51
|
Chuong NN, Doan PPT, Wang L, Kim JH, Kim J. Current Insights into m 6A RNA Methylation and Its Emerging Role in Plant Circadian Clock. PLANTS (BASEL, SWITZERLAND) 2023; 12:624. [PMID: 36771711 PMCID: PMC9920239 DOI: 10.3390/plants12030624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
N6-adenosine methylation (m6A) is a prevalent form of RNA modification found in the expressed transcripts of many eukaryotic organisms. Moreover, m6A methylation is a dynamic and reversible process that requires the functioning of various proteins and their complexes that are evolutionarily conserved between species and include methylases, demethylases, and m6A-binding proteins. Over the past decade, the m6A methylation process in plants has been extensively studied and the understanding thereof has drastically increased, although the regulatory function of some components relies on information derived from animal systems. Notably, m6A has been found to be involved in a variety of factors in RNA processing, such as RNA stability, alternative polyadenylation, and miRNA regulation. The circadian clock in plants is a molecular timekeeping system that regulates the daily and rhythmic activity of many cellular and physiological processes in response to environmental changes such as the day-night cycle. The circadian clock regulates the rhythmic expression of genes through post-transcriptional regulation of mRNA. Recently, m6A methylation has emerged as an additional layer of post-transcriptional regulation that is necessary for the proper functioning of the plant circadian clock. In this review, we have compiled and summarized recent insights into the molecular mechanisms behind m6A modification and its various roles in the regulation of RNA. We discuss the potential role of m6A modification in regulating the plant circadian clock and outline potential future directions for the study of mRNA methylation in plants. A deeper understanding of the mechanism of m6A RNA regulation and its role in plant circadian clocks will contribute to a greater understanding of the plant circadian clock.
Collapse
Affiliation(s)
- Nguyen Nguyen Chuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Lanshuo Wang
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
| | - Jin Hee Kim
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 690756, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 690756, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 690756, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
52
|
Cho W, Berkley K, Sharma A. Lipid Binding of SH2 Domains. Methods Mol Biol 2023; 2705:239-253. [PMID: 37668978 DOI: 10.1007/978-1-0716-3393-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
The Src homology 2 (SH2) domain is a modular protein interaction domain that specifically recognizes the phosphotyrosine (pY) motif of a target molecule. We recently reported that a large majority of human SH2 domains tightly bind membrane lipids, and many show high lipid specificity. Most of them can bind a lipid and the pY motif coincidently because their lipid-binding sites are topologically distinct from pY-binding pockets. Lipid binding of SH2 domain-containing kinases and phosphatases is functionally important because it exerts exquisite spatiotemporal control on protein-protein interaction and cell signaling activities mediated by these proteins. Here, we describe two assays, surface plasmon resonance analysis and fluorescence quenching analysis, which allow quantitative determination of the affinity and specificity of SH2-lipid interaction and high-throughput screening for SH2 domain-lipid-binding inhibitors.
Collapse
Affiliation(s)
- Wonhwa Cho
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Kyli Berkley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashutosh Sharma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
53
|
Herman N, Kadener S, Shifman S. The chromatin factor ROW cooperates with BEAF-32 in regulating long-range inducible genes. EMBO Rep 2022; 23:e54720. [PMID: 36245419 PMCID: PMC9724677 DOI: 10.15252/embr.202254720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Insulator proteins located at the boundaries of topological associated domains (TAD) are involved in higher-order chromatin organization and transcription regulation. However, it is still not clear how long-range contacts contribute to transcriptional regulation. Here, we show that relative-of-WOC (ROW) is essential for the long-range transcription regulation mediated by the boundary element-associated factor of 32kD (BEAF-32). We find that ROW physically interacts with heterochromatin proteins (HP1b and HP1c) and the insulator protein (BEAF-32). These proteins interact at TAD boundaries where ROW, through its AT-hook motifs, binds AT-rich sequences flanked by BEAF-32-binding sites and motifs. Knockdown of row downregulates genes that are long-range targets of BEAF-32 and bound indirectly by ROW (without binding motif). Analyses of high-throughput chromosome conformation capture (Hi-C) data reveal long-range interactions between promoters of housekeeping genes bound directly by ROW and promoters of developmental genes bound indirectly by ROW. Thus, our results show cooperation between BEAF-32 and the ROW complex, including HP1 proteins, to regulate the transcription of developmental and inducible genes through long-range interactions.
Collapse
Affiliation(s)
- Neta Herman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | | | - Sagiv Shifman
- Department of Genetics, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
54
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
55
|
Protein kinase CK2 phosphorylates a conserved motif in the Notch effector E(spl)-Mγ. Mol Cell Biochem 2022; 478:781-790. [PMID: 36087252 DOI: 10.1007/s11010-022-04539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
Across metazoan animals, the effects of Notch signaling are mediated via the Enhancer of Split (E(spl)/HES) basic Helix-Loop-Helix-Orange (bHLH-O) repressors. Although these repressors are generally conserved, their sequence diversity is, in large part, restricted to the C-terminal domain (CtD), which separates the Orange (O) domain from the penultimate WRPW tetrapeptide motif that binds the obligate co-repressor Groucho. While the kinases CK2 and MAPK target the CtD and regulate Drosophila E(spl)-M8 and mammalian HES6, the generality of this regulation to other E(spl)/HES repressors has remained unknown. To determine the broader impact of phosphorylation on this large family of repressors, we conducted bioinformatics, evolutionary, and biochemical analyses. Our studies identify E(spl)-Mγ as a new target of native CK2 purified from Drosophila embryos, reveal that phosphorylation is specific to CK2 and independent of the regulatory CK2-β subunit, and identify that the site of phosphorylation is juxtaposed to the WRPW motif, a feature unique to and conserved in the Mγ homologues over 50 × 106 years of Drosophila evolution. Thus, a preponderance of E(spl) homologues (four out of seven total) in Drosophila are targets for CK2, and the distinct positioning of the CK2 and MAPK sites raises the prospect that phosphorylation underlies functional diversity of bHLH-O proteins.
