51
|
Chen L, Xie T, Wei B, Di DL. Current progress in CAR-T cell therapy for tumor treatment. Oncol Lett 2022; 24:358. [PMID: 36168313 PMCID: PMC9478623 DOI: 10.3892/ol.2022.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cells are a type of tumor immunotherapy that is a breakthrough technology in the clinical treatment of tumors. The basic principle of this method is to extract the patient's T cells and equip them with targeting recognition receptors of tumor cells and return them to the patient's body to recognize and kill tumor cells specifically. Most CAR-T cell therapies treat hematological diseases such as leukemia or lymphoma and achieved encouraging results. The safety and effectiveness of CAR-T cell technology in solid tumor treatment require to be improved, although it has demonstrated promising efficacy in treating hematological malignancies. It is worth noting that certain patients may experience fatal adverse reactions after receiving CAR-T cell therapy. At present, the difficulty of this therapy mainly lies in how to reduce adverse reactions and target escape effects during the course of treatment. The improvement of CAR-T cell therapy mainly focuses on improving CAR-T structure, finding suitable tumor targets and combining them with immune checkpoint inhibitors to the enhance efficacy and safety of treatment. The problems in the rapid development of CAR-T cell therapy provide both obstacles and opportunities. The present review elaborates on the clinical application of CAR-T cell technology to provide a reference for clinical practice and research on tumor treatment.
Collapse
Affiliation(s)
- Lei Chen
- Department of Hematology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Ting Xie
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Bing Wei
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Da-Lin Di
- Department of Immunology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
52
|
Chen R, Ma L, Jiang C, Zhang S. Expression and potential role of CCL4 in CD8+T cells in NSCLC. Clin Transl Oncol 2022; 24:2420-2431. [DOI: 10.1007/s12094-022-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
|
53
|
Immunotherapeutic Strategies for Head and Neck Squamous Cell Carcinoma (HNSCC): Current Perspectives and Future Prospects. Vaccines (Basel) 2022; 10:vaccines10081272. [PMID: 36016159 PMCID: PMC9416402 DOI: 10.3390/vaccines10081272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Neoantigens are abnormal proteins produced by genetic mutations in somatic cells. Because tumour neoantigens are expressed only in tumour cells and have immunogenicity, they may represent specific targets for precision immunotherapy. With the reduction in sequencing cost, continuous advances in artificial intelligence technology and an increased understanding of tumour immunity, neoantigen vaccines and adoptive cell therapy (ACT) targeting neoantigens have become research hotspots. Approximately 900,000 patients worldwide are diagnosed with head and neck squamous cell carcinoma (HNSCC) each year. Due to its high mutagenicity and abundant lymphocyte infiltration, HNSCC naturally generates a variety of potential new antigen targets that may be used for HNSCC immunotherapies. Currently, the main immunotherapy for HNSCC is use of immune checkpoint inhibitors(ICIs). Neoantigen vaccines and adoptive cell therapy targeting neoantigens are extensions of immunotherapy for HNSCC, and a large number of early clinical trials are underway in combination with immune checkpoint inhibitors for the treatment of recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). In this paper, we review recent neoantigen vaccine trials related to the treatment of HNSCC, introduce adoptive cell therapy targeting neoantigens, and propose a potential treatment for HNSCC. The clinical application of immune checkpoint inhibitor therapy and its combination with neoantigen vaccines in the treatment of HNSCC are summarized, and the prospect of using neoantigen to treat HNSCC is discussed and proposed.
Collapse
|
54
|
Zhang Z, Liao Y, Tang D. Intratumoral microbiota: New Frontiers in Tumor Immunity. Carcinogenesis 2022; 43:719-727. [PMID: 35868230 DOI: 10.1093/carcin/bgac063] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/20/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Microbiota-host interactions are a hot topic of research because of their important role in regulating the malignant transformation of cancer cells and cancer-related immunity. The role of gut microbiota, oral microbiota, and skin microbiota in cancer progression has been extensively studied. However, intratumoral microbiota is a recently discovered topic of research that is still in its infancy. This review focuses on the impact of the intratumoral microbiota on cancer immune responses and highlights how the intratumoral microbiota modulates innate and adaptive immunity to potentially impact tumor immunotherapy in the hope that it will inspire potential ideas for the application of immunotherapy in the treatment of tumors.
Collapse
Affiliation(s)
- Zhilin Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yiqun Liao
- Department of Clinical Medical College, Dalian Medical University, Dalian, China
| | - Dong Tang
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| |
Collapse
|
55
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
56
|
Peng G, Fadeel B. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Adv Drug Deliv Rev 2022; 188:114422. [PMID: 35810883 DOI: 10.1016/j.addr.2022.114422] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022]
Abstract
Two-dimensional (2D) materials such as the graphene-based materials, transition metal dichalcogenides, transition metal carbides and nitrides (MXenes), black phosphorus, hexagonal boron nitride, and others have attracted considerable attention due to their unique physicochemical properties. This is true not least in the field of medicine. Understanding the interactions between 2D materials and the immune system is therefore of paramount importance. Furthermore, emerging evidence suggests that 2D materials may interact with microorganisms - pathogens as well as commensal bacteria that dwell in and on our body. We discuss the interplay between 2D materials, the immune system, and the microbial world in order to bring a systems perspective to bear on the biological interactions of 2D materials. The use of 2D materials as vectors for drug delivery and as immune adjuvants in tumor vaccines, and 2D materials to counteract inflammation and promote tissue regeneration, are explored. The bio-corona formation on and biodegradation of 2D materials, and the reciprocal interactions between 2D materials and microorganisms, are also highlighted. Finally, we consider the future challenges pertaining to the biomedical applications of various classes of 2D materials.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
57
|
Ou L, Wang H, Huang H, Zhou Z, Lin Q, Guo Y, Mitchell T, Huang AC, Karakousis G, Schuchter L, Amaravadi R, Guo W, Salvino J, Herlyn M, Xu X. Preclinical platforms to study therapeutic efficacy of human γδ T cells. Clin Transl Med 2022; 12:e814. [PMID: 35731974 PMCID: PMC9217106 DOI: 10.1002/ctm2.814] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gamma delta (γδ) T lymphocytes are promising candidate for adoptive T cell therapy, however, their treatment efficacy is not satisfactory. Vδ2 T cells are unique to primates and few suitable models are available to assay their anti-tumour function. METHODS We tested human γδ T cell activation, tumour infiltration, and tumour-killing in four three-dimensional (3D) models, including unicellular, bicellular and multicellular melanoma spheroids, and patient-derived melanoma organoids. We studied the effects of checkpoint inhibitors on γδ T cells and performed a small molecule screen using these platforms. RESULTS γδ T cells rapidly responded to melanoma cells and infiltrated melanoma spheroids better than αβ T cells in PBMCs. Cancer-associated fibroblasts (CAFs) in bicellular spheroids, stroma cells in multicellular melanoma spheroids and inhibitory immune cells in organoids significantly inhibited immune cell infiltrates including γδ T cells and lessened their cytotoxicity to tumour cells. Tumour-infiltrating γδ T cells showed exhausted immunophenotypes with high checkpoints expression (CTLA-4, PD-1 and PD-L1). Immune checkpoint inhibitors increased γδ T cell infiltration of 3D models and killing of melanoma cells in all four 3D models. Our small molecule screen assay and subsequent mechanistic studies demonstrated that epigenetic modifiers enhanced the chemotaxis and cytotoxicity of γδ T cells through upregulating MICA/B, inhibiting HDAC6/7 pathway and downregulating the levels of PD-L1 and PD-L2 in CAFs and tumour cells. These compounds increased CXCR4 and CD107a expression, IFN-γ production and decreased PD-1 expression of γδ T cells. CONCLUSIONS Tumour-infiltrating γδ T cells show exhausted immunophenotypes and limited anti-tumour capacity in melanoma 3D models. Checkpoint inhibitors and epigenetic modifiers enhance anti-tumour functions of γδ T cells. These four 3D models provided valuable preclinical platforms to test γδ T cell functions for immunotherapy.
