51
|
Ishay Y, Nachman D, Khoury T, Ilan Y. The role of the sphingolipid pathway in liver fibrosis: an emerging new potential target for novel therapies. Am J Physiol Cell Physiol 2020; 318:C1055-C1064. [PMID: 32130072 DOI: 10.1152/ajpcell.00003.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids (SL) are a family of bioactive lipids and a major cellular membrane structural component. SLs include three main compounds: ceramide (Cer), sphingosine (Sp), and sphingosine-1-phosphate (S-1P), all of which have emerging roles in biological functions in cells, especially in the liver. They are under investigation in various liver diseases, including cirrhosis and end-stage liver disease. In this review, we provide an overview on the role of SLs in liver pathobiology and focus on their potential role in the development of hepatic fibrosis. We describe recent evidence and suggest SLs are a promising potential therapeutic target for the treatment of liver disease and fibrosis.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dean Nachman
- Department of Internal Medicine A, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Tawfik Khoury
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
52
|
Bocheńska K, Gabig-Cimińska M. Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules 2020; 25:E1130. [PMID: 32138315 PMCID: PMC7179243 DOI: 10.3390/molecules25051130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs), which have structural and biological responsibilities in the human epidermis, are importantly involved in the maintenance of the skin barrier and regulate cellular processes, such as the proliferation, differentiation and apoptosis of keratinocytes (KCs). As many dermatologic diseases, including psoriasis (PsO), intricately characterized by perturbations in these cellular processes, are associated with altered composition and unbalanced metabolism of epidermal SLs, more education to precisely determine the role of SLs, especially in the pathogenesis of skin disorders, is needed. PsO is caused by a complex interplay between skin barrier disruption, immune dysregulation, host genetics and environmental triggers. The contribution of particular cellular compartments and organelles in SL metabolism, a process related to dysfunction of lysosomes in PsO, seems to have a significant impact on lysosomal signalling linked to a modulation of the immune-mediated inflammation accompanying this dermatosis and is not fully understood. It is also worth noting that a prominent skin disorder, such as PsO, has diminished levels of the main epidermal SL ceramide (Cer), reflecting altered SL metabolism, that may contribute not only to pathogenesis but also to disease severity and/or progression. This review provides a brief synopsis of the implications of SLs in PsO, aims to elucidate the roles of these molecules in complex cellular processes deregulated in diseased skin tissue and highlights the need for increased research in the field. The significance of SLs as structural and signalling molecules and their actions in inflammation, in which these components are factors responsible for vascular endothelium abnormalities in the development of PsO, are discussed.
Collapse
Affiliation(s)
- Katarzyna Bocheńska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80–308 Gdańsk, Poland;
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Molecular Biology, Kładki 24, 80–822 Gdańsk, Poland
| |
Collapse
|
53
|
Lee HS, Park HY, Kwon SP, Kim B, Lee Y, Kim S, Shin KO, Park K. NADPH Oxidase-Mediated Activation of Neutral Sphingomyelinase Is Responsible for Diesel Particulate Extract-Induced Keratinocyte Apoptosis. Int J Mol Sci 2020; 21:ijms21031001. [PMID: 32028642 PMCID: PMC7037446 DOI: 10.3390/ijms21031001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Human epidermis is positioned at the interface with the external environment, protecting our bodies against external challenges, including air pollutants. Emerging evidence suggests that diesel particulate extract (DPE), a major component of air pollution, leads to impairment of diverse cellular functions in keratinocytes (KC). In this study, we investigated the cellular mechanism underlying DPE-induced KC apoptosis. We first addressed cell death occurring in KC exposed to DPE, paralleled by increased activation of NADPH oxidases (NOXs) and subsequent ROS generation. Blockade of NOX activation with a specific inhibitor attenuated the expected DPE-induced KC apoptosis. In contrast, pre-treatment with a specific inhibitor of reactive oxygen species (ROS) generation did not reverse DPE/NOX-mediated increase in KC apoptosis. We next noted that NOX-mediated KC apoptosis is mainly attributable to neutral sphingomyelinase (SMase)-mediated stimulation of ceramides, which is a well-known pro-apoptotic lipid. Moreover, we found that inhibition of NOX activation significantly attenuated DPE-mediated increase in the ratio of ceramide to its key metabolite sphingosine-1-phosphate (S1P), an important determinant of cell fate. Together, these results suggest that activation of neutral SMase serves as a key downstream signal for the DPE/NOX activation-mediated alteration in ceramide and S1P productions, and subsequent KC apoptosis.
Collapse
Affiliation(s)
- Hyun-Seok Lee
- Research & Development Center, Chungdam CDC JNPharm LLC., Chuncheon 24232, Korea
| | - Hye Yoon Park
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon 22689, Korea
| | - Sung Pil Kwon
- Research & Development Center, Chungdam CDC JNPharm LLC., Chuncheon 24232, Korea
| | - Bogyeong Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Yerin Lee
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Seongeun Kim
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
| | - Kyong-Oh Shin
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- Correspondences: (K.-O.S.); (K.P.); Tel.: +82-33-248-2141 (K.-O.S.); +82-33-248-2131 (K.P.)
| | - Kyungho Park
- Department of Food Science & Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
- Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea
- Correspondences: (K.-O.S.); (K.P.); Tel.: +82-33-248-2141 (K.-O.S.); +82-33-248-2131 (K.P.)
| |
Collapse
|
54
|
Karuppuchamy T, Tyler CJ, Lundborg LR, Pérez-Jeldres T, Kimball AK, Clambey ET, Jedlicka P, Rivera-Nieves J. Sphingosine-1-Phosphate Lyase Inhibition Alters the S1P Gradient and Ameliorates Crohn's-Like Ileitis by Suppressing Thymocyte Maturation. Inflamm Bowel Dis 2020; 26:216-228. [PMID: 31807751 PMCID: PMC6943703 DOI: 10.1093/ibd/izz174] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Lymphocytes recirculate from tissues to blood following the sphingosine-1-phosphate (S1P) gradient (low in tissues, high in blood), maintained by synthetic and degradative enzymes, among which the S1P lyase (SPL) irreversibly degrades S1P. The role of SPL in the intestine, both during homeostasis and IBD, is poorly understood. We hypothesized that modulation of tissue S1P levels might be advantageous over S1P receptor (S1PR) agonists (eg, fingolimod, ozanimod, etrasimod), as without S1PR engagement there might be less likelihood of potential off-target effects. METHODS First we examined SPL mRNA transcripts and SPL localization in tissues by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The in vivo effects of the SPL inhibitors 4-deoxypyridoxine hydrochloride (30 mg/L) and 2-acetyl-4 (tetrahydroxybutyl)imidazole (50 mg/L) were assessed through their oral administration to adult TNF∆ARE mice, which spontaneously develop Crohn's-like chronic ileitis. The effect of SPL inhibition on circulating and tissue lymphocytes, transcriptional regulation of proinflammatory cytokines, and on the histological severity of ileitis was additionally examined. Tissue S1P levels were determined by liquid chromatography-mass spectrometry. Mechanistically, the potential effects of high S1P tissue levels on intestinal leukocyte apoptosis were assessed via terminal deoxynucleotidyl transferase dUTP nick end-labeling assay and annexin 5 staining. Finally, we examined the ability of T cells to home to the intestine, along with the effects of SPL inhibition on cellular subsets within immune compartments via flow and mass cytometry. RESULTS S1P lyase was ubiquitously expressed. In the gut, immunohistochemistry predominantly localized it to small intestinal epithelia, although the lamina propria leukocyte fraction had higher mRNA transcripts. Inhibition of SPL markedly increased local intestinal S1P levels, induced peripheral lymphopenia, downregulated proinflammatory cytokines, and attenuated chronic ileitis in mice. SPL inhibition reduced T and myeloid cells in secondary lymphoid tissues and the intestine and decreased naïve T-cell recruitment. The anti-inflammatory activity of SPL inhibition was not mediated by leukocyte apoptosis, nor by interference with the homing of lymphocytes to the intestine, and was independent of its peripheral lymphopenic effect. However, SPL inhibition promoted thymic atrophy and depleted late immature T cells (CD4+CD8+ double positive), with accumulation of mature CD4+CD8- and CD4-CD8+ single-positive cells. CONCLUSIONS Inhibition of the S1P lyase alters the S1P gradient and attenuates chronic ileitis via central immunosuppression. SPL inhibition could represent a potential way to tame an overactive immune response during IBD and other T-cell-mediated chronic inflammatory diseases.
