51
|
McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces 2017; 159:62-77. [PMID: 28780462 DOI: 10.1016/j.colsurfb.2017.07.051] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/04/2017] [Accepted: 07/22/2017] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) hold great promise for cell therapy, tissue engineering, and regenerative medicine as well as pharmaceutical and biotechnological applications. They have the capacity to self-renew and the ability to differentiate into specialized cell types depending upon their source of isolation. However, use of SCs for clinical applications requires a high quality and quantity of cells. This necessitates large-scale expansion of SCs followed by efficient and homogeneous differentiation into functional derivatives. Traditional methods for maintenance and expansion of cells rely on two-dimensional (2-D) culturing techniques using plastic culture plates and xenogenic media. These methods provide limited expansion and cells tend to lose clonal and differentiation capacity upon long-term passaging. Recently, new approaches for the expansion of SCs have emphasized three-dimensional (3-D) cell growth to mimic the in vivo environment. This review provides a comprehensive compendium of recent advancements in culturing SCs using 2-D and 3-D techniques involving spheroids, biomaterials, and bioreactors. In addition, potential challenges to achieve billion-fold expansion of cells are discussed.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences , Oakland University, Rochester, MI, 48309, USA; OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
52
|
Lawson T, Kehoe DE, Schnitzler AC, Rapiejko PJ, Der KA, Philbrick K, Punreddy S, Rigby S, Smith R, Feng Q, Murrell JR, Rook MS. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
53
|
Le Pape F, Cosnuau-Kemmat L, Richard G, Dubrana F, Férec C, Zal F, Leize E, Delépine P. HEMOXCell, a New Oxygen Carrier Usable as an Additive for Mesenchymal Stem Cell Culture in Platelet Lysate-Supplemented Media. Artif Organs 2017; 41:359-371. [DOI: 10.1111/aor.12892] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Fiona Le Pape
- Functional Genetics Department, INSERM Research Unit 1078; University of Western Brittany, European Brittany University
- Biotechnopole; HEMARINA SA, Aeropole Center; Morlaix
| | | | | | - Frédéric Dubrana
- Department of Orthopedic Surgery and Traumatology; Regional University Hospital Center of Brest; Brest
| | - Claude Férec
- Functional Genetics Department, INSERM Research Unit 1078; University of Western Brittany, European Brittany University
- French Blood Service-Brittany; Brest Site
- Functional Genetics Department; Regional University Hospital Center of Brest; Brest
| | - Franck Zal
- Biotechnopole; HEMARINA SA, Aeropole Center; Morlaix
| | - Elisabeth Leize
- Functional Genetics Department, INSERM Research Unit 1078; University of Western Brittany, European Brittany University
- Prosthetic Department; Regional University Hospital Center of Brest, Research and Formation Unit of Odontology; Brest France
| | - Pascal Delépine
- Functional Genetics Department, INSERM Research Unit 1078; University of Western Brittany, European Brittany University
- French Blood Service-Brittany; Brest Site
| |
Collapse
|
54
|
Chimenti I, Massai D, Morbiducci U, Beltrami AP, Pesce M, Messina E. Stem Cell Spheroids and Ex Vivo Niche Modeling: Rationalization and Scaling-Up. J Cardiovasc Transl Res 2017; 10:150-166. [PMID: 28289983 DOI: 10.1007/s12265-017-9741-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
Improved protocols/devices for in vitro culture of 3D cell spheroids may provide essential cues for proper growth and differentiation of stem/progenitor cells (S/PCs) in their niche, allowing preservation of specific features, such as multi-lineage potential and paracrine activity. Several platforms have been employed to replicate these conditions and to generate S/PC spheroids for therapeutic applications. However, they incompletely reproduce the niche environment, with partial loss of its highly regulated network, with additional hurdles in the field of cardiac biology, due to debated resident S/PCs therapeutic potential and clinical translation. In this contribution, the essential niche conditions (metabolic, geometric, mechanical) that allow S/PCs maintenance/commitment will be discussed. In particular, we will focus on both existing bioreactor-based platforms for the culture of S/PC as spheroids, and on possible criteria for the scaling-up of niche-like spheroids, which could be envisaged as promising tools for personalized cardiac regenerative medicine, as well as for high-throughput drug screening.
Collapse
Affiliation(s)
- Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnology, "La Sapienza" University of Rome, Rome, Italy
| | - Diana Massai
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | | | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino", IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Pediatrics and Infant Neuropsychiatry, "Umberto I" Hospital, "La Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
55
|
Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Cytotherapy 2017; 19:419-432. [DOI: 10.1016/j.jcyt.2016.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/26/2016] [Accepted: 11/11/2016] [Indexed: 01/01/2023]
|
56
|
|
57
|
Galvanauskas V, Grincas V, Simutis R, Kagawa Y, Kino-oka M. Current state and perspectives in modeling and control of human pluripotent stem cell expansion processes in stirred-tank bioreactors. Biotechnol Prog 2017; 33:355-364. [DOI: 10.1002/btpr.2431] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
| | - Vykantas Grincas
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Rimvydas Simutis
- Department of Automation; Kaunas University of Technology; Kaunas Lithuania
| | - Yuki Kagawa
- Department of Biotechnology; Osaka University; Osaka Japan
| | | |
Collapse
|
58
|
Haley EM, Tilson SG, Triantafillu UL, Magrath JW, Kim Y. Acidic pH with coordinated reduction of basic fibroblast growth factor maintains the glioblastoma stem cell-like phenotype in vitro. J Biosci Bioeng 2017; 123:634-641. [PMID: 28063758 DOI: 10.1016/j.jbiosc.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 11/30/2022]
Abstract
Glioblastoma stem cells (GSCs) are a unique subpopulation of cells within glioblastoma multiforme (GBM) brain tumors that possess the ability to self-renew and differentiate into bulk tumor cells. GSCs are resistant to currently available treatments and are the likely culprit behind tumor relapse in GBM patients. However, GSCs are currently inaccessible to the larger scientific community because obtaining a sufficient number of GSCs remains technically challenging and cost-prohibitive. Thus, the objective of this study was to develop a more efficient GSC culture strategy that results in a higher cell yield of GSCs at a lower cost. We observed that the basic fibroblast growth factor (bFGF) is indispensable in allowing GSCs to retain an optimal stem cell-like phenotype in vitro, but little change was seen in their stemness when grown with lower concentrations of bFGF than the established protocol. Interestingly, a dynamic fluctuation of GSC protein marker expression was observed that corresponded to the changes in the bFGF concentration during the culture period. This suggested that bFGF alone did not control stem cell-like phenotype; rather, it was linked to the fluctuations of both bFGF and media pH. We demonstrated that a high level of stem cell-like phenotype could be retained even when lowering bFGF to 8 ng/mL when the media pH was simultaneously lowered to 6.8. These results provide the proof-of-concept that GSC expansion costs could be lowered to a more economical level and warrant the use of pH- and bFGF-controlled bioprocessing methodologies to more optimally expand GSCs in the future.