Collapse
Affiliation(s)
- Lingling Ou
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Huaishan Wang
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Hui Huang
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhiyan Zhou
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Qiang Lin
- The First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Yeye Guo
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tara Mitchell
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexander C. Huang
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Giorgos Karakousis
- Department of SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Lynn Schuchter
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ravi Amaravadi
- Department of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Wei Guo
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Joseph Salvino
- Molecular and Cellular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis ProgramThe Wistar InstitutePhiladelphiaPennsylvaniaUSA
| | - Xiaowei Xu
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
58
|
Dong R, Zhang Y, Xiao H, Zeng X. Engineering γδ T Cells: Recognizing and Activating on Their Own Way. Front Immunol 2022; 13:889051. [PMID: 35603176 PMCID: PMC9120431 DOI: 10.3389/fimmu.2022.889051] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Adoptive cell therapy (ACT) with engineered T cells has emerged as a promising strategy for the treatment of malignant tumors. Among them, there is great interest in engineered γδ T cells for ACT. With both adaptive and innate immune characteristics, γδ T cells can be activated by γδ TCRs to recognize antigens in a MHC-independent manner, or by NK receptors to recognize stress-induced molecules. The dual recognition system enables γδ T cells with unique activation and cytotoxicity profiles, which should be considered for the design of engineered γδ T cells. However, the current designs of engineered γδ T cells mostly follow the strategies that used in αβ T cells, but not making good use of the specific characteristics of γδ T cells. Therefore, it is no surprising that current engineered γδ T cells in preclinical or clinical trials have limited efficacy. In this review, we summarized the patterns of antigen recognition of γδ T cells and the features of signaling pathways for the functions of γδ T cells. This review will additionally discuss current progress in engineered γδ T cells and provide insights in the design of engineered γδ T cells based on their specific characteristics.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haowen Xiao
- Department of Hematology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
59
|
Ding Y, Wang L, Li H, Miao F, Zhang Z, Hu C, Yu W, Tang Q, Shao G. Application of lipid nanovesicle drug delivery system in cancer immunotherapy. J Nanobiotechnology 2022; 20:214. [PMID: 35524277 PMCID: PMC9073823 DOI: 10.1186/s12951-022-01429-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has gradually emerged as the most promising anticancer therapy. In addition to conventional anti-PD-1/PD-L1 therapy, anti-CTLA-4 therapy, CAR-T therapy, etc., immunotherapy can also be induced by stimulating the maturation of immune cells or inhibiting negative immune cells, regulating the tumor immune microenvironment and cancer vaccines. Lipid nanovesicle drug delivery system includes liposomes, cell membrane vesicles, bacterial outer membrane vesicles, extracellular vesicles and hybrid vesicles. Lipid nanovesicles can be used as functional vesicles for cancer immunotherapy, and can also be used as drug carriers to deliver immunotherapy drugs to the tumor site for cancer immunotherapy. Here, we review recent advances in five kinds of lipid nanovesicles in cancer immunotherapy and assess the clinical application prospects of various lipid nanovesicles, hoping to provide valuable information for clinical translation in the future.
Collapse
Affiliation(s)
- Yinan Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Luhong Wang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Han Li
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Fengqin Miao
- Medical School of Southeast University, Nanjing, 210009, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Weiping Yu
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Guoliang Shao
- Department of Interventional Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
60
|
Joshi VB, Chadha J, Chahoud J. Penile cancer: Updates in systemic therapy. Asian J Urol 2022; 9:374-388. [DOI: 10.1016/j.ajur.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022] Open
|
61
|
Wang Y, Yang Y, Zhao Z, Sun H, Luo D, Huttad L, Zhang B, Han B. A new nomogram model for prognosis of hepatocellular carcinoma based on novel gene signature that regulates cross-talk between immune and tumor cells. BMC Cancer 2022; 22:379. [PMID: 35397536 PMCID: PMC8994280 DOI: 10.1186/s12885-022-09465-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Background The combined application of immune cells and specific biomarkers related to the tumor immune microenvironment has a better predictive value for the prognosis of HCC. The purpose of this study is to construct a new prognostic model based on immune-related genes that regulate cross-talk between immune and tumor cells to assess the prognosis and explore possible mechanisms. Method The immune cell abundance ratio of 424 cases in the TCGA-LIHC database is obtained through the CIBERSORT algorithm. The differential gene analysis and cox regression analysis is used to screen IRGs. In addition, the function of IRGs was preliminarily explored through the co-culture of M2 macrophages and HCC cell lines. The clinical validation, nomogram establishment and performing tumor microenvironment score were validated. Results We identified 4 immune cells and 9 hub genes related to the prognosis. Further, we identified S100A9, CD79B, TNFRSF11B as an IRGs signature, which is verified in the ICGC and GSE76427 database. Importantly, IRGs signature is closely related to the prognosis, tumor microenvironment score, clinical characteristics and immunotherapy, and nomogram combined with clinical characteristics is more conducive to clinical promotion. In addition, after co-culture with M2 macrophages, the migration capacity and cell pseudopod of MHCC97H increased significantly. And CD79B and TNFRSF11B were significantly down-regulated in MHCC97H, Huh7 and LM3, while S100A9 was up-regulated. Conclusion We constructed an IRGs signature and discussed possible mechanisms. The nomogram established based on IRGs can accurately predict the prognosis of HCC patients. These findings may provide a suitable therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09465-9.
Collapse
|
62
|
Mehrabadi AZ, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Hamidinejad MA, Ghaleh HEG. Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomed Pharmacother 2022; 146:112512. [PMID: 34894519 DOI: 10.1016/j.biopha.2021.112512] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Although tremendous advancements in cancer therapy over the last several years, cancer still is a complex illness to cure. Traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, have a poor therapeutic effect, emphasizing the significance of employing innovative treatments like activated cell therapy. Chimeric antigen receptor T cell is one of the most prevalent types of activated cell therapy have been developed to direct T lymphocytes toward cancers (CAR-T cells). CAR-T cells therapy has illustrated poor impact versus solid tumors despite the remarkable success in patients suffering from hematological malignancies. CAR-T cells must overcome various hurdles to obtain full responses to solid tumors, including growth, stability, trafficking, and destiny inside tumors. As a result, novel treatment methods will entail overcoming the challenges that CAR-T cells face in solid tumors. The use of CAR-T cells in combination with other therapeutic approaches such as chemotherapy, radiotherapy, immuno-checkpoint inhibitors, and oncolytic viruses can promote the effectiveness of CAR-T cell therapy for the treatment of solid tumors. However, more research is needed to determine the safety and effectiveness of these therapies. CAR-T cell treatment success rates vary by type of disease, but are predicted to reach up to 90% in patients with leukemia. However, since this kind of immunotherapy is still in its infancy, there is much to learn about its efficacy. This review provided an in-depth examination of CAR-T cell therapy and its success and failure as a cancer treatment approach. We also discuss combination therapies with CAR-T Cell.
Collapse
Affiliation(s)
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Hamidinejad
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
63
|
Wu D, Yang K, Zhang Z, Feng Y, Rao L, Chen X, Yu G. Metal-free bioorthogonal click chemistry in cancer theranostics. Chem Soc Rev 2022; 51:1336-1376. [PMID: 35050284 DOI: 10.1039/d1cs00451d] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry is a powerful tool to site-specifically activate drugs in living systems. Bioorthogonal reactions between a pair of biologically reactive groups can rapidly and specifically take place in a mild physiological milieu without perturbing inherent biochemical processes. Attributed to their high selectivity and efficiency, bioorthogonal reactions can significantly decrease background signals in bioimaging. Compared with metal-catalyzed bioorthogonal click reactions, metal-free click reactions are more biocompatible without the metal catalyst-induced cytotoxicity. Although a great number of bioorthogonal chemistry-based strategies have been reported for cancer theranostics, a comprehensive review is scarce to highlight the advantages of these strategies. In this review, recent progress in cancer theranostics guided by metal-free bioorthogonal click chemistry will be depicted in detail. The elaborate design as well as the advantages of bioorthogonal chemistry in tumor theranostics are summarized and future prospects in this emerging field are emphasized.
Collapse
Affiliation(s)
- Dan Wu
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China.
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
64
|
Zarezadeh Mehrabadi A, Roozbahani F, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Esmaeili Gouvarchin Ghaleh H. Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World J Surg Oncol 2022; 20:16. [PMID: 35027068 PMCID: PMC8756705 DOI: 10.1186/s12957-021-02486-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cancer is one of the critical issues of the global health system with a high mortality rate even with the available therapies, so using novel therapeutic approaches to reduce the mortality rate and increase the quality of life is sensed more than ever. Main body CAR-T cell therapy and oncolytic viruses are innovative cancer therapeutic approaches with fewer complications than common treatments such as chemotherapy and radiotherapy and significantly improve the quality of life. Oncolytic viruses can selectively proliferate in the cancer cells and destroy them. The specificity of oncolytic viruses potentially maintains the normal cells and tissues intact. T-cells are genetically manipulated and armed against the specific antigens of the tumor cells in CAR-T cell therapy. Eventually, they are returned to the body and act against the tumor cells. Nowadays, virology and oncology researchers intend to improve the efficacy of immunotherapy by utilizing CAR-T cells in combination with oncolytic viruses. Conclusion Using CAR-T cells along with oncolytic viruses can enhance the efficacy of CAR-T cell therapy in destroying the solid tumors, increasing the permeability of the tumor cells for T-cells, reducing the disturbing effects of the immune system, and increasing the success chance in the treatment of this hazardous disease. In recent years, significant progress has been achieved in using oncolytic viruses alone and in combination with other therapeutic approaches such as CAR-T cell therapy in pre-clinical and clinical investigations. This principle necessitates a deeper consideration of these treatment strategies. This review intends to curtly investigate each of these therapeutic methods, lonely and in combination form. We will also point to the pre-clinical and clinical studies about the use of CAR-T cell therapy combined with oncolytic viruses.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
65
|
SET and MYND domain-containing protein 2 (SMYD2): A prognostic biomarker associated with immune infiltrates in cervical squamous cell carcinoma and endocervical adenocarcinoma. ARCH BIOL SCI 2022. [DOI: 10.2298/abs220413014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The histone lysine methyltransferase SET (Suppressor of variegation, Enhancer
of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domaincontaining protein
(SMYD2) plays a role in the tumorigenesis of cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC). However, the prognostic
significance of SMYD2 in CESC and the link between SMYD2 and
tumor-infiltrating immune cells are unknown. The prognostic value of SMYD2
in CESC was obtained from The Cancer Genome Atlas (TCGA). SMYD2 mRNA and
protein were both highly expressed in CESC compared with normal tissues. The
high expression of SMYD2 was associated with advanced tumor status and poor
prognosis in CESC patients. SMYD2 was an independent prognostic factor for
overall survival. In vitro experiments with knockdown of SMYD2 suppressed
CESC cell migration and invasion. The online tumor immune estimation
resource (TIMER) and Kaplan-Meier analysis results revealed that the
infiltration of CD4+ T and CD8+ T cells was related to poor prognosis. In
TIMER-based multivariate Cox regression analysis, CD8+ T cells and SMYD2
were demonstrated as independent prognostic factors of CESC. In conclusion,
our data suggest that high SMYD2 expression is a predictor of poor prognosis
in CESC patients; SMYD2 could serve as a prognostic biomarker and molecular
therapeutic target for CESC.
