51
|
Sugimoto K, Chiba H. The claudin-transcription factor signaling pathway. Tissue Barriers 2021; 9:1908109. [PMID: 33906582 PMCID: PMC8489944 DOI: 10.1080/21688370.2021.1908109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Claudins (CLDNs) represent major transmembrane proteins of tight junctions and contribute to the barrier function. They also serve as anchors for several signaling proteins, but the underlying molecular basis has yet to be established. The present review covers the recent progress in our understanding of the CLDN signaling pathway in health and disease. We discuss the functional relevance of phosphotyrosine motifs in the C-terminal cytoplasmic domain of CLDNs and define mutual regulation between CLDNs and Src-family kinases (SFKs). In addition, we focus on the crosstalk between CLDN and transcription factor signaling. We also describe how aberrant CLDN–transcription factor signaling promotes or inhibits cancer progression. We propose that a link between various cell adhesion molecules and transcription factors coordinates a range of physiological and pathological events via activation or suppression of target genes.
Collapse
Affiliation(s)
- Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
52
|
Britt EA, Gitau V, Saha A, Williamson AP. Modular Organization of Engulfment Receptors and Proximal Signaling Networks: Avenues to Reprogram Phagocytosis. Front Immunol 2021; 12:661974. [PMID: 33953723 PMCID: PMC8092387 DOI: 10.3389/fimmu.2021.661974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
Transmembrane protein engulfment receptors expressed on the surface of phagocytes engage ligands on apoptotic cells and debris to initiate a sequence of events culminating in material internalization and immunologically beneficial outcomes. Engulfment receptors are modular, comprised of functionally independent extracellular ligation domains and cytosolic signaling motifs. Cognate kinases, adaptors, and phosphatases regulate engulfment by controlling the degree of receptor activation in phagocyte plasma membranes, thus acting as receptor-proximal signaling modules. Here, we review recent efforts to reprogram phagocytes using modular synthetic receptors composed of antibody-based extracellular domains fused to engulfment receptor signaling domains. To aid the development of new phagocyte reprogramming methods, we then define the kinases, adaptors, and phosphatases that regulate a conserved family of engulfment receptors. Finally, we discuss current challenges and opportunities for the field.
Collapse
Affiliation(s)
- Emily A Britt
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Vanessa Gitau
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Amara Saha
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Adam P Williamson
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA, United States
| |
Collapse
|
53
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
54
|
Kour J, Kohli SK, Khanna K, Bakshi P, Sharma P, Singh AD, Ibrahim M, Devi K, Sharma N, Ohri P, Skalicky M, Brestic M, Bhardwaj R, Landi M, Sharma A. Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:608061. [PMID: 33841453 PMCID: PMC8024700 DOI: 10.3389/fpls.2021.608061] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/27/2021] [Indexed: 05/05/2023]
Abstract
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Collapse
Affiliation(s)
- Jaspreet Kour
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Sukhmeen Kaur Kohli
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Palak Bakshi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pooja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Mohd Ibrahim
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kamini Devi
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovakia
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
55
|
Liu A, Zhou J, Bi X, Hou G, Li SS, Chen Q, Xu H, Cao X. Aptamer-SH2 superbinder-based targeted therapy for pancreatic ductal adenocarcinoma. Clin Transl Med 2021; 11:e337. [PMID: 33783993 PMCID: PMC7908048 DOI: 10.1002/ctm2.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) exhibits the poorest prognosis of all solid tumors with a 5-year survival rate of less than 10% and a median survival of 6 months after diagnosis. Numerous targeted agents have been developed and evaluated to improve the survival benefit in patients with PDAC. Unfortunately, most agents have been proven futile mainly owing to the dense stroma and the sophisticated signaling pathways of PDAC. Here, we show the potent effectiveness of Aptamer-SH2 superbinder-(Arg)9 conjugate on the treatment of PDAC. In this conjugate, DNA aptamer selected against PDAC cell line confers the function of specifically recognizing and binding to the PDAC cells and activated pancreatic stellate cells (PSCs) in stroma; cell penetrating peptide (Arg)9 facilitates the intracellular delivery of fused proteins; SH2 superbinder conducts the drastic blockade of multiple phosphotyrosines (pY)-based signaling pathways in tumor cells. METHODS PDAC-associated pY were reanalyzed by bioinformatics screen. XQ-2d and SH2 superbinder-(Arg)9 were crosslinked with BMH to form XQ-2d-SH2 CM-(Arg)9 conjugate. Immunofluorescence was utilized to assess the potency of the conjugate entering cells. MTT and wound healing assays were performed to evaluate the proliferation or migration of PANC-1 and BxPC-3 cells, respectively. Western blot and Pulldown assays revealed that conjugate influenced several pY-based signaling pathways. Tumor-bearing mice were used to validate XQ-2d-SH2 CM-(Arg)9, which restrained the growth and metastasis of cancer cells. RESULTS XQ-2d-His-SH2 CM-(Arg)9 conjugate restrained proliferation, invasion, and metastasis of PDAC cells with potent efficacy via blocking the activity of several pY-related signaling cascades. XQ-2d-His-SH2 CM-(Arg)9 could eliminate the dense stroma of PDAC and then arrive at tumor tissues. CONCLUSIONS XQ-2d-SH2 CM-(Arg)9 conjugate may efficiently destroy the pancreatic stroma and show potent antitumor efficacy with minimal toxic effect by regulating tumor cell proliferation and metastasis in vitro and in vivo, which makes it to be a promising targeted therapy of PDAC.
Collapse
Affiliation(s)
- An‐Dong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Xiao‐Yang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Guo‐Qing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Shawn Shun‐Cheng Li
- Department of Biochemistry, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Qing Chen
- Department of Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Hui Xu
- Ultrastructural Pathology Laboratory, Department of Pathology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
| |
Collapse
|
56
|
Xue B, Jordan B, Rizvi S, Naegle KM. KinPred: A unified and sustainable approach for harnessing proteome-level human kinase-substrate predictions. PLoS Comput Biol 2021; 17:e1008681. [PMID: 33556051 PMCID: PMC7895412 DOI: 10.1371/journal.pcbi.1008681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Tyrosine and serine/threonine kinases are essential regulators of cell processes and are important targets for human therapies. Unfortunately, very little is known about specific kinase-substrate relationships, making it difficult to infer meaning from dysregulated phosphoproteomic datasets or for researchers to identify possible kinases that regulate specific or novel phosphorylation sites. The last two decades have seen an explosion in algorithms to extrapolate from what little is known into the larger unknown-predicting kinase relationships with site-specific substrates using a variety of approaches that include the sequence-specificity of kinase catalytic domains and various other factors, such as evolutionary relationships, co-expression, and protein-protein interaction networks. Unfortunately, a number of limitations prevent researchers from easily harnessing these resources, such as loss of resource accessibility, limited information in publishing that results in a poor mapping to a human reference, and not being updated to match the growth of the human phosphoproteome. Here, we propose a methodological framework for publishing predictions in a unified way, which entails ensuring predictions have been run on a current reference proteome, mapping the same substrates and kinases across resources to a common reference, filtering for the human phosphoproteome, and providing methods for updating the resource easily in the future. We applied this framework on three currently available resources, published in the last decade, which provide kinase-specific predictions in the human proteome. Using the unified datasets, we then explore the role of study bias, the emergent network properties of these predictive algorithms, and comparisons within and between predictive algorithms. The combination of the code for unification and analysis, as well as the unified predictions are available under the resource we named KinPred. We believe this resource will be useful for a wide range of applications and establishes best practices for long-term usability and sustainability for new and existing predictive algorithms.
Collapse
Affiliation(s)
- Bingjie Xue
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Benjamin Jordan
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Saqib Rizvi
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kristen M. Naegle
- Department of Biomedical Engineering and the Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
57
|
Low molecular weight protein tyrosine phosphatase (LMW-PTP2) protein can potentially modulate virulence of the parasite Entamoeba histolytica. Mol Biochem Parasitol 2021; 242:111360. [PMID: 33428948 DOI: 10.1016/j.molbiopara.2021.111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
The Entamoeba histolytica parasite is the causative agent of amebiasis, infecting approximately 1% of the world population and causing 100,000 deaths per year. It binds to Fibronectin (FN), activating signaling pathways regulated by kinases and phosphatases. EhLMW-PTPs genes from E. histolytica encode for Low Molecular Weight Tyrosine Phosphatases expressed in trophozoites and amoebic cysts. The role of these phosphatases in the virulence of the parasite has not yet been well characterized. Our results showed a differential expression of the EhLMW-PTPs, at the mRNA and protein levels, in an asynchronous trophozoites culture. Furthermore, we observed that trophozoites transfected that overexpressed EhLMW-PTP2 phagocytized fewer erythrocytes, possibly due to decreased phagocytic cups, and showed deficiencies in adherence to FN and less cytopathic effect. These analyzes suggest that the parasite's EhLMW-PTPs have an essential role in the mechanisms of proliferation, adhesion, and phagocytosis, regulating its pathogenicity.