Collapse
Affiliation(s)
- Elizabeth M Haley
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Samantha G Tilson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Ursula L Triantafillu
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Justin W Magrath
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA
| | - Yonghyun Kim
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
| |
Collapse
|
59
|
Zhang Y, Wang X, Pong M, Chen L, Ye Z. Application of Bioreactor in Stem Cell Culture. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jbise.2017.1011037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
60
|
Abstract
Organoid systems leverage the self-organizing properties of stem cells to create diverse multi-cellular tissue proxies. Most organoid models only represent single or partial components of a tissue, and it is often difficult to control the cell type, organization, and cell-cell/cell-matrix interactions within these systems. Herein, we discuss basic approaches to generate stem cell-based organoids, their advantages and limitations, and how bioengineering strategies can be used to steer the cell composition and their 3D organization within organoids to further enhance their utility in research and therapies.
Collapse
Affiliation(s)
- Xiaolei Yin
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin E Mead
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Helia Safaee
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey M Karp
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| | - Oren Levy
- Division of Biomedical Engineering, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Cambridge, MA 02115, USA; Harvard Medical School, Cambridge, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Harvard - MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
61
|
Massai D, Isu G, Madeddu D, Cerino G, Falco A, Frati C, Gallo D, Deriu MA, Falvo D'Urso Labate G, Quaini F, Audenino A, Morbiducci U. A Versatile Bioreactor for Dynamic Suspension Cell Culture. Application to the Culture of Cancer Cell Spheroids. PLoS One 2016; 11:e0154610. [PMID: 27144306 PMCID: PMC4856383 DOI: 10.1371/journal.pone.0154610] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/15/2016] [Indexed: 11/27/2022] Open
Abstract
A versatile bioreactor suitable for dynamic suspension cell culture under tunable shear stress conditions has been developed and preliminarily tested culturing cancer cell spheroids. By adopting simple technological solutions and avoiding rotating components, the bioreactor exploits the laminar hydrodynamics establishing within the culture chamber enabling dynamic cell suspension in an environment favourable to mass transport, under a wide range of tunable shear stress conditions. The design phase of the device has been supported by multiphysics modelling and has provided a comprehensive analysis of the operating principles of the bioreactor. Moreover, an explanatory example is herein presented with multiphysics simulations used to set the proper bioreactor operating conditions for preliminary in vitro biological tests on a human lung carcinoma cell line. The biological results demonstrate that the ultralow shear dynamic suspension provided by the device is beneficial for culturing cancer cell spheroids. In comparison to the static suspension control, dynamic cell suspension preserves morphological features, promotes intercellular connection, increases spheroid size (2.4-fold increase) and number of cycling cells (1.58-fold increase), and reduces double strand DNA damage (1.5-fold reduction). It is envisioned that the versatility of this bioreactor could allow investigation and expansion of different cell types in the future.
Collapse
Affiliation(s)
- Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giuseppe Isu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Denise Madeddu
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Giulia Cerino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Angela Falco
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Caterina Frati
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Diego Gallo
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco A Deriu
- Istituto Dalle Molle di studi sull'Intelligenza Artificiale, Scuola universitaria professionale della Svizzera italiana, Università della Svizzera italiana, Manno, Switzerland
| | | | - Federico Quaini
- Department of Clinical and Experimental Medicine, Università degli Studi di Parma, Parma, Italy
| | - Alberto Audenino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
62
|
Monsel A, Zhu YG, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther 2016; 16:859-71. [PMID: 27011289 DOI: 10.1517/14712598.2016.1170804] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute respiratory distress syndrome is a major cause of respiratory failure in critically ill patients. Despite extensive research into its pathophysiology, mortality remains high. No effective pharmacotherapy exists. Based largely on numerous preclinical studies, administration of mesenchymal stem or stromal cell (MSC) as a therapeutic for acute lung injury holds great promise, and clinical trials are currently underway. However, concern for the use of stem cells, specifically the risk of iatrogenic tumor formation, remains unresolved. Accumulating evidence now suggest that novel cell-free therapies including MSC-derived conditioned medium and extracellular vesicles released from MSCs might constitute compelling alternatives. AREAS COVERED The current review summarizes the preclinical studies testing MSC conditioned medium and/or MSC extracellular vesicles as treatment for acute lung injury and other inflammatory lung diseases. EXPERT OPINION While certain logistical obstacles limit the clinical applications of MSC conditioned medium such as the volume required for treatment, the therapeutic application of MSC extracellular vesicles remains promising, primarily due to ability of extracellular vesicles to maintain the functional phenotype of the parent cell. However, utilization of MSC extracellular vesicles will require large-scale production and standardization concerning identification, characterization and quantification.