Collapse
|
56
|
Ochi Y, Yamashita H, Yamada Y, Satoh T, Satoh AK. Stratum is required for both apical and basolateral transport through stable expression of Rab10 and Rab35 in Drosophila photoreceptors. Mol Biol Cell 2022; 33:br17. [PMID: 35767331 DOI: 10.1091/mbc.e21-12-0596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Post-Golgi transport for specific membrane domains, also termed polarized transport, is essential for the construction and maintenance of polarized cells. Highly polarized Drosophila photoreceptors serve as a good model system for studying the mechanisms underlying polarized transport. The Mss4 Drosophila ortholog, Stratum (Strat), controls basal restriction of basement membrane proteins in follicle cells, and Rab8 acts downstream of Strat. We investigated the function of Strat in fly photoreceptors and found that polarized transport in both the basolateral and the rhabdomere membrane domains was inhibited in Strat-deficient photoreceptors. We also observed 79 and 55% reductions in Rab10 and Rab35 levels, respectively, but no reduction in Rab11 levels in whole-eye homozygous clones of Stratnull. Moreover, Rab35 was localized in the rhabdomere, and loss of Rab35 resulted in impaired Rh1 transport to the rhabdomere. These results indicate that Strat is essential for the stable expression of Rab10 and Rab35, which regulate basolateral and rhabdomere transport, respectively, in fly photoreceptors.
Collapse
Affiliation(s)
- Yuka Ochi
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Hitomi Yamashita
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Yumi Yamada
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Takunori Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Akiko K Satoh
- Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| |
Collapse
|
57
|
Shen R, Zheng K, Zhou Y, Chi X, Pan H, Wu C, Yang Y, Zheng Y, Pan D, Liu B. A dRASSF-STRIPAK-Imd-JAK/STAT axis controls antiviral immune response in Drosophila. Cell Rep 2022; 40:111143. [PMID: 35905720 DOI: 10.1016/j.celrep.2022.111143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/09/2022] [Accepted: 07/06/2022] [Indexed: 01/20/2023] Open
Abstract
Host antiviral immunity suffers strong pressure from rapidly evolving viruses. Identifying host antiviral immune mechanisms has profound implications for developing antiviral strategies. Here, we uncover an essential role for the tumor suppressor Ras-association domain family (RASSF) in Drosophila antiviral response. Loss of dRassf in fat body leads to increased vulnerability to viral infection and impaired Imd pathway activation accompanied by detrimental JAK/STAT signaling overactivation. Mechanistically, dRASSF protects TAK1, a key kinase of Imd pathway, from inhibition by the STRIPAK PP2A phosphatase complex. Activated Imd signaling then employs the effector Relish to interfere with the dimerization of JAK/STAT transmembrane receptor Domeless, therefore preventing excessive JAK/STAT signaling. Moreover, we find that RASSF and STRIPAK PP2A complex are also involved in antiviral response in human cell lines. Our study identifies an important role for RASSF in antiviral immunity and elucidates a dRASSF-STRIPAK-Imd-JAK/STAT signaling axis that ensures proper antiviral responses in Drosophila.
Collapse
Affiliation(s)
- Rui Shen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Kewei Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yu Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaofeng Chi
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huimin Pan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengfang Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yinan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Bo Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
58
|
Brosh O, Fabian DK, Cogni R, Tolosana I, Day JP, Olivieri F, Merckx M, Akilli N, Szkuta P, Jiggins FM. A novel transposable element-mediated mechanism causes antiviral resistance in Drosophila through truncating the Veneno protein. Proc Natl Acad Sci U S A 2022; 119:e2122026119. [PMID: 35858337 PMCID: PMC9304006 DOI: 10.1073/pnas.2122026119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/18/2022] [Indexed: 01/13/2023] Open
Abstract
Hosts are continually selected to evolve new defenses against an ever-changing array of pathogens. To understand this process, we examined the genetic basis of resistance to the Drosophila A virus in Drosophila melanogaster. In a natural population, we identified a polymorphic transposable element (TE) insertion that was associated with an ∼19,000-fold reduction in viral titers, allowing flies to largely escape the harmful effects of infection by this virulent pathogen. The insertion occurs in the protein-coding sequence of the gene Veneno, which encodes a Tudor domain protein. By mutating Veneno with CRISPR-Cas9 in flies and expressing it in cultured cells, we show that the ancestral allele of the gene has no effect on viral replication. Instead, the TE insertion is a gain-of-function mutation that creates a gene encoding a novel resistance factor. Viral titers remained reduced when we deleted the TE sequence from the transcript, indicating that resistance results from the TE truncating the Veneno protein. This is a novel mechanism of virus resistance and a new way by which TEs can contribute to adaptation.
Collapse
Affiliation(s)
- Osama Brosh
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Daniel K. Fabian
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Rodrigo Cogni
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
- Department of Ecology, University of São Paulo, 05508-220 São Paulo, Brazil
| | - Ignacio Tolosana
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Jonathan P. Day
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Francesca Olivieri
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Manon Merckx
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Nazli Akilli
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Piotr Szkuta
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, United Kingdom
| |
Collapse
|
59
|
Molina E, Cataldo VF, Eggers C, Muñoz-Madrid V, Glavic Á. p53 Related Protein Kinase is Required for Arp2/3-Dependent Actin Dynamics of Hemocytes in Drosophila melanogaster. Front Cell Dev Biol 2022; 10:859105. [PMID: 35721516 PMCID: PMC9201722 DOI: 10.3389/fcell.2022.859105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/22/2022] [Indexed: 11/21/2022] Open
Abstract
Cells extend membrane protrusions like lamellipodia and filopodia from the leading edge to sense, to move and to form new contacts. The Arp2/3 complex sustains lamellipodia formation, and in conjunction with the actomyosin contractile system, provides mechanical strength to the cell. Drosophila p53-related protein kinase (Prpk), a Tsc5p ortholog, has been described as essential for cell growth and proliferation. In addition, Prpk interacts with proteins associated to actin filament dynamics such as α-spectrin and the Arp2/3 complex subunit Arpc4. Here, we investigated the role of Prpk in cell shape changes, specifically regarding actin filament dynamics and membrane protrusion formation. We found that reductions in Prpk alter cell shape and the structure of lamellipodia, mimicking the phenotypes evoked by Arp2/3 complex deficiencies. Prpk co-localize and co-immunoprecipitates with the Arp2/3 complex subunit Arpc1 and with the small GTPase Rab35. Importantly, expression of Rab35, known by its ability to recruit upstream regulators of the Arp2/3 complex, could rescue the Prpk knockdown phenotypes. Finally, we evaluated the requirement of Prpk in different developmental contexts, where it was shown to be essential for correct Arp2/3 complex distribution and actin dynamics required for hemocytes migration, recruitment, and phagocytosis during immune response.