Collapse
|
58
|
Bustos F, Segarra-Fas A, Nardocci G, Cassidy A, Antico O, Davidson L, Brandenburg L, Macartney TJ, Toth R, Hastie CJ, Moran J, Gourlay R, Varghese J, Soares RF, Montecino M, Findlay GM. Functional Diversification of SRSF Protein Kinase to Control Ubiquitin-Dependent Neurodevelopmental Signaling. Dev Cell 2020; 55:629-647.e7. [PMID: 33080171 PMCID: PMC7725506 DOI: 10.1016/j.devcel.2020.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/17/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023]
Abstract
Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. The Ser/Arg (SR)-rich splicing factor (SRSF) protein kinase (SRPK), which is implicated in splicing regulation, is one such conserved eukaryotic kinase. Surprisingly, we show that SRPK has acquired the capacity to control a neurodevelopmental ubiquitin signaling pathway. In mammalian embryonic stem cells and cultured neurons, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of nuclear transcription factor substrates, thereby acting to restrain a neural gene expression program that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signaling that ensures correct regulation of neurodevelopmental gene expression.
Collapse
Affiliation(s)
- Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Gino Nardocci
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Odetta Antico
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Lindsay Davidson
- School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Lennart Brandenburg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - C James Hastie
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Jennifer Moran
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Robert Gourlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Joby Varghese
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Renata F Soares
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK
| | - Martin Montecino
- Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, the University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
59
|
Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites. Bioorg Chem 2020; 106:104480. [PMID: 33279245 DOI: 10.1016/j.bioorg.2020.104480] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/27/2020] [Accepted: 11/15/2020] [Indexed: 12/17/2022]
Abstract
New annulated pyrano[2,3-d]pyrimidine derivatives were synthesized with hydroxyl, methoxy, bromine, nitrile and nitro substituents on its skeleton. The correlated electronic effect of substituents on the magnitude of antibacterial activity was noted. The electron donating substituents (namely; 4-OH, 4-OCH3, 4-Br) and electron withdrawing substituents (4-NO2) on phenyl ring in the pyrano[2,3-d]pyrimidine skeleton exerted different influence on its antimicrobial activity against some Gram-positive and Gram-negative bacteria such as Pseudomonas aureus, E. coli, Staphylococcus aureus, Klebsiella pneumonia and Bacillus cereus. All the pyrano[2,3-d]pyrimidines were characterized by spectroscopic analyses. Antibacterial screening revealed that the presence of heteroaryl, cyano and amino groups on pyrano[2,3-d]pyrimidine skeleton increases its penetrating power on the bacterial cell wall so that the product becomes more biologically active. So the the nature of electron withdrawing or electro-donnor Impact of substituents should be taken in consideration in drug design. Hydrolysis of -CRN to amide restored vital Intramolecular interaction like ortho-nitrophenyl and ONOδ-…NHδ+/amide link, offering a crucial template for antibacterial NH, HO-pharmacophore sites, which ultimately elevated innate antimicrobial profiles. POM combinatorial analysis of tangible electronic contributions due to armed annulated pyrano[2,3-d]pyrimidines concluded their broad antimicrobial activity and viable/prominent drug score index through perspective parameters particularly: inter atomic distance/linkers, steric, electronic, polar parameters, and with a different polarising effect of electron donating/withdrawing environments of substituents. Furthermore, an anti-Kinase pharmacophore site (OCNHCO) was evaluated in continuation of the POM investigations. All synthesized products verified fewer side effects than standard streptomycin, but facile implication in selective cancer media (viz. breast or leucemia still needs to be screened).
Collapse
|
60
|
Borowicz P, Chan H, Hauge A, Spurkland A. Adaptor proteins: Flexible and dynamic modulators of immune cell signalling. Scand J Immunol 2020; 92:e12951. [DOI: 10.1111/sji.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Hanna Chan
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anette Hauge
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Anne Spurkland
- Department of Molecular Medicine Institute of Basic Medical Sciences University of Oslo Oslo Norway
| |
Collapse
|
61
|
Ahn S, Jung H, Kee JM. Quest for the Crypto-phosphoproteome. Chembiochem 2020; 22:319-325. [PMID: 33094900 DOI: 10.1002/cbic.202000583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
Protein phosphorylation is one of the most studied post-translational modifications (PTMs). Despite the remarkable advances in phosphoproteomics, a chemically less-stable subset of the phosphosites, which we call the crypto-phosphoproteome, has remained underexplored due to technological challenges. In this Viewpoint, we briefly summarize the current understanding of these elusive protein phosphorylations and identify the missing pieces for future studies.
Collapse
Affiliation(s)
- Seungmin Ahn
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hoyoung Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Jung-Min Kee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| |
Collapse
|
62
|
Lee MF, Trotman LC. PTEN: Bridging Endocytosis and Signaling. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036103. [PMID: 31818848 DOI: 10.1101/cshperspect.a036103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The transduction of signals in the PTEN/PI3-kinase (PI3K) pathway is built around a phosphoinositide (PIP) lipid messenger, phosphatidylinositol trisphosphate, PI(3,4,5)P3 or PIP3 Another, more ancient role of this family of messengers is the control of endocytosis, where a handful of separate PIPs act like postal codes. Prominent among them is PI(3)P, which helps to ensure that endocytic vesicles, their cargo, and membranes themselves reach their correct destinations. Traditionally, the cancer and the endocytic functions of the PI3K signaling pathway have been studied by cancer and membrane biologists, respectively, with some notable but overall minimal overlap. Modern microscopy has enabled monitoring of the PTEN/PI3K pathway in action. Here, we explore the flurry of groundbreaking concepts emerging from those efforts. The discovery that PTEN contains an autonomous PI(3)P reader domain, fused to the catalytic PIP3 eraser domain has prompted us to explore the relationship between PI3K signaling and endocytosis. This revealed how PTEN can achieve signal termination in a precisely controlled fashion, because endocytosis can package the PIP3 signal into discrete units that PTEN will erase. We explore how PTEN can bridge the worlds of endocytosis and PI3K signaling and discuss progress on how PI3K/AKT signaling can be acting from internal membranes. We discuss how the PTEN/PI3K system for growth control may have emerged from principles of endocytosis, and how this development could have affected the evolution of multicellular organisms.
Collapse
Affiliation(s)
- Matthew F Lee
- Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | - Lloyd C Trotman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
63
|
Zhou XX, Bracken CJ, Zhang K, Zhou J, Mou Y, Wang L, Cheng Y, Leung KK, Wells JA. Targeting Phosphotyrosine in Native Proteins with Conditional, Bispecific Antibody Traps. J Am Chem Soc 2020; 142:17703-17713. [PMID: 32924468 DOI: 10.1021/jacs.0c08458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineering sequence-specific antibodies (Abs) against phosphotyrosine (pY) motifs embedded in folded polypeptides remains highly challenging because of the stringent requirement for simultaneous recognition of the pY motif and the surrounding folded protein epitope. Here, we present a method named phosphotyrosine Targeting by Recombinant Ab Pair, or pY-TRAP, for in vitro engineering of binders for native pY proteins. Specifically, we create the pY protein by unnatural amino acid misincorporation, mutagenize a universal pY-binding Ab to create a first binder B1 for the pY motif on the pY protein, and then select against the B1-pY protein complex for a second binder B2 that recognizes the composite epitope of B1 and the pY-containing protein complex. We applied pY-TRAP to create highly specific binders to folded Ub-pY59, a rarely studied Ub phosphoform exclusively observed in cancerous tissues, and ZAP70-pY248, a kinase phosphoform regulated in feedback signaling pathways in T cells. The pY-TRAPs do not have detectable binding to wild-type proteins or to other pY peptides or proteins tested. This pY-TRAP approach serves as a generalizable method for engineering sequence-specific Ab binders to native pY proteins.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Jie Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States.,Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
64
|
Li M, Xiong Y, Lu W, Wang X, Liu Y, Na B, Qin H, Tang M, Qin H, Ye M, Liang X, Qing G. Functional Nanochannels for Sensing Tyrosine Phosphorylation. J Am Chem Soc 2020; 142:16324-16333. [PMID: 32894673 DOI: 10.1021/jacs.0c06510] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tyrosine phosphorylation (pTyr), much of which occurred on localized multiple sites, initiates cellular signaling, governs cellular functions, and its dysregulation is implicated in many diseases, especially cancers. pTyr-specific sensing is of great significance for understanding disease states and developing targeted anticancer drugs, however, it is very challenging due to the slight difference from serine (pSer) or threonine phosphorylation (pThr). Here we present polyethylenimine-g-phenylguanidine (PEI-PG)-modified nanochannels that can address the challenge. Rich guanidinium groups enabled PEI-PG to form multiple interactions with phosphorylated residues, especially pTyr residue, which triggered the conformational change of PEI-PG. By taking advantage of the "OFF-ON" change of the ion flux arising from the conformational shrinkage of the grafted PEI-PG, the nanochannels could distinguish phosphorylated peptide (PP) from nonmodified peptide, recognize PPs with pSer, pThr, or pTyr residue and PPs with different numbers of identical residues, and importantly could sense pTyr peptides in a biosample. Benefiting from the strong interaction between the guanidinium group and the pTyr side-chain, the specific sensing of pTyr peptide was achieved by performing a simple logic operation based on PEI-PG-modified nanochannels when Ca2+ was introduced as an interferent. The excellent pTyr sensing capacity makes the nanochannels available for real-time monitoring of the pTyr process by c-Abl kinase on a peptide substrate, even under complicated conditions, and the proof-of-concept study of monitoring the kinase activity demonstrates its potential in kinase inhibitor screening.