Collapse
Affiliation(s)
- Antoine Monsel
- a Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care , La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, University Pierre and Marie Curie (UPMC) Univ Paris 06 , Paris , France
| | - Ying-Gang Zhu
- b Department of Pulmonary Disease , Huadong Hospital, Fudan University , Shanghai , China
| | - Varun Gudapati
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Hyungsun Lim
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| | - Jae W Lee
- c Department of Anesthesiology , University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
63
|
Schnitzler AC, Verma A, Kehoe DE, Jing D, Murrell JR, Der KA, Aysola M, Rapiejko PJ, Punreddy S, Rook MS. Bioprocessing of human mesenchymal stem/stromal cells for therapeutic use: Current technologies and challenges. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.08.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
64
|
Lambrechts T, Papantoniou I, Viazzi S, Bovy T, Schrooten J, Luyten F, Aerts JM. Evaluation of a monitored multiplate bioreactor for large-scale expansion of human periosteum derived stem cells for bone tissue engineering applications. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
Pieralisi I, Rodriguez G, Micheletti M, Paglianti A, Ducci A. Microcarriers’ suspension and flow dynamics in orbitally shaken bioreactors. Chem Eng Res Des 2016. [DOI: 10.1016/j.cherd.2015.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
66
|
Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. INTERNATIONAL ORTHOPAEDICS 2016; 40:615-24. [PMID: 26762517 DOI: 10.1007/s00264-015-3099-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.
Collapse
|
67
|
Uniform Embryoid Body Production and Enhanced Mesendoderm Differentiation with Murine Embryonic Stem Cells in a Rotary Suspension Bioreactor. Methods Mol Biol 2016; 1502:63-75. [PMID: 27115505 DOI: 10.1007/7651_2016_354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Embryonic stem cells (ESCs) are capable of differentiating into almost all cell types in vitro and hold great promise for drug screening, developmental studies and have a huge potential in many therapeutic areas. ESCs can aggregate to form embryoid body (EB) in static suspension culture by spontaneous differentiation, which resembles an intact embryo; while static suspension culture cannot prevent agglomeration of cells and offers little control over the size and shape of EBs, it results in aggregation of EBs into large, irregular masses, which prejudice the efficiency of differentiation of cells. Recently, bioreactor-based platforms have been shown to not only offer a beneficial effect on increasing diffusion of nutrients and oxygen which promotes cell viability and proliferation but also display local biomechanical properties (e.g., low fluid shear stresses and hydrodynamic force) in tissue development and organogenesis. This chapter describes a protocol for using a rotary suspension bioreactor to produce embryoid bodies and process the differentiation of mouse embryonic stem cells (mESCs), and to assess the efficiency of EB differentiation in the bioreactor by real-time PCR and immunostaining.
Collapse
|
68
|
Sart S, Agathos SN, Li Y, Ma T. Regulation of mesenchymal stem cell 3D microenvironment: From macro to microfluidic bioreactors. Biotechnol J 2015; 11:43-57. [PMID: 26696441 DOI: 10.1002/biot.201500191] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 11/02/2015] [Accepted: 11/30/2015] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have emerged as an important cell type in cell therapy and tissue engineering. In these applications, maintaining the therapeutic properties of hMSCs requires tight control of the culture environments and the structural cell organizations. Bioreactor systems are essential tools to achieve these goals in the clinical-scale expansion and tissue engineering applications. This review summarizes how different bioreactors provide cues to regulate the structure and the chemico-mechanical microenvironment of hMSCs with a focus on 3D organization. In addition to conventional bioreactors, recent advances in microfluidic bioreactors as a novel approach to better control the hMSC microenvironment are also discussed. These advancements highlight the key role of bioreactor systems in preserving hMSC's functional properties by providing dynamic and temporal regulation of in vitro cellular microenvironment.
Collapse
Affiliation(s)
- Sébastien Sart
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Spiros N Agathos
- Laboratory of Bioengineering, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, USA.
| |
Collapse
|
69
|
Kolaparthy LK, Sanivarapu S, Moogla S, Kutcham RS. Adipose Tissue - Adequate, Accessible Regenerative Material. Int J Stem Cells 2015; 8:121-7. [PMID: 26634060 PMCID: PMC4651276 DOI: 10.15283/ijsc.2015.8.2.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed.
Collapse
Affiliation(s)
| | - Sahitya Sanivarapu
- Department of Periodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Srinivas Moogla
- Department of Periodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| | - Rupa Sruthi Kutcham
- Department of Periodontics, Sibar Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| |
Collapse
|
70
|
Panchalingam KM, Jung S, Rosenberg L, Behie LA. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: a review. Stem Cell Res Ther 2015; 6:225. [PMID: 26597928 PMCID: PMC4657237 DOI: 10.1186/s13287-015-0228-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs), also called mesenchymal stromal cells, have been of great interest in regenerative medicine applications because of not only their differentiation potential but also their ability to secrete bioactive factors that can modulate the immune system and promote tissue repair. This potential has initiated many early-phase clinical studies for the treatment of various diseases, disorders, and injuries by using either hMSCs themselves or their secreted products. Currently, hMSCs for clinical use are generated through conventional static adherent cultures in the presence of fetal bovine serum or human-sourced supplements. However, these methods suffer from variable culture conditions (i.e., ill-defined medium components and heterogeneous culture environment) and thus are not ideal procedures to meet the expected future demand of quality-assured hMSCs for human therapeutic use. Optimizing a bioprocess to generate hMSCs or their secreted products (or both) promises to improve the efficacy as well as safety of this stem cell therapy. In this review, current media and methods for hMSC culture are outlined and bioprocess development strategies discussed.