Collapse
Affiliation(s)
- Thangaraj Karuppuchamy
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Christopher J Tyler
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Luke R Lundborg
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
| | - Tamara Pérez-Jeldres
- Universidad Católica de Chile, Santiago, Chile
- Hospital San Borja Arriarán, Santiago, Chile
| | - Abigail K Kimball
- Department of Anesthesiology Aurora, Colorado, USA
- Department of Pathology, Aurora, Colorado, USA
| | - Eric T Clambey
- Department of Anesthesiology Aurora, Colorado, USA
- Department of Pathology, Aurora, Colorado, USA
| | - Paul Jedlicka
- Department of Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jesús Rivera-Nieves
- Inflammatory Bowel Disease Center, Division of Gastroenterology, University of California San Diego, La Jolla, California, USA
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, California, USA
| |
Collapse
|
55
|
Crivelli SM, Giovagnoni C, Visseren L, Scheithauer AL, de Wit N, den Hoedt S, Losen M, Mulder MT, Walter J, de Vries HE, Bieberich E, Martinez-Martinez P. Sphingolipids in Alzheimer's disease, how can we target them? Adv Drug Deliv Rev 2020; 159:214-231. [PMID: 31911096 DOI: 10.1016/j.addr.2019.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/09/2019] [Accepted: 12/31/2019] [Indexed: 01/06/2023]
Abstract
Altered levels of sphingolipids and their metabolites in the brain, and the related downstream effects on neuronal homeostasis and the immune system, provide a framework for understanding mechanisms in neurodegenerative disorders and for developing new intervention strategies. In this review we will discuss: the metabolites of sphingolipids that function as second messengers; and functional aberrations of the pathway resulting in Alzheimer's disease (AD) pathophysiology. Focusing on the central product of the sphingolipid pathway ceramide, we describ approaches to pharmacologically decrease ceramide levels in the brain and we argue on how the sphingolipid pathway may represent a new framework for developing novel intervention strategies in AD. We also highlight the possible use of clinical and non-clinical drugs to modulate the sphingolipid pathway and sphingolipid-related biological cascades.
Collapse
|
56
|
Flores-Romero H, Ros U, García-Sáez AJ. A lipid perspective on regulated cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 351:197-236. [PMID: 32247580 DOI: 10.1016/bs.ircmb.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipids are fundamental to life as structural components of cellular membranes and for signaling. They are also key regulators of different cellular processes such as cell division, proliferation, and death. Regulated cell death (RCD) requires the engagement of lipids and lipid metabolism for the initiation and execution of its killing machinery. The permeabilization of lipid membranes is a hallmark of RCD that involves, for each kind of cell death, a unique lipid profile. While the permeabilization of the mitochondrial outer membrane allows the release of apoptotic factors to the cytosol during apoptosis, permeabilization of the plasma membrane facilitates the release of intracellular content in other nonapoptotic types of RCD like necroptosis and ferroptosis. Lipids and lipid membranes are important accessory molecules required for the activation of protein executors of cell death such as BAX in apoptosis and MLKL in necroptosis. Peroxidation of membrane phospholipids and the subsequent membrane destabilization is a prerequisite to ferroptosis. Here, we discuss how lipids are essential players in apoptosis, the most common form of RCD, and also their role in necroptosis and ferroptosis. Altogether, we aim to highlight the contribution of lipids and membrane dynamics in cell death regulation.
Collapse
Affiliation(s)
- Hector Flores-Romero
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Uris Ros
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
| |
Collapse
|
57
|
Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019; 8:cells8121573. [PMID: 31817238 PMCID: PMC6952831 DOI: 10.3390/cells8121573] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
Human pathologies such as Alzheimer’s disease, type 2 diabetes-induced insulin resistance, cancer, and cardiovascular diseases have altered lipid homeostasis. Among these imbalanced lipids, the bioactive sphingolipids ceramide and sphingosine-1 phosphate (S1P) are pivotal in the pathophysiology of these diseases. Several enzymes within the sphingolipid pathway contribute to the homeostasis of ceramide and S1P. Ceramidase is key in the degradation of ceramide into sphingosine and free fatty acids. In humans, five different ceramidases are known—acid ceramidase, neutral ceramidase, and alkaline ceramidase 1, 2, and 3—which are encoded by five different genes (ASAH1, ASAH2, ACER1, ACER2, and ACER3, respectively). Notably, the neutral ceramidase N-acylsphingosine amidohydrolase 2 (ASAH2) shows considerable differences between humans and animals in terms of tissue expression levels. Besides, the subcellular localization of ASAH2 remains controversial. In this review, we sum up the results obtained for identifying gene divergence, structure, subcellular localization, and manipulating factors and address the role of ASAH2 along with other ceramidases in human diseases.
Collapse
|
58
|
Sphingosine kinase and p38 MAP kinase signaling promote resistance to arsenite-induced lethality in Caenorhabditis elegan. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0045-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
59
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
60
|
Ovarian Follicle Depletion Induced by Chemotherapy and the Investigational Stages of Potential Fertility-Protective Treatments-A Review. Int J Mol Sci 2019; 20:ijms20194720. [PMID: 31548505 PMCID: PMC6801789 DOI: 10.3390/ijms20194720] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/10/2023] Open
Abstract
Ovarian follicle pool depletion, infertility, and premature menopause are all known sequelae of cancer treatment that negatively impact the quality of life of young cancer survivors. The mechanisms involved in this undesired iatrogenic ovarian damage have been intensively studied, but many of them remain unclear. Several chemotherapeutic drugs have been shown to induce direct and indirect DNA-damage and/or cellular stress, which are often followed by apoptosis and/or autophagy. Damage to the ovarian micro-vessel network induced by chemotherapeutic agents also seems to contribute to ovarian dysfunction. Another proposed mechanism behind ovarian follicle pool depletion is the overactivation of primordial follicles from the quiescent pool; however, current experimental data are inconsistent regarding these effects. There is great interest in characterizing the mechanisms involved in ovarian damage because this might lead to the identification of potentially protective substances as possible future therapeutics. Research in this field is still at an experimental stage, and further investigations are needed to develop effective and individualized treatments for clinical application. This review provides an overview of the current knowledge and the proposed hypothesis behind chemotherapy-induced ovarian damage, as well as current knowledge on possible co-treatments that might protect the ovary and the follicles from such damages.
Collapse
|
61
|
Ceramide Domains in Health and Disease: A Biophysical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:79-108. [DOI: 10.1007/978-3-030-21162-2_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
62
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
63
|
Fang Z, Pyne S, Pyne NJ. WITHDRAWN: Ceramide and Sphingosine 1-Phosphate in adipose dysfunction. Prog Lipid Res 2019:100991. [PMID: 31442525 DOI: 10.1016/j.plipres.2019.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Zijian Fang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161, Cathedral St, Glasgow, G4 0RE, Scotland, UK
| |
Collapse
|
64
|
Blaess M, Deigner HP. Derailed Ceramide Metabolism in Atopic Dermatitis (AD): A Causal Starting Point for a Personalized (Basic) Therapy. Int J Mol Sci 2019; 20:E3967. [PMID: 31443157 PMCID: PMC6720956 DOI: 10.3390/ijms20163967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/10/2023] Open
Abstract
Active rebuilding, stabilizing, and maintaining the lipid barrier of the skin is an encouraging disease management and care concept for dry skin, atopic dermatitis (eczema, neurodermatitis), and psoriasis. For decades, corticosteroids have been the mainstay of topical therapy for atopic dermatitis; however, innovations within the scope of basic therapy are rare. In (extremely) dry, irritated, or inflammatory skin, as well as in lesions, an altered (sphingo)lipid profile is present. Recovery of a balanced (sphingo)lipid profile is a promising target for topical and personalized treatment and prophylaxis. New approaches for adults and small children are still lacking. With an ingenious combination of commonly used active ingredients, it is possible to restore and reinforce the dermal lipid barrier and maintain refractivity. Lysosomes and ceramide de novo synthesis play a key role in attenuation of the dermal lipid barrier. Linoleic acid in combination with amitriptyline in topical medication offers the possibility to relieve patients affected by dry and itchy skin, mild to moderate atopic dermatitis lesions, and eczemas without the commonly occurring serious adverse effects of topical corticosteroids or systemic antibody administration.
Collapse
Affiliation(s)
- Markus Blaess
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI Leipzig, Schillingallee 68, 18057 Rostock, Germany.
| |
Collapse
|
65
|
Pujol-Lereis LM. Alteration of Sphingolipids in Biofluids: Implications for Neurodegenerative Diseases. Int J Mol Sci 2019; 20:ijms20143564. [PMID: 31330872 PMCID: PMC6678458 DOI: 10.3390/ijms20143564] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer's Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.
