotherapies. Most patients are diagnosed when the disease has already metastasized and cannot be treated. Cancer interception is vital, actively intervening in the malignization process before the development of a full-blown advanced tumor. An early diagnosis of PC has a dramatic impact on the survival of patients, and improved techniques are urgently needed to detect and evaluate this disease at an early stage. It is difficult to obtain tissue biopsies from the pancreas due to its anatomical position; however, liquid biopsies are readily available and can provide useful information for the diagnosis, prognosis, stratification, and follow-up of patients with PC and for the design of individually tailored treatments. The aim of this review was to provide an update of the latest advances in knowledge on the application of carbohydrates, proteins, cell-free nucleic acids, circulating tumor cells, metabolome compounds, exosomes, and platelets in blood as potential biomarkers for PC, focusing on their clinical relevance and potential for improving patient outcomes.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Carolina Torres
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Sciences, University of Granada, Granada 18071, Spain
| | - Cristina Jimenez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Joaquina Martinez-Galan
- Department of Medical Oncology, Hospital Universitario Virgen de las Nieves, Granada 18011, Spain
| | | | - Octavio Caba
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| |
Collapse
|
97
|
The Role of Circulating MicroRNAs in Patients with Early-Stage Pancreatic Adenocarcinoma. Biomedicines 2021; 9:biomedicines9101468. [PMID: 34680585 PMCID: PMC8533318 DOI: 10.3390/biomedicines9101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 01/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is increasing in incidence and is still associated with a high rate of mortality. Only a minority of patients are diagnosed in the early stage. Radical surgery is the only potential curative procedure. However, radicality is reached in 20% of patients operated on. Despite the multidisciplinary approach in resectable tumors, early tumor recurrences are common. Options on how to select optimal candidates for resection remain limited. Nevertheless, accumulating evidence shows an important role of circulating non-coding plasma and serum microRNAs (miRNAs), which physiologically regulate the function of a target protein. miRNAs also play a crucial role in carcinogenesis. In PDAC patients, the expression levels of certain miRNAs vary and may modulate the function of oncogenes or tumor suppressor genes. As they can be detected in a patient's blood, they have the potential to become promising non-invasive diagnostic and prognostic biomarkers. Moreover, they may also serve as markers of chemoresistance. Thus, miRNAs could be useful for early and accurate diagnosis, prognostic stratification, and individual treatment planning. In this review, we summarize the latest findings on miRNAs in PDAC patients, focusing on their potential use in the early stage of the disease.
Collapse
|
98
|
Sabanathan D, Lund ME, Campbell DH, Walsh BJ, Gurney H. Radioimmunotherapy for solid tumors: spotlight on Glypican-1 as a radioimmunotherapy target. Ther Adv Med Oncol 2021; 13:17588359211022918. [PMID: 34646364 PMCID: PMC8504276 DOI: 10.1177/17588359211022918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.
Collapse
Affiliation(s)
- Dhanusha Sabanathan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW 2109, Australia
| |
Collapse
|
99
|
Mahmoud M, Cancel L, Tarbell JM. Matrix Stiffness Affects Glycocalyx Expression in Cultured Endothelial Cells. Front Cell Dev Biol 2021; 9:731666. [PMID: 34692689 PMCID: PMC8530223 DOI: 10.3389/fcell.2021.731666] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: The endothelial cell glycocalyx (GCX) is a mechanosensor that plays a key role in protecting against vascular diseases. We have previously shown that age/disease mediated matrix stiffness inhibits the glycocalyx glycosaminoglycan heparan sulfate and its core protein Glypican 1 in human umbilical vein endothelial cells, rat fat pad endothelial cells and in a mouse model of age-mediated stiffness. Glypican 1 inhibition resulted in enhanced endothelial cell dysfunction. Endothelial cell culture typically occurs on stiff matrices such as plastic or glass. For the study of the endothelial GCX specifically it is important to culture cells on soft matrices to preserve GCX expression. To test the generality of this statement, we hypothesized that stiff matrices inhibit GCX expression and consequently endothelial cell function in additional cell types: bovine aortic endothelial cells, mouse aortic endothelial cell and mouse brain endothelial cells. Methods and Results: All cell types cultured on glass showed reduced GCX heparan sulfate expression compared to cells cultured on either soft polyacrylamide (PA) gels of a substrate stiffness of 2.5 kPa (mimicking the stiffness of young, healthy arteries) or on either stiff gels 10 kPa (mimicking the stiffness of old, diseased arteries). Specific cell types showed reduced expression of GCX protein Glypican 1 (4 of 5 cell types) and hyaluronic acid (2 of 5 cell types) on glass vs soft gels. Conclusion: Matrix stiffness affects GCX expression in endothelial cells. Therefore, the study of the endothelial glycocalyx on stiff matrices (glass/plastic) is not recommended for specific cell types.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Tarbell Lab, Department of Biomedical Engineering, The City University of New York, New York, NY, United States
| | | | - John M. Tarbell
- Tarbell Lab, Department of Biomedical Engineering, The City University of New York, New York, NY, United States
| |
Collapse
|
100
|
Wang Y, Zhao R, Jiao X, Wu L, Wei Y, Shi F, Zhong J, Xiong L. Small Extracellular Vesicles: Functions and Potential Clinical Applications as Cancer Biomarkers. Life (Basel) 2021; 11:life11101044. [PMID: 34685415 PMCID: PMC8541078 DOI: 10.3390/life11101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer, as the second leading cause of death worldwide, is a major public health concern that imposes a heavy social and economic burden. Effective approaches for either diagnosis or therapy of most cancers are still lacking. Dynamic monitoring and personalized therapy are the main directions for cancer research. Cancer-derived extracellular vesicles (EVs) are potential disease biomarkers. Cancer EVs, including small EVs (sEVs), contain unique biomolecules (protein, nucleic acid, and lipids) at various stages of carcinogenesis. In this review, we discuss the biogenesis of sEVs, and their functions in cancer, revealing the potential applications of sEVs as cancer biomarkers.
Collapse
Affiliation(s)
- Yi Wang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Ruichen Zhao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Xueqiao Jiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Longyuan Wu
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Yuxuan Wei
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Fuxiu Shi
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Junpei Zhong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China; (Y.W.); (R.Z.); (X.J.); (L.W.); (Y.W.); (F.S.); (J.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, 461 Bayi Road, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|