Collapse
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
65
|
Miller WT. Temperature sensitivities of metazoan and pre-metazoan Src kinases. Biochem Biophys Rep 2020; 23:100775. [PMID: 32566764 PMCID: PMC7298416 DOI: 10.1016/j.bbrep.2020.100775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
Homologous enzymes from different species display functional characteristics that correlate with the physiological and environmental temperatures encountered by the organisms. In this study, we have investigated the temperature sensitivity of the nonreceptor tyrosine kinase Src. We compared the temperature dependencies of c-Src and two Src kinases from single-celled eukaryotes, the choanoflagellate Monosiga brevicollis and the filasterean Capsaspora owczarzaki. Metazoan c-Src exhibits temperature sensitivity, with high activity at 30 °C and 37 °C. This sensitivity is driven by changes in substrate binding as well as maximal velocity, and it is dependent on the amino acid sequence surrounding tyrosine in the substrate. When tested with a peptide that displays temperature-dependent phosphorylation by c-Src, the enzymatic rates for the unicellular Src kinases show much less variation over the temperatures tested. The data demonstrate that unicellular Src kinases are temperature compensated relative to metazoan c-Src, consistent with an evolutionary adaptation to their environments.
Collapse
Affiliation(s)
- W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Veterans Affairs Medical Center, Northport, NY, 11768, USA
| |
Collapse
|
66
|
Li L, Liu D, Liu A, Li J, Wang H, Zhou J. Genomic Survey of Tyrosine Kinases Repertoire in Electrophorus electricus With an Emphasis on Evolutionary Conservation and Diversification. Evol Bioinform Online 2020; 16:1176934320922519. [PMID: 32546936 PMCID: PMC7249569 DOI: 10.1177/1176934320922519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/07/2020] [Indexed: 12/05/2022] Open
Abstract
Tyrosine kinases (TKs) play key roles in the regulation of multicellularity in
organisms and involved primarily in cell growth, differentiation, and
cell-to-cell communication. Genome-wide characterization of TKs has been
conducted in many metazoans; however, systematic information regarding this
superfamily in Electrophorus electricus (electric eel) is still
lacking. In this study, we identified 114 TK genes in the E
electricus genome and investigated their evolution, molecular
features, and domain architecture using phylogenetic profiling to gain a better
understanding of their similarities and specificity. Our results suggested that
the electric eel TK (EeTK) repertoire was shaped by whole-genome duplications
(WGDs) and tandem duplication events. Compared with other vertebrate TKs, gene
members in Jak, Src, and EGFR subfamily duplicated specifically, but with
members lost in Eph, Axl, and Ack subfamily in electric eel. We also conducted
an exhaustive survey of TK genes in genomic databases, identifying 1674 TK
proteins in 31 representative species covering all the main metazoan lineages.
Extensive evolutionary analysis indicated that TK repertoire in vertebrates
tended to be remarkably conserved, but the gene members in each subfamily were
very variable. Comparative expression profile analysis showed that electric
organ tissues and muscle shared a similar pattern with specific highly expressed
TKs (ie, epha7, musk, jak1, and pdgfra), suggesting that regulation of TKs might
play an important role in specifying an electric organ identity from its muscle
precursor. We further identified TK genes exhibiting tissue-specific expression
patterns, indicating that members in TKs participated in subfunctionalization
representing an evolutionary divergence required for the performance of
different tissues. This work generates valuable information for further gene
function analysis and identifying candidate TK genes reflecting their unique
tissue-function specializations in electric eel.
Collapse
Affiliation(s)
- Ling Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Dangyun Liu
- Department of Central Laboratory, The Affiliated Huaian No.1 People's Hospital, Nanjing Medical University, Huai'an, P.R. China
| | - Ake Liu
- Faculty of Biological Science and Technology, Changzhi University, Changzhi, P.R. China
| | - Jingquan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Hui Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Jingqi Zhou
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
67
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
68
|
Guo Y, Ning W, Jiang P, Lin S, Wang C, Tan X, Yao L, Peng D, Xue Y. GPS-PBS: A Deep Learning Framework to Predict Phosphorylation Sites that Specifically Interact with Phosphoprotein-Binding Domains. Cells 2020; 9:cells9051266. [PMID: 32443803 PMCID: PMC7290655 DOI: 10.3390/cells9051266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation is essential for regulating cellular activities by modifying substrates at specific residues, which frequently interact with proteins containing phosphoprotein-binding domains (PPBDs) to propagate the phosphorylation signaling into downstream pathways. Although massive phosphorylation sites (p-sites) have been reported, most of their interacting PPBDs are unknown. Here, we collected 4458 known PPBD-specific binding p-sites (PBSs), considerably improved our previously developed group-based prediction system (GPS) algorithm, and implemented a deep learning plus transfer learning strategy for model training. Then, we developed a new online service named GPS-PBS, which can hierarchically predict PBSs of 122 single PPBD clusters belonging to two groups and 16 families. By comparison, GPS-PBS achieved a highly competitive accuracy against other existing tools. Using GPS-PBS, we predicted 371,018 mammalian p-sites that potentially interact with at least one PPBD, and revealed that various PPBD-containing proteins (PPCPs) and protein kinases (PKs) can simultaneously regulate the same p-sites to orchestrate important pathways, such as the PI3K-Akt signaling pathway. Taken together, we anticipate GPS-PBS can be a great help for further dissecting phosphorylation signaling networks.
Collapse
Affiliation(s)
- Yaping Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Peiran Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaofeng Lin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiaodan Tan
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lan Yao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
69
|
Guo Y, Peng D, Zhou J, Lin S, Wang C, Ning W, Xu H, Deng W, Xue Y. iEKPD 2.0: an update with rich annotations for eukaryotic protein kinases, protein phosphatases and proteins containing phosphoprotein-binding domains. Nucleic Acids Res 2020; 47:D344-D350. [PMID: 30380109 PMCID: PMC6324023 DOI: 10.1093/nar/gky1063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
Here, we described the updated database iEKPD 2.0 (http://iekpd.biocuckoo.org) for eukaryotic protein kinases (PKs), protein phosphatases (PPs) and proteins containing phosphoprotein-binding domains (PPBDs), which are key molecules responsible for phosphorylation-dependent signalling networks and participate in the regulation of almost all biological processes and pathways. In total, iEKPD 2.0 contained 197 348 phosphorylation regulators, including 109 912 PKs, 23 294 PPs and 68 748 PPBD-containing proteins in 164 eukaryotic species. In particular, we provided rich annotations for the regulators of eight model organisms, especially humans, by compiling and integrating the knowledge from 100 widely used public databases that cover 13 aspects, including cancer mutations, genetic variations, disease-associated information, mRNA expression, DNA & RNA elements, DNA methylation, molecular interactions, drug-target relations, protein 3D structures, post-translational modifications, protein expressions/proteomics, subcellular localizations and protein functional annotations. Compared with our previously developed EKPD 1.0 (∼0.5 GB), iEKPD 2.0 contains ∼99.8 GB of data with an ∼200-fold increase in data volume. We anticipate that iEKPD 2.0 represents a more useful resource for further study of phosphorylation regulators.