Collapse
Affiliation(s)
- Luciana M Pujol-Lereis
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas (CIDIE-CONICET), X5016DHK Córdoba, Argentina.
| |
Collapse
|
66
|
Angelopoulou E, Piperi C. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential. Neuromolecular Med 2019; 21:227-238. [PMID: 31313064 DOI: 10.1007/s12017-019-08558-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia remains of unclear etiology with current pharmacological therapies failing to halt disease progression. Several pathophysiological mechanisms have been implicated in AD pathogenesis including amyloid-β protein (Aβ) accumulation, tau hyperphosphorylation, neuroinflammation and alterations in bioactive lipid metabolism. Sphingolipids, such as sphingosine-1-phosphate (S1P) and intracellular ceramide/S1P balance are highly implicated in central nervous system physiology as well as in AD pathogenesis. FTY720/Fingolimod, a structural sphingosine analog and S1P receptor (S1PR) modulator that is currently used in the treatment of relapsing-remitting multiple sclerosis (RRMS) has been shown to exert beneficial effects on AD progression. Recent in vitro and in vivo evidence indicate that fingolimod may suppress Aβ secretion and deposition, inhibit apoptosis and enhance brain-derived neurotrophic factor (BDNF) production. Furthermore, it regulates neuroinflammation, protects against N-methyl-D-aspartate (NMDA)-excitotoxicity and modulates receptor for advanced glycation end products signaling axis that is highly implicated in AD pathogenesis. This review discusses the underlying molecular mechanisms of the emerging neuroprotective role of fingolimod in AD and its therapeutic potential, aiming to shed more light on AD pathogenesis as well as direct future treatment strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
67
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
68
|
Lipocalin 2: A New Antimicrobial in Mast Cells. Int J Mol Sci 2019; 20:ijms20102380. [PMID: 31091692 PMCID: PMC6566617 DOI: 10.3390/ijms20102380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
Mast cells (MCs) play a significant role in the innate immune defense against bacterial infection through the release of cytokines and antimicrobial peptides. However, their antimicrobial function is still only partially described. We therefore hypothesized that MCs express additional antimicrobial peptides. In this study, we used FANTOM 5 transcriptome data to identify for the first time that MCs express lipocalin 2 (LCN2), a known inhibitor of bacterial growth. Using MCs derived from mice which were deficient in LCN2, we showed that this antimicrobial peptide is an important component of the MCs' antimicrobial activity against Escherichia coli (E. coli). Since sphingosine-1-phosphate receptors (S1PRs) on MCs are known to regulate their function during infections, we hypothesized that S1P could activate LCN2 production in MCs. Using an in vitro assay, we demonstrated that S1P enhances MCs antimicrobial peptide production and increases the capacity of MCs to directly kill S. aureus and E. coli via an LCN2 release. In conclusion, we showed that LCN2 is expressed by MCs and plays a role in their capacity to inhibit bacterial growth.
Collapse
|
69
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
70
|
Deprez MA, Eskes E, Winderickx J, Wilms T. The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2019; 18:4980911. [PMID: 29788208 DOI: 10.1093/femsyr/foy048] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/19/2018] [Indexed: 12/18/2022] Open
Abstract
The concept of ageing is one that has intrigued mankind since the beginning of time and is now more important than ever as the incidence of age-related disorders is increasing in our ageing population. Over the past decades, extensive research has been performed using various model organisms. As such, it has become apparent that many fundamental aspects of biological ageing are highly conserved across large evolutionary distances. In this review, we illustrate that the unicellular eukaryotic organism Saccharomyces cerevisiae has proven to be a valuable tool to gain fundamental insights into the molecular mechanisms of cellular ageing in multicellular eukaryotes. In addition, we outline the current knowledge on how downregulation of nutrient signaling through the target of rapamycin (TOR)-Sch9 pathway or reducing calorie intake attenuates many detrimental effects associated with ageing and leads to the extension of yeast chronological lifespan. Given that both TOR Complex 1 (TORC1) and Sch9 have mammalian orthologues that have been implicated in various age-related disorders, unraveling the connections of TORC1 and Sch9 with yeast ageing may provide additional clues on how their mammalian orthologues contribute to the mechanisms underpinning human ageing and health.
Collapse
Affiliation(s)
- Marie-Anne Deprez
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Elja Eskes
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Joris Winderickx
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Tobias Wilms
- Department of Biology, Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| |
Collapse
|
71
|
Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 2019; 74:145-159. [PMID: 30951736 DOI: 10.1016/j.plipres.2019.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022]
Abstract
The increased adipose tissue mass of obese individuals enhances the risk of metabolic syndrome, type 2 diabetes and cardiovascular diseases. During pathological expansion of adipose tissue, multiple molecular controls of lipid storage, adipocyte turn-over and endocrine secretion are perturbed and abnormal lipid metabolism results in a distinct lipid profile. There is a role for ceramides and sphingosine 1-phosphate (S1P) in inducing adipose dysfunction. For instance, the alteration of ceramide biosynthesis, through the de-regulation of key enzymes, results in aberrant formation of ceramides (e.g. C16:0 and C18:0) which block insulin signaling and promote adipose inflammation. Furthermore, S1P can induce defective adipose tissue phenotypes by promoting chronic inflammation and inhibiting adipogenesis. These abnormal changes are discussed in the context of possible therapeutic approaches to re-establish normal adipose function and to, thereby, increase insulin sensitivity in type 2 diabetes. Such novel approaches include blockade of ceramide biosynthesis using inhibitors of sphingomyelinase or dihydroceramide desaturase and by antagonism of S1P receptors, such as S1P2.
Collapse
|
72
|
Ceramide Suppresses Influenza A Virus Replication In Vitro. J Virol 2019; 93:JVI.00053-19. [PMID: 30700605 DOI: 10.1128/jvi.00053-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Annual influenza outbreaks are associated with significant morbidity and mortality worldwide despite the availability of seasonal vaccines. Influenza pathogenesis depends on the manipulation of host cell signaling to promote virus replication. Ceramide is a sphingosine-derived lipid that regulates diverse cellular processes. Studies highlighted the differential role of ceramide de novo biosynthesis on the propagation of various viruses. Whether ceramide plays, a role in influenza virus replication is not known. In this study, we assessed the potential interplay between the influenza A (IAV) and ceramide biosynthesis pathways. The accumulation of ceramide in human lung epithelial cells infected with influenza A/H1N1 virus strains was evaluated using thin-layer chromatography and/or confocal microscopy. Virus replication was assessed upon the regulation of the de novo ceramide biosynthesis pathway. A significant increase in ceramide accumulation was observed in cells infected with IAV in a dose- and time-dependent manner. Inoculating the cells with UV-inactivated IAV did not result in ceramide accumulation in the cells, suggesting that the induction of ceramide required an active virus replication. Inhibiting de novo ceramide significantly decreased ceramide accumulation and enhanced virus replication. The addition of exogenous C6-ceramide prior to infection mediated an increase in cellular ceramide levels and significantly attenuated IAV replication and reduced viral titers (≈1 log10 PFU/ml unit). Therefore, our data demonstrate that ceramide accumulation through de novo biosynthesis pathway plays a protective and antiviral role against IAV infection. These findings propose new avenues for development of antiviral molecules and strategies.IMPORTANCE Understanding the effect of sphingolipid metabolism on viral pathogenesis provide important insights into the development of therapeutic strategies against microbial infections. In this study, we demonstrate a critical role of ceramide during influenza A virus infection. We demonstrate that ceramide produced through de novo biosynthesis possess an antiviral role. These observations unlock new opportunities for the development of novel antiviral therapies against influenza.
Collapse
|
73
|
Cogolludo A, Villamor E, Perez-Vizcaino F, Moreno L. Ceramide and Regulation of Vascular Tone. Int J Mol Sci 2019; 20:ijms20020411. [PMID: 30669371 PMCID: PMC6359388 DOI: 10.3390/ijms20020411] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/02/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
In addition to playing a role as a structural component of cellular membranes, ceramide is now clearly recognized as a bioactive lipid implicated in a variety of physiological functions. This review aims to provide updated information on the role of ceramide in the regulation of vascular tone. Ceramide may induce vasodilator or vasoconstrictor effects by interacting with several signaling pathways in endothelial and smooth muscle cells. There is a clear, albeit complex, interaction between ceramide and redox signaling. In fact, reactive oxygen species (ROS) activate different ceramide generating pathways and, conversely, ceramide is known to increase ROS production. In recent years, ceramide has emerged as a novel key player in oxygen sensing in vascular cells and mediating vascular responses of crucial physiological relevance such as hypoxic pulmonary vasoconstriction (HPV) or normoxic ductus arteriosus constriction. Likewise, a growing body of evidence over the last years suggests that exaggerated production of vascular ceramide may have detrimental effects in a number of pathological processes including cardiovascular and lung diseases.
Collapse
Affiliation(s)
- Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), 6202 AZ Maastricht, The Netherlands.
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Ciudad Universitaria S/N, 28040 Madrid, Spain.
- Ciber Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain.
| |
Collapse
|
74
|
The Role of Ceramide and Sphingosine-1-Phosphate in Alzheimer's Disease and Other Neurodegenerative Disorders. Mol Neurobiol 2019; 56:5436-5455. [PMID: 30612333 PMCID: PMC6614129 DOI: 10.1007/s12035-018-1448-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Bioactive sphingolipids-ceramide, sphingosine, and their respective 1-phosphates (C1P and S1P)-are signaling molecules serving as intracellular second messengers. Moreover, S1P acts through G protein-coupled receptors in the plasma membrane. Accumulating evidence points to sphingolipids' engagement in brain aging and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. Metabolic alterations observed in the course of neurodegeneration favor ceramide-dependent pro-apoptotic signaling, while the levels of the neuroprotective S1P are reduced. These trends are observed early in the diseases' development, suggesting causal relationship. Mechanistic evidence has shown links between altered ceramide/S1P rheostat and the production, secretion, and aggregation of amyloid β/α-synuclein as well as signaling pathways of critical importance for the pathomechanism of protein conformation diseases. Sphingolipids influence multiple aspects of Akt/protein kinase B signaling, a pathway that regulates metabolism, stress response, and Bcl-2 family proteins. The cross-talk between sphingolipids and transcription factors including NF-κB, FOXOs, and AP-1 may be also important for immune regulation and cell survival/death. Sphingolipids regulate exosomes and other secretion mechanisms that can contribute to either the spread of neurotoxic proteins between brain cells, or their clearance. Recent discoveries also suggest the importance of intracellular and exosomal pools of small regulatory RNAs in the creation of disturbed signaling environment in the diseased brain. The identified interactions of bioactive sphingolipids urge for their evaluation as potential therapeutic targets. Moreover, the early disturbances in sphingolipid metabolism may deliver easily accessible biomarkers of neurodegenerative disorders.