Collapse
Affiliation(s)
- Krishna M Panchalingam
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Sunghoon Jung
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Lawrence Rosenberg
- Department of Surgery, McGill University Health Centre, 845 Rue Sherbrooke Quest, Montreal, QC, H3G 1A4, Canada.,Jewish General Hospital, 3755 Chemin de la Côte-Ste-Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Leo A Behie
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
71
|
Khosrowshahi YB, Khoshfetrat AB, Shamsasenjan K. Ex vivo expansion of hematopoietic stem cells in a proliferation chamber with external stirred conditioning tank: Sequential optimization of growth factors. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Younes Beygi Khosrowshahi
- Faculty of Chemical Engineering; Sahand University of Technology; Tabriz Iran
- Stem Cell and Tissue Engineering Research Laboratory; Sahand University of Technology; Tabriz Iran
| | - Ali Baradar Khoshfetrat
- Faculty of Chemical Engineering; Sahand University of Technology; Tabriz Iran
- Stem Cell and Tissue Engineering Research Laboratory; Sahand University of Technology; Tabriz Iran
| | - Karim Shamsasenjan
- Hematology & Oncology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Blood Transfusion Research Center; High Institute for Research and Education in Transfusion Medicine; Tabriz Iran
| |
Collapse
|
72
|
Guo T, Yu L, Lim CG, Goodley AS, Xiao X, Placone JK, Ferlin KM, Nguyen BNB, Hsieh AH, Fisher JP. Effect of Dynamic Culture and Periodic Compression on Human Mesenchymal Stem Cell Proliferation and Chondrogenesis. Ann Biomed Eng 2015; 44:2103-13. [PMID: 26577256 DOI: 10.1007/s10439-015-1510-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/11/2015] [Indexed: 12/27/2022]
Abstract
We have recently developed a bioreactor that can apply both shear and compressive forces to engineered tissues in dynamic culture. In our system, alginate hydrogel beads with encapsulated human mesenchymal stem cells (hMSCs) were cultured under different dynamic conditions while subjected to periodic, compressive force. A customized pressure sensor was developed to track the pressure fluctuations when shear forces and compressive forces were applied. Compared to static culture, dynamic culture can maintain a higher cell population throughout the study. With the application of only shear stress, qRT-PCR and immunohistochemistry revealed that hMSCs experienced less chondrogenic differentiation than the static group. The second study showed that chondrogenic differentiation was enhanced by additional mechanical compression. After 14 days, alcian blue staining showed more extracellular matrix formed in the compression group. The upregulation of the positive chondrogenic markers such as Sox 9, aggrecan, and type II collagen were demonstrated by qPCR. Our bioreactor provides a novel approach to apply mechanical forces to engineered cartilage. Results suggest that a combination of dynamic culture with proper mechanical stimulation may promote efficient progenitor cell expansion in vitro, thereby allowing the culture of clinically relevant articular chondrocytes for the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Ting Guo
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Li Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Casey G Lim
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Addison S Goodley
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Xuan Xiao
- Department of Ophthalmology, Renming Hospital of Wuhan University, Wuhan, China
| | - Jesse K Placone
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Kimberly M Ferlin
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Bao-Ngoc B Nguyen
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - Adam H Hsieh
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, 3238 Jeong H. Kim Engineering Building, College Park, MD, 20742, USA.
| |
Collapse
|
73
|
Bartolini E, Manoli H, Costamagna E, Jeyaseelan HA, Hamad M, Irhimeh MR, Khademhosseini A, Abbas A. Population balance modelling of stem cell culture in 3D suspension bioreactors. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
74
|
Khosrowshahi YB, Khoshfetrat AB, Abolghasemi Z, Shams Asenjan K. Performance evaluation of a proliferation chamber with external stirred conditioning tank for expansion of a suspendable stem cell model. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
75
|
Allazetta S, Lutolf MP. Stem cell niche engineering through droplet microfluidics. Curr Opin Biotechnol 2015; 35:86-93. [PMID: 26051090 DOI: 10.1016/j.copbio.2015.05.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 01/25/2023]
Abstract
Stem cells reside in complex niches in which their behaviour is tightly regulated by various biochemical and biophysical signals. In order to unveil some of the crucial stem cell-niche interactions and expedite the implementation of stem cells in clinical and pharmaceutical applications, in vitro methodologies are being developed to reconstruct key features of stem cell niches. Recently, droplet-based microfluidics has emerged as a promising strategy to build stem cell niche models in a miniaturized and highly precise fashion. This review highlights current advances in using droplet microfluidics in stem cell biology. We also discuss recent efforts in which microgel technology has been interfaced with high-throughput analyses to engender screening paradigms with an unparalleled potential for basic and applied biological studies.
Collapse
Affiliation(s)
- Simone Allazetta
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Sciences, EPFL, Switzerland.
| |
Collapse
|
76
|
Gelinsky M, Bernhardt A, Milan F. Bioreactors in tissue engineering: Advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Michael Gelinsky
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Anne Bernhardt
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| | - Falk Milan
- Centre for Translational Bone; Joint and Soft Tissue Research; Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden; Dresden Germany
| |
Collapse
|
77
|
Zhao G, Liu F, Lan S, Li P, Wang L, Kou J, Qi X, Fan R, Hao D, Wu C, Bai T, Li Y, Liu JY. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing. Stem Cell Res Ther 2015; 6:38. [PMID: 25889402 PMCID: PMC4413550 DOI: 10.1186/s13287-015-0031-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. METHODS hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. RESULTS hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. CONCLUSIONS Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and expression of core transcription factors. These cells also efficiently enhanced skin wound healing in vivo, in a manner comparable to that of hWJ-MSC obtained from 2D culture.