Collapse
Affiliation(s)
- Emiliano Molina
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Vicente F. Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Eggers
- Department for Chemistry and Biochemistry and Pharmaceutical Sciences, Faculty of Science, University of Bern, Bern, Switzerland
| | - Valentina Muñoz-Madrid
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Álvaro Glavic
- FONDAP Center for Genome Regulation, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- *Correspondence: Álvaro Glavic,
| |
Collapse
|
60
|
Dynamic Community Discovery Method Based on Phylogenetic Planted Partition in Temporal Networks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
As most of the community discovery methods are researched by static thought, some community discovery algorithms cannot represent the whole dynamic network change process efficiently. This paper proposes a novel dynamic community discovery method (Phylogenetic Planted Partition Model, PPPM) for phylogenetic evolution. Firstly, the time dimension is introduced into the typical migration partition model, and all states are treated as variables, and the observation equation is constructed. Secondly, this paper takes the observation equation of the whole dynamic social network as the constraint between variables and the error function. Then, the quadratic form of the error function is minimized. Thirdly, the Levenberg–Marquardt (L–M) method is used to calculate the gradient of the error function, and the iteration is carried out. Finally, simulation experiments are carried out under the experimental environment of artificial networks and real networks. The experimental results show that: compared with FaceNet, SBM + MLE, CLBM, and PisCES, the proposed PPPM model improves accuracy by 5% and 3%, respectively. It is proven that the proposed PPPM method is robust, reasonable, and effective. This method can also be applied to the general social networking community discovery field.
Collapse
|
61
|
Gramates LS, Agapite J, Attrill H, Calvi BR, Crosby MA, dos Santos G, Goodman JL, Goutte-Gattat D, Jenkins VK, Kaufman T, Larkin A, Matthews BB, Millburn G, Strelets VB. FlyBase: a guided tour of highlighted features. Genetics 2022; 220:iyac035. [PMID: 35266522 PMCID: PMC8982030 DOI: 10.1093/genetics/iyac035] [Citation(s) in RCA: 340] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
FlyBase provides a centralized resource for the genetic and genomic data of Drosophila melanogaster. As FlyBase enters our fourth decade of service to the research community, we reflect on our unique aspects and look forward to our continued collaboration with the larger research and model organism communities. In this study, we emphasize the dedicated reports and tools we have constructed to meet the specialized needs of fly researchers but also to facilitate use by other research communities. We also highlight ways that we support the fly community, including an external resources page, help resources, and multiple avenues by which researchers can interact with FlyBase.
Collapse
Affiliation(s)
- L Sian Gramates
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julie Agapite
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Helen Attrill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madeline A Crosby
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gilberto dos Santos
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joshua L Goodman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Damien Goutte-Gattat
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victoria K Jenkins
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas Kaufman
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Aoife Larkin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Beverley B Matthews
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gillian Millburn
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1TN, UK
| | - Victor B Strelets
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
62
|
Domesticated LTR-Retrotransposon gag-Related Gene (Gagr) as a Member of the Stress Response Network in Drosophila. Life (Basel) 2022; 12:life12030364. [PMID: 35330115 PMCID: PMC8956099 DOI: 10.3390/life12030364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/24/2022] Open
Abstract
The most important sources of new components of genomes are transposable elements, which can occupy more than half of the nucleotide sequence of the genome in higher eukaryotes. Among the mobile components of a genome, a special place is occupied by retroelements, which are similar to retroviruses in terms of their mechanisms of integration into a host genome. The process of positive selection of certain sequences of transposable elements and retroviruses in a host genome is commonly called molecular domestication. There are many examples of evolutionary adaptations of gag (retroviral capsid) sequences as new regulatory sequences of different genes in mammals, where domesticated gag genes take part in placenta functioning and embryogenesis, regulation of apoptosis, hematopoiesis, and metabolism. The only gag-related gene has been found in the Drosophila genome—Gagr. According to the large-scale transcriptomic and proteomic analysis data, the Gagr gene in D. melanogaster is a component of the protein complex involved in the stress response. In this work, we consider the evolutionary processes that led to the formation of a new function of the domesticated gag gene and its adaptation to participation in the stress response. We discuss the possible functional role of the Gagr as part of the complex with its partners in Drosophila, and the pathway of evolution of proteins of the complex in eukaryotes to determine the benefit of the domesticated retroelement gag gene.