Collapse
|
75
|
Paranjpe V, Tan J, Nguyen J, Lee J, Allegood J, Galor A, Mandal N. Clinical signs of meibomian gland dysfunction (MGD) are associated with changes in meibum sphingolipid composition. Ocul Surf 2018; 17:318-326. [PMID: 30553001 DOI: 10.1016/j.jtos.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Sphingolipids (SPL) play roles in cell signaling, inflammation, and apoptosis. Changes in SPL composition have been reported in individuals with MGD, but associations between clinical signs of MGD and compositional changes in meibum SPLs have not been examined. METHODS Forty-three individuals underwent a tear film assessment. Groups were split into those with good or poor quality meibum. Meibum was collected then analyzed with liquid chromatography-mass spectroscopy to quantify SPL classes. Relative composition of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph) and Sphingosine 1-phosphate (S1P) was calculated via mole percent. RESULTS 22 and 21 individuals were characterized with good and poor quality meibum, respectively. Individuals with poor quality were older (60 ± 8 vs 51 ± 16 years) and more likely to be male (90% vs 64%). Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer (33.36% vs 49.49%, p < 0.01), Hex-Cer (4.88% vs 9.15%, p < 0.01), and S1P (0.16% vs 0.31%, p = 0.05), and more SM (58.67% vs 38.18%, p < 0.01) and Sph (2.92% vs 2.87%, p = 0.97) compared to individuals with good quality meibum. Assessment of the ratio of Cer (pro-apoptotic) to S1P (pro-survival) showed that individuals with poor meibum quality had a relative increase in Cer (495.23 vs 282.69, p = 0.07). CONCLUSION Meibum quality, a clinically graded marker of MGD, is associated with compositional changes in meibum sphingolipids. Further investigation of the structural and bioactive roles of sphingolipids in MGD may provide future targets for therapy.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jeremy Tan
- Ophthalmic Surgeons and Consultants of Ohio, Ohio State University, Columbus, OH, 43203, USA
| | - Jason Nguyen
- West Virginia University Eye, Morgantown, WV, 26506, USA
| | - John Lee
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jeremy Allegood
- Lipidomics Core, Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23249, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Nawajes Mandal
- Department of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
76
|
Moaddel R, Shardell M, Khadeer M, Lovett J, Kadriu B, Ravichandran S, Morris PJ, Yuan P, Thomas CJ, Gould TD, Ferrucci L, Zarate CA. Plasma metabolomic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology (Berl) 2018; 235:3017-3030. [PMID: 30116859 PMCID: PMC6193489 DOI: 10.1007/s00213-018-4992-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
Abstract
(R,S)-Ketamine produces rapid, robust, and sustained antidepressant effects in major depressive disorder. Specifically, its pharmacological efficacy in treatment refractory depression is considered a major breakthrough in the field. However, the mechanism of action of ketamine's rapid effect remains to be determined. In order to identify pathways that are responsible for ketamine's effect, a targeted metabolomic approach was carried out using a double-blind, placebo-controlled crossover design, with infusion order randomized with medication-free patients with treatment-resistant major depressive disorder (29 subjects) and healthy controls (25 subjects). The metabolomic profile of these subjects was characterized at multiple time points, and a comprehensive analysis was investigated between the following: MDD and healthy controls, treatment and placebo in both groups and the corresponding response to ketamine treatment. Ketamine treatment resulted in a general increase in circulating sphingomyelins, levels which were not correlated with response. Ketamine response resulted in more pronounced effects in the kynurenine pathway and the arginine pathway at 4 h post-infusion, where a larger decrease in circulating kynurenine levels and a larger increase in the bioavailability of arginine were observed in responders to ketamine treatment, suggesting possible mechanisms for response to ketamine treatment.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes, Bethesda, MD, USA.
| | - Michelle Shardell
- Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes, Bethesda, MD, USA
| | - Mohammed Khadeer
- Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes, Bethesda, MD, USA
| | - Jacqueline Lovett
- Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes, Bethesda, MD, USA
| | - Bashkim Kadriu
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sarangan Ravichandran
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Leidos Biomedical Research Inc, Fredrick, MD 21702, USA
| | - Patrick J. Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, MD, USA
| | - Peixiong Yuan
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Intramural Research Program, National Institutes of Health, Rockville, MD, USA
| | - Todd D. Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luigi Ferrucci
- Biomedical Research Center, Intramural Research Program, National Institute on Aging, National Institutes, Bethesda, MD, USA
| | - Carlos A. Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
77
|
Red light-emitting diode irradiation regulates oxidative stress and inflammation through SPHK1/NF-κB activation in human keratinocytes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 186:31-40. [DOI: 10.1016/j.jphotobiol.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022]
|
78
|
Pierucci F, Frati A, Battistini C, Matteini F, Iachini MC, Vestri A, Penna F, Costelli P, Meacci E. Involvement of released sphingosine 1-phosphate/sphingosine 1-phosphate receptor axis in skeletal muscle atrophy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3598-3614. [PMID: 30279138 DOI: 10.1016/j.bbadis.2018.08.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/27/2018] [Accepted: 08/30/2018] [Indexed: 12/18/2022]
Abstract
Skeletal muscle (SkM) atrophy is caused by several and heterogeneous conditions, such as cancer, neuromuscular disorders and aging. In most types of SkM atrophy overall rates of protein synthesis are suppressed, protein degradation is consistently elevated and atrogenes, such as the ubiquitin ligase Atrogin-1/MAFbx, are up-regulated. The molecular regulators of SkM waste are multiple and only in part known. Sphingolipids represent a class of bioactive molecules capable of modulating the destiny of many cell types, including SkM cells. In particular, we and others have shown that sphingosine 1phosphate (S1P), formed by sphingosine kinase (SphK), is able to act as trophic and morphogenic factor in myoblasts. Here, we report the first evidence that the atrophic phenotype observed in both muscle obtained from mice bearing the C26 adenocarcinoma and C2C12 myotubes treated with dexamethasone was characterized by reduced levels of active phospho-SphK1. The importance of SphK1 activity is also confirmed by the specific pharmacological inhibition of SphK1 able to increase Atrogin-1/MAFbx expression and reduce myotube size and myonuclei number. Furthermore, we found that SkM atrophy was accomplished by significant increase of S1P transporter Spns2 and in changes in the pattern of S1P receptor (S1PRs) subtype expression paralleled by increased Atrogin-1/MAFbx expression, suggesting a role for the released S1P and of specific S1PR-mediated signaling pathways in the control of the ubiquitin ligase. Altogether, these findings provide the first evidence that SphK1/released S1P/S1PR axis acts as a molecular regulator of SkM atrophy, thereby representing a new possible target for therapy in many patho-physiological conditions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Chiara Battistini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Francesca Matteini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Maria Chiara Iachini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano (TO), Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio" -Unit of Biochemical Sciences and Molecular Biology, University of Florence, Viale GB Morgagni, 50, Florence, Italy.
| |
Collapse
|
79
|
Evaluation of serum sphingolipids and the influence of genetic risk factors in age-related macular degeneration. PLoS One 2018; 13:e0200739. [PMID: 30071029 PMCID: PMC6071970 DOI: 10.1371/journal.pone.0200739] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 07/02/2018] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids are bioactive molecules associated with oxidative stress, inflammation, and neurodegenerative diseases, but poorly studied in the context of age-related macular degeneration (AMD), a prevalent sight-threatening disease of the ageing retina. Here, we found higher serum levels of hexosylceramide (HexCer) d18:1/16:0 in patients with choroidal neovascularization (CNV) and geographic atrophy (GA), two manifestations of late stage AMD, and higher ceramide (Cer) d18:1/16:0 levels in GA patients. A sensitivity analysis of genetic variants known to be associated with late stage AMD showed that rs1061170 (p.Y402H) in the complement factor H (CFH) gene influences the association of Cer d18:1/16:0 with GA. To understand the possible influence of this genetic variant on ceramide levels, we established a cell-based assay to test the modulation of genes in the ceramide metabolism by factor H-like protein 1 (FHL-1), an alternative splicing variant of CFH that also harbors the 402 residue. We first showed that malondialdehyde-acetaldehyde adducts, an oxidation product commonly found in AMD retinas, induces an increase in ceramide levels in WERI-Rb1 cells in accordance with an increased expression of ceramide synthesis genes. Then, we observed that cells exposed to the non-risk FHL-1:Y402, but not the risk associated variant FHL-1:H402 or full-length CFH, downregulated ceramide synthase 2 and ceramide glucosyltransferase gene expression. Together, our findings show that serum ceramide and hexosylceramide species are altered in AMD patients and that ceramide levels may be influenced by AMD associated risk variants.