Collapse
|
66
|
Niknam MR, Attari F. The Potential Applications of Stem Cells for Cancer Treatment. Curr Stem Cell Res Ther 2022; 17:26-42. [PMID: 35048802 DOI: 10.2174/1574888x16666210810100858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023]
Abstract
:
Scientists encounter many obstacles in traditional cancer therapies, including the side effects
on the healthy cells, drug resistance, tumor relapse, the short half-life of employed drugs in
the blood circulation, and the improper delivery of drugs toward the tumor site. The unique traits of
stem cells (SCs) such as self-renewal, differentiation, tumor tropism, the release of bioactive
molecules, and immunosuppression have opened a new window for utilizing SCs as a novel tool in
cancer treatment. In this regard, engineered SCs can secrete anti-cancer proteins or express enzymes
used in suicide gene therapy which locally induce apoptosis in neoplastic cells via the bystander
effect. These cells also stand as proper candidates to serve as careers for drug-loaded nanoparticles
or to play suitable hosts for oncolytic viruses. Moreover, they harbor great potential to be
employed in immunotherapy and combination therapy. However, tactful strategies should be devised
to allow easier transplantation and protection of SCs from in vivo immune responses. In spite
of the great hope concerning SCs application in cancer therapy, there are shortcomings and challenges
to be addressed. This review tends to elaborate on recent advances on the various applications
of SCs in cancer therapy and existing challenges in this regard.
Collapse
Affiliation(s)
- Malikeh Rad Niknam
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
67
|
Ning J, Wang F, Zhu K, Li B, Shu Q, Liu W. Characterizing the Copy Number Variation of Non-Coding RNAs Reveals Potential Therapeutic Targets and Prognostic Markers of LUSC. Front Genet 2021; 12:779155. [PMID: 34925461 PMCID: PMC8672037 DOI: 10.3389/fgene.2021.779155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and a lack of available targeted therapies. Therefore, there is an urgent need to identify novel prognostic markers and therapeutic targets to assist in the diagnosis and treatment of LUSC. With the development of high-throughput sequencing technology, integrated analysis of multi-omics data will provide annotation of pathogenic non-coding variants and the role of non-coding sequence variants in cancers. Here, we integrated RNA-seq profiles and copy number variation (CNV) data to study the effects of non-coding variations on gene regulatory network. Furthermore, the 372 long non-coding RNAs (lncRNA) regulated by CNV were used as candidate genes, which could be used as biomarkers for clinical application. Nine lncRNAs including LINC00896, MCM8-AS1, LINC01251, LNX1-AS1, GPRC5D-AS1, CTD-2350J17.1, LINC01133, LINC01121, and AC073130.1 were recognized as prognostic markers for LUSC. By exploring the association of the prognosis-related lncRNAs (pr-lncRNAs) with immune cell infiltration, GPRC5D-AS1 and LINC01133 were highlighted as markers of the immunosuppressive microenvironment. Additionally, the cascade response of pr-lncRNA-CNV-mRNA-physiological functions was revealed. Taken together, the identification of prognostic markers and carcinogenic regulatory mechanisms will contribute to the individualized treatment for LUSC and promote the development of precision medicine.
Collapse
Affiliation(s)
- Jinfeng Ning
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fengjiao Wang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaibin Zhu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Binxi Li
- Department of Management Science and Engineering, Harbin Engineering University, Harbin, China
| | - Qing Shu
- Department of Medical Imaging, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
68
|
Gao J, Liu Y, Wei J, Jiang L, Mao J, Chang CH, Wu D. Targeting T cell metabolism for immunotherapy. J Leukoc Biol 2021; 110:1081-1090. [PMID: 34779530 DOI: 10.1002/jlb.5mr0921-011r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
T cells play an important role in antitumor immunity. Numbers and function of T cells are controlled by regulating the uptake and utilization of nutrients, and their antitumor activity can be promoted by targeting metabolic pathways. In this review, we highlight the relationship between metabolism and cellular function of T cells. Specifically, we emphasize the metabolic state of tumor-infiltrating T cells and review key pathways that affect the antitumor function of T cells. In the field of tumor immunotherapy, targeting T cell metabolism to enhance the immune response is a new therapeutic strategy for enhancing immunotherapy combined with traditional treatments.
Collapse
Affiliation(s)
- Jie Gao
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanbo Liu
- Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wei
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Linlan Jiang
- Department of Oncology, Affiliated Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jianwen Mao
- Zhongshan Hospital, Fudan University, Shanghai, China
| | | | - Duojiao Wu
- Zhongshan Hospital, Fudan University, Shanghai, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
69
|
Yu W, Lei Q, Yang L, Qin G, Liu S, Wang D, Ping Y, Zhang Y. Contradictory roles of lipid metabolism in immune response within the tumor microenvironment. J Hematol Oncol 2021; 14:187. [PMID: 34742349 PMCID: PMC8572421 DOI: 10.1186/s13045-021-01200-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
Complex interactions between the immune system and tumor cells exist throughout the initiation and development of cancer. Although the immune system eliminates malignantly transformed cells in the early stage, surviving tumor cells evade host immune defense through various methods and even reprogram the anti-tumor immune response to a pro-tumor phenotype to obtain unlimited growth and metastasis. The high proliferation rate of tumor cells increases the demand for local nutrients and oxygen. Poorly organized vessels can barely satisfy this requirement, which results in an acidic, hypoxic, and glucose-deficient tumor microenvironment. As a result, lipids in the tumor microenvironment are activated and utilized as a primary source of energy and critical regulators in both tumor cells and related immune cells. However, the exact role of lipid metabolism reprogramming in tumor immune response remains unclear. A comprehensive understanding of lipid metabolism dysfunction in the tumor microenvironment and its dual effects on the immune response is critical for mapping the detailed landscape of tumor immunology and developing specific treatments for cancer patients. In this review, we have focused on the dysregulation of lipid metabolism in the tumor microenvironment and have discussed its contradictory roles in the tumor immune response. In addition, we have summarized the current therapeutic strategies targeting lipid metabolism in tumor immunotherapy. This review provides a comprehensive summary of lipid metabolism in the tumor immune response.
Collapse
Affiliation(s)
- Weina Yu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Qingyang Lei
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Dan Wang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yu Ping
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China. .,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, 450052, Henan, China. .,School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, People's Republic of China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
70
|
Salem ML, Salman S, Barnawi IO. Brief in vitro IL-12 conditioning of CD8 + T Cells for anticancer adoptive T cell therapy. Cancer Immunol Immunother 2021; 70:2751-2759. [PMID: 33966093 PMCID: PMC10992799 DOI: 10.1007/s00262-021-02887-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Cancer immunotherapy represents a potential treatment approach through non-specific and specific enhancement of the immune responses. Adoptive cell therapy (ACT) is a potential modality of immunotherapy that depends on harvesting T cells from the tumor-bearing host, activating them in vitro and infusing them back to the same host. Several cytokines, in particular IL-2, IL-7 and IL-15, have been used to enhance survival T cells in vitro. Although effective, conditioning of T cells in vitro with these cytokines requires long-term culture which results in the loss of expression of their trafficking receptors mainly CD62L. It also results in exhaustion of the activated T cells and reduction in their functions upon adoptive transfer in vivo. Our recent studies and those of other groups showed that brief (3 days) conditioning of CD8+ T cells by IL-12 in vitro can result in enhancing function of tumor-reactive CD8+ T cells. Adoptive transfer of these IL-12-conditioned CD8+ T cells into tumor-bearing mice, preconditioned with cyclophosphamide, 1 day before ACT, induced tumor eradication that was associated with generation of tumor-specific memory response. In this review, we summarize studies that indicated to the superiority of IL-12 as a potential cytokine for conditioning T cells for ACT. In addition, we discuss some of the cellular and molecular mechanisms that govern how IL-12 programs CD8+ T cells to enhance their functionality especially in vitro and its implication in combination with other ACT modalities, opening a avenue for the clinical application of this cytokine.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
- Center of Excellence in Cancer Research (CECR), Tanta University, Tanta, Egypt.