Collapse
|
63
|
Chen R, Tu Z, He C, Nie X, Li K, Fei S, Song B, Nie B, Xie C. Susceptibility factor StEXA1 interacts with StnCBP to facilitate potato virus Y accumulation through the stress granule-dependent RNA regulatory pathway in potato. HORTICULTURE RESEARCH 2022; 9:uhac159. [PMID: 36204208 PMCID: PMC9531334 DOI: 10.1093/hr/uhac159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/22/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses recruit multiple host factors for translation, replication, and movement in the infection process. The loss-of-function mutation of the susceptibility genes will lead to the loss of susceptibility to viruses, which is referred to as 'recessive resistance'. Essential for potexvirus Accumulation 1 (EXA1) has been identified as a susceptibility gene required for potexvirus, lolavirus, and bacterial and oomycete pathogens. In this study, EXA1 knockdown in potato (StEXA1) was found to confer novel resistance to potato virus Y (PVY, potyvirus) in a strain-specific manner. It significantly compromised PVYO accumulation but not PVYN:O and PVYNTN. Further analysis revealed that StEXA1 is associated with the HC-Pro of PVY through a member of eIF4Es (StnCBP). HC-ProO and HC-ProN, two HC-Pro proteins from PVYO and PVYN, exhibited strong and weak interactions with StnCBP, respectively, due to their different spatial conformation. Moreover, the accumulation of PVYO was mainly dependent on the stress granules (SGs) induced by StEXA1 and StnCBP, whereas PVYN:O and PVYNTN could induce SGs by HC-ProN independently through an unknown mechanism. These results could explain why StEXA1 or StnCBP knockdown conferred resistance to PVYO but not to PVYN:O and PVYNTN. In summary, our results for the first time demonstrate that EXA1 can act as a susceptibility gene for PVY infection. Finally, a hypothetical model was proposed for understanding the mechanism by which StEXA1 interacts with StnCBP to facilitate PVY accumulation in potato through the SG-dependent RNA regulatory pathway.
Collapse
Affiliation(s)
- Ruhao Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, 410128, China
| | - Xianzhou Nie
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick, E3B 4Z7,
Canada
| | - Kun Li
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sitian Fei
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
64
|
SETDB1-like MET-2 promotes transcriptional silencing and development independently of its H3K9me-associated catalytic activity. Nat Struct Mol Biol 2022; 29:85-96. [PMID: 35102319 PMCID: PMC8850192 DOI: 10.1038/s41594-021-00712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022]
Abstract
Transcriptionally silenced heterochromatin bearing methylation of histone H3 on lysine 9 (H3K9me) is critical for maintaining organismal viability and tissue integrity. Here we show that in addition to ensuring H3K9me, MET-2, the Caenorhabditis elegans homolog of the SETDB1 histone methyltransferase, has a noncatalytic function that contributes to gene repression. Subnuclear foci of MET-2 coincide with H3K9me deposition, yet these foci also form when MET-2 is catalytically deficient and H3K9me is compromised. Whereas met-2 deletion triggers a loss of silencing and increased histone acetylation, foci of catalytically deficient MET-2 maintain silencing of a subset of genes, blocking acetylation on H3K9 and H3K27. In normal development, this noncatalytic MET-2 activity helps to maintain fertility. Under heat stress MET-2 foci disperse, coinciding with increased acetylation and transcriptional derepression. Our study suggests that the noncatalytic, focus-forming function of this SETDB1-like protein and its intrinsically disordered cofactor LIN-65 is physiologically relevant. Genetic and genome-wide analysis of a catalytically deficient SETDB1-like enzyme, MET-2, in Caenorhabditiselegans reveals that MET-2 promotes transcriptional silencing and fertility through both H3K9 methylation and focus formation, which blocks histone acetylation.
Collapse
|
65
|
Ho CH, Paolantoni C, Bawankar P, Tang Z, Brown S, Roignant J, Treisman JE. An exon junction complex-independent function of Barentsz in neuromuscular synapse growth. EMBO Rep 2022; 23:e53231. [PMID: 34726300 PMCID: PMC8728599 DOI: 10.15252/embr.202153231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
The exon junction complex controls the translation, degradation, and localization of spliced mRNAs, and three of its core subunits also play a role in splicing. Here, we show that a fourth subunit, Barentsz, has distinct functions within and separate from the exon junction complex in Drosophila neuromuscular development. The distribution of mitochondria in larval muscles requires Barentsz as well as other exon junction complex subunits and is not rescued by a Barentsz transgene in which residues required for binding to the core subunit eIF4AIII are mutated. In contrast, interactions with the exon junction complex are not required for Barentsz to promote the growth of neuromuscular synapses. We find that the Activin ligand Dawdle shows reduced expression in barentsz mutants and acts downstream of Barentsz to control synapse growth. Both barentsz and dawdle are required in motor neurons, muscles, and glia for normal synapse growth, and exogenous Dawdle can rescue synapse growth in the absence of barentsz. These results identify a biological function for Barentsz that is independent of the exon junction complex.
Collapse
Affiliation(s)
- Cheuk Hei Ho
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
| | - Praveen Bawankar
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Zuojian Tang
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
Computational Biology at Ridgefield US, Global Computational Biology and Digital ScienceBoehringer IngelheimRidgefieldCTUSA
| | - Stuart Brown
- Center for Health Informatics and BioinformaticsNYU Langone Medical CenterNew YorkNYUSA
- Present address:
ExxonMobil Corporate Strategic ResearchAnnandaleNJUSA
| | - Jean‐Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and MedicineUniversity of LausanneLausanneSwitzerland
- Institute of Pharmaceutical and Biomedical SciencesJohannes Gutenberg‐University MainzMainzGermany
| | - Jessica E Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell BiologyNYU School of MedicineNew YorkNYUSA
| |
Collapse
|
66
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
67
|
Chen Y, Zhou W, Li X, Yang K, Liang Z, Zhang L, Zhang Y. Research Progress of Protein-Protein Interaction Based on Liquid Chromatography Mass Spectrometry ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
68
|
Abstract
Stress response is a cellular widespread mechanism encoded by a common protein program composed by multiple cellular factors that converge in a defense reaction to protect the cell against damage. Among many mechanisms described, heat shock proteins were proposed as universally conserved protective factors in the stress core proteome, coping with different stress stimuli through its canonical role in protein homeostasis. However, emerging evidences reveal non-canonical roles of heat shock proteins relevant for physiological and pathological conditions. Here, we review the implications of inducible heat shock proteins in the central nervous system physiology. In particular, we discuss the relevance of heat shock proteins in the maintenance of synapses, as a balanced protective mechanism in central nervous system development, pathological conditions and aging.