Collapse
|
80
|
Abstract
Cancer patients' quality of life is greatly dependent on the efficacy of treatments and their associated side effects, which can significantly reduce the overall quality of life. Although the effectiveness of cancer treatments has improved over time, adverse effects persist with each treatment. Some side effects, such as paclitaxel-induced peripheral neuropathy, can be dose limiting, thus further reducing the potential of paclitaxel chemotherapy treatment. Premature ovarian failure in young female patients due to radiation and chemotherapy therapy can have devastating infertility consequences. In recent years, a class of lipids known as sphingolipids has been identified as playing a role in the side effects of cancer therapies. Advanced analytical technologies, such as mass spectrometry, have provided great aid in detecting and distinguishing individual sphingolipids at low concentrations. Sphingolipids play an important role in cell proliferation and apoptosis and, importantly, sphingolipid metabolism has been shown to be dysregulated in cancer. The goal of this review is to summarize the latest findings of the role of sphingolipids in the injurious side effects in various cancer treatments. A better understanding of the molecular mechanisms driving these sphingolipid-induced side effects can help develop new drugs and treatments for cancer that have fewer side effects, thus improving treatment efficacy and quality of life.
Collapse
Affiliation(s)
- Falak Patel
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Stefka D Spassieva
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
81
|
Pramipexole and Fingolimod exert neuroprotection in a mouse model of Parkinson's disease by activation of sphingosine kinase 1 and Akt kinase. Neuropharmacology 2018; 135:139-150. [DOI: 10.1016/j.neuropharm.2018.02.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 12/14/2022]
|
82
|
Modulatory Effects of Fingolimod (FTY720) on the Expression of Sphingolipid Metabolism-Related Genes in an Animal Model of Alzheimer's Disease. Mol Neurobiol 2018; 56:174-185. [PMID: 29687345 PMCID: PMC6334734 DOI: 10.1007/s12035-018-1040-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/27/2018] [Indexed: 01/30/2023]
Abstract
Sphingolipid signaling disturbances correlate with Alzheimer's disease (AD) progression. We examined the influence of FTY720/fingolimod, a sphingosine analog and sphingosine-1-phosphate (S1P) receptor modulator, on the expression of sphingolipid metabolism and signaling genes in a mouse transgenic AD model. Our results demonstrated that AβPP (V717I) transgene led with age to reduced mRNA expression of S1P receptors (S1PRs), sphingosine kinase SPHK2, ceramide kinase CERK, and the anti-apoptotic Bcl2 in the cerebral cortex and hippocampus, suggesting a pro-apoptotic shift in 12-month old mice. These changes largely emulated alterations we observed in the human sporadic AD hippocampus: reduced SPHK1, SPHK2, CERK, S1PR1, and BCL2. We observed that the responses to FTY720 treatment were modified by age and notably differed between control (APP-) and AD transgenic (APP+) animals. AβPP (V717I)-expressing 12-month-old animals reacted to fingolimod with wide changes in the gene expression program in cortex and hippocampus, including increased pro-survival SPHKs and CERK. Moreover, BCL2 was elevated by FTY720 in the cortex at all ages (3, 6, 12 months) while in hippocampus this increase was observed at 12 months only. In APP- mice, fingolimod did not induce any significant mRNA changes at 12 months. Our results indicate significant effect of FTY720 on the age-dependent transcription of genes involved in sphingolipid metabolism and pro-survival signaling, suggesting its neuroprotective role in AD animal model.
Collapse
|
83
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PAB, Pitman MR, Hewett DR, Zannettino ACW, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2018; 8:43602-43616. [PMID: 28467788 PMCID: PMC5546428 DOI: 10.18632/oncotarget.17115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
The proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets. Sphingosine kinase 2 (SK2) has been proposed as one such therapeutic target for myeloma. Our observations that bortezomib and SK2 inhibitors independently elicited induction of ER stress and the UPR prompted us to examine potential synergy between these agents in myeloma. Targeting SK2 synergistically contributed to ER stress and UPR activation induced by bortezomib, as evidenced by activation of the IRE1 pathway and stress kinases JNK and p38MAPK, thereby resulting in potent synergistic myeloma apoptosis in vitro. The combination of bortezomib and SK2 inhibition also exhibited strong in vivo synergy and favourable effects on bone disease. Therefore, our studies suggest that perturbations of sphingolipid signalling can synergistically enhance the effects seen with proteasome inhibition, highlighting the potential for the combination of these two modes of increasing ER stress to be formally evaluated in clinical trials for the treatment of myeloma patients.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Melissa K Bennett
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Duncan R Hewett
- School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| |
Collapse
|
84
|
Rego A, Cooper KF, Snider J, Hannun YA, Costa V, Côrte-Real M, Chaves SR. Acetic acid induces Sch9p-dependent translocation of Isc1p from the endoplasmic reticulum into mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:576-583. [PMID: 29496584 DOI: 10.1016/j.bbalip.2018.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/01/2018] [Accepted: 02/25/2018] [Indexed: 01/08/2023]
Abstract
Changes in sphingolipid metabolism have been linked to modulation of cell fate in both yeast and mammalian cells. We previously assessed the role of sphingolipids in cell death regulation using a well characterized yeast model of acetic acid-induced regulated cell death, finding that Isc1p, inositol phosphosphingolipid phospholipase C, plays a pro-death role in this process. Indeed, isc1∆ mutants exhibited a higher resistance to acetic acid associated with reduced mitochondrial alterations. Here, we show that Isc1p is regulated by Sch9p under acetic acid stress, since both single and double mutants lacking Isc1p or/and Sch9p have the same resistant phenotype, and SCH9 deletion leads to a higher retention of Isc1p in the endoplasmic reticulum upon acetic acid exposure. We also found that the higher resistance of all mutants correlates with higher levels of endogenous mitochondrial phosphorylated long chain bases (LCBPs), suggesting that changing the sphingolipid balance in favour of LCBPs in mitochondria results in increased survival to acetic acid. In conclusion, our results suggest that Sch9p pathways modulate acetic acid-induced cell death, through the regulation of Isc1p cellular distribution, thus affecting the sphingolipid balance that regulates cell fate.
Collapse
Affiliation(s)
- António Rego
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Katrina F Cooper
- Department of Molecular Biology, Graduate School of Biological Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Justin Snider
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Manuela Côrte-Real
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal.
| | - Susana R Chaves
- Departamento de Biologia, Centro de Biologia Molecular e Ambiental, Universidade do Minho, Braga, Portugal
| |
Collapse
|
85
|
Mishra SK, Gao YG, Deng Y, Chalfant CE, Hinchcliffe EH, Brown RE. CPTP: A sphingolipid transfer protein that regulates autophagy and inflammasome activation. Autophagy 2018; 14:862-879. [PMID: 29164996 PMCID: PMC6070007 DOI: 10.1080/15548627.2017.1393129] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/06/2017] [Accepted: 10/12/2017] [Indexed: 02/01/2023] Open
Abstract
The macroautophagy/autophagy and inflammasome pathways are linked through their roles in innate immunity and chronic inflammatory disease. Ceramide-1-phosphate (C1P) is a bioactive sphingolipid that regulates pro-inflammatory eicosanoid production. Whether C1P also regulates autophagy and inflammasome assembly/activation is not known. Here we show that CPTP (a protein that traffics C1P from its site of phosphorylation in the trans-Golgi to target membranes) regulates both autophagy and inflammasome activation. In human epithelial cells, knockdown of CPTP (but not GLTP [glycolipid transfer protein]) or expression of C1P binding-site point mutants, stimulated an 8- to 10-fold increase in autophagosomes and altered endogenous LC3-II and SQSTM1/p62 protein expression levels. CPTP depletion-induced autophagy elevated early markers of autophagosome formation (Golgi-derived ATG9A-vesicles, WIPI1), required key phagophore assembly and elongation factors (ATG5, ATG7, ULK1), and suppressed MTOR phosphorylation and that of its downstream target, RPS6KB1/p70S6K. Wild-type CPTP overexpression exerted a protective effect against starvation-induced autophagy. In THP-1 macrophage-like surveillance cells, CPTP knockdown induced not only autophagy but also elevated CASP1/caspase-1 levels, and strongly increased IL1B/interleukin-1β and IL18 release via a NLRP3 (but not NLRC4) inflammasome-based mechanism, while only moderately increasing inflammatory (pyroptotic) cell death. Inflammasome assembly and activation stimulated by CPTP depletion were autophagy dependent. Elevation of intracellular C1P by exogenous C1P treatment (instead of CPTP inhibition) also induced autophagy and IL1B release. Our findings identify human CPTP as an endogenous regulator of early-stage autophagosome assembly and inflammasome-driven, pro-inflammatory cytokine generation and release.