| | - Samar Salman
- Department of Dermatology and VenereologyFaculty of MedicineTanta University Hospital, Tanta University, Tanta, Egypt
| | - Ibrahim O Barnawi
- Animal Section, Department of Biological Sciences, Faculty of Science, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
71
|
Cao Y, Zhou Y, Chen Z, Zhang Z, Chen X, He C. Localized Chemotherapy Based on Injectable Hydrogel Boosts the Antitumor Activity of Adoptively Transferred T Lymphocytes In Vivo. Adv Healthc Mater 2021; 10:e2100814. [PMID: 34297480 DOI: 10.1002/adhm.202100814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Indexed: 12/13/2022]
Abstract
The adoptive transfer of antigen-specific T cells has been successfully applied in the treatment of hematological malignancies. However, its application in the treatment of solid tumors has been overshadowed by the immunosuppressive tumor microenvironment. In this context, a preprocessing strategy is developed to reprogram the immunosuppressive tumor microenvironment using a thermoresponsive hydrogel loaded with doxorubicin (DOX@Gel). Compared with hydrogel-based chemotherapy alone or adoptive T cell therapy alone, this combination exhibits enhanced anti-tumor efficacy. In addition to the direct killing of tumor cells, the local chemotherapy releases tumor-associated antigens which enhance the proliferation and effector function of endogenous and adoptively transferred T cells. Moreover, DOX@Gel significantly reduces the numbers of both myeloid derived suppressor cells and Tregs in tumor microenvironment. It is suggested that DOX@Gel promotes the efficacy of adoptively transferred T cells against solid tumors, overcoming the key limitations of adoptive T cell therapy.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- Institute for Interdisciplinary Biomass Functional Materials Studies Jilin Engineering Normal University 3050 Kaixuan Road Changchun 130052 P. R. China
| | - Yuhao Zhou
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhixiong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Zhen Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
72
|
Wu XG, Chen JJ, Zhou HL, Wu Y, Lin F, Shi J, Wu HZ, Xiao HQ, Wang W. Identification and Validation of the Signatures of Infiltrating Immune Cells in the Eutopic Endometrium Endometria of Women With Endometriosis. Front Immunol 2021; 12:671201. [PMID: 34539624 PMCID: PMC8446207 DOI: 10.3389/fimmu.2021.671201] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
Endometriosis is an oestrogen-dependent chronic inflammatory process with primary symptoms including dysmenorrhea, chronic pelvic pain, and infertility. The immune environment of the endometrium is essential for successful embryo implantation and ongoing pregnancy. In this study, we assessed the composition, density, and distribution of infiltrating immune cells in the endometria of women with endometriosis. Gene expression profiles of endometrial samples were downloaded from the Gene Expression Omnibus (GEO) database. We found that the TNF signalling pathway, the IL-17 signalling pathway, and the MAPK signalling pathway were significantly enriched in the eutopic endometria of women with endometriosis. The fractions and proportion of infiltrating immune cells were estimated by the CIBERSORT, MCP-counter, and ImmuCellAI methods. We found that the proportions of CD8+ T cells, activated NK cells, and follicular helper T cells were significantly higher in the endometria of women with endometriosis than in the endometria of normal controls, while the proportions of M2 macrophages and resting mast cells were significantly lower in the eutopic endometria. In GSE120103 (n = 36), we found that elevated CD8+ T cells in endometriosis increased the risk of infertility (P = 0.0019). The area under the receiver operating characteristic (ROC) curve (AUC) of CD8+ T cells to distinguish fertile and infertile endometriosis was 0.914. In clinical samples (n = 40), we found that the proportions of CD8+ T cells and CD56+ NK cells were significantly higher in the eutopic endometria of women with endometriosis than in the endometria of normal controls, while the proportion of CD163+ macrophages were lower in the eutopic endometria. The AUCs of CD8+ T cells and CD163+ macrophages were 0.727 and 0.833, respectively, which indicated that CD8 and CD163 were potential diagnostic markers for endometriosis. In conclusion, our results demonstrated that increased CD8+ T cells and CD56+ NK cells and decreased CD163+ macrophages within the eutopic endometria of women with endometriosis reveal a proinflammatory feature in the endometrial immune environment and that elevated CD8+ T cells increase the risk of infertility in women with the disease.
Collapse
Affiliation(s)
- Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin-Jiao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui-Ling Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hong-Zhen Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Qun Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
73
|
Xie S, Hou X, Yang W, Shi W, Yang X, Duan S, Mo F, Liu A, Wang W, Lu X. Endoglin-Aptamer-Functionalized Liposome-Equipped PD-1-Silenced T Cells Enhance Antitumoral Immunotherapeutic Effects. Int J Nanomedicine 2021; 16:6017-6034. [PMID: 34511903 PMCID: PMC8418331 DOI: 10.2147/ijn.s317220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Background The broader application of adoptive cell therapy (ACT) in cancer immunotherapies (particularly for solid tumors) has always been limited by the immunosuppressive tumor microenvironment (TME) and the insufficient targetability of effector T cells, resulting in unsatisfied therapeutic outcome. Here, we designed a new strategy by using aptamer-based immunoliposomes to modify PD-1-silencing T cells, which were activated by dendritic cell (DC)/tumor fusion cells (FCs) to improve the antitumor potency of cytotoxic T lymphocytes (CTLs/CD8+ T cells). Methods PD-1 gene was knocked out from CD8+ T cells using CRISPR/Cas9 system to liberate T cell activity from immunosuppression. The PD-1− T cells were stimulated with DC/tumor FCs, followed by further functional modification of tumor-specific nanoliposomes (hEnd-Apt/CD3-Lipo) to generate FC/PD-1− CTLs. The activation and proliferation and specificity of the modified FC/PD-1− CTLs were measured. The antitumor activity of these CTLs against HepG2-tumors was evaluated in xenograft NOD/SCID mice, and the antitumor mechanism was investigated based on tissue immunohistochemistry and serum ELISA. Results Our results indicated that the modification of hEnd-Apt/CD3-Lipo nanocomposites on the FC/PD-1− CTLs had a more substantial synergetic effect in inhibiting tumor growth and prolonging animal survival, rather than other control liposomes. Furthermore, the hEnd-Apt/CD3-Lipo-modified FC/PD-1− CTLs showed a stronger antitumor outcome in the tumor-bearing mouse model, through the mechanisms of suppressing tumor cell proliferation, promoting tumor apoptosis, reducing angiogenesis but increasing the infiltration of the FC/PD-1− CTLs in the tumor tissue, as well as upregulating the systemic levels of IFN-γ, IL-2, TNF-α and IL-6 cytokines, by comparison of the control settings. Conclusion In sum, our investigation suggests an enhancement of antitumor effect by the surface modification of endoglin-targeting nanoliposomes upon DC/tumor FC-activated PD-1− CTLs, therefore, provides a new tumoral endoglin-targeted approach as a promising strategy to reduce immunosuppression of tumor microenvironment and improve the immunotherapeutic outcome of anticancer ACT.
Collapse
Affiliation(s)
- Shenxia Xie
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaoqiong Hou
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Xiaomei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Siliang Duan
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Fengzhen Mo
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Aiqun Liu
- International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Wu Wang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,Laboratory of Tropical Biomedicine and Biotechnology, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan, 571101, People's Republic of China
| | - Xiaoling Lu
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,International Nanobody Research Center of Guangxi, Guangxi Medical University, Nanning, Guangxi, People's Republic of China.,College of Stomatology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
74
|
Thurm C, Schraven B, Kahlfuss S. ABC Transporters in T Cell-Mediated Physiological and Pathological Immune Responses. Int J Mol Sci 2021; 22:ijms22179186. [PMID: 34502100 PMCID: PMC8431589 DOI: 10.3390/ijms22179186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a heterogeneous group of ATP-dependent transport proteins, which facilitate the import and/or export of various substrates, including lipids, sugars, amino acids and peptides, ions, and drugs. ABC transporters are involved in a variety of physiological processes in different human tissues. More recent studies have demonstrated that ABC transporters also regulate the development and function of different T cell populations, such as thymocytes, Natural Killer T cells, CD8+ T cells, and CD4+ T helper cells, including regulatory T cells. Here, we review the current knowledge on ABC transporters in these T cell populations by summarizing how ABC transporters regulate the function of the individual cell types and how this affects the immunity to viruses and tumors, and the course of autoimmune diseases. Furthermore, we provide a perspective on how a better understanding of the function of ABC transporters in T cells might provide promising novel avenues for the therapy of autoimmunity and to improve immunity to infection and cancer.