Collapse
Affiliation(s)
- Guifang Zhao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| | - Feilin Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Shaowei Lan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Pengdong Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Li Wang
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Junna Kou
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Xiaojuan Qi
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Ruirui Fan
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Deshun Hao
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Chunling Wu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Harbin Veterinary Research Institute, CAAS - Michigan State University Joint Laboratory of Innate Immunity, State Key Laboratory of Veterinary Biotechnology, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, 150001, P R China.
| | - Tingting Bai
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Yulin Li
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China.
| | - Jin Yu Liu
- Department of Pathobiology, Key Laboratory of Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130021, P.R. China. .,Department of Toxicology, School of Public Health, Jilin University, Changchun, 130021, P.R. China.
| |
Collapse
|
78
|
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Mol Ther 2015; 23:812-823. [PMID: 25868399 DOI: 10.1038/mt.2015.44] [Citation(s) in RCA: 804] [Impact Index Per Article: 89.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem (stromal) cells (MSCs) are multipotent cells with the ability to differentiate into several cell types, thus serving as a cell reservoir for regenerative medicine. Much of the current interest in therapeutic application of MSCs to various disease settings can be linked to their immunosuppressive and anti-inflammatory properties. One of the key mechanisms of MSC anti-inflammatory effects is the secretion of soluble factors with paracrine actions. Recently it has emerged that the paracrine functions of MSCs could, at least in part, be mediated by extracellular vesicles (EVs). EVs are predominantly released from the endosomal compartment and contain a cargo that includes miRNA, mRNA, and proteins from their cells of origin. Recent animal model-based studies suggest that EVs have significant potential as a novel alternative to whole cell therapies. Compared to their parent cells, EVs may have a superior safety profile and can be safely stored without losing function. In this article, we review current knowledge related to the potential use of MSC-derived EVs in various diseases and discuss the promising future for EVs as an alternative, cell-free therapy.
Collapse
Affiliation(s)
- Sweta Rani
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
79
|
Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y. Noncovalent Hydrogel Beads as Microcarriers for Cell Culture. Angew Chem Int Ed Engl 2015; 54:3962-6. [DOI: 10.1002/anie.201411400] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 12/11/2022]
|
80
|
Wieduwild R, Krishnan S, Chwalek K, Boden A, Nowak M, Drechsel D, Werner C, Zhang Y. Noncovalent Hydrogel Beads as Microcarriers for Cell Culture. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
81
|
Ynsa MD, Dang ZY, Manso-Silvan M, Song J, Azimi S, Wu JF, Liang HD, Torres-Costa V, Punzon-Quijorna E, Breese MBH, Garcia-Ruiz JP. Reprogramming hMSCs morphology with silicon/porous silicon geometric micro-patterns. Biomed Microdevices 2014; 16:229-36. [PMID: 24305875 DOI: 10.1007/s10544-013-9826-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Geometric micro-patterned surfaces of silicon combined with porous silicon (Si/PSi) have been manufactured to study the behaviour of human Mesenchymal Stem Cells (hMSCs). These micro-patterns consist of regular silicon hexagons surrounded by spaced columns of silicon equilateral triangles separated by PSi. The results show that, at an early culture stage, the hMSCs resemble quiescent cells on the central hexagons with centered nuclei and actin/β-catenin and a microtubules network denoting cell adhesion. After 2 days, hMSCs adapted their morphology and cytoskeleton proteins from cell-cell dominant interactions at the center of the hexagonal surface. This was followed by an intermediate zone with some external actin fibres/β-catenin interactions and an outer zone where the dominant interactions are cell-silicon. Cells move into silicon columns to divide, migrate and communicate. Furthermore, results show that Runx2 and vitamin D receptors, both specific transcription factors for skeleton-derived cells, are expressed in cells grown on micropatterned silicon under all observed circumstances. On the other hand, non-phenotypic alterations are under cell growth and migration on Si/PSi substrates. The former consideration strongly supports the use of micro-patterned silicon surfaces to address pending questions about the mechanisms of human bone biogenesis/pathogenesis and the study of bone scaffolds.
Collapse
Affiliation(s)
- M D Ynsa
- Department of Applied Physics, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Wang B, Jedlicka S, Cheng X. Maintenance and neuronal cell differentiation of neural stem cells C17.2 correlated to medium availability sets design criteria in microfluidic systems. PLoS One 2014; 9:e109815. [PMID: 25310508 PMCID: PMC4195690 DOI: 10.1371/journal.pone.0109815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 09/12/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neural stem cells (NSCs) play an important role in developing potential cell-based therapeutics for neurodegenerative disease. Microfluidics has proven a powerful tool in mechanistic studies of NSC differentiation. However, NSCs are prone to differentiate when the nutrients are limited, which occurs unfavorable by fast medium consumption in miniaturized culture environment. For mechanistic studies of NSCs in microfluidics, it is vital that neuronal cell differentiation is triggered by controlled factors only. Thus, we studied the correlation between available cell medium and spontaneous neuronal cell differentiation of C17.2 NSCs in standard culture medium, and proposed the necessary microfluidic design criteria to prevent undesirable cell phenotype changes. METHODOLOGY/PRINCIPAL FINDINGS A series of microchannels with specific geometric parameters were designed to provide different amount of medium to the cells over time. A medium factor (MF, defined as the volume of stem cell culture medium divided by total number of cells at seeding and number of hours between medium replacement) successfully correlated the amount of medium available to each cell averaged over time to neuronal cell differentiation. MF smaller than 8.3×10(4) µm3/cell⋅hour produced significant neuronal cell differentiation marked by cell morphological change and significantly more cells with positive β-tubulin-III and MAP2 staining than the control. When MF was equal or greater than 8.3×10(4) µm3/cell⋅hour, minimal spontaneous neuronal cell differentiation happened relative to the control. MF had minimal relation with the average neurite length. SIGNIFICANCE MFs can be controlled easily to maintain the stem cell status of C17.2 NSCs or to induce spontaneous neuronal cell differentiation in standard stem cell culture medium. This finding is useful in designing microfluidic culture platforms for controllable NSC maintenance and differentiation. This study also offers insight about consumption rate of serum molecules involved in maintaining the stemness of NSCs.