Collapse
Affiliation(s)
| | - Yong-Guang Gao
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Yibin Deng
- Hormel Institute, University of Minnesota, Austin, MN USA
| | - Charles E. Chalfant
- Department of Biochemistry & Molecular Biology, VCU Massey Cancer Center, VCU Institute of Molecular Medicine, VCU Johnson Center for Critical Care and Pulmonary Research, Virginia Commonwealth University, Richmond, VA USA
- Hunter Holmes McGuire Veterans Administration Medical Center, Richmond, VA USA
| | | | | |
Collapse
|
86
|
Wang Z, Zhang Y, Liu Q, Sun L, Lv M, Yu P, Chen X. Investigation of the mechanisms of Genkwa Flos hepatotoxicity by a cell metabolomics strategy combined with serum pharmacology in HL-7702 liver cells. Xenobiotica 2018; 49:216-226. [DOI: 10.1080/00498254.2018.1427905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhipeng Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China and
| | - Yuanyuan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China and
| | | | - Linjia Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China and
| | - Mingming Lv
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China and
| | - Peipei Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China and
| | - Xiaohui Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China and
| |
Collapse
|
87
|
Sukocheva OA. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming. Int J Mol Sci 2018; 19:ijms19020420. [PMID: 29385066 PMCID: PMC5855642 DOI: 10.3390/ijms19020420] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/24/2018] [Indexed: 02/05/2023] Open
Abstract
Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.
Collapse
Affiliation(s)
- Olga A Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.
| |
Collapse
|
88
|
S1P Signalling Differentially Affects Migration of Peritoneal B Cell Populations In Vitro and Influences the Production of Intestinal IgA In Vivo. Int J Mol Sci 2018; 19:ijms19020391. [PMID: 29382132 PMCID: PMC5855613 DOI: 10.3390/ijms19020391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 01/07/2023] Open
Abstract
Introduction: Sphingosine-1-phosphate (S1P) regulates the migration of follicular B cells (B2 cells) and directs the positioning of Marginal zone B cells (MZ B cells) within the spleen. The function of S1P signalling in the third B cell lineage, B1 B cells, mainly present in the pleural and peritoneal cavity, has not yet been determined. Methods: S1P receptor expression was analysed in peritoneal B cells by real-time polymerase chain reaction (qPCR). The chemotactic response to S1P was studied in vitro. The role of S1P signalling was further explored in a s1p4−/− mouse strain. Results: Peritoneal B cells expressed considerable amounts of the S1P receptors 1 and 4 (S1P1 and S1P4, respectively). S1P1 showed differential expression between the distinct peritoneal B cell lineages. While B2 cells showed no chemotactic response to S1P, B1 B cells showed a migration response to S1P. s1p4−/− mice displayed significant alterations in the composition of peritoneal B cell populations, as well as a significant reduction of mucosal immunoglobulin A (IgA) in the gut. Discussion: S1P signalling influences peritoneal B1 B cell migration. S1P4 deficiency alters the composition of peritoneal B cell populations and reduces secretory IgA levels. These findings suggest that S1P signalling may be a target to modulate B cell function in inflammatory intestinal pathologies.
Collapse
|
89
|
Nedvedova I, Kolar D, Neckar J, Kalous M, Pravenec M, Šilhavý J, Korenkova V, Kolar F, Zurmanova JM. Cardioprotective Regimen of Adaptation to Chronic Hypoxia Diversely Alters Myocardial Gene Expression in SHR and SHR-mt BN Conplastic Rat Strains. Front Endocrinol (Lausanne) 2018; 9:809. [PMID: 30723458 PMCID: PMC6350269 DOI: 10.3389/fendo.2018.00809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/24/2018] [Indexed: 11/17/2022] Open
Abstract
Adaptation to continuous normobaric hypoxia (CNH) protects the heart against acute ischemia/reperfusion injury. Recently, we have demonstrated the infarct size-limiting effect of CNH also in hearts of spontaneously hypertensive rats (SHR) and in conplastic SHR-mtBN strain characterized by the selective replacement of the mitochondrial genome of SHR with that of more ischemia-resistant Brown Norway rats. Importantly, cardioprotective effect of CNH was more pronounced in SHR-mtBN than in SHR. Thus, here we aimed to identify candidate genes which may contribute to this difference between the strains. Rats were adapted to CNH (FiO2 0.1) for 3 weeks or kept at room air as normoxic controls. Screening of 45 transcripts was performed in left ventricles using Biomark Chip. Significant differences between the groups were analyzed by univariate analysis (ANOVA) and the genes contributing to the differences between the strains unmasked by CNH were identified by multivariate analyses (PCA, SOM). ANOVA with Bonferroni correction revealed that transcripts differently affected by CNH in SHR and SHR-mtBN belong predominantly to lipid metabolism and antioxidant defense. PCA divided four experimental groups into two main clusters corresponding to chronically hypoxic and normoxic groups, and differences between the strains were more pronounced after CNH. Subsequently, the following 14 candidate transcripts were selected by PCA, and confirmed by SOM analyses, that can contribute to the strain differences in cardioprotective phenotype afforded by CNH: Alkaline ceramidase 2 (Acer2), Fatty acid translocase (Cd36), Aconitase 1 (Aco1), Peroxisome proliferator activated receptor gamma (Pparg), Hemoxygenase 2 (Hmox2), Phospholipase A2 group IIA (Ppla2g2a), Dynamin-related protein (Drp), Protein kinase C epsilon (Pkce), Hexokinase 2 (Hk2), Sphingomyelin synthase 2 (Sgms2), Caspase 3 (Casp3), Mitofussin 1 (Mfn1), Phospholipase A2 group V (Pla2g5), and Catalase (Cat). Our data suggest that the stronger cardioprotective phenotype of conplastic SHR-mtBN strain afforded by CNH is associated with either preventing the drop or increasing the expression of transcripts related to energy metabolism, antioxidant response and mitochondrial dynamics.
Collapse
Affiliation(s)
- Iveta Nedvedova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - David Kolar
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Neckar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Martin Kalous
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Vlasta Korenkova
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jitka M. Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Jitka M. Zurmanova
| |
Collapse
|
90
|
Motyl J, Wencel PL, Cieślik M, Strosznajder RP, Strosznajder JB. Alpha-synuclein alters differently gene expression of Sirts, PARPs and other stress response proteins: implications for neurodegenerative disorders. Mol Neurobiol 2018; 55:727-740. [PMID: 28050792 PMCID: PMC5808059 DOI: 10.1007/s12035-016-0317-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023]
Abstract
Alpha-synuclein (ASN) is a presynaptic protein that can easily change its conformation under different types of stress. It's assumed that ASN plays an important role in the pathogenesis of Parkinson's and Alzheimer's disease. However, the molecular mechanism of ASN toxicity has not been elucidated. This study focused on the role of extracellular ASN (eASN) in regulation of transcription of sirtuins (Sirts) and DNA-bound poly(ADP-ribose) polymerases (PARPs) - proteins crucial for cells' survival/death. Our results indicate that eASN enhanced the free radicals level, decreased mitochondria membrane potential, cells viability and activated cells' death. Concomitantly eASN activated expression of antioxidative proteins (Sod2, Gpx4, Gadd45b) and DNA-bound Parp2 and Parp3. Moreover, eASN upregulated expression of Sirt3 and Sirt5, but downregulated of Sirt1, which plays an important role in cell metabolism including Aβ precursor protein (APP) processing. eASN downregulated gene expression of APP alpha secretase (Adam10) and metalloproteinases Mmp2, Mmp10 but upregulated Mmp11. Additionally, expression and activity of pro-survival sphingosine kinase 1 (Sphk1), Akt kinase and anti-apoptotic protein Bcl2 were inhibited. Moreover, higher expression of pro-apoptotic protein Bax and enhancement of apoptotic cells' death were observed. Summarizing, eASN significantly modulates transcription of Sirts and enzymes involved in APP/Aβ metabolism and through these mechanisms eASN toxicity may be enhanced. The inhibition of Sphk1 and Akt by eASN may lead to disturbances of survival pathways. These results suggest that eASN through alteration of transcription and by inhibition of pro-survival kinases may play important pathogenic role in neurodegenerative disorders.