Collapse
Affiliation(s)
- Christoph Thurm
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.T.); (B.S.)
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
75
|
Tu S, Lin X, Qiu J, Zhou J, Wang H, Hu S, Yao Y, Wang Y, Deng Y, Zhou Y, Shao A. Crosstalk Between Tumor-Associated Microglia/Macrophages and CD8-Positive T Cells Plays a Key Role in Glioblastoma. Front Immunol 2021; 12:650105. [PMID: 34394072 PMCID: PMC8358794 DOI: 10.3389/fimmu.2021.650105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma is considered to be the most malignant disease of the central nervous system, and it is often associated with poor survival. The immune microenvironment plays a key role in the development and treatment of glioblastoma. Among the different types of immune cells, tumor-associated microglia/macrophages (TAM/Ms) and CD8-positive (CD8+) T cells are the predominant immune cells, as well as the most active ones. Current studies have suggested that interaction between TAM/Ms and CD8+ T cells have numerous potential targets that will allow them to overcome malignancy in glioblastoma. In this review, we summarize the mechanism and function of TAM/Ms and CD8+ T cells involved in glioblastoma, as well as update on the relationship and crosstalk between these two cell types, to determine whether this association alters the immune status during glioblastoma development and affects optimal treatment. We focus on the molecular factors that are crucial to this interaction, and the role that this crosstalk plays in the biological processes underlying glioblastoma treatment, particularly with regard to immune therapy. We also discuss novel therapeutic targets that can aid in resolving reticular connections between TAM/Ms and CD8+ T cells, including depletion and reprogramming TAM/Ms and novel TAM/Ms-CD8+ T cell cofactors with potential translational usage. In addition, we highlight the challenges and discuss future perspectives of this crosstalk between TAM/Ms and CD8+ T cells.
Collapse
Affiliation(s)
- Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jili Qiu
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiyao Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
76
|
Xu Y, Jiang J, Wang Y, Wang W, Li H, Lai W, Zhou Z, Zhu W, Xiang Z, Wang Z, Zhu Z, Yu L, Huang X, Zheng H, Wu S. Engineered T Cell Therapy for Gynecologic Malignancies: Challenges and Opportunities. Front Immunol 2021; 12:725330. [PMID: 34386017 PMCID: PMC8353443 DOI: 10.3389/fimmu.2021.725330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gynecologic malignancies, mainly including ovarian cancer, cervical cancer and endometrial cancer, are leading causes of death among women worldwide with high incidence and mortality rate. Recently, adoptive T cell therapy (ACT) using engineered T cells redirected by genes which encode for tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs) has demonstrated a delightful potency in B cell lymphoma treatment. Researches impelling ACT to be applied in treating solid tumors like gynecologic tumors are ongoing. This review summarizes the preclinical research and clinical application of engineered T cells therapy for gynecologic cancer in order to arouse new thoughts for remedies of this disease.
Collapse
Affiliation(s)
- Yifan Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Jiang
- Guangzhou Blood Center, Department of Blood Source Management, Guangzhou, China
| | - Yutong Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haokun Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenyu Lai
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhipeng Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Zhu
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheng Xiang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Zhiming Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Sino-British Research Center for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhe Zhu
- Huikezhe Biological Tech. Beijing, R&D Department, Beijing, China
| | - Lingfeng Yu
- School of Basic Medicine Science, Tianjin Medical University, Tianjin, China
| | - Xiaolan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Zheng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,National Demonstration Center for Experimental Education of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
77
|
Jin F, Liu D, Xu X, Ji J, Du Y. Nanomaterials-Based Photodynamic Therapy with Combined Treatment Improves Antitumor Efficacy Through Boosting Immunogenic Cell Death. Int J Nanomedicine 2021; 16:4693-4712. [PMID: 34267518 PMCID: PMC8275223 DOI: 10.2147/ijn.s314506] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Benefiting from the rapid development of nanotechnology, photodynamic therapy (PDT) is arising as a novel non-invasive clinical treatment for specific cancers, which exerts direct efficacy in destroying primary tumors by generating excessive cytotoxic reactive oxygen species (ROS). Notably, PDT-induced cell death is related to T cell-mediated antitumor immune responses through induction of immunogenic cell death (ICD). However, ICD elicited via PDT is not strong enough and is limited by immunosuppressive tumor microenvironment (ITM). Therefore, it is necessary to improve PDT efficacy through enhancing ICD with the combination of synergistic tumor therapies. Herein, the recent progress of nanomaterials-based PDT combined with chemotherapy, photothermal therapy, radiotherapy, and immunotherapy, employing ICD-boosted treatments is reviewed. An outlook about the future application in clinics of nanomaterials-based PDT strategies is also mentioned.
Collapse
Affiliation(s)
- Feiyang Jin
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiansong Ji
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui, 323000, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutics Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
78
|
Luo X, Xu J, Yu J, Yi P. Shaping Immune Responses in the Tumor Microenvironment of Ovarian Cancer. Front Immunol 2021; 12:692360. [PMID: 34248988 PMCID: PMC8261131 DOI: 10.3389/fimmu.2021.692360] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022] Open
Abstract
Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.
Collapse
Affiliation(s)
- Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA, United States.,Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA, United States
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
79
|
Aminin D, Wang YM. Macrophages as a "weapon" in anticancer cellular immunotherapy. Kaohsiung J Med Sci 2021; 37:749-758. [PMID: 34110692 DOI: 10.1002/kjm2.12405] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Anticancer immunotherapy is a treatment that activates the immune system to fight the tumor. Immunotherapy has several advantages over other cancer treatments in that anticancer immunotherapy displays high specificity, low side effects, and can combine with various conventional therapies. In recent years, oncologists have shown increasing interest in using macrophages for adoptive cell therapy and predict a bright future of macrophage-directed therapy for eliminating cancer. The focus of increased research interest is the classically activated M1 macrophages exhibiting pronounced tumoricidal activity, and the alternatively activated M2 tumor-associated macrophages, which otherwise help malignant cells evading attack by the immune system. M1 macrophages may represent an effective weapon in anticancer cellular immunotherapy, and the use of autoimmune macrophages properly prepared for antitumor administration is one of the promising ways for personalized therapy of cancer patients. The present report mainly discusses some modern aspects of the problem in application of activated M1 macrophage in anticancer therapy and reviews relevant publications up to 2021.
Collapse
Affiliation(s)
- Dmitry Aminin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Vladivostok, Russia.,Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yun-Ming Wang
- Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.,Department of Biomedical Science and Environmental Biology, Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
80
|
Shen L, Fu H, Tao G, Liu X, Yuan Z, Ye X. Pre-Immunotherapy Contrast-Enhanced CT Texture-Based Classification: A Useful Approach to Non-Small Cell Lung Cancer Immunotherapy Efficacy Prediction. Front Oncol 2021; 11:591106. [PMID: 33968716 PMCID: PMC8103028 DOI: 10.3389/fonc.2021.591106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/18/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: To investigate the utility of the pre-immunotherapy contrast-enhanced CT-based texture classification in predicting response to non-small cell lung cancer (NSCLC) immunotherapy treatment. Methods: Sixty-three patients with 72 lesions who received immunotherapy were enrolled in this study. We extracted textures including histogram, absolute gradient, run-length matrix, gray-level co-occurrence matrix, autoregressive model, and wavelet transform from pre-immunotherapy contrast-enhanced CT by using Mazda software. Three different methods, namely, Fisher coefficient, mutual information measure (MI), and minimization of classification error probability combined average correlation coefficients (POE + ACC), were performed to select 10 optimal texture feature sets, respectively. The patients were divided into non-progressive disease (non-PD) and progressive disease (PD) groups. t-test or Mann–Whitney U-test was performed to test the differences in each texture feature set between the above two groups. Each texture feature set was analyzed by principal component analysis (PCA), linear discriminant analysis (LDA), and non-linear discriminant analysis (NDA). The area under the curve (AUC) was used to quantify the predictive accuracy of the above three analysis models for each texture feature set, and the sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were also calculated, respectively. Results: Among the three texture feature sets, the texture parameter differences of kurtosis (2.12 ± 3.92 vs. 0.78 ± 1.10, p = 0.047), “S(2,2)SumEntrp” (1.14 ± 0.31 vs. 1.24 ± 0.12, p = 0.036), and “S(1,0)SumEntrp” (1.18 ± 0.27 vs. 1.28 ± 0.11, p = 0.046) between the non-PD and PD group were statistically significant (all p < 0.05). The classification result of texture feature set selected by POE + ACC and analyzed by NDA was identified as the best model (AUC = 0.812, 95% CI: 0.706–0.919) with a sensitivity, specificity, accuracy, PPV, and NPV of 88.2, 76.3, 81.9, 76.9, and 87.9%, respectively. Conclusion: Pre-immunotherapy contrast-enhanced CT-based texture provides a new method for clinical evaluation of the NSCLC immunotherapy efficacy prediction.