Collapse
Affiliation(s)
- Bu Wang
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Sabrina Jedlicka
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- BioEngineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Xuanhong Cheng
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, United States of America
- BioEngineering Program, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
83
|
Ducci A, Weheliye WH. Orbitally shaken bioreactors-viscosity effects on flow characteristics. AIChE J 2014. [DOI: 10.1002/aic.14608] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea Ducci
- Mechanical Engineering Dept.; University College London; Torrington Place London WC1E 7JE U.K
| | - Weheliye Hashi Weheliye
- Mechanical Engineering Dept.; University College London; Torrington Place London WC1E 7JE U.K
| |
Collapse
|
84
|
Barthes J, Özçelik H, Hindié M, Ndreu-Halili A, Hasan A, Vrana NE. Cell microenvironment engineering and monitoring for tissue engineering and regenerative medicine: the recent advances. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921905. [PMID: 25143954 PMCID: PMC4124711 DOI: 10.1155/2014/921905] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/15/2014] [Indexed: 01/01/2023]
Abstract
In tissue engineering and regenerative medicine, the conditions in the immediate vicinity of the cells have a direct effect on cells' behaviour and subsequently on clinical outcomes. Physical, chemical, and biological control of cell microenvironment are of crucial importance for the ability to direct and control cell behaviour in 3-dimensional tissue engineering scaffolds spatially and temporally. In this review, we will focus on the different aspects of cell microenvironment such as surface micro-, nanotopography, extracellular matrix composition and distribution, controlled release of soluble factors, and mechanical stress/strain conditions and how these aspects and their interactions can be used to achieve a higher degree of control over cellular activities. The effect of these parameters on the cellular behaviour within tissue engineering context is discussed and how these parameters are used to develop engineered tissues is elaborated. Also, recent techniques developed for the monitoring of the cell microenvironment in vitro and in vivo are reviewed, together with recent tissue engineering applications where the control of cell microenvironment has been exploited. Cell microenvironment engineering and monitoring are crucial parts of tissue engineering efforts and systems which utilize different components of the cell microenvironment simultaneously can provide more functional engineered tissues in the near future.
Collapse
Affiliation(s)
- Julien Barthes
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Hayriye Özçelik
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellules, Université de Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy Pontoise, France
| | | | - Anwarul Hasan
- Biomedical Engineering and Department of Mechanical Engineering, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nihal Engin Vrana
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1121, “Biomatériaux et Bioingénierie”, 11 rue Humann, 67085 Strasbourg Cedex, France
- Protip SAS, 8 Place de l'Hôpital, 67000, Strasbourg, France
| |
Collapse
|
85
|
Liu N, Li Y, Yang ST. Expansion of embryonic stem cells in suspension and fibrous bed bioreactors. J Biotechnol 2014; 178:54-64. [DOI: 10.1016/j.jbiotec.2014.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/14/2014] [Accepted: 03/06/2014] [Indexed: 12/23/2022]
|
86
|
Macown RJ, Veraitch FS, Szita N. Robust, microfabricated culture devices with improved control over the soluble microenvironment for the culture of embryonic stem cells. Biotechnol J 2014; 9:805-13. [PMID: 24677785 PMCID: PMC4674967 DOI: 10.1002/biot.201300245] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/23/2014] [Accepted: 03/25/2014] [Indexed: 12/28/2022]
Abstract
The commercial use of stem cells continues to be constrained by the difficulty and high cost of developing efficient and reliable production protocols. The use of microfabricated systems combines good control over the cellular microenvironment with reduced use of resources in process optimization. Our previously reported microfabricated culture device was shown to be suitable for the culture of embryonic stem cells but required improvements to robustness, ease of use, and dissolved gas control. In this report, we describe a number of improvements to the design of the microfabricated system to significantly improve the control over shear stress and soluble factors, particularly dissolved oxygen. These control improvements are investigated by finite element modeling. Design improvements also make the system easier to use and improve the robustness. The culture device could be applied to the optimization of pluripotent stem cell growth and differentiation, as well as the development of monitoring and control strategies and improved culture systems at various scales.
Collapse
Affiliation(s)
- Rhys J Macown
- Department of Biochemical Engineering, University College London, London, UK
| | | | | |
Collapse
|
87
|
Sart S, Agathos SN, Li Y. Process engineering of stem cell metabolism for large scale expansion and differentiation in bioreactors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
88
|
Lü D, Luo C, Zhang C, Li Z, Long M. Differential regulation of morphology and stemness of mouse embryonic stem cells by substrate stiffness and topography. Biomaterials 2014; 35:3945-55. [PMID: 24529627 DOI: 10.1016/j.biomaterials.2014.01.066] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/27/2014] [Indexed: 12/13/2022]
Abstract
The maintenance of stem cell pluripotency or stemness is crucial to embryonic development and differentiation. The mechanical or physical microenvironment of stem cells, which includes extracellular matrix stiffness and topography, regulates cell morphology and stemness. Although a growing body of evidence has shown the importance of these factors in stem cell differentiation, the impact of these biophysical or biomechanical regulators remains insufficiently characterized. In the present study, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities and three topographies to systematically test the morphology, proliferation, and stemness of mESCs. The independent or combined impact of the two factors on specific cell functions was analyzed. Cells are able to grow effectively on both polystyrene and polyacrylamide substrates in the absence of feeder cells. Substrate stiffness is predominant in preserving stemness by enhancing Oct-4 and Nanog expression on a soft polyacrylamide substrate. Topography is also a critical factor for manipulating stemness via the formation of a relatively flattened colony on a groove or pillar substrate and a spheroid colony on a hexagonal substrate. Although topography is less effective on soft substrates, it plays a role in retaining cell stemness on stiff, hexagonal or pillar-shaped substrates. mESCs also form, in a timely manner, a 3D structure on groove or hexagonal substrates. These results further the understanding of stem cell morphology and stemness in a microenvironment that mimics physiological conditions.
