51
|
Xu J, Chen K, Li A, Guo M, Wang J, Liu S, Wang X. Polymorphism-801G/A in the 3'-untranslated region of CXCL12 is not associated with preeclampsia in Chinese Han population. Clin Exp Hypertens 2017; 39:23-28. [PMID: 28051881 DOI: 10.1080/10641963.2016.1200598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE We investigated whether the CXCL12-801G/A polymorphism was associated with preeclampsia (PE) susceptibility in a Chinese Han population. METHODS We examined 912 PE women and 1025 controls for the CXCL12-801G/A polymorphism by polymerase chain reaction (PCR) and correlations with clinical characteristics were examined. RESULTS No significant differences in genotypic and allelic frequencies of CXCL12-G801A were found between cases and controls (genotype: χ2 = 2.095, p = 0.351; allele: χ2 = 1.713, p = 0.191). There were also no significant differences between early/late-onset or mild/severe PE and control groups. CONCLUSION The results indicate that 801G/A in CXCL12 may not play a major role in pathogenesis of PE in a Chinese Han population.
Collapse
Affiliation(s)
- Jine Xu
- a Department of Obstetrics , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Kai Chen
- b Department of Biology , The First Senior High School of Chengwu , Heze , China
| | - Aiqin Li
- c Department of Medical Specimen Collection , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Mingzhen Guo
- d Prenatal Diagnosis Center , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Jingli Wang
- d Prenatal Diagnosis Center , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Shiguo Liu
- d Prenatal Diagnosis Center , The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Xiuhai Wang
- e Department of Biology , The Medical College of Qingdao University , Qingdao , China
| |
Collapse
|
52
|
Toimela T, Huttala O, Sabell E, Mannerström M, Sarkanen JR, Ylikomi T, Heinonen T. Intra-laboratory validated human cell-based in vitro vasculogenesis/angiogenesis test with serum-free medium. Reprod Toxicol 2016; 70:116-125. [PMID: 27915012 DOI: 10.1016/j.reprotox.2016.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 01/27/2023]
Abstract
Vasculogenesis and angiogenesis are the processes by which new blood vessels are formed. We have developed a serum-free human adipose stromal cell and umbilical cord vein endothelial cell based vasculogenesis/angiogenesis test. In this study, the test was validated in our GLP laboratory following the OECD Guidance Document 34 [1] using erlotinib, acetylic salicylic acid, levamisole, 2-methoxyestradiol, anti-VEGF, methimazole, and D-mannitol to show its reproducibility, repeatability, and predictivity for humans. The results were obtained from immunostained tubule structures and cytotoxicity assessment. The performance of the test was evaluated using 26 suspected teratogens and non-teratogens. The positive predictive value was 71.4% and the negative predictive value was 50.0%, indicating that inhibition of vasculogenesis is a significant mechanism behind teratogenesis. In conclusion, this test has great potential to be a screening test for prioritization purposes of chemicals and to be a test in a battery to predict developmental hazards in a regulatory context.
Collapse
Affiliation(s)
- T Toimela
- FICAM, University of Tampere, Finland.
| | - O Huttala
- FICAM, University of Tampere, Finland
| | - E Sabell
- FICAM, University of Tampere, Finland
| | | | - J R Sarkanen
- Cell Biology, University of Tampere, Finland; Science Center, Tampere University Hospital, Finland
| | - T Ylikomi
- Cell Biology, University of Tampere, Finland; Science Center, Tampere University Hospital, Finland
| | | |
Collapse
|
53
|
Zhu M, Ren Z, Possomato-Vieira JS, Khalil RA. Restoring placental growth factor-soluble fms-like tyrosine kinase-1 balance reverses vascular hyper-reactivity and hypertension in pregnancy. Am J Physiol Regul Integr Comp Physiol 2016; 311:R505-21. [PMID: 27280428 PMCID: PMC5142222 DOI: 10.1152/ajpregu.00137.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/03/2016] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) is a pregnancy-related hypertensive disorder (HTN-Preg) with unclear mechanism. An imbalance between antiangiogenic soluble fms-like tyrosine kinase-1 (sFlt-1) and angiogenic placental growth factor (PlGF) has been observed in PE, but the vascular targets and signaling pathways involved are unclear. We assessed the extent of sFlt-1/PlGF imbalance and vascular dysfunction in a rat model of HTN-Preg produced by reduction of uteroplacental perfusion pressure (RUPP), and tested whether inducing a comparable sFlt-1/PlGF imbalance by infusing sFlt-1 (10 μg·kg(-1)·day(-1)) in day 14 pregnant (Preg) rats cause similar increases in blood pressure (BP) and vascular reactivity. Using these guiding measurements, we then tested whether restoring sFlt-1/PlGF balance by infusing PIGF (20 μg·kg(-1)·day(-1)) in RUPP rats would improve BP and vascular function. On gestational day 19, BP was in Preg+sFlt-1 and RUPP > Preg, and in RUPP+PlGF < RUPP rats. Plasma sFlt-1/PlGF ratio was increased in Preg+sFlt-1, and RUPP and was reduced in RUPP+PlGF rats. In isolated endothelium-intact aorta, carotid, mesenteric, and renal artery, phenylephrine (Phe)- and high KCl-induced contraction was in Preg+sFlt-1 and RUPP > Preg, and in RUPP+PlGF < RUPP. The differences in vascular reactivity to Phe and KCl between groups were less apparent in vessels treated with the nitric oxide synthase (NOS) inhibitor l-NAME or guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or endothelium-denuded, suggesting changes in endothelial NO-cGMP pathway. In Phe precontracted vessels, ACh-induced relaxation was in Preg+sFlt-1 and RUPP < Preg, and in RUPP+PlGF > RUPP, and was blocked by N(ω)-nitro-l-arginine methyl ester (l-NAME) or ODQ treatment or endothelium removal. Western blots revealed that aortic total endothelial NOS (eNOS) and activated phosphorylated-eNOS were in Preg+sFlt-1 and RUPP < Preg and in RUPP+PlGF > RUPP. ACh-induced vascular nitrate/nitrite production was in Preg+sFlt-1 and RUPP < Preg, and in RUPP+PlGF > RUPP. Vascular relaxation to the exogenous NO donor sodium nitroprusside was not different among groups. Thus, a tilt in the angiogenic balance toward anti-angiogenic sFlt-1 is associated with decreased vascular relaxation and increased vasoconstriction and BP. Restoring the angiogenic/antiangiogenic balance using PlGF enhances endothelial NO-cGMP vascular relaxation and decreases vasoconstriction and BP in HTN-Preg rats and could offer a new approach in the management of PE.