Collapse
Affiliation(s)
- Yaping Guo
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Di Peng
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqi Zhou
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shaofeng Lin
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chenwei Wang
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wanshan Ning
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haodong Xu
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wankun Deng
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Xue
- Department of Bioinformatics & Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
70
|
Kim M, Morales LD, Lee CJ, Olivarez SA, Kim WJ, Hernandez J, Mummidi S, Jenkinson C, Tsin AT, Jang IS, Slaga TJ, Kim DJ. Overexpression of TC-PTP in murine epidermis attenuates skin tumor formation. Oncogene 2020; 39:4241-4256. [PMID: 32286519 PMCID: PMC7244373 DOI: 10.1038/s41388-020-1282-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
T-cell protein tyrosine phosphatase (TC-PTP), encoded by Ptpn2, has been shown to function as a tumor suppressor during skin carcinogenesis. In the current study, we generated a novel epidermal-specific TC-PTP-overexpressing (K5HA.Ptpn2) mouse model to show that TC-PTP contributes to the attenuation of chemically induced skin carcinogenesis through the synergistic regulation of STAT1, STAT3, STAT5, and PI3K/AKT signaling. We found overexpression of TC-PTP increased epidermal sensitivity to DMBA-induced apoptosis and it decreased TPA-mediated hyperproliferation, coinciding with reduced epidermal thickness. Inhibition of STAT1, STAT3, STAT5, or AKT reversed the effects of TC-PTP overexpression on epidermal survival and proliferation. Mice overexpressing TC-PTP in the epidermis developed significantly reduced numbers of tumors during skin carcinogenesis and presented a prolonged latency of tumor initiation. Examination of human papillomas and squamous cell carcinomas (SCCs) revealed that TC-PTP expression was significantly reduced and TC-PTP expression was inversely correlated with the increased grade of SCCs. Our findings demonstrate that TC-PTP is a potential therapeutic target for the prevention of human skin cancer given that it is a major negative regulator of oncogenic signaling.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Liza D Morales
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Cheol Jung Lee
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Serena A Olivarez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Woo Jin Kim
- School of Mathematical and Statistical Sciences, College of Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Joselin Hernandez
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Srinivas Mummidi
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Christopher Jenkinson
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Andrew T Tsin
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Ik-Soon Jang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon, 305-333, Republic of Korea
| | - Thomas J Slaga
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Dae Joon Kim
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA.
| |
Collapse
|
71
|
Tu Y, Liu H, Shi G, Zhang F, Su T, Wu Y, Sun J, Zhang L, Zhang S, Fang H. Selectivity mechanism of magnesium and calcium in cation-binding pocket structures of phosphotyrosine. Phys Rev E 2020; 101:022410. [PMID: 32168574 DOI: 10.1103/physreve.101.022410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/27/2020] [Indexed: 11/07/2022]
Abstract
Magnesium (Mg^{2+}) and calcium (Ca^{2+}) are of essential importance in biological activity, but the molecular understanding of their selectivity is still lacking. Here, based on density functional theory calculations and ab initio molecular dynamics simulations, we show that Mg^{2+} binds more tightly to phosphotyrosine (pTyr) and stabilizes the conformation of pTyr, while Ca^{2+} binds more flexibly to pTyr with less structural stability. The key for the selectivity is attributed to the cation-π interactions between the hydrated cations and the aromatic ring together with the synergic interaction between the cations and the side groups in pTyr to form a cation-binding pocket structure, which we refer as side-group-synergetic hydrated cation-π interaction. The existence and relative strength of the cation-π interactions in the pocket structures as well as their structural stability have been demonstrated experimentally with ultraviolet (UV) absorption spectra and ^{1}H NMR spectra. The findings offer insight into understanding the selectivity of Mg^{2+} and Ca^{2+} in a variety of biochemical and physiological essential processes.
Collapse
Affiliation(s)
- Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China.,Key Laboratory of Polar Materials and Devices, Ministry of Education, College of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China
| | - Fengmin Zhang
- Testing Center, Yangzhou University, Jiangsu 225009, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanyan Wu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiajia Sun
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haiping Fang
- Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,School of Science, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
72
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
73
|
Arribas-Hernández L, Brodersen P. Occurrence and Functions of m 6A and Other Covalent Modifications in Plant mRNA. PLANT PHYSIOLOGY 2020; 182:79-96. [PMID: 31748418 PMCID: PMC6945878 DOI: 10.1104/pp.19.01156] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 05/07/2023]
Abstract
Posttranscriptional control of gene expression is indispensable for the execution of developmental programs and environmental adaptation. Among the many cellular mechanisms that regulate mRNA fate, covalent nucleotide modification has emerged as a major way of controlling the processing, localization, stability, and translatability of mRNAs. This powerful mechanism is conserved across eukaryotes and controls the cellular events that lead to development and growth. As in other eukaryotes, N 6-methylation of adenosine is the most abundant and best studied mRNA modification in flowering plants. It is essential for embryonic and postembryonic plant development and it affects growth rate and stress responses, including susceptibility to plant RNA viruses. Although the mRNA modification field is young, the intense interest triggered by its involvement in stem cell differentiation and cancer has led to rapid advances in understanding how mRNA modifications control gene expression in mammalian systems. An equivalent effort from plant molecular biologists has been lagging behind, but recent work in Arabidopsis (Arabidopsis thaliana) and other plant species is starting to give insights into how this essential layer of posttranscriptional regulation works in plants, and both similarities and differences with other eukaryotes are emerging. In this Update, we summarize, connect, and evaluate the experimental work that supports our current knowledge of the biochemistry, molecular mechanisms, and biological functions of mRNA modifications in plants. We devote particular attention to N 6-methylation of adenosine and attempt to place the knowledge gained from plant studies within the context of a more general framework derived from studies in other eukaryotes.
Collapse
Affiliation(s)
| | - Peter Brodersen
- University of Copenhagen, Department of Biology, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
74
|
Arbesú M, Pons M. Integrating disorder in globular multidomain proteins: Fuzzy sensors and the role of SH3 domains. Arch Biochem Biophys 2019; 677:108161. [PMID: 31678340 DOI: 10.1016/j.abb.2019.108161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/20/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
Intrinsically disordered proteins represent about one third of eukaryotic proteins. An additional third correspond to proteins containing folded domains as well as large intrinsically disordered regions (IDR). While IDRs may represent functionally autonomous domains, in some instances it has become clear that they provide a new layer of regulation for the activity displayed by the folded domains. The sensitivity of the conformational ensembles defining the properties of IDR to small changes in the cellular environment and the capacity to modulate this response through post-translational modifications makes IDR ideal sensors enabling continuous, integrative responses to complex cellular inputs. Folded domains (FD), on the other hand, are ideal effectors, e.g. by catalyzing enzymatic reactions or participating in binary on/off switches. In this perspective review we discuss the possible role of intramolecular fuzzy complexes to integrate the very different dynamic scales of IDR and FD, inspired on the recent observations of such dynamic complexes in Src family kinases, and we explore the possible general role of the SH3 domains connecting IDRs and FD.
Collapse
Affiliation(s)
- Miguel Arbesú
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain
| | - Miquel Pons
- Biomolecular NMR laboratory. Department of Inorganic and Organic Chemistry. University of Barcelona, Baldiri Reixac, 10-12, 08028, Barcelona, Spain.
| |
Collapse
|
75
|
Morales LD, Archbold AK, Olivarez S, Slaga TJ, DiGiovanni J, Kim DJ. The role of T-cell protein tyrosine phosphatase in epithelial carcinogenesis. Mol Carcinog 2019; 58:1640-1647. [PMID: 31264291 PMCID: PMC6692238 DOI: 10.1002/mc.23078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
T-cell protein tyrosine phosphatase (TC-PTP, encoded by PTPN2) is a nonreceptor PTP that is most highly expressed in hematopoietic tissues. TC-PTP modulates a variety of physiological functions including cell cycle progression, cell survival and proliferation, and hematopoiesis through tyrosine dephosphorylation of its target substrates, such as EGFR, JAK1, JAK3, STAT1, and STAT3. Studies with whole or tissue-specific loss of TC-PTP function transgenic mice have shown that TC-PTP has crucial roles in the regulation of the immune response, insulin signaling, and oncogenic signaling. More recently, the generation of epidermal-specific TC-PTP-deficient mice for use in multistage skin carcinogenesis bioassays demonstrated that TC-PTP suppresses skin tumor formation by negatively regulating STAT3 and AKT signaling. Further investigation showed that TC-PTP also minimizes UVB-induced epidermal cell damage by promoting apoptosis through the negative regulation of Flk-1/JNK signaling. These findings provide major evidence for a tumor suppressive function for TC-PTP against environment-induced skin cancer. Here, we will discuss TC-PTP, its substrates, and its functions with an emphasis on its role in skin carcinogenesis.