Collapse
Affiliation(s)
- Leilei Shen
- Department of Radiology, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Hongchao Fu
- Department of Radiology, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Guangyu Tao
- Department of Radiology, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Xuemei Liu
- Department of Radiology, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Zheng Yuan
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaodan Ye
- Department of Radiology, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
81
|
Xiao Q, Li X, Li Y, Wu Z, Xu C, Chen Z, He W. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B 2021; 11:941-960. [PMID: 33996408 PMCID: PMC8105778 DOI: 10.1016/j.apsb.2020.12.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/03/2020] [Accepted: 11/15/2020] [Indexed: 12/11/2022] Open
Abstract
The initiation and development of major inflammatory diseases, i.e., cancer, vascular inflammation, and some autoimmune diseases are closely linked to the immune system. Biologics-based immunotherapy is exerting a critical role against these diseases, whereas the usage of the immunomodulators is always limited by various factors such as susceptibility to digestion by enzymes in vivo, poor penetration across biological barriers, and rapid clearance by the reticuloendothelial system. Drug delivery strategies are potent to promote their delivery. Herein, we reviewed the potential targets for immunotherapy against the major inflammatory diseases, discussed the biologics and drug delivery systems involved in the immunotherapy, particularly highlighted the approved therapy tactics, and finally offer perspectives in this field.
Collapse
Key Words
- AAs, amino acids
- ACT, adoptive T cell therapy
- AHC, Chlamydia pneumonia
- ALL, acute lymphoblastic leukemia
- AP, ascorbyl palmitate
- APCs, antigen-presenting cells
- AS, atherosclerosis
- ASIT, antigen-specific immunotherapy
- Adoptive cell transfer
- ApoA–I, apolipoprotein A–I
- ApoB LPs, apolipoprotein-B-containing lipoproteins
- Atherosclerosis
- BMPR-II, bone morphogenetic protein type II receptor
- Biologics
- Bregs, regulatory B lymphocytes
- CAR, chimeric antigen receptor
- CCR9–CCL25, CC receptor 9–CC chemokine ligand 25
- CD, Crohn's disease
- CETP, cholesterol ester transfer protein
- CTLA-4, cytotoxic T-lymphocyte-associated protein-4
- CX3CL1, CXXXC-chemokine ligand 1
- CXCL 16, CXC-chemokine ligand 16
- CXCR 2, CXC-chemokine receptor 2
- Cancer immunotherapy
- CpG ODNs, CpG oligodeoxynucleotides
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDS, drug delivery system
- DMARDs, disease-modifying antirheumatic drugs
- DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
- DSS, dextran sulfate sodium
- Dex, dexamethasone
- Drug delivery
- ECM, extracellular matrix
- ECs, endothelial cells
- EGFR, epidermal growth factor receptor
- EPR, enhanced permeability and retention effect
- ET-1, endothelin-1
- ETAR, endothelin-1 receptor type A
- FAO, fatty acid oxidation
- GM-CSF, granulocyte–macrophage colony-stimulating factor
- HA, hyaluronic acid
- HDL, high density lipoprotein
- HER2, human epidermal growth factor-2
- IBD, inflammatory bowel diseases
- ICOS, inducible co-stimulator
- ICP, immune checkpoint
- IFN, interferon
- IL, interleukin
- IT-hydrogel, inflammation-targeting hydrogel
- Immune targets
- Inflammatory diseases
- JAK, Janus kinase
- LAG-3, lymphocyte-activation gene 3
- LDL, low density lipoprotein
- LPS, lipopolysaccharide
- LTB4, leukotriene B4
- MCP-1, monocyte chemotactic protein-1
- MCT, monocrotaline
- MDSC, myeloid-derived suppressor cell
- MHCs, major histocompatibility complexes
- MHPC, 1-myristoyl-2-hydroxy-sn-glycero-phosphocholine
- MIF, migration inhibitory factor
- MM, multiple myeloma
- MMP, matrix metalloproteinase
- MOF, metal–organic framework
- MPO, myeloperoxidase
- MSCs, mesenchymal stem cells
- NF-κB, nuclear factor κ-B
- NK, natural killer
- NPs, nanoparticles
- NSAIDs, nonsteroidal anti-inflammatory drugs
- PAECs, pulmonary artery endothelial cells
- PAH, pulmonary arterial hypertension
- PASMCs, pulmonary arterial smooth muscle cells
- PBMCs, peripheral blood mononuclear cells
- PCSK9, proprotein convertase subtilisin kexin type 9
- PD-1, programmed death protein-1
- PD-L1, programmed cell death-ligand 1
- PLGA, poly lactic-co-glycolic acid
- Pulmonary artery hypertension
- RA, rheumatoid arthritis
- ROS, reactive oxygen species
- SHP-2, Src homology 2 domain–containing tyrosine phosphatase 2
- SLE, systemic lupus erythematosus
- SMCs, smooth muscle cells
- Src, sarcoma gene
- TCR, T cell receptor
- TGF-β, transforming growth factor β
- TILs, tumor-infiltrating lymphocytes
- TIM-3, T-cell immunoglobulin mucin 3
- TLR, Toll-like receptor
- TNF, tumor necrosis factor
- TRAF6, tumor necrosis factor receptor-associated factor 6
- Teff, effector T cell
- Th17, T helper 17
- Tph, T peripheral helper
- Tregs, regulatory T cells
- UC, ulcerative colitis
- VEC, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- VISTA, V-domain immunoglobulin-containing suppressor of T-cell activation
- YCs, yeast-derived microcapsules
- bDMARDs, biological DMARDs
- hsCRP, high-sensitivity C-reactive protein
- mAbs, monoclonal antibodies
- mPAP, mean pulmonary artery pressure
- nCmP, nanocomposite microparticle
- rHDL, recombinant HDL
- rhTNFRFc, recombinant human TNF-α receptor II-IgG Fc fusion protein
- scFv, single-chain variable fragment
- α1D-AR, α1D-adrenergic receptor
Collapse
Affiliation(s)
- Qingqing Xiao
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China
| |
Collapse
|
82
|
Fang W, Zhou T, Shi H, Yao M, Zhang D, Qian H, Zeng Q, Wang Y, Jin F, Chai C, Chen T. Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8 + T cell exclusion. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:4. [PMID: 33390170 PMCID: PMC7780622 DOI: 10.1186/s13046-020-01786-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Background Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism. Methods The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative polymerase chain reaction (PCR) and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in Wild-type (WT) and PGRN−/− breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry. Results After being treated with PGRN, the expressions of M2 markers and programmed death ligand 1 (PD-L1) on macrophages increased significantly. Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitor Stattic significantly inhibited the expression of PD-L1 and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN−/− breast cancer tissue increased, and their infiltration into tumor parenchyma was also enhanced. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+ T cells but also reduced the proportion of proliferating CD8+ T cells. The addition of programmed death receptor 1 (PD-1) and PD-L1 neutralizing antibodies effectively reversed this effect and restored the immune function of CD8+ T cells. Conclusion These results demonstrate that PGRN promotes M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01786-6.
Collapse
Affiliation(s)
- Wenli Fang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ting Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - He Shi
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Mengli Yao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Dian Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Husun Qian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qian Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yange Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fangfang Jin
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengsen Chai
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Tingmei Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
83
|
Toulouie S, Johanning G, Shi Y. Chimeric antigen receptor T-cell immunotherapy in breast cancer: development and challenges. J Cancer 2021; 12:1212-1219. [PMID: 33442419 PMCID: PMC7797648 DOI: 10.7150/jca.54095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/27/2020] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T-cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and costimulatory molecules. Moreover, CAR T-cell therapy can only work successfully in patients who have an intact immune system. Therefore, patients receiving cytotoxic chemotherapy will be immunosuppressed making CAR-T therapy less effective. In adoptive CD8+ T-cell therapy (ACT), numerous tumor-specific, engineered T-cells are sourced from patients, expanded in vitro, and infused back expressing tumor-specific antigen receptors. The most successful ACT, anti-CD19 chimeric antigen receptor T-cell therapy directed against B-cell lymphoma, has proved to be efficacious. However, current efforts to utilize this approach for solid tumors, like breast cancer, have shown only modest improvement. Nevertheless, the potential efficacy of CAR-T therapy is promising in an era of immunological advances. By appropriately manipulating CAR T-cells to combat the immunosuppressive forces of the tumor microenvironment, significant eradication of the solid tumor may occur. This review discusses CAR T-cell therapy and its specificity and safety in adoptive cell transfers in breast cancer. We will highlight novel discoveries in CAR T-cell immunotherapy and the formidable barriers including suppression of T-cell function and localization at tumor sites.