Collapse
Affiliation(s)
- Minglin Zhu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Zongli Ren
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - José S Possomato-Vieira
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
54
|
Bianco K, Gormley M, Farrell J, Zhou Y, Oliverio O, Tilden H, McMaster M, Fisher SJ. Placental transcriptomes in the common aneuploidies reveal critical regions on the trisomic chromosomes and genome-wide effects. Prenat Diagn 2016; 36:812-22. [PMID: 27328057 DOI: 10.1002/pd.4862] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/12/2016] [Accepted: 06/17/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Chromosomal aberrations are frequently associated with birth defects and pregnancy losses. Trisomy 13, Trisomy 18 and Trisomy 21 are the most common, clinically relevant fetal aneusomies. This study used a transcriptomics approach to identify the molecular signatures at the maternal-fetal interface in each aneuploidy. METHODS We profiled placental gene expression (13-22 weeks) in T13 (n = 4), T18 (n = 4) and T21 (n = 8), and in euploid pregnancies (n = 4). RESULTS We found differentially expressed transcripts (≥2-fold) in T21 (n = 160), T18 (n = 80) and T13 (n = 125). The majority were upregulated and most of the misexpressed genes were not located on the relevant trisomic chromosome, suggesting genome-wide dysregulation. A smaller number of the differentially expressed transcripts were encoded on the trisomic chromosome, suggesting gene dosage. In T21, <10% of the genes were transcribed from the Down syndrome critical region (21q21-22), which contributes to the clinical phenotype. In T13, 15% of the upregulated genes were on the affected chromosome (13q11-14), and in T18, the percentage increased to 24% (18q11-22 region). CONCLUSION The trisomic placental (and possibly fetal) phenotypes are driven by the combined effects of genome-wide phenomena and increased gene dosage from the trisomic chromosome. © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Gormley
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Jason Farrell
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Yan Zhou
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Oliver Oliverio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Hannah Tilden
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA.,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Michael McMaster
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Susan J Fisher
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA. .,Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA. .,The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| |
Collapse
|
55
|
Possomato-Vieira JS, Khalil RA. Mechanisms of Endothelial Dysfunction in Hypertensive Pregnancy and Preeclampsia. ADVANCES IN PHARMACOLOGY 2016; 77:361-431. [PMID: 27451103 DOI: 10.1016/bs.apha.2016.04.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension and could lead to maternal and fetal morbidity and mortality. Although the causative factors and pathophysiological mechanisms are unclear, endothelial dysfunction is a major hallmark of preeclampsia. Clinical tests and experimental research have suggested that generalized endotheliosis in the systemic, renal, cerebral, and hepatic circulation could decrease endothelium-derived vasodilators such as nitric oxide, prostacyclin, and hyperpolarization factor and increase vasoconstrictors such as endothelin-1 and thromboxane A2, leading to increased vasoconstriction, hypertension, and other manifestation of preeclampsia. In search for the upstream mechanisms that could cause endothelial dysfunction, certain genetic, demographic, and environmental risk factors have been suggested to cause abnormal expression of uteroplacental integrins, cytokines, and matrix metalloproteinases, leading to decreased maternal tolerance, apoptosis of invasive trophoblast cells, inadequate spiral arteries remodeling, reduced uterine perfusion pressure (RUPP), and placental ischemia/hypoxia. RUPP may cause imbalance between the antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endoglin and the proangiogenic factors vascular endothelial growth factor and placental growth factor, or stimulate the release of other circulating bioactive factors such as inflammatory cytokines, hypoxia-inducible factor-1, reactive oxygen species, and angiotensin AT1 receptor agonistic autoantibodies. These circulating factors could then target endothelial cells and cause generalized endothelial dysfunction. Therapeutic options are currently limited, but understanding the factors involved in endothelial dysfunction could help design new approaches for prediction and management of preeclampsia.
Collapse
Affiliation(s)
- J S Possomato-Vieira
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|