Collapse
|
69
|
Dosage sensitivity and exon shuffling shape the landscape of polymorphic duplicates in Drosophila and humans. Nat Ecol Evol 2021; 6:273-287. [PMID: 34969986 DOI: 10.1038/s41559-021-01614-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 11/10/2021] [Indexed: 11/08/2022]
Abstract
Despite polymorphic duplicate genes' importance for the early stages of duplicate gene evolution, they are less studied than old gene duplicates. Two essential questions thus remain poorly addressed: how does dosage sensitivity, imposed by stoichiometry in protein complexes or by X chromosome dosage compensation, affect the emergence of complete duplicate genes? Do introns facilitate intergenic and intragenic chimaerism as predicted by the theory of exon shuffling? Here, we analysed new data for Drosophila and public data for humans, to characterize polymorphic duplicate genes with respect to dosage, exon-intron structures and allele frequencies. We found that complete duplicate genes are under dosage constraint induced by protein stoichiometry but potentially tolerated by X chromosome dosage compensation. We also found that in the intron-rich human genome, gene fusions and intragenic duplications extensively use intronic breakpoints generating in-frame proteins, in accordance with the theory of exon shuffling. Finally, we found that only a small proportion of complete or partial duplicates are at high frequencies, indicating the deleterious nature of dosage or gene structural changes. Altogether, we demonstrate how mechanistic factors including dosage sensitivity and exon-intron structure shape the short-term functional consequences of gene duplication.
Collapse
|
70
|
So M, Stiban J, Ciesielski GL, Hovde SL, Kaguni LS. Implications of Membrane Binding by the Fe-S Cluster-Containing N-Terminal Domain in the Drosophila Mitochondrial Replicative DNA Helicase. Front Genet 2021; 12:790521. [PMID: 34950192 PMCID: PMC8688847 DOI: 10.3389/fgene.2021.790521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent evidence suggests that iron-sulfur clusters (ISCs) in DNA replicative proteins sense DNA-mediated charge transfer to modulate nuclear DNA replication. In the mitochondrial DNA replisome, only the replicative DNA helicase (mtDNA helicase) from Drosophila melanogaster (Dm) has been shown to contain an ISC in its N-terminal, primase-like domain (NTD). In this report, we confirm the presence of the ISC and demonstrate the importance of a metal cofactor in the structural stability of the Dm mtDNA helicase. Further, we show that the NTD also serves a role in membrane binding. We demonstrate that the NTD binds to asolectin liposomes, which mimic phospholipid membranes, through electrostatic interactions. Notably, membrane binding is more specific with increasing cardiolipin content, which is characteristically high in the mitochondrial inner membrane (MIM). We suggest that the N-terminal domain of the mtDNA helicase interacts with the MIM to recruit mtDNA and initiate mtDNA replication. Furthermore, Dm NUBPL, the known ISC donor for respiratory complex I and a putative donor for Dm mtDNA helicase, was identified as a peripheral membrane protein that is likely to execute membrane-mediated ISC delivery to its target proteins.
Collapse
Affiliation(s)
- Minyoung So
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
| | - Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Stacy L Hovde
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
71
|
Hernández-Quiles M, Baak R, Borgman A, den Haan S, Sobrevals Alcaraz P, van Es R, Kiss-Toth E, Vos H, Kalkhoven E. Comprehensive Profiling of Mammalian Tribbles Interactomes Implicates TRIB3 in Gene Repression. Cancers (Basel) 2021; 13:6318. [PMID: 34944947 PMCID: PMC8699236 DOI: 10.3390/cancers13246318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.
Collapse
Affiliation(s)
- Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Rosalie Baak
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Anouska Borgman
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Suzanne den Haan
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| | - Paula Sobrevals Alcaraz
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield S10 2TN, UK;
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (P.S.A.); (R.v.E.); (H.V.)
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (M.H.-Q.); (R.B.); (A.B.); (S.d.H.)
| |
Collapse
|
72
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
73
|
Two provably consistent divide-and-conquer clustering algorithms for large networks. Proc Natl Acad Sci U S A 2021; 118:2100482118. [PMID: 34716259 DOI: 10.1073/pnas.2100482118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
In this article, we advance divide-and-conquer strategies for solving the community detection problem in networks. We propose two algorithms that perform clustering on several small subgraphs and finally patch the results into a single clustering. The main advantage of these algorithms is that they significantly bring down the computational cost of traditional algorithms, including spectral clustering, semidefinite programs, modularity-based methods, likelihood-based methods, etc., without losing accuracy, and even improving accuracy at times. These algorithms are also, by nature, parallelizable. Since most traditional algorithms are accurate, and the corresponding optimization problems are much simpler in small problems, our divide-and-conquer methods provide an omnibus recipe for scaling traditional algorithms up to large networks. We prove the consistency of these algorithms under various subgraph selection procedures and perform extensive simulations and real-data analysis to understand the advantages of the divide-and-conquer approach in various settings.
Collapse
|
74
|
Ryan SM, Almassey M, Burch AM, Ngo G, Martin JM, Myers D, Compton D, Archie S, Cross M, Naeger L, Salzman A, Virola‐Iarussi A, Barbee SA, Mortimer NT, Sanyal S, Vrailas‐Mortimer AD. Drosophila p38 MAPK interacts with BAG-3/starvin to regulate age-dependent protein homeostasis. Aging Cell 2021; 20:e13481. [PMID: 34674371 PMCID: PMC8590102 DOI: 10.1111/acel.13481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
As organisms age, they often accumulate protein aggregates that are thought to be toxic, potentially leading to age‐related diseases. This accumulation of protein aggregates is partially attributed to a failure to maintain protein homeostasis. A variety of genetic factors have been linked to longevity, but how these factors also contribute to protein homeostasis is not completely understood. In order to understand the relationship between aging and protein aggregation, we tested how a gene that regulates lifespan and age‐dependent locomotor behaviors, p38 MAPK (p38Kb), influences protein homeostasis as an organism ages. We find that p38Kb regulates age‐dependent protein aggregation through an interaction with starvin, a regulator of muscle protein homeostasis. Furthermore, we have identified Lamin as an age‐dependent target of p38Kb and starvin.