Collapse
Affiliation(s)
- Sara Toulouie
- California Northstate University, College of Medicine, Elk Grove CA, USA
| | | | - Yihui Shi
- California Northstate University, College of Medicine, Elk Grove CA, USA
| |
Collapse
|
84
|
Innao V, Allegra AG, Musolino C, Allegra A. New Frontiers about the Role of Human Microbiota in Immunotherapy: The Immune Checkpoint Inhibitors and CAR T-Cell Therapy Era. Int J Mol Sci 2020; 21:ijms21238902. [PMID: 33255336 PMCID: PMC7727716 DOI: 10.3390/ijms21238902] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is considered an independent organ with the capability to modulate tumor growth and response to therapies. In the chemo-free era, the use of new immunotherapies, more selective and effective and less toxic, led to the extension of overall survival of patients, subject to their ability to not stop treatment. This has focused scientists’ attention to optimize responses by understanding and changing microbiota composition. While we have obtained abundant data from studies in oncologic and hematologic patients receiving conventional chemotherapy, we have less data about alterations in intestinal flora in those undergoing immunotherapy, especially based on Chimeric Antigen Receptor (CAR) T-cells. Actually, we know that the efficacy of Programmed Cell Death 1 (PD-1), PD-1 ligand, and Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) is improved by probiotics rich in Bifidobacterium spp., while compounds of Bacteroidales and Burkholderiales protect from the development of the anti-CTLA-4-induced colitis in mouse models. CAR T-cell therapy seems to not be interfering with microbiota; however, the numerous previous therapies may have caused permanent damage, thus obscuring the data we might have obtained. Therefore, this review opens a new chapter to transfer known acquisitions to a typology of patients destined to grow.
Collapse
Affiliation(s)
- Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98122 Messina, Italy;
- Correspondence: (V.I.); (A.A.)
| | - Andrea Gaetano Allegra
- Radiation Oncology Unit, Department of Biomedical, Experimental, and Clinical Sciences “Mario Serio”, Azienda Ospedaliero-Universitaria Careggi, University of Florence, 50100 Florence, Italy;
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98122 Messina, Italy;
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood, University of Messina, 98122 Messina, Italy;
- Correspondence: (V.I.); (A.A.)
| |
Collapse
|
85
|
Matus EI, Sparkes A, Gariépy J. A soluble activator that favors the ex vivo expansion of CD8+CD27+ T cells. JCI Insight 2020; 5:141293. [PMID: 33208551 PMCID: PMC7710272 DOI: 10.1172/jci.insight.141293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 01/25/2023] Open
Abstract
Adoptive cell therapy involves the infusion of tumor-reactive T cells into patients with cancer to provide antitumor immunity. The ex vivo expansion and differentiation of such T cells are key parameters that affect their therapeutic potential. Human T cells are presently expanded in culture through the use of anti-CD3 and anti-CD28 mAbs immobilized on beads, expressed on cells, or assembled in the context of soluble antibody complexes. Here we report the design of a small, bispecific single-chain variable fragment construct agonizing both CD3 and CD28 pathways. This soluble T cell expansion protein, termed T-CEP, activates, expands, and differentiates human T cells ex vivo at concentrations in the femtomolar range. Importantly, T-CEP promotes the preferential growth of human CD8+ T cells over the course of 12 days in comparison with methods involving immobilized anti-CD3 mAb/soluble anti-CD28 mAb or soluble anti-CD3/CD28 mAb complexes. The differentiation profile of the resulting human T cell population is also singularly affected by T-CEP, favoring the expansion of a preferred CD8+CD27+ T cell phenotype. The activity profile of T-CEP on human T cells ex vivo suggests its use in generating human T cell populations that are more suited for adoptive cell therapy. A bispecific protein construct is described that rapidly expands primary human T cell populations ex vivo at femtomolar concentrations with desirable phenotypic properties for adoptive cell therapy.
Collapse
Affiliation(s)
- Esther I Matus
- Sunnybrook Research Institute.,Department of Medical Biophysics, and
| | | | - Jean Gariépy
- Sunnybrook Research Institute.,Department of Medical Biophysics, and.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, Canada, USA
| |
Collapse
|
86
|
Yu X, Zhu L, Liu J, Xie M, Chen J, Li J. Emerging Role of Immunotherapy for Colorectal Cancer with Liver Metastasis. Onco Targets Ther 2020; 13:11645-11658. [PMID: 33223838 PMCID: PMC7671511 DOI: 10.2147/ott.s271955] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/29/2020] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor in the world and the second leading cause of cancer-related deaths, with the liver as the most common site of distant metastasis. The prognosis of CRC with liver metastasis is poor, and most patients cannot undergo surgery. In addition, conventional antitumor approaches such as chemotherapy, radiotherapy, targeted therapy, and surgery result in unsatisfactory outcomes. In recent years, immunotherapy has shown good prospects in the treatment of assorted tumors by enhancing the host's antitumor immune function, and it may become a new effective treatment for liver metastasis of CRC. However, challenges remain in applying immunotherapy to CRC with liver metastasis. This review examines how the microenvironment and immunosuppressive landscape of the liver favor tumor progression. It also highlights the latest research advances in immunotherapy for colorectal liver metastasis and identifies immunotherapy as a treatment regimen with a promising future in clinical applications.
Collapse
Affiliation(s)
- Xianzhe Yu
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Lingling Zhu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Jiewei Liu
- Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ming Xie
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jianguo Li
- Gastrointestinal Department, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People’s Republic of China
| |
Collapse
|
87
|
Franz L, Alessandrini L, Fasanaro E, Gaudioso P, Carli A, Nicolai P, Marioni G. Prognostic impact of neutrophils-to-lymphocytes ratio (NLR), PD-L1 expression, and tumor immune microenvironment in laryngeal cancer. Ann Diagn Pathol 2020; 50:151657. [PMID: 33189034 DOI: 10.1016/j.anndiagpath.2020.151657] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE In laryngeal carcinoma (LSCC), tumor immune microenvironment is attracting increasing interest, given the recent progresses in immunotherapy. Immune cells migrate to tumors as a result of a tumor antigen-induced immune reaction and cancer cells recruit immune regulatory cells to induce an immunosuppressive network, resulting in the escape from host immunity. This interaction reflects both on tumor microenvironment and systemic inflammatory status. Blood neutrophil-to-lymphocyte ratio (NLR), reflecting a highly pro-inflammatory status, has been related to worse oncological survival outcomes. The aim of this study was to analyze in LSCC the relationship between circulating inflammatory cells (also in terms of NLR) and tumor immune microenvironment histopathological features (programmed cell death ligand 1 [PD-L1] expression, and tumor-infiltrating lymphocytes [TILs]), also investigating their clinical-pathological and prognostic significance. METHODS Blood pre-operative NLR, and, at pathology, PD-L1 (in terms of combined positive score [CPS]) and TILs were assessed on 60 consecutive cases of LSCC. RESULTS Blood NLR, neutrophils, and lymphocytes counts showed a significant value in predicting DFS and recurrence risk. Moreover, PD-L1 CPS ≥ 1 and TILs count rate ≥30% were associated with higher disease-free survival (DFS) and reduced recurrence risk. A logistic regression model found a significant positive association between increasing NLR values, and PD-L1 CPS < 1 and TILs count rate <30%. CONCLUSIONS Further studies are needed to better characterize the role of pre-operative blood NLR in association with PD-L1 expression and tumor immune microenvironment features as prognostic factors and markers of anti-tumor immune response in LSCCs, also with regard to the effectiveness of immunotherapeutic protocols.
Collapse
Affiliation(s)
- Leonardo Franz
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | | | - Elena Fasanaro
- Department of Neuroscience DNS, S.D.O.U. Otolaryngology at S. Antonio Hospital, University of Padova, Padova, Italy
| | - Piergiorgio Gaudioso
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | - Alessandro Carli
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | - Piero Nicolai
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy
| | - Gino Marioni
- Department of Neuroscience DNS, Otolaryngology Section, University of Padova, Padova, Italy.
| |
Collapse
|
88
|
Zhu P, Liu Z, Huang H, Zhong C, Zhou Y. MiRNA505/NET1 Axis Acts as a CD8 + T-TIL Regulator in Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:9785-9795. [PMID: 33061457 PMCID: PMC7534871 DOI: 10.2147/ott.s265859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Lung adenocarcinoma (LUAD), which is the most important and common subtype of non-small cell lung cancer (NSCLC), is highly heterogeneous with a poor prognosis and poses great challenges to health worldwide. MicroRNAs (miRNAs) are regulators of gene expression with recognized roles in physiology and diseases, such as cancers, but little is known about their functional relevance to CD8+ T cell infiltration regulation in the tumor microenvironment (TME) of NSCLC patients, especially LUAD patients. Methods Bioinformatic analysis was used to analyze TCGA data. RT-PCT, Western blot, luciferase assay and immunohistochemistry were used to detect the expression levels and bindings of genes and miRNA. ELISA and cytotoxic assay were used to evaluate CD8+ T cell function. Results In this study, bioinformatic analysis unveiled the miR-505-3p/NET1 pair as a CD8+ T-tumor-infiltrating lymphocyte (TIL) regulator. Then, we confirmed the bioinformatic results with LUAD patient samples, and NET1 was shown to be a direct target of miR-505-3p in a luciferase assay. Functional experiments demonstrated that miR-505-3p enhanced CD8+ T-TIL function, while NET1 impaired CD8+ T-TIL function and partly reversed the effects of miR-505-3p. The observed effects might be exerted via the regulation of immunosuppressive receptors in T cells. Discussion Our study may provide novel insights into LUAD progression related to the TME mechanism and new possibilities for improving adoptive immunotherapy.