Collapse
Affiliation(s)
- Liza D. Morales
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Anna K. Archbold
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Serena Olivarez
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Thomas J. Slaga
- Department of Pharmacology, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - John DiGiovanni
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78723, USA
| | - Dae Joon Kim
- Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
- Department of Molecular Science, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| |
Collapse
|
76
|
Wang ZX, Zhou CX, Calderón-Mantilla G, Petsalaki E, He JJ, Song HY, Elsheikha HM, Zhu XQ. iTRAQ-Based Global Phosphoproteomics Reveals Novel Molecular Differences Between Toxoplasma gondii Strains of Different Genotypes. Front Cell Infect Microbiol 2019; 9:307. [PMID: 31508380 PMCID: PMC6716450 DOI: 10.3389/fcimb.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/01/2022] Open
Abstract
To gain insights into differences in the virulence among T. gondii strains at the post-translational level, we conducted a quantitative analysis of the phosphoproteome profile of T. gondii strains belonging to three different genotypes. Phosphopeptides from three strains, type I (RH strain), type II (PRU strain) and ToxoDB#9 (PYS strain), were enriched by titanium dioxide (TiO2) affinity chromatography and quantified using iTRAQ technology. A total of 1,441 phosphopeptides, 1,250 phosphorylation sites and 759 phosphoproteins were detected. In addition, 392, 298, and 436 differentially expressed phosphoproteins (DEPs) were identified in RH strain when comparing RH/PRU strains, in PRU strain when comparing PRU/PYS strains, and in PYS strain when comparing PYS/RH strains, respectively. Functional characterization of the DEPs using GO, KEGG, and STRING analyses revealed marked differences between the three strains. In silico kinase substrate motif analysis of the DEPs revealed three (RxxS, SxxE, and SxxxE), three (RxxS, SxxE, and SP), and five (SxxE, SP, SxE, LxRxxS, and RxxS) motifs in RH strain when comparing RH/PRU strains, in PRU strain when comparing PRU/PYS, and in PYS strain when comparing PYS/RH strains, respectively. This suggests that multiple overrepresented protein kinases including PKA, PKG, CKII, IKK, and MAPK could be involved in such a difference between T. gondii strains. Kinase associated network analysis showed that ROP5, ROP16, and cell-cycle-associated protein kinase CDK were the most connected kinase peptides. Our data reveal significant changes in the abundance of phosphoproteins between T. gondii genotypes, which explain some of the mechanisms that contribute to the virulence heterogeneity of this parasite.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hai-Yang Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
77
|
D'Orazio V, Stallone D, Samer S, Loffredo E, Cirulli M, Bruno GL. Phytotoxic metabolites produced by Verticillium dahliae Kleb. in olive wilting: a chemical and spectroscopic approach for their molecular characterisation. Nat Prod Res 2019; 35:1991-2001. [PMID: 31411049 DOI: 10.1080/14786419.2019.1652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Most of the symptoms associated with Verticillium wilt disease in olive cultivation are due to complexes excreted by Verticillium dahliae. In this study chemical and physico-chemical techniques were combined to investigate how the molecular structure of phytotoxins isolated from two pathotypes of Verticillium dahliae, defoliating, D, and non-defoliating, ND, grown on two different media, Verticillium-dahliae-Medium (VdM) and Simulated Xylem-fluid-Medium (SXM), can affect their aggressiveness. Data obtained highlight important structural differences, both in term of elemental composition and in functional groups distribution. Such peculiarities strongly affect their solubility, resulted higher for the phytotoxins from D pathotype. This property likely induces serious modifications of the conformational state of the proteinaceous component, making tyrosine residues accessible to the phosphate ion. A phosphorylation mechanism would thus be promoted, that is going to interfere with the function of the involved proteins in intracellular signalling networks, likely by altering its role in modulating the plant's response.
Collapse
Affiliation(s)
- Valeria D'Orazio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Domenico Stallone
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Sermani Samer
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Matteo Cirulli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| |
Collapse
|
78
|
Zheng Z, Chu B, Kong Q, Chen X, Ke M, Qin Y, Lu Y, Feng S, Tian R. High-Throughput Phosphotyrosine Protein Complexes Screening by Photoaffinity-Engineered Protein Scaffold-Based Forward-Phase Protein Array. Anal Chem 2019; 91:10026-10032. [PMID: 31282657 DOI: 10.1021/acs.analchem.9b01845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-abundance phosphotyrosine (pTyr)-mediated signaling protein complexes play critical roles in cancer signaling. The precise and comprehensive profiling of these pTyr-mediated protein complexes remains challenging because of their dynamic nature and weak binding affinity. Taking advantage of the SH2 domains modified with trifunctional chemical probes and genetic mutations (termed Photo-pTyr-scaffold), we developed a Photo-pTyr-scaffold-based forward-phase protein array that can be used to specifically capture complexes by developing an engineered SH2 domain, photoaffinity cross-linking, and antibody-based measuring weak pTyr-mediated protein complexes from complex biological samples in a 96-well microplate format. This platform demonstrated good precision for quantitation (R2 = 0.99) and high sensitivity by which only 5 μg of whole cell lysates is needed. We successfully applied the technology for profiling the dynamic EGF-stimulation-dependent EGFR signaling protein complexes across four different time courses (i.e., 0, 2, 5, 10, and 30 min) in a high-throughput manner. We further evaluated the modulation of EGFR-GRB2-SHC1 protein complexes by FDA-approved EGFR kinase inhibitor erlotinib, demonstrating the feasibility of this approach for high-throughput drug screening. The Photo-pTyr-scaffold-based forward-phase protein array could be generically applicable for exploring the dynamic pTyr signaling complexes in various biological systems and screening for related drugs in a high-throughput manner.
Collapse
Affiliation(s)
- Zhendong Zheng
- Key Laboratory of Oil Gas and Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , China.,Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Bizhu Chu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Qian Kong
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Xiong Chen
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Mi Ke
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yunqiu Qin
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Yi Lu
- Key Laboratory of Oil Gas and Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering , Xinjiang University , Urumqi 830046 , China
| | - Shun Feng
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , China
| | - Ruijun Tian
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research , Shenzhen 518055 , China
| |
Collapse
|
79
|
Mevizou R, Sirvent A, Roche S. Control of Tyrosine Kinase Signalling by Small Adaptors in Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11050669. [PMID: 31091767 PMCID: PMC6562749 DOI: 10.3390/cancers11050669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023] Open
Abstract
Tyrosine kinases (TKs) phosphorylate proteins on tyrosine residues as an intracellular signalling mechanism to coordinate intestinal epithelial cell communication and fate decision. Deregulation of their activity is ultimately connected with carcinogenesis. In colorectal cancer (CRC), it is still unclear how aberrant TK activities contribute to tumour formation because TK-encoding genes are not frequently mutated in this cancer. In vertebrates, several TKs are under the control of small adaptor proteins with potential important physiopathological roles. For instance, they can exert tumour suppressor functions in human cancer by targeting several components of the oncogenic TK signalling cascades. Here, we review how the Src-like adaptor protein (SLAP) and the suppressor of cytokine signalling (SOCS) adaptor proteins regulate the SRC and the Janus kinase (JAK) oncogenic pathways, respectively, and how their loss of function in the intestinal epithelium may influence tumour formation. We also discuss the potential therapeutic value of these adaptors in CRC.
Collapse
Affiliation(s)
- Rudy Mevizou
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Audrey Sirvent
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| | - Serge Roche
- CRBM, CNRS, Univ. Montpellier, "Equipe labellisée Ligue Contre le Cancer", F-34000 Montpellier, France.
| |
Collapse
|
80
|
Saga Y, Iwade Y, Araki T, Ishikawa M, Kawata T. Analysis of DrkA kinase's role in STATa activation. Genes Cells 2019; 24:422-435. [PMID: 31002205 DOI: 10.1111/gtc.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/28/2022]
Abstract
Dictyostelium STATa is a homologue of metazoan signal transducers and activators of transcription (STATs) and is important for morphogenesis. STATa is activated by phosphorylation on Tyr702 when cells are exposed to extracellular cAMP. Although two tyrosine kinase-like (TKL) proteins, Pyk2 and Pyk3, have been definitively identified as STATc kinases, no kinase is known for STATa activation. Based on homology to the previously identified tyrosine-selective TKLs, we identified DrkA, a member of the TKL family and the Dictyostelium receptor-like kinase (DRK) subfamily, as a candidate STATa kinase. The drkA gene is almost exclusively expressed in prestalk A (pstA) cells, where STATa is activated. Transient over-expression of DrkA increased STATa phosphorylation, although over-expression of the protein causes a severe growth defect and cell death. Furthermore, recombinant DrkA protein is auto-phosphorylated on tyrosine and threonine residues, and an in vitro kinase assay shows that DrkA can phosphorylate STATa on Tyr702 in a STATa-SH2 (phosphotyrosine binding) domain-dependent manner. These observations strongly suggest that DrkA is one of the key regulators of STATa tyrosine phosphorylation and is consistent with it being the kinase that directly activates STATa.