Collapse
Affiliation(s)
- Sarah M. Ryan
- Department of Biological Sciences University of Denver Denver CO USA
| | - Michael Almassey
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Gia Ngo
- Department of Biological Sciences University of Denver Denver CO USA
| | - Julia M. Martin
- School of Biological Sciences Illinois State University Normal IL USA
| | - David Myers
- School of Biological Sciences Illinois State University Normal IL USA
| | - Devin Compton
- School of Biological Sciences Illinois State University Normal IL USA
| | - Shira Archie
- School of Biological Sciences Illinois State University Normal IL USA
| | - Megan Cross
- School of Biological Sciences Illinois State University Normal IL USA
| | - Lauren Naeger
- School of Biological Sciences Illinois State University Normal IL USA
| | - Ashley Salzman
- School of Biological Sciences Illinois State University Normal IL USA
| | | | - Scott A. Barbee
- Department of Biological Sciences University of Denver Denver CO USA
| | | | - Subhabrata Sanyal
- Department of Cell Biology Emory University Atlanta GA USA
- Calico San Francisco CA USA
| | - Alysia D. Vrailas‐Mortimer
- Department of Biological Sciences University of Denver Denver CO USA
- School of Biological Sciences Illinois State University Normal IL USA
- Department of Cell Biology Emory University Atlanta GA USA
| |
Collapse
|
75
|
Danan C, Manickavel S, Hafner M. PAR-CLIP: A Method for Transcriptome-Wide Identification of RNA Binding Protein Interaction Sites. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2404:167-188. [PMID: 34694609 DOI: 10.1007/978-1-0716-1851-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During post-transcriptional gene regulation (PTGR), RNA binding proteins (RBPs) interact with all classes of RNA to control RNA maturation, stability, transport, and translation. Here, we describe Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation (PAR-CLIP), a transcriptome-scale method for identifying RBP binding sites on target RNAs with nucleotide-level resolution. This method is readily applicable to any protein directly contacting RNA, including RBPs that are predicted to bind in a sequence- or structure-dependent manner at discrete RNA recognition elements (RREs), and those that are thought to bind transiently, such as RNA polymerases or helicases.
Collapse
Affiliation(s)
- Charles Danan
- RNA Molecular Biology Group, NIAMS, Bethesda, MD, USA
| | | | - Markus Hafner
- RNA Molecular Biology Group, NIAMS, Bethesda, MD, USA.
| |
Collapse
|
76
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
77
|
Li J, Wang W, Zhao Q, Fan S, Li Y, Yuan P, Wang L, Song L. A haemocyte-expressed Methyltransf_FA domain containing protein (MFCP) exhibiting microbe binding activity in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104137. [PMID: 34023375 DOI: 10.1016/j.dci.2021.104137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
The Methyltransf_FA domain is well-known as a key protein domain of enzyme synthesizing juvenile hormone, and Methyltransf_FA domain containing proteins (MFCPs) are widely existed in vertebrates and invertebrates. In the present study, a CgMFCP with a single Methyltransf_FA domain was screened from oyster Crassostrea gigas, and its open reading frame of CgMFCP was of 1128 bp, encoding a polypeptide of 376 amino acids with a signal peptide, a Methyltransf_FA domain and a transmembrane region. CgMFCP was clustered with FAMeTs from insecta and crustacea of arthropod. The mRNA transcripts of CgMFCP were detected in different tissues, with the extremely high expression level in haemocytes, which was 131.36-fold (p < 0.05) of that in gills. The expression level of CgMFCP protein was verified to be highly expressed in haemocytes. The expression level of CgMFCP mRNA in primarily cultured haemocytes significantly up-regulated at 3 h, 24 h and 48 h post LPS stimulation, which was 3.25-fold (p < 0.01), 2.04-fold (p < 0.05) and 3.59-fold (p < 0.01) compared to that in blank group. After the oysters were stimulated with Vibrio splendidus in vivo, the expression level of CgMFCP mRNA in haemocytes was also significantly up-regulated at 3 h, 12 h, and 24 h, which was 4.22-fold (p < 0.05), 4.39-fold (p < 0.05) and 6.35-fold (p < 0.01) of that in control group, respectively. By flow cytometry analysis, anti-rCgMFCP can label 95% of oyster haemocytes. And by fluorescence microscope analysis, CgMFCP was mainly distributed in cytomembrane of haemocytes. The recombinant CgMFCP (rCgMFCP) exhibited higher affinity towards MAN and LPS in a dose-dependent manner, while relatively lower affinity to PGN and poly (I:C). rCgMFCP also displayed binding activities towards Gram-negative bacteria (Vibrio anguillarum and V. splendidus), Gram-positive bacteria (Staphylococcu aureu) and fungi (Pichia pastoris). These results collectively indicated that CgMFCP specifically expressed in haemocytes and functioned as a pattern recognition receptor by binding to various microbes in oyster C. gigas, which provided insight into the function of Methyltransf_FA domain containing proteins.