Collapse
Affiliation(s)
- Pengyuan Zhu
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, School of Medicine, Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Zhenchuan Liu
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| | - Haitao Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Chongjun Zhong
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, People's Republic of China
| | - Yongxin Zhou
- Department of Thoracic and Cardiovascular Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, People's Republic of China
| |
Collapse
|
89
|
Xu S, Tang L, Dai G, Luo C, Liu Z. A novel gene signature predicts chemoradiotherapy efficacy and tumor immunity in high-grade glioma. Clin Transl Med 2020; 10:e170. [PMID: 32997418 PMCID: PMC7507345 DOI: 10.1002/ctm2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/23/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
90
|
Liu C, Miao X, Wang Y, Wen L, Cheng X, Kong D, Zhao P, Song D, Wang X, Ding X, Xia H, Wang W, Sun Q, Gong W. Bromo- and extraterminal domain protein inhibition improves immunotherapy efficacy in hepatocellular carcinoma. Cancer Sci 2020; 111:3503-3515. [PMID: 32726482 PMCID: PMC7540980 DOI: 10.1111/cas.14588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents the majority of liver cancer and is the fourth most common cause of cancer-related death. Although advances in molecular targeted therapy have shown promise, none of these agents has yet demonstrated significant clinical benefit. Bromo- and extraterminal domain (BET) protein inhibitors have been considered potential therapeutic drugs for HCC but the biological activity remains unclear. This study found that BET protein inhibition did not effectively suppress the progression of HCC, using a transgenic HCC mouse model. Mechanistically, the BET protein inhibitor JQ1 upregulated the expression of programmed cell death-ligand 1 (PD-L1) on the plasma membrane in vivo and in vitro. Moreover, JQ1 enhanced the expression of Rab8A, which upregulated the expression of PD-L1 on the plasma membrane. This study also showed that JQ1 combined with anti-PD-L1 Ab effectively suppressed HCC progression, and this benefit was obtained by enhancing the activation and cytotoxic capabilities of CD8 T cells. These results revealed the crucial role and regulation of BET protein inhibition on the expression of PD-L1 in HCC. Thus, combining BET protein inhibition with immune checkpoint blockade offers an efficient therapeutic approach for HCC.
Collapse
Affiliation(s)
- Chen Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary Surgery, First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiawei Cheng
- Synthetic Biology and Biotechnology Laboratory, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Deqiang Kong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Pengwei Zhao
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Dandan Song
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Biology of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weilin Wang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Qiming Sun
- Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
91
|
The Quest for the Best: How TCR Affinity, Avidity, and Functional Avidity Affect TCR-Engineered T-Cell Antitumor Responses. Cells 2020; 9:cells9071720. [PMID: 32708366 PMCID: PMC7408146 DOI: 10.3390/cells9071720] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past decades, adoptive transfer of T cells has revolutionized cancer immunotherapy. In particular, T-cell receptor (TCR) engineering of T cells has marked important milestones in developing more precise and personalized cancer immunotherapies. However, to get the most benefit out of this approach, understanding the role that TCR affinity, avidity, and functional avidity play on how TCRs and T cells function in the context of tumor-associated antigen (TAA) recognition is vital to keep generating improved adoptive T-cell therapies. Aside from TCR-related parameters, other critical factors that govern T-cell activation are the effect of TCR co-receptors on TCR–peptide-major histocompatibility complex (pMHC) stabilization and TCR signaling, tumor epitope density, and TCR expression levels in TCR-engineered T cells. In this review, we describe the key aspects governing TCR specificity, T-cell activation, and how these concepts can be applied to cancer-specific TCR redirection of T cells.
Collapse
|
92
|
Liu M, Gao Y, Yuan Y, Shi S, Yang K, Wu J, Zhang J, Tian J. Global hotspots and future prospects of chimeric antigen receptor T-cell therapy in cancer research: a bibliometric analysis. Future Oncol 2020; 16:597-612. [DOI: 10.2217/fon-2019-0810] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: Our study aimed to analyze the characteristics of papers published on CAR T-cell in the field of cancer and explore the existing hot topics and prospects. Materials & methods: We explored the global hotspots and future prospects regarding CAR T-cell therapy in cancer research. Papers of CAR T-cell research were retrieved from the Web of Science database. Analysis was performed using VOSviewer, CiteSpace and Excel software. Results: A total number of 1994 papers related to CAR T-cell research of cancer were included. Molecular Therapy published the most papers (n = 85, 4.26%). A total of 9792 authors participated in the publication of all papers. 62 countries and 2065 institutions have participated in the publication of all papers. Conclusion: Research trends are to improve the immunosuppressive microenvironment of cancer, optimize the structure of CAR T-cells and develop ‘super CAR T-cell’ by using gene-editing technology.
Collapse
Affiliation(s)
- Ming Liu
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Evidence-Based Medicine & Knowledge Translation of Gansu Province, Lanzhou 730000, PR China
| | - Ya Gao
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Evidence-Based Medicine & Knowledge Translation of Gansu Province, Lanzhou 730000, PR China
| | - Yuan Yuan
- Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Shuzhen Shi
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Evidence-Based Medicine & Knowledge Translation of Gansu Province, Lanzhou 730000, PR China
| | - Kelu Yang
- School of Nursing, Lanzhou University, Lanzhou 730000, PR China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100000, PR China
| | - Junhua Zhang
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, PR China
- Key Laboratory of Evidence-Based Medicine & Knowledge Translation of Gansu Province, Lanzhou 730000, PR China
| |
Collapse
|
93
|
|
94
|
Liu X, Wen J, Yi H, Hou X, Yin Y, Ye G, Wu X, Jiang X. Split chimeric antigen receptor-modified T cells targeting glypican-3 suppress hepatocellular carcinoma growth with reduced cytokine release. Ther Adv Med Oncol 2020; 12:1758835920910347. [PMID: 32215059 PMCID: PMC7065297 DOI: 10.1177/1758835920910347] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Human glypican-3 (hGPC3) is a protein highly expressed in hepatocellular carcinoma (HCC) but limited in normal tissues, making it an ideal target for immunotherapy. The adoptive transfer of hGPC3-specific chimeric antigen receptor T (CAR-T) cells for HCC treatment has been conducted in clinical trials. Due to the rigid construction, conventional CAR-T cells have some intrinsic limitations, like uncontrollable overactivation and inducing severe cytokine release syndrome. Methods: We redesigned the hGPC3-specific CAR by splitting the traditional CAR into two parts. By using coculturing assays and a xenograft mouse model, the in vitro and in vivo cytotoxicity and cytokine release of the split anti-hGPC3 CAR-T cells were evaluated against various HCC cell lines and compared with conventional CAR-T cells. Results: In vitro data demonstrated that split anti-hGPC3 CAR-T cells could recognize and lyse hGPC3+ HepG2 and Huh7 cells in a dose-dependent manner. Impressively, split anti-hGPC3 CAR-T cells produced and released a significantly lower amount of proinflammatory cytokines, including IFN-γ, TNF-α, IL-6, and GM-CSF, than conventional CAR-T cells. When injected into immunodeficient mice inoculated subcutaneously with HepG2 cells, our split anti-hGPC3 CAR-T cells could suppress HCC tumor growth, but released significantly lower levels of cytokines than conventional CAR-T cells. Conclusions: We describe here for the first time the use of split anti-hGPC3 CAR-T cells to treat HCC; split anti-hGPC3 CAR-T cells could suppress tumor growth and reduce cytokine release, and represent a more versatile and safer alternative to conventional CAR-T cells treatment.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianyun Wen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Yi
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Yin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Tonghe Road, Guangzhou, 510515, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou, 510515, China
| |
Collapse
|
95
|
Tagliamonte M, Mauriello A, Cavalluzzo B, Ragone C, Manolio C, Petrizzo A, Buonaguro L. Tackling hepatocellular carcinoma with individual or combinatorial immunotherapy approaches. Cancer Lett 2019; 473:25-32. [PMID: 31875523 DOI: 10.1016/j.canlet.2019.12.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer globally. Indeed, there is a single drug approved as first-line systemic therapy in advanced unresectable HCC, providing a very limited survival benefit. In earlier stages, 5-year survival rates after surgical and loco-regional therapies are extremely variable depending on the stage of disease. Nevertheless, HCC is considered an immunogenic tumor arising in chronically inflamed livers. In such a scenario, immunotherapy strategies for HCC, in particular combinations including cancer vaccines, may represent a key therapeutic tool to improve clinical outcome in HCC patients. However, a lot of improvement is needed given the disappointing results obtained so far.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Angela Mauriello
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Concetta Ragone
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Carmen Manolio
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Annacarmen Petrizzo
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy.
| |
Collapse
|