Collapse
Affiliation(s)
- Dongyuan Lü
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunhua Luo
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Zhang
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan Li
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mian Long
- Center of Biomechanics and Bioengineering and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
89
|
Sart S, Schneider YJ, Li Y, Agathos SN. Stem cell bioprocess engineering towards cGMP production and clinical applications. Cytotechnology 2014; 66:709-22. [PMID: 24500393 DOI: 10.1007/s10616-013-9687-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/31/2013] [Indexed: 12/17/2022] Open
Abstract
Stem cells, including mesenchymal stem cells and pluripotent stem cells, are becoming an indispensable tool for various biomedical applications including drug discovery, disease modeling, and tissue engineering. Bioprocess engineering, targeting large scale production, provides a platform to generate a controlled microenvironment that could potentially recreate the stem cell niche to promote stem cell proliferation or lineage-specific differentiation. This survey aims at defining the characteristics of stem cell populations currently in use and the present-day limits in their applications for therapeutic purposes. Furthermore, a bioprocess engineering strategy based on bioreactors and 3-D cultures is discussed in order to achieve the improved stem cell yield, function, and safety required for production under current good manufacturing practices.
Collapse
Affiliation(s)
- Sébastien Sart
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer St, Tallahassee, FL, 32310, USA
| | | | | | | |
Collapse
|
90
|
Rodriguez G, Anderlei T, Micheletti M, Yianneskis M, Ducci A. On the measurement and scaling of mixing time in orbitally shaken bioreactors. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
91
|
Hunt MM, Meng G, Rancourt DE, Gates ID, Kallos MS. Factorial Experimental Design for the Culture of Human Embryonic Stem Cells as Aggregates in Stirred Suspension Bioreactors Reveals the Potential for Interaction Effects Between Bioprocess Parameters. Tissue Eng Part C Methods 2014; 20:76-89. [DOI: 10.1089/ten.tec.2013.0040] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Megan M. Hunt
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Guoliang Meng
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derrick E. Rancourt
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ian D. Gates
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Michael S. Kallos
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
92
|
Pamies D, Vicente-Salar N, Sogorb MA, Roche E. The effect of CO2concentration in neuroectoderm commitment of mouse embryonic stem cells. J Histotechnol 2013. [DOI: 10.1179/2046023612y.0000000018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
93
|
Shimauchi H, Nemoto E, Ishihata H, Shimomura M. Possible functional scaffolds for periodontal regeneration. JAPANESE DENTAL SCIENCE REVIEW 2013. [DOI: 10.1016/j.jdsr.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
94
|
Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, Behie LA. Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem 2013; 59:106-20. [PMID: 23586791 DOI: 10.1002/bab.1006] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023]
Abstract
Human mesenchymal stem cells (hMSCs) have many potential applications in tissue engineering and regenerative medicine. Currently, hMSCs are generated through conventional static adherent cultures in the presence of fetal bovine serum (FBS) for clinical applications (e.g., multiple sclerosis). However, these methods are not appropriate to meet the expected future demand for quality-assured hMSCs for human therapeutic use. Hence, it is imperative to develop an effective hMSC production system, which should be controllable, reproducible, and scalable. To this end, efforts have been made by several international research groups to develop (i) alternative media either by replacing FBS with human-sourced supplements (such as human serum or platelet lysate) or by identifying defined serum-free formulations consisting of key growth/attachment factors, and (ii) controlled bioreactor protocols. In this regard, we review here current hMSC production technologies and future perspectives toward efficient methods for the generation of clinically relevant numbers of hMSC therapeutics.
Collapse
Affiliation(s)
- Sunghoon Jung
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
95
|
Brodsky AN, Zhang J, Visconti RP, Harcum SW. Expansion of mesenchymal stem cells under atmospheric carbon dioxide. Biotechnol Prog 2013; 29:1298-306. [PMID: 23894049 DOI: 10.1002/btpr.1782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/09/2013] [Indexed: 12/12/2022]
Abstract
Stem cells are needed for an increasing number of scientific applications, including both fundamental research and clinical disease treatment. To meet this rising demand, improved expansion methods to generate high quantities of high quality stem cells must be developed. Unfortunately, the bicarbonate buffering system - which relies upon an elevated CO2 environment - typically used to maintain pH in stem cell cultures introduces several unnecessary limitations in bioreactor systems. In addition to artificially high dissolved CO2 levels negatively affecting cell growth, but more importantly, the need to sparge CO2 into the system complicates the ability to control culture parameters. This control is especially important for stem cells, whose behavior and phenotype is highly sensitive to changes in culture conditions such as dissolved oxygen and pH. As a first step, this study developed a buffer to support expansion of mesenchymal stem cells (MSC) under an atmospheric CO2 environment in static cultures. MSC expanded under atmospheric CO2 with this buffer achieved equivalent growth rates without adaptation compared to those grown in standard conditions and also maintained a stem cell phenotype, self-renewal properties, and the ability to differentiate into multiple lineages after expansion.
Collapse
Affiliation(s)
- Arthur Nathan Brodsky
- Dept. of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, 29634
| | | | | | | |
Collapse
|
96
|
Liu N, Zang R, Yang ST, Li Y. Stem cell engineering in bioreactors for large-scale bioprocessing. Eng Life Sci 2013. [DOI: 10.1002/elsc.201300013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ning Liu
- William G. Lowrie Department of Chemical and Biomolecular Engineering; Ohio State University; Columbus OH USA
| | - Ru Zang
- William G. Lowrie Department of Chemical and Biomolecular Engineering; Ohio State University; Columbus OH USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering; Ohio State University; Columbus OH USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering; Florida State University; Tallahassee FL USA
| |
Collapse
|
97
|
Carrion B, Janson IA, Kong YP, Putnam AJ. A safe and efficient method to retrieve mesenchymal stem cells from three-dimensional fibrin gels. Tissue Eng Part C Methods 2013; 20:252-63. [PMID: 23808842 DOI: 10.1089/ten.tec.2013.0051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.