Collapse
Affiliation(s)
- Yukika Saga
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Yumi Iwade
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Tsuyoshi Araki
- Division of Cell and Developmental Biology, JBC/WTB/MSI Complex, School of Life Sciences, University of Dundee, Dundee, UK.,Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Megumi Ishikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| |
Collapse
|
81
|
Farnsworth RH, Karnezis T, Maciburko SJ, Mueller SN, Stacker SA. The Interplay Between Lymphatic Vessels and Chemokines. Front Immunol 2019; 10:518. [PMID: 31105685 PMCID: PMC6499173 DOI: 10.3389/fimmu.2019.00518] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/21/2022] Open
Abstract
Chemokines are a family of small protein cytokines that act as chemoattractants to migrating cells, in particular those of the immune system. They are categorized functionally as either homeostatic, constitutively produced by tissues for basal levels of cell migration, or inflammatory, where they are generated in association with a pathological inflammatory response. While the extravasation of leukocytes via blood vessels is a key step in cells entering the tissues, the lymphatic vessels also serve as a conduit for cells that are recruited and localized through chemoattractant gradients. Furthermore, the growth and remodeling of lymphatic vessels in pathologies is influenced by chemokines and their receptors expressed by lymphatic endothelial cells (LECs) in and around the pathological tissue. In this review we summarize the diverse role played by specific chemokines and their receptors in shaping the interaction of lymphatic vessels, immune cells, and other pathological cell types in physiology and disease.
Collapse
Affiliation(s)
- Rae H Farnsworth
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Tara Karnezis
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Simon J Maciburko
- Lymphatic and Regenerative Medicine Laboratory, O'Brien Institute Department, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Melbourne, VIC, Australia
| | - Steven A Stacker
- Tumor Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
82
|
Erickson KE, Rukhlenko OS, Shahinuzzaman M, Slavkova KP, Lin YT, Suderman R, Stites EC, Anghel M, Posner RG, Barua D, Kholodenko BN, Hlavacek WS. Modeling cell line-specific recruitment of signaling proteins to the insulin-like growth factor 1 receptor. PLoS Comput Biol 2019; 15:e1006706. [PMID: 30653502 PMCID: PMC6353226 DOI: 10.1371/journal.pcbi.1006706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 01/30/2019] [Accepted: 12/09/2018] [Indexed: 12/27/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) typically contain multiple autophosphorylation sites in their cytoplasmic domains. Once activated, these autophosphorylation sites can recruit downstream signaling proteins containing Src homology 2 (SH2) and phosphotyrosine-binding (PTB) domains, which recognize phosphotyrosine-containing short linear motifs (SLiMs). These domains and SLiMs have polyspecific or promiscuous binding activities. Thus, multiple signaling proteins may compete for binding to a common SLiM and vice versa. To investigate the effects of competition on RTK signaling, we used a rule-based modeling approach to develop and analyze models for ligand-induced recruitment of SH2/PTB domain-containing proteins to autophosphorylation sites in the insulin-like growth factor 1 (IGF1) receptor (IGF1R). Models were parameterized using published datasets reporting protein copy numbers and site-specific binding affinities. Simulations were facilitated by a novel application of model restructuration, to reduce redundancy in rule-derived equations. We compare predictions obtained via numerical simulation of the model to those obtained through simple prediction methods, such as through an analytical approximation, or ranking by copy number and/or KD value, and find that the simple methods are unable to recapitulate the predictions of numerical simulations. We created 45 cell line-specific models that demonstrate how early events in IGF1R signaling depend on the protein abundance profile of a cell. Simulations, facilitated by model restructuration, identified pairs of IGF1R binding partners that are recruited in anti-correlated and correlated fashions, despite no inclusion of cooperativity in our models. This work shows that the outcome of competition depends on the physicochemical parameters that characterize pairwise interactions, as well as network properties, including network connectivity and the relative abundances of competitors. Cells rely on networks of interacting biomolecules to sense and respond to environmental perturbations and signals. However, it is unclear how information is processed to generate appropriate and specific responses to signals, especially given that these networks tend to share many components. For example, receptors that detect distinct ligands and regulate distinct cellular activities commonly interact with overlapping sets of downstream signaling proteins. Here, to investigate the downstream signaling of a well-studied receptor tyrosine kinase (RTK), the insulin-like growth factor 1 (IGF1) receptor (IGF1R), we formulated and analyzed 45 cell line-specific mathematical models, which account for recruitment of 18 different binding partners to six sites of receptor autophosphorylation in IGF1R. The models were parameterized using available protein copy number and site-specific affinity measurements, and restructured to allow for network generation. We find that recruitment is influenced by the protein abundance profile of a cell, with different patterns of recruitment in different cell lines. Furthermore, in a given cell line, we find that pairs of IGF1R binding partners may be recruited in a correlated or anti-correlated fashion. We demonstrate that the simulations of the model have greater predictive power than protein copy number and/or binding affinity data, and that even a simple analytical model cannot reproduce the predicted recruitment ranking obtained via simulations. These findings represent testable predictions and indicate that the outputs of IGF1R signaling depend on cell line-specific properties in addition to the properties that are intrinsic to the biomolecules involved.
Collapse
Affiliation(s)
- Keesha E. Erickson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | - Md Shahinuzzaman
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, United States of America
| | - Kalina P. Slavkova
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Yen Ting Lin
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Edward C. Stites
- The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Marian Anghel
- Information Sciences Group, Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Richard G. Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Dipak Barua
- Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, United States of America
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
- School of Medicine and Medical Science and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - William S. Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
83
|
Synthesis, biological evaluation and molecular docking study of 1,2,3-1H-triazoles having 4H-pyrano[2,3-d]pyrimidine as potential Mycobacterium tuberculosis protein tyrosine phosphatase B inhibitors. Bioorg Med Chem Lett 2019; 29:164-171. [DOI: 10.1016/j.bmcl.2018.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 11/21/2022]
|
84
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
85
|
Díaz Galicia ME, Aldehaiman A, Hong S, Arold ST, Grünberg R. Methods for the recombinant expression of active tyrosine kinase domains: Guidelines and pitfalls. Methods Enzymol 2019; 621:131-152. [DOI: 10.1016/bs.mie.2019.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
86
|
Engineering Epigenetic Regulation Using Synthetic Read-Write Modules. Cell 2018; 176:227-238.e20. [PMID: 30528434 DOI: 10.1016/j.cell.2018.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/31/2018] [Accepted: 10/31/2018] [Indexed: 12/22/2022]
Abstract
Chemical modifications to DNA and histone proteins are involved in epigenetic programs underlying cellular differentiation and development. Regulatory networks involving molecular writers and readers of chromatin marks are thought to control these programs. Guided by this common principle, we established an orthogonal epigenetic regulatory system in mammalian cells using N6-methyladenine (m6A), a DNA modification not commonly found in metazoan epigenomes. Our system utilizes synthetic factors that write and read m6A and consequently recruit transcriptional regulators to control reporter loci. Inspired by models of chromatin spreading and epigenetic inheritance, we used our system and mathematical models to construct regulatory circuits that induce m6A-dependent transcriptional states, promote their spatial propagation, and maintain epigenetic memory of the states. These minimal circuits were able to program epigenetic functions de novo, conceptually validating "read-write" architectures. This work provides a toolkit for investigating models of epigenetic regulation and encoding additional layers of epigenetic information in cells.
Collapse
|
87
|
Development of novel affinity reagents for detecting protein tyrosine phosphorylation based on superbinder SH2 domain in tumor cells. Anal Chim Acta 2018; 1032:138-146. [DOI: 10.1016/j.aca.2018.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 11/18/2022]
|
88
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
89
|
Stanoev A, Mhamane A, Schuermann KC, Grecco HE, Stallaert W, Baumdick M, Brüggemann Y, Joshi MS, Roda-Navarro P, Fengler S, Stockert R, Roßmannek L, Luig J, Koseska A, Bastiaens PIH. Interdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network. Cell Syst 2018; 7:295-309.e11. [PMID: 30145116 PMCID: PMC6167251 DOI: 10.1016/j.cels.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Amit Mhamane
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Klaus C Schuermann
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Hernán E Grecco
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany
| | - Maitreyi S Joshi
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Pedro Roda-Navarro
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Sven Fengler
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Rabea Stockert
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Lisaweta Roßmannek
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Jutta Luig
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany.