Collapse
Affiliation(s)
- J Motyl
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - P L Wencel
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland
| | - M Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - R P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106, Warsaw, Poland.
| | - J B Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
91
|
Werth S, Müller-Fielitz H, Raasch W. Obesity-stimulated aldosterone release is not related to an S1P-dependent mechanism. J Endocrinol 2017; 235:251-265. [PMID: 28970286 DOI: 10.1530/joe-16-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 11/08/2022]
Abstract
Aldosterone has been identified as an important factor in obesity-associated hypertension. Here, we investigated whether sphingosine-1-phosphate (S1P), which has previously been linked to obesity, increases aldosterone release. S1P-induced aldosterone release was determined in NCI H295R cells in the presence of S1P receptor (S1PR) antagonists. In vivo release of S1P (100-300 µg/kgbw) was investigated in pithed, lean Sprague Dawley (SD) rats, diet-obese spontaneous hypertensive rats (SHRs), as well as in lean or obese Zucker rats. Aldosterone secretion was increased in NCI H295R cells by S1P, the selective S1PR1 agonist SEW2871 and the selective S1PR2 antagonist JTE013. Treatment with the S1PR1 antagonist W146 or fingolimod and the S1PR1/3 antagonist VPbib2319 decreased baseline and/or S1P-stimulated aldosterone release. Compared to saline-treated SD rats, plasma aldosterone increased by ~50 pg/mL after infusing S1P. Baseline levels of S1P and aldosterone were higher in obese than in lean SHRs. Adrenal S1PR expression did not differ between chow- or CD-fed rats that had the highest S1PR1 and lowest S1PR4 levels. S1P induced a short-lasting increase in plasma aldosterone in obese, but not in lean SHRs. However, 2-ANOVA did not demonstrate any difference between lean and obese rats. S1P-induced aldosterone release was also similar between obese and lean Zucker rats. We conclude that S1P is a local regulator of aldosterone production. S1PR1 agonism induces an increase in aldosterone secretion, while stimulating adrenal S1PR2 receptor suppresses aldosterone production. A significant role of S1P in influencing aldosterone secretion in states of obesity seems unlikely.
Collapse
Affiliation(s)
- Stephan Werth
- Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of Lübeck, Lübeck, Germany
| | - Helge Müller-Fielitz
- Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of Lübeck, Lübeck, Germany
- CBBM (Center of Brain, Behavior and Metabolism)Lübeck, Germany
| | - Walter Raasch
- Institute of Experimental and Clinical Pharmacology and ToxicologyUniversity of Lübeck, Lübeck, Germany
- CBBM (Center of Brain, Behavior and Metabolism)Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research)partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| |
Collapse
|
92
|
Vilaça R, Barros I, Matmati N, Silva E, Martins T, Teixeira V, Hannun YA, Costa V. The ceramide activated protein phosphatase Sit4 impairs sphingolipid dynamics, mitochondrial function and lifespan in a yeast model of Niemann-Pick type C1. Biochim Biophys Acta Mol Basis Dis 2017; 1864:79-88. [PMID: 28988886 DOI: 10.1016/j.bbadis.2017.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
The Niemann-Pick type C is a rare neurodegenerative disease that results from loss-of-function point mutations in NPC1 or NPC2, which affect the homeostasis of sphingolipids and sterols in human cells. We have previously shown that yeast lacking Ncr1, the orthologue of human NPC1 protein, display a premature ageing phenotype and higher sensitivity to oxidative stress associated with mitochondrial dysfunctions and accumulation of long chain bases. In this study, a lipidomic analysis revealed specific changes in the levels of ceramide species in ncr1Δ cells, including decreases in dihydroceramides and increases in phytoceramides. Moreover, the activation of Sit4, a ceramide-activated protein phosphatase, increased in ncr1Δ cells. Deletion of SIT4 or CDC55, its regulatory subunit, increased the chronological lifespan and hydrogen peroxide resistance of ncr1Δ cells and suppressed its mitochondrial defects. Notably, Sch9 and Pkh1-mediated phosphorylation of Sch9 decreased significantly in ncr1Δsit4Δ cells. These results suggest that phytoceramide accumulation and Sit4-dependent signaling mediate the mitochondrial dysfunction and shortened lifespan in the yeast model of Niemann-Pick type C1, in part through modulation of the Pkh1-Sch9 pathway.
Collapse
Affiliation(s)
- Rita Vilaça
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ivo Barros
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nabil Matmati
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Elísio Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Telma Martins
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vítor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Yusuf A Hannun
- Stony Brook Cancer Center, Stony Brook University, Health Science Center, Stony Brook, NY, USA
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
93
|
Mendelson K, Pandey S, Hisano Y, Carellini F, Das BC, Hla T, Evans T. The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis. eLife 2017; 6:21992. [PMID: 28956531 PMCID: PMC5650468 DOI: 10.7554/elife.21992] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 09/25/2017] [Indexed: 12/23/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is generated through phosphorylation of sphingosine by sphingosine kinases (Sphk1 and Sphk2). We show that sphk2 maternal-zygotic mutant zebrafish embryos (sphk2MZ) display early developmental phenotypes, including a delay in epiboly, depleted S1P levels, elevated levels of sphingosine, and resistance to sphingosine toxicity. The sphk2MZ embryos also have strikingly increased levels of maternal transcripts encoding ceramide synthase 2b (Cers2b), and loss of Cers2b in sphk2MZ embryos phenocopies sphingosine toxicity. An upstream region of the cers2b promoter supports enhanced expression of a reporter gene in sphk2MZ embryos compared to wildtype embryos. Furthermore, ectopic expression of Cers2b protein itself reduces activity of the promoter, and this repression is relieved by exogenous sphingosine. Therefore, the sphk2MZ genome recognizes the lack of sphingosine kinase activity and up-regulates cers2b as a salvage pathway for sphingosine turnover. Cers2b can also function as a sphingolipid-responsive factor to mediate at least part of a feedback regulatory mechanism.
Collapse
Affiliation(s)
- Karen Mendelson
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States.,Center for Vascular Biology, Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, United States
| | - Suveg Pandey
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| | - Yu Hisano
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Frank Carellini
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| | - Bhaskar C Das
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Timothy Hla
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Boston, United States.,Harvard Medical School, Boston, United States
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, United States
| |
Collapse
|
94
|
Chan JP, Brown J, Hark B, Nolan A, Servello D, Hrobuchak H, Staab TA. Loss of Sphingosine Kinase Alters Life History Traits and Locomotor Function in Caenorhabditis elegans. Front Genet 2017; 8:132. [PMID: 28983319 PMCID: PMC5613162 DOI: 10.3389/fgene.2017.00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
Sphingolipid metabolism is important to balance the abundance of bioactive lipid molecules involved in cell signaling, neuronal function, and survival. Specifically, the sphingolipid sphingosine mediates cell death signaling, whereas its phosphorylated form, sphingosine-1-phosphate (S1P), mediates cell survival signaling. The enzyme sphingosine kinase produces S1P, and the activity of sphingosine kinase impacts the ability of cells to survive under stress and challenges. To examine the influence of sphingolipid metabolism, particularly enzymes regulating sphingosine and S1P, in mediating aging, neuronal function and stress response, we examined life history traits, locomotor capacities and heat stress responses of young and old animals using the model organism Caenorhabditis elegans. We found that C. elegans sphk-1 mutants, which lack sphingosine kinase, had shorter lifespans, reduced brood sizes, and smaller body sizes compared to wild type animals. By analyzing a panel of young and old animals with genetic mutations in the sphingolipid signaling pathway, we showed that aged sphk-1 mutants exhibited a greater decline in neuromuscular function and locomotor behavior. In addition, aged animals lacking sphk-1 were more susceptible to death induced by acute and prolonged heat exposure. On the other hand, older animals with loss of function mutations in ceramide synthase (hyl-1), which converts sphingosine to ceramide, showed improved neuromuscular function and stress response with age. This phenotype was dependent on sphk-1. Together, our data show that loss of sphingosine kinase contributes to poor animal health span, suggesting that sphingolipid signaling may be important for healthy neuronal function and animal stress response during aging.
Collapse
Affiliation(s)
- Jason P Chan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Jaylene Brown
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Brandon Hark
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Abby Nolan
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Dustin Servello
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Hannah Hrobuchak
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| | - Trisha A Staab
- Department of Biology, Juniata CollegeHuntingdon, PA, United States
| |
Collapse
|
95
|
Blaess M, Bibak N, Claus RA, Kohl M, Bonaterra GA, Kinscherf R, Laufer S, Deigner HP. NB 06: From a simple lysosomotropic aSMase inhibitor to tools for elucidating the role of lysosomes in signaling apoptosis and LPS-induced inflammation. Eur J Med Chem 2017; 153:73-104. [PMID: 29031494 DOI: 10.1016/j.ejmech.2017.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
Abstract
Ceramide generation is involved in signal transduction of cellular stress response, in particular during stress-induced apoptosis in response to stimuli such as minimally modified Low-density lipoproteins, TNFalpha and exogenous C6-ceramide. In this paper we describe 48 diverse synthetic products and evaluate their lysosomotropic and acid sphingomyelinase inhibiting activities in macrophages. A stimuli-induced increase of C16-ceramide in macrophages can be almost completely suppressed by representative compound NB 06 providing an effective protection of macrophages against apoptosis. Compounds like NB 06 thus offer highly interesting fields of application besides prevention of apoptosis of macrophages in atherosclerotic plaques in vessel walls. Most importantly, they can be used for blocking pH-dependent lysosomal processes and enzymes in general as well as for analyzing lysosomal dependent cellular signaling. Modulation of gene expression of several prominent inflammatory messengers IL1B, IL6, IL23A, CCL4 and CCL20 further indicate potentially beneficial effects in the field of (systemic) infections involving bacterial endotoxins like LPS or infections with influenza A virus.