Collapse
Affiliation(s)
- Bita Carrion
- 1 Department of Biomedical Engineering, University of Michigan , Ann Arbor, Michigan
| | | | | | | |
Collapse
|
98
|
Sun LY, Pang CY, Li DK, Liao CH, Huang WC, Wu CC, Chou YY, Li WW, Chen SY, Liu HW, Chang YJ, Cheng CF. Antioxidants cause rapid expansion of human adipose-derived mesenchymal stem cells via CDK and CDK inhibitor regulation. J Biomed Sci 2013; 20:53. [PMID: 23915242 PMCID: PMC3751058 DOI: 10.1186/1423-0127-20-53] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Background Antioxidants have been shown to enhance the proliferation of adipose-derived mesenchymal stem cells (ADMSCs) in vitro, although the detailed mechanism(s) and potential side effects are not fully understood. In this study, human ADMSCs cultured in ImF-A medium supplemented with antioxidants (N-acetyl-l-cysteine and ascorbic acid-2-phosphate) and fibroblast growth factor 2 (FGF-2) were compared with ADMSCs cultured with FGF-2 alone (ImF) or with FGF-2 under 5% pO2 conditions (ImF-H). Results During log-phase growth, exposure to ImF-A resulted in a higher percentage of ADMSCs in the S phase of the cell cycle and a smaller percentage in G0/G1 phase. This resulted in a significantly reduced cell-doubling time and increased number of cells in the antioxidant-supplemented cultures compared with those supplemented with FGF-2 alone, an approximately 225% higher cell density after 7 days. Western blotting showed that the levels of the CDK inhibitors p21 and p27 decreased after ImF-A treatment, whereas CDK2, CDK4, and CDC2 levels clearly increased. In addition, ImF-A resulted in significant reduction in the expression of CD29, CD90, and CD105, whereas relative telomere length, osteogenesis, adipogenesis, and chondrogenesis were enhanced. The results were similar for ADMSCs treated with antioxidants and those under hypoxic conditions. Conclusion Antioxidant treatment promotes entry of ADMSCs into the S phase by suppressing cyclin-dependent kinase inhibitors and results in rapid cell proliferation similar to that observed under hypoxic conditions.
Collapse
|
99
|
Li D, Isherwood S, Motz A, Zang R, Yang ST, Wang J, Wang X. Cell-based screening of traditional Chinese medicines for proliferation enhancers of mouse embryonic stem cells. Biotechnol Prog 2013; 29:738-44. [PMID: 23606670 DOI: 10.1002/btpr.1731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 03/11/2013] [Indexed: 01/09/2023]
Abstract
A high-throughput cell-based method was developed for screening traditional Chinese herbal medicines (TCHMs) for potential stem cell growth promoters. Mouse embryonic stem (mES) cells expressing enhanced green fluorescent protein (EGFP) were cultured in growth media supplemented with various TCHM extracts. The dosage-dependent effects of TCHM extracts on cell growth, including proliferation and cytotoxicity, were assessed via EGFP fluorescence measurement. Seven TCHMs were investigated, and among them Panax notoginseng (PN), Rhizoma Atractylodis macrocephalae, Rhizoma chuanxiong, and Ganoderma lucidum spores (GLS) showed potential to improve mES cell proliferation. Eleven mixtures of these four TCHMs were then studied, and the results showed that the mixture of PN and GLS had the strongest growth promoting effect, increasing the specific growth rate of mES cells by 29.5% at a low dosage of 0.01% (wt/vol) PN/GLS (P<0.01) and 34.2% at 0.1% (wt/vol) PN/GLS (P<0.05) compared to the control. The growth promoting effect of PN/GLS was further confirmed with ES cells cultured in spinner flasks. A 29.3-fold increase in the total cell number was achieved in the medium supplemented with 0.01% PN/GLS after 5 days, while the control culture only gave a 16.8-fold increase. This cell-based screening method thus can provide an efficient and high-throughput way to explore potential stem cell growth promoters from TCHMs.
Collapse
Affiliation(s)
- Ding Li
- School of Biosciences and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | | | | | | | | | | | | |
Collapse
|
100
|
Salerno S, Piscioneri A, Morelli S, Al-Fageeh MB, Drioli E, De Bartolo L. Membrane Bioreactor for Expansion and Differentiation of Embryonic Liver Cells. Ind Eng Chem Res 2013. [DOI: 10.1021/ie400035d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Simona Salerno
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Via P. Bucci, cubo 17/C, 87030 Rende (CS),
Italy
| | - Antonella Piscioneri
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Via P. Bucci, cubo 17/C, 87030 Rende (CS),
Italy
| | - Sabrina Morelli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Via P. Bucci, cubo 17/C, 87030 Rende (CS),
Italy
| | - Mohamed B. Al-Fageeh
- National Centre for Biotechnology, King Abdulaziz City for Science and
Technology, Riyadh 11442 Saudi Arabia
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Via P. Bucci, cubo 17/C, 87030 Rende (CS),
Italy
- Department of Chemical Engineering
and Materials, University of Calabria,
via P. Bucci cubo 45/A, 87030 Rende (CS) Italy
- WCU Energy Engineering Department, Hanyang University, Seoul, S. Korea
| | - Loredana De Bartolo
- Institute on Membrane Technology, National Research Council of Italy, ITM-CNR, c/o University of Calabria, Via P. Bucci, cubo 17/C, 87030 Rende (CS),
Italy
| |
Collapse
|