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
90
|
Rincão MP, de Carvalho MCDCG, Nascimento LC, Lopes-Caitar VS, de Carvalho K, Darben LM, Yokoyama A, Carazzolle MF, Abdelnoor RV, Marcelino-Guimarães FC. New insights into Phakopsora pachyrhizi infection based on transcriptome analysis in planta. Genet Mol Biol 2018; 41:671-691. [PMID: 30235396 PMCID: PMC6136362 DOI: 10.1590/1678-4685-gmb-2017-0161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/30/2022] Open
Abstract
Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean. The 36,350 generated unisequences provided an overview of the main genes and biological pathways that were active in the fungus during the infection cycle. We also identified the most expressed transcripts, including sequences similar to other fungal virulence and signaling proteins. Enriched P. pachyrhizi transcripts in the resistant (PI561356) soybean genotype were related to extracellular matrix organization and metabolic signaling pathways and, among infection structures, in amino acid metabolism and intracellular transport. Unisequences were further grouped into gene families along predicted sequences from 15 other fungi and oomycetes, including rust fungi, allowing the identification of conserved multigenic families, as well as being specific to P. pachyrhizi. The results revealed important biological processes observed in P. pachyrhizi, contributing with information related to fungal biology and, consequently, a better understanding of ASR.
Collapse
Affiliation(s)
- Michelle Pires Rincão
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | | | - Leandro Costa Nascimento
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Valéria S. Lopes-Caitar
- Programa de Pós-Graduação em Genétiva e Biologia Molecular, Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR, Brazil
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Kenia de Carvalho
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Luana M. Darben
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
| | - Alessandra Yokoyama
- Laboratory of Plant Biotechnology and Bioinformatics, Embrapa Soja, Londrina, PR, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratory of Genomics and Expression (LGE), Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | | | | |
Collapse
|
91
|
Protein Tyrosine Phosphatases as Potential Regulators of STAT3 Signaling. Int J Mol Sci 2018; 19:ijms19092708. [PMID: 30208623 PMCID: PMC6164089 DOI: 10.3390/ijms19092708] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is a major transcription factor involved in many cellular processes, such as cell growth and proliferation, differentiation, migration, and cell death or cell apoptosis. It is activated in response to a variety of extracellular stimuli including cytokines and growth factors. The aberrant activation of STAT3 contributes to several human diseases, particularly cancer. Consequently, STAT3-mediated signaling continues to be extensively studied in order to identify potential targets for the development of new and more effective clinical therapeutics. STAT3 activation can be regulated, either positively or negatively, by different posttranslational mechanisms including serine or tyrosine phosphorylation/dephosphorylation, acetylation, or demethylation. One of the major mechanisms that negatively regulates STAT3 activation is dephosphorylation of the tyrosine residue essential for its activation by protein tyrosine phosphatases (PTPs). There are seven PTPs that have been shown to dephosphorylate STAT3 and, thereby, regulate STAT3 signaling: PTP receptor-type D (PTPRD), PTP receptor-type T (PTPRT), PTP receptor-type K (PTPRK), Src homology region 2 (SH-2) domain-containing phosphatase 1(SHP1), SH-2 domain-containing phosphatase 2 (SHP2), MEG2/PTP non-receptor type 9 (PTPN9), and T-cell PTP (TC-PTP)/PTP non-receptor type 2 (PTPN2). These regulators have great potential as targets for the development of more effective therapies against human disease, including cancer.
Collapse
|
92
|
Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples. Proc Natl Acad Sci U S A 2018; 115:E8863-E8872. [PMID: 30190427 DOI: 10.1073/pnas.1805633115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphotyrosine (pTyr)-regulated protein complexes play critical roles in cancer signaling. The systematic characterization of these protein complexes in tumor samples remains a challenge due to their limited access and the transient nature of pTyr-mediated interactions. We developed a hybrid chemical proteomics approach, termed Photo-pTyr-scaffold, by engineering Src homology 2 (SH2) domains, which specifically bind pTyr proteins, with both trifunctional chemical probes and genetic mutations to overcome these challenges. Dynamic SH2 domain-scaffolding protein complexes were efficiently cross-linked under mild UV light, captured by biotin tag, and identified by mass spectrometry. This approach was successfully used to profile native pTyr protein complexes from breast cancer tissue samples on a proteome scale with high selectivity, achieving about 100 times higher sensitivity for detecting pTyr signaling proteins than that afforded by traditional immunohistochemical methods. Among more than 1,000 identified pTyr proteins, receptor tyrosine kinase PDGFRB expressed on cancer-associated fibroblasts was validated as an important intercellular signaling regulator with poor expression correlation to ERBB2, and blockade of PDGFRB signaling could efficiently suppress tumor growth. The Photo-pTyr-scaffold approach may become a generic tool for readily profiling dynamic pTyr signaling complexes in clinically relevant samples.
Collapse
|
93
|
Banu K, Mitra P, Subbarao N, Dhar SK. Role of tyrosine residue (Y213) in nuclear retention of PCNA1 in human malaria parasite Plasmodium falciparum. FEMS Microbiol Lett 2018; 365:5056156. [PMID: 30052905 DOI: 10.1093/femsle/fny182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023] Open
Abstract
Proliferating Cell Nuclear Antigen (PCNA) undergoes several post-translational modifications including phosphorylation leading to its regulation in mammalian and yeast systems. Plasmodium falciparum possesses two PCNAs (PCNA1 & PCNA2) with an edge of PfPCNA1 over PfPCNA2 for DNA replication. Recent phospho-proteome data report phosphorylation of S191 residue without its functional implication. In mammalian cells, phosphorylation of HsPCNA at Y211 stabilizes chromatin bound PCNA. We find tyrosine (but not S191) to be conserved in PfPCNAs and it is important for its nuclear localization and foci formation of PfPCNA1. Further, a Y213F mutation in PfPCNA1 leads to its functional loss both in yeast and parasite. We highlight the importance of evolutionarily conserved tyrosine in PCNA from parasite to mammal linked with DNA replication and cell proliferation.
Collapse
Affiliation(s)
- Khadija Banu
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pallabi Mitra
- School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
94
|
Kim M, Baek M, Kim DJ. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Curr Pharm Des 2018. [PMID: 28625132 DOI: 10.2174/1381612823666170616082125] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein tyrosine phosphorylation is a crucial signaling mechanism that plays a role in epithelial carcinogenesis. Protein tyrosine kinases (PTKs) control various cellular processes including growth, differentiation, metabolism, and motility by activating major signaling pathways including STAT3, AKT, and MAPK. Genetic mutation of PTKs and/or prolonged activation of PTKs and their downstream pathways can lead to the development of epithelial cancer. Therefore, PTKs became an attractive target for cancer prevention. PTK inhibitors are continuously being developed, and they are currently used for the treatment of cancers that show a high expression of PTKs. Protein tyrosine phosphatases (PTPs), the homeostatic counterpart of PTKs, negatively regulate the rate and duration of phosphotyrosine signaling. PTPs initially were considered to be only housekeeping enzymes with low specificity. However, recent studies have demonstrated that PTPs can function as either tumor suppressors or tumor promoters, depending on their target substrates. Together, both PTK and PTP signal transduction pathways are potential therapeutic targets for cancer prevention and treatment.
Collapse
Affiliation(s)
- Mihwa Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Minwoo Baek
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX, USA
| |
Collapse
|
95
|
Liu AD, Xu H, Gao YN, Luo DN, Li ZF, Voss C, Li SSC, Cao X. (Arg) 9-SH2 superbinder: a novel promising anticancer therapy to melanoma by blocking phosphotyrosine signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:138. [PMID: 29976230 PMCID: PMC6034221 DOI: 10.1186/s13046-018-0812-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/02/2018] [Indexed: 01/22/2023]
Abstract
Background Melanoma is a malignant tumor with high misdiagnosis rate and poor prognosis. The bio-targeted therapy is a prevailing method in the treatment of melanoma; however, the accompanying drug resistance is inevitable. SH2 superbinder, a triple-mutant of the Src Homology 2 (SH2) domain, shows potent antitumor ability by replacing natural SH2-containing proteins and blocking multiple pY-based signaling pathways. Polyarginine (Arg)9, a powerful vector for intracellular delivery of large molecules, could transport therapeutic agents across cell membrane. The purpose of this study is to construct (Arg)9-SH2 superbinder and investigate its effects on melanoma cells, expecting to provide potential new approaches for anti-cancer therapy and overcoming the unavoidable drug resistance of single-targeted antitumor agents. Methods (Arg)9 and SH2 superbinder were fused to form (Arg)9-SH2 superbinder via genetic engineering. Pull down assay was performed to identify that (Arg)9-SH2 superbinder could capture a wide variety of pY proteins. Immunofluorescence was used to detect the efficiency of (Arg)9-SH2 superbinder entering cells. The proliferation ability was assessed by MTT and colony formation assay. In addition, wound healing and transwell assay were performed to evaluate migration of B16F10, A375 and A375/DDP cells. Moreover, apoptosis caused by (Arg)9-SH2 superbinder was analyzed by flow cytometry-based Annexin V/PI. Furthermore, western blot revealed that (Arg)9-SH2 superbinder influenced some pY-related signaling pathways. Finally, B16F10 xenograft model was established to confirm whether (Arg)9-SH2 superbinder could restrain the growth of tumor. Results Our data showed that (Arg)9-SH2 superbinder had the ability to enter melanoma cells effectively and displayed strong affinities for various pY proteins. Furthermore, (Arg)9-SH2 superbinder could repress proliferation, migration and induce apoptosis of melanoma cells by regulating PI3K/AKT, MAPK/ERK and JAK/STAT signaling pathways. Importantly, (Arg)9-SH2 superbinder could significantly inhibit the growth of tumor in mice. Conclusions (Arg)9-SH2 superbinder exhibited high affinities for pY proteins, which showed effective anticancer ability by replacing SH2-containing proteins and blocking diverse pY-based pathways. The remarkable ability of (Arg)9-SH2 superbinder to inhibit cancer cell proliferation and tumor growth might open the door to explore the SH2 superbinder as a therapeutic agent for cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13046-018-0812-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- An-Dong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui Xu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Ultrastructural Pathology Laboratory, Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ya-Nan Gao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan-Ni Luo
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhao-Feng Li
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, China.