Collapse
Affiliation(s)
- Jiaxin Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qi Zhao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Siqi Fan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yan Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Pei Yuan
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
78
|
Baltoumas FA, Zafeiropoulou S, Karatzas E, Koutrouli M, Thanati F, Voutsadaki K, Gkonta M, Hotova J, Kasionis I, Hatzis P, Pavlopoulos GA. Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review. Biomolecules 2021; 11:1245. [PMID: 34439912 PMCID: PMC8391349 DOI: 10.3390/biom11081245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Technological advances in high-throughput techniques have resulted in tremendous growth of complex biological datasets providing evidence regarding various biomolecular interactions. To cope with this data flood, computational approaches, web services, and databases have been implemented to deal with issues such as data integration, visualization, exploration, organization, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more and more difficult for an end user to know what the scope and focus of each repository is and how redundant the information between them is. Several repositories have a more general scope, while others focus on specialized aspects, such as specific organisms or biological systems. Unfortunately, many of these databases are self-contained or poorly documented and maintained. For a clearer view, in this article we provide a comprehensive categorization, comparison and evaluation of such repositories for different bioentity interaction types. We discuss most of the publicly available services based on their content, sources of information, data representation methods, user-friendliness, scope and interconnectivity, and we comment on their strengths and weaknesses. We aim for this review to reach a broad readership varying from biomedical beginners to experts and serve as a reference article in the field of Network Biology.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Sofia Zafeiropoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Mikaela Koutrouli
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Foteini Thanati
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Kleanthi Voutsadaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Maria Gkonta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Joana Hotova
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Ioannis Kasionis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
79
|
Slaidina M, Gupta S, Banisch TU, Lehmann R. A single-cell atlas reveals unanticipated cell type complexity in Drosophila ovaries. Genome Res 2021; 31:1938-1951. [PMID: 34389661 DOI: 10.1101/gr.274340.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022]
Abstract
Organ function relies on the spatial organization and functional coordination of numerous cell types. The Drosophila ovary is a widely used model system to study the cellular activities underlying organ function, including stem cell regulation, cell signaling and epithelial morphogenesis. However, the relative paucity of cell type-specific reagents hinders investigation of molecular functions at the appropriate cellular resolution. Here, we used single-cell RNA sequencing to characterize all cell types of the stem cell compartment and early follicles of the Drosophila ovary. We computed transcriptional signatures and identified specific markers for nine states of germ cell differentiation, and 23 somatic cell types and subtypes. We uncovered an unanticipated diversity of escort cells, the somatic cells that directly interact with differentiating germline cysts. Three escort cell subtypes reside in discrete anatomical positions, and express distinct sets of secreted and transmembrane proteins, suggesting that diverse micro-environments support the progressive differentiation of germ cells. Finally, we identified 17 follicle cell subtypes, and characterized their transcriptional profiles. Altogether, we provide a comprehensive resource of gene expression, cell type-specific markers, spatial coordinates and functional predictions for 34 ovarian cell types and subtypes.
Collapse
Affiliation(s)
| | - Selena Gupta
- Skirball Institute, NYU Grossman School of Medicine
| | | | | |
Collapse
|
80
|
Frauenstein A, Ebner S, Hansen FM, Sinha A, Phulphagar K, Swatek K, Hornburg D, Mann M, Meissner F. Identification of covalent modifications regulating immune signaling complex composition and phenotype. Mol Syst Biol 2021; 17:e10125. [PMID: 34318608 PMCID: PMC8447602 DOI: 10.15252/msb.202010125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Cells signal through rearrangements of protein communities governed by covalent modifications and reversible interactions of distinct sets of proteins. A method that identifies those post‐transcriptional modifications regulating signaling complex composition and functional phenotypes in one experimental setup would facilitate an efficient identification of novel molecular signaling checkpoints. Here, we devised modifications, interactions and phenotypes by affinity purification mass spectrometry (MIP‐APMS), comprising the streamlined cloning and transduction of tagged proteins into functionalized reporter cells as well as affinity chromatography, followed by MS‐based quantification. We report the time‐resolved interplay of more than 50 previously undescribed modification and hundreds of protein–protein interactions of 19 immune protein complexes in monocytes. Validation of interdependencies between covalent, reversible, and functional protein complex regulations by knockout or site‐specific mutation revealed ISGylation and phosphorylation of TRAF2 as well as ARHGEF18 interaction in Toll‐like receptor 2 signaling. Moreover, we identify distinct mechanisms of action for small molecule inhibitors of p38 (MAPK14). Our method provides a fast and cost‐effective pipeline for the molecular interrogation of protein communities in diverse biological systems and primary cells.
Collapse
Affiliation(s)
- Annika Frauenstein
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kshiti Phulphagar
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kirby Swatek
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Daniel Hornburg
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
81
|
Skinnider MA, Scott NE, Prudova A, Kerr CH, Stoynov N, Stacey RG, Chan QWT, Rattray D, Gsponer J, Foster LJ. An atlas of protein-protein interactions across mouse tissues. Cell 2021; 184:4073-4089.e17. [PMID: 34214469 DOI: 10.1016/j.cell.2021.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cellular processes arise from the dynamic organization of proteins in networks of physical interactions. Mapping the interactome has therefore been a central objective of high-throughput biology. However, the dynamics of protein interactions across physiological contexts remain poorly understood. Here, we develop a quantitative proteomic approach combining protein correlation profiling with stable isotope labeling of mammals (PCP-SILAM) to map the interactomes of seven mouse tissues. The resulting maps provide a proteome-scale survey of interactome rewiring across mammalian tissues, revealing more than 125,000 unique interactions at a quality comparable to the highest-quality human screens. We identify systematic suppression of cross-talk between the evolutionarily ancient housekeeping interactome and younger, tissue-specific modules. Rewired proteins are tightly regulated by multiple cellular mechanisms and are implicated in disease. Our study opens up new avenues to uncover regulatory mechanisms that shape in vivo interactome responses to physiological and pathophysiological stimuli in mammalian systems.
Collapse
Affiliation(s)
- Michael A Skinnider
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Nichollas E Scott
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Peter Doherty Institute, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Anna Prudova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Craig H Kerr
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Nikolay Stoynov
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R Greg Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Queenie W T Chan
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - David Rattray
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jörg Gsponer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
82
|
O'Connor JT, Stevens AC, Shannon EK, Akbar FB, LaFever KS, Narayanan NP, Gailey CD, Hutson MS, Page-McCaw A. Proteolytic activation of Growth-blocking peptides triggers calcium responses through the GPCR Mthl10 during epithelial wound detection. Dev Cell 2021; 56:2160-2175.e5. [PMID: 34273275 DOI: 10.1016/j.devcel.2021.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/20/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
The presence of a wound triggers surrounding cells to initiate repair mechanisms, but it is not clear how cells initially detect wounds. In epithelial cells, the earliest known wound response, occurring within seconds, is a dramatic increase in cytosolic calcium. Here, we show that wounds in the Drosophila notum trigger cytoplasmic calcium increase by activating extracellular cytokines, Growth-blocking peptides (Gbps), which initiate signaling in surrounding epithelial cells through the G-protein-coupled receptor Methuselah-like 10 (Mthl10). Latent Gbps are present in unwounded tissue and are activated by proteolytic cleavage. Using wing discs, we show that multiple protease families can activate Gbps, suggesting that they act as a generalized protease-detector system. We present experimental and computational evidence that proteases released during wound-induced cell damage and lysis serve as the instructive signal: these proteases liberate Gbp ligands, which bind to Mthl10 receptors on surrounding epithelial cells, and activate downstream release of calcium.