Collapse
Affiliation(s)
- Markus Blaess
- Furtwangen University, Medical and Life Sciences Faculty, Institute of Precision Medicine, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; Clinic for Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Nelly Bibak
- Furtwangen University, Medical and Life Sciences Faculty, Institute of Precision Medicine, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Ralf A Claus
- Clinic for Anesthesiology and Intensive Care, Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, D-07747 Jena, Germany
| | - Matthias Kohl
- Furtwangen University, Medical and Life Sciences Faculty, Institute of Precision Medicine, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany
| | - Gabriel A Bonaterra
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, Robert-Koch-Straße 8, D-35032 Marburg, Germany
| | - Ralf Kinscherf
- Institute of Anatomy and Cell Biology, Department of Medical Cell Biology, University of Marburg, Robert-Koch-Straße 8, D-35032 Marburg, Germany
| | - Stefan Laufer
- Pharmaceutical Institute, Department of Pharmaceutical Chemistry, University of Tuebingen, Auf der Morgenstelle 8, D-72076 Tuebingen, Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Institute of Precision Medicine, Jakob-Kienzle-Str. 17, D-78054 Villingen-Schwenningen, Germany; Fraunhofer Institute IZI, Leipzig, EXIM Department, Schillingallee 68, D-18057 Rostock, Germany.
| |
Collapse
|
96
|
Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16:529-540. [PMID: 28139067 PMCID: PMC5418186 DOI: 10.1111/acel.12570] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend lifespan and improve health span. Using a global mass spectrometry-based metabolomic approach, we identified 193 metabolites that were significantly differentially expressed (SDE) in the livers of C57BL/6 mice, fed graded levels of CR (10, 20, 30 and 40% CR) compared to mice fed ad libitum for 12 h a day. The differential expression of metabolites also varied with the different feeding groups. Pathway analysis revealed that graded CR had an impact on carnitine synthesis and the carnitine shuttle pathway, sphingosine-1-phosphate (S1P) signalling and methionine metabolism. S1P, sphingomyelin and L-carnitine were negatively correlated with body mass, leptin, insulin-like growth factor- 1 (IGF-1) and major urinary proteins (MUPs). In addition, metabolites which showed a graded effect, such as ceramide, S1P, taurocholic acid and L-carnitine, responded in the opposite direction to previously observed age-related changes. We suggest that the modulation of this set of metabolites may improve liver processes involved in energy release from fatty acids. S1P also negatively correlated with catalase activity and body temperature, and positively correlated with food anticipatory activity. Injecting mice with S1P or an S1P receptor 1 agonist did not precipitate changes in body temperature, physical activity or food intake suggesting that these correlations were not causal relationships.
Collapse
Affiliation(s)
- Cara L. Green
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network; Institute of Biochemistry and Cell Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Daniel E. L. Promislow
- Department of Pathology and Department of Biology; University of Washington; Seattle WA USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| |
Collapse
|
97
|
Ultra-weak photon emission as a dynamic tool for monitoring oxidative stress metabolism. Sci Rep 2017; 7:1229. [PMID: 28450732 PMCID: PMC5430737 DOI: 10.1038/s41598-017-01229-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, excessive oxidative metabolism has been reported as a critical determinant of pathogenicity in many diseases. The advent of a simple tool that can provide a physiological readout of oxidative stress would be a major step towards monitoring this dynamic process in biological systems, while also improving our understanding of this process. Ultra-weak photon emission (UPE) has been proposed as a potential tool for measuring oxidative processes due to the association between UPE and reactive oxygen species. Here, we used HL-60 cells as an in vitro model to test the potential of using UPE as readout for dynamically monitoring oxidative stress after inducing respiratory burst. In addition, to probe for possible changes in oxidative metabolism, we performed targeted metabolomics on cell extracts and culture medium. Lastly, we tested the effects of treating cells with the NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI). Our results show that UPE can be used as readout for measuring oxidative stress metabolism and related processes.
Collapse
|
98
|
O'Sullivan SA, Velasco-Estevez M, Dev KK. Demyelination induced by oxidative stress is regulated by sphingosine 1-phosphate receptors. Glia 2017; 65:1119-1136. [PMID: 28375547 DOI: 10.1002/glia.23148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 03/02/2017] [Accepted: 03/20/2017] [Indexed: 01/14/2023]
Abstract
Oxidative stress is a pathological condition defined as an imbalance between production and removal of reactive oxygen species. This process causes structural cell damage, disrupts DNA repair and induces mitochondrial dysfunction. Many in vitro studies have used direct bolus application of H2 O2 to investigate the role of oxidative stress in cell culture. In this study, using mouse organotypic cerebellar slice cultures, the effects of H2 O2 -induced oxidative stress on myelination state were examined, using bolus concentrations of H2 O2 (0.1-1 mM) and low-continuous H2 O2 (∼20 μM) generated from glucose oxidase and catalase (GOX-CAT). Using these models, the potential therapeutic effects of pFTY720, an oral therapy used in multiple sclerosis, was also examined. We found bolus treatment of H2 O2 (0.5 mM) and, for the first time, low-continuous H2 O2 (GOX-CAT) to induce demyelination in organotypic slices. Both bolus H2 O2 and GOX-CAT treatments significantly decreased vimentin expression in these slice cultures as well as increased cell death in isolated astrocyte cultures. Importantly, pre-treatment with pFTY720 significantly attenuated both bolus H2 O2 and GOX-CAT-induced demyelination and the GOX-CAT-induced decrease in vimentin in cerebellar slices, without altering levels of the proinflammatory cytokines such as IL-6 and CX3CL1. We also observed increased SMI-32 immunoreactivity in the white matter tract induced by GOX-CAT indicating axonal damage, which was remarkably attenuated by pFTY720. Taken together, this data establishes a novel GOX-CAT model of demyelination and demonstrates that pFTY720 can act independently of inflammatory cytokines to attenuate decreases in vimentin, as well as axonal damage and demyelination induced by oxidative stress.
Collapse
Affiliation(s)
- Sinead A O'Sullivan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
99
|
Kilbey A, Terry A, Wotton S, Borland G, Zhang Q, Mackay N, McDonald A, Bell M, Wakelam MJO, Cameron ER, Neil JC. Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis. J Cell Biochem 2017; 118:1432-1441. [PMID: 27869314 PMCID: PMC5408393 DOI: 10.1002/jcb.25802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/12/2022]
Abstract
The three‐membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumor suppressors and oncogenes. In mouse models, the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over‐expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the “sphingolipid rheostat” from ceramide to sphingosine‐1‐phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, whereas an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre‐mediated excision. Furthermore, we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid‐mediated apoptosis, and elucidate the mechanism of cross‐talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T‐lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx‐driven lymphomagenesis. J. Cell. Biochem. 118: 1432–1441, 2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- A Kilbey
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - A Terry
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - S Wotton
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - G Borland
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Q Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridgeshire, United Kingdom
| | - N Mackay
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - A McDonald
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - M Bell
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - M J O Wakelam
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, Cambridgeshire, United Kingdom
| | - E R Cameron
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - J C Neil
- Molecular Oncology Laboratory, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| |
Collapse
|
100
|
Kitchen SA, Weis VM. The sphingosine rheostat is involved in the cnidarian heat stress response but not necessarily in bleaching. J Exp Biol 2017; 220:1709-1720. [DOI: 10.1242/jeb.153858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
Sphingolipids play important roles in mitigating cellular heat and oxidative stress by altering membrane fluidity, receptor clustering and gene expression. Accumulation of signaling sphingolipids that comprise the sphingosine rheostat, pro-apoptotic sphingosine (Sph) and pro-survival sphingosine-1-phosphate (S1P), is key to determining cell fate. Reef-building corals and other symbiotic cnidarians living in shallow tropical waters can experience elevated seawater temperature and high UV irradiance, two stressors that are increasing in frequency and severity with climate change. In symbiotic cnidarians, these stressors disrupt the photosynthetic machinery of the endosymbiont and ultimately result in the collapse of the partnership (dysbiosis), known as cnidarian bleaching. In a previous study, exogenously applied sphingolipids altered heat-induced bleaching in the symbiotic anemone Aiptasia pallida, but endogenous regulation of these lipids is unknown. Here, we characterized the role of the rheostat in the cnidarian heat stress response (HSR) and in dysbiosis. Gene expression of rheostat enzymes sphingosine kinase (AP-SPHK) and S1P phosphatase (AP-SGPP), and concentrations of sphingolipids were quantified from anemones incubated at elevated temperatures. We observed a biphasic HSR in A. pallida. At early exposure, rheostat gene expression and lipid levels were suppressed while gene expression of a heat stress biomarker increased and 40% of symbionts were lost. After longer incubations at the highest temperature, AP-SGPP and then Sph levels both increased. These results indicate that the sphingosine rheostat in A. pallida does not participate in initiation of dysbiosis, but instead functions in the chronic response to prolonged heat stress that promotes host survival.
Collapse
Affiliation(s)
- Sheila A. Kitchen
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331, USA
| |
Collapse
|