| |
Collapse
|
96
|
Klasberg S, Bitard-Feildel T, Callebaut I, Bornberg-Bauer E. Origins and structural properties of novel and de novo protein domains during insect evolution. FEBS J 2018; 285:2605-2625. [PMID: 29802682 DOI: 10.1111/febs.14504] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/11/2022]
Abstract
Over long time scales, protein evolution is characterized by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 mya. We use established domain models and foldable domains delineated by hydrophobic cluster analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, that is, from previously noncoding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonization of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multidomain arrangements. Young domains, such as most HCA-defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of de novo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterized by cross-species comparisons alone.
Collapse
Affiliation(s)
- Steffen Klasberg
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Germany
| | - Tristan Bitard-Feildel
- Sorbonne Université, CNRS, IBPS, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Paris, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University Muenster, Germany
| |
Collapse
|
97
|
Dionne U, Chartier FJM, López de Los Santos Y, Lavoie N, Bernard DN, Banerjee SL, Otis F, Jacquet K, Tremblay MG, Jain M, Bourassa S, Gish GD, Gagné JP, Poirier GG, Laprise P, Voyer N, Landry CR, Doucet N, Bisson N. Direct Phosphorylation of SRC Homology 3 Domains by Tyrosine Kinase Receptors Disassembles Ligand-Induced Signaling Networks. Mol Cell 2018; 70:995-1007.e11. [PMID: 29910111 PMCID: PMC6014926 DOI: 10.1016/j.molcel.2018.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 03/20/2018] [Accepted: 05/10/2018] [Indexed: 11/23/2022]
Abstract
Phosphotyrosine (pTyr) signaling has evolved into a key cell-to-cell communication system. Activated receptor tyrosine kinases (RTKs) initiate several pTyr-dependent signaling networks by creating the docking sites required for the assembly of protein complexes. However, the mechanisms leading to network disassembly and its consequence on signal transduction remain essentially unknown. We show that activated RTKs terminate downstream signaling via the direct phosphorylation of an evolutionarily conserved Tyr present in most SRC homology (SH) 3 domains, which are often part of key hub proteins for RTK-dependent signaling. We demonstrate that the direct EPHA4 RTK phosphorylation of adaptor protein NCK SH3s at these sites results in the collapse of signaling networks and abrogates their function. We also reveal that this negative regulation mechanism is shared by other RTKs. Our findings uncover a conserved mechanism through which RTKs rapidly and reversibly terminate downstream signaling while remaining in a catalytically active state on the plasma membrane.
Collapse
Affiliation(s)
- Ugo Dionne
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - François J M Chartier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Yossef López de Los Santos
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Noémie Lavoie
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - David N Bernard
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Sara L Banerjee
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - François Otis
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Département de Chimie, Université Laval, Québec, QC, Canada
| | - Kévin Jacquet
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Michel G Tremblay
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada
| | - Mani Jain
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Département de Biologie, Département de Biochimie, Microbiologie et Bio-informatique and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Sylvie Bourassa
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada
| | - Gerald D Gish
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, ON, Canada
| | - Jean-Philippe Gagné
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada
| | - Guy G Poirier
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec, QC, Canada
| | - Patrick Laprise
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec, QC, Canada
| | - Normand Voyer
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Département de Chimie, Université Laval, Québec, QC, Canada
| | - Christian R Landry
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Département de Biologie, Département de Biochimie, Microbiologie et Bio-informatique and Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, QC, Canada
| | - Nicolas Doucet
- PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - Nicolas Bisson
- Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Axe Oncologie, Québec, QC, Canada; Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada; PROTEO-Quebec Network for Research on Protein Function, Engineering, and Applications, Québec, QC, Canada; Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
98
|
Protein Clusters in Phosphotyrosine Signal Transduction. J Mol Biol 2018; 430:4547-4556. [PMID: 29870724 DOI: 10.1016/j.jmb.2018.05.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/08/2018] [Accepted: 05/28/2018] [Indexed: 11/20/2022]
Abstract
Signal transduction systems based on tyrosine phosphorylation are central to cell-cell communication in multicellular organisms. Typically, in such a system, the signal is initiated by activating tyrosine kinases associated with transmembrane receptors, which induces tyrosine phosphorylation of the receptor and/or associated proteins. The phosphorylated tyrosines then serve as docking sites for the binding of various downstream effector proteins. It has long been observed that the cooperative association of the receptors and effectors produces higher-order protein assemblies (clusters) following signal activation in virtually all phosphotyrosine signal transduction systems. However, mechanistic studies on how such clustering processes affect signal transduction outcomes have only emerged recently. Here we review current progress in decoding the biophysical consequences of clustering on the behavior of the system, and how clustering affects how these receptors process information.
Collapse
|
99
|
Evolution of oncogenic signatures of mutation hotspots in tyrosine kinases supports the atavistic hypothesis of cancer. Sci Rep 2018; 8:8256. [PMID: 29844492 PMCID: PMC5974376 DOI: 10.1038/s41598-018-26653-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/03/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer has been shown as an evolutionary process emerging hallmarks that are reminiscent of unicellular organisms. Since cancer is mostly driven by somatic mutations, especially by oncogenic hotspot mutations, we proposed a molecular atavism of cancer caused by gain-of-function mutations in oncogenes. As tyrosine kinase (TK) family contains the largest subgroup of oncogenes with hotspot mutations, we traced the most predominant mutation hotspots of TK oncogenes across phylogeny with the domain information and adjacent sequences integrated as onco-signatures. We detected 9 out of 17 TK oncogenes with onco-homologs possessing an onco-signature, which could be divided into two classes by whether their onco-homologs existed in mammals or not. In Class I we identified mammalian onco-homologs assuming oncogenic functions with onco-signatures always intact in cancer, such as HCK and LYN. In Class II with no bona fide mammalian onco-homologs, Pyk2, a protist onco-homolog with an onco-signature of BRAF was found assuming oncogenic-like functions. Onco-signatures in both classes root deep in the primitive system. Together, these evidences supported our proposal that cancer can be driven by reverse evolution of oncogenes through gain-of-function mutations. And also for the first time, we provided the specific targets for experimental verification of the atavistic hypothesis of cancer.
Collapse
|
100
|
Kritzer JA, Freyzon Y, Lindquist S. Yeast can accommodate phosphotyrosine: v-Src toxicity in yeast arises from a single disrupted pathway. FEMS Yeast Res 2018; 18:4931722. [PMID: 29546391 PMCID: PMC6454501 DOI: 10.1093/femsyr/foy027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Tyrosine phosphorylation is a key biochemical signal that controls growth and differentiation in multicellular organisms. Saccharomyces cerevisiae and nearly all other unicellular eukaryotes lack intact phosphotyrosine signaling pathways. However, many of these organisms have primitive phosphotyrosine-binding proteins and tyrosine phosphatases, leading to the assumption that the major barrier for emergence of phosphotyrosine signaling was the negative consequences of promiscuous tyrosine kinase activity. In this work, we reveal that the classic oncogene v-Src, which phosphorylates many dozens of proteins in yeast, is toxic because it disrupts a specific spore wall remodeling pathway. Using genetic selections, we find that expression of a specific cyclic peptide, or overexpression of SMK1, a MAP kinase that controls spore wall assembly, both lead to robust growth despite a continuous high level of phosphotyrosine in the yeast proteome. Thus, minimal genetic manipulations allow yeast to tolerate high levels of phosphotyrosine. These results indicate that the introduction of tyrosine kinases within single-celled organisms may not have been a major obstacle to the evolution of phosphotyrosine signaling.
Collapse
Affiliation(s)
- Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA
| | - Yelena Freyzon
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| |
Collapse
|