Collapse
Affiliation(s)
- James T O'Connor
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Aaron C Stevens
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Erica K Shannon
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Fabiha Bushra Akbar
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Kimberly S LaFever
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Neil P Narayanan
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Casey D Gailey
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - M Shane Hutson
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA; Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN, USA.
| | - Andrea Page-McCaw
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
83
|
Zeng H, Zhang J, Preising GA, Rubel T, Singh P, Ritz A. Graphery: interactive tutorials for biological network algorithms. Nucleic Acids Res 2021; 49:W257-W262. [PMID: 34037782 PMCID: PMC8262715 DOI: 10.1093/nar/gkab420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 11/14/2022] Open
Abstract
Networks have been an excellent framework for modeling complex biological information, but the methodological details of network-based tools are often described for a technical audience. We have developed Graphery, an interactive tutorial webserver that illustrates foundational graph concepts frequently used in network-based methods. Each tutorial describes a graph concept along with executable Python code that can be interactively run on a graph. Users navigate each tutorial using their choice of real-world biological networks that highlight the diverse applications of network algorithms. Graphery also allows users to modify the code within each tutorial or write new programs, which all can be executed without requiring an account. Graphery accepts ideas for new tutorials and datasets that will be shaped by both computational and biological researchers, growing into a community-contributed learning platform. Graphery is available at https://graphery.reedcompbio.org/.
Collapse
Affiliation(s)
- Heyuan Zeng
- Computer Science Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA.,Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Jinbiao Zhang
- Information and Communication Technology Department, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Gabriel A Preising
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Tobias Rubel
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Pramesh Singh
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| | - Anna Ritz
- Biology Department, Reed College, 3203 SE Woodstock Blvd, Portland, OR 97202, USA
| |
Collapse
|
84
|
Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, Gygi MP, Thornock A, Zarraga G, Tam S, Szpyt J, Gassaway BM, Panov A, Parzen H, Fu S, Golbazi A, Maenpaa E, Stricker K, Guha Thakurta S, Zhang T, Rad R, Pan J, Nusinow DP, Paulo JA, Schweppe DK, Vaites LP, Harper JW, Gygi SP. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 2021; 184:3022-3040.e28. [PMID: 33961781 PMCID: PMC8165030 DOI: 10.1016/j.cell.2021.04.011] [Citation(s) in RCA: 547] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/05/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Thousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins-half the proteome-in 293T cells and includes 118,162 interactions among 14,586 proteins. The second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome whose structure encodes protein function, localization, and complex membership. Comparison across cell lines validates thousands of interactions and reveals extensive customization. Whereas shared interactions reside in core complexes and involve essential proteins, cell-specific interactions link these complexes, "rewiring" subnetworks within each cell's interactome. Interactions covary among proteins of shared function as the proteome remodels to produce each cell's phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.
Collapse
Affiliation(s)
- Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Raphael J Bruckner
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Joe R Cannon
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kurt Baltier
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Fana Gebreab
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Melanie P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Thornock
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Zarraga
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stanley Tam
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Brandon M Gassaway
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexandra Panov
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Parzen
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sipei Fu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Arvene Golbazi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eila Maenpaa
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Keegan Stricker
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tian Zhang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ramin Rad
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Pan
- Broad Institute, Cambridge, MA 02142, USA
| | - David P Nusinow
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
85
|
Drew K, Wallingford JB, Marcotte EM. hu.MAP 2.0: integration of over 15,000 proteomic experiments builds a global compendium of human multiprotein assemblies. Mol Syst Biol 2021; 17:e10016. [PMID: 33973408 PMCID: PMC8111494 DOI: 10.15252/msb.202010016] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022] Open
Abstract
A general principle of biology is the self-assembly of proteins into functional complexes. Characterizing their composition is, therefore, required for our understanding of cellular functions. Unfortunately, we lack knowledge of the comprehensive set of identities of protein complexes in human cells. To address this gap, we developed a machine learning framework to identify protein complexes in over 15,000 mass spectrometry experiments which resulted in the identification of nearly 7,000 physical assemblies. We show our resource, hu.MAP 2.0, is more accurate and comprehensive than previous state of the art high-throughput protein complex resources and gives rise to many new hypotheses, including for 274 completely uncharacterized proteins. Further, we identify 253 promiscuous proteins that participate in multiple complexes pointing to possible moonlighting roles. We have made hu.MAP 2.0 easily searchable in a web interface (http://humap2.proteincomplexes.org/), which will be a valuable resource for researchers across a broad range of interests including systems biology, structural biology, and molecular explanations of disease.
Collapse
Affiliation(s)
- Kevin Drew
- Department of Molecular BiosciencesCenter for Systems and Synthetic BiologyUniversity of TexasAustinTXUSA
- Present address:
Department of Biological SciencesUniversity of Illinois at ChicagoChicagoILUSA
| | - John B Wallingford
- Department of Molecular BiosciencesCenter for Systems and Synthetic BiologyUniversity of TexasAustinTXUSA
| | - Edward M Marcotte
- Department of Molecular BiosciencesCenter for Systems and Synthetic BiologyUniversity of TexasAustinTXUSA
| |
Collapse
|
86
|
Palacios V, Kimble GC, Tootle TL, Buszczak M. Importin-9 regulates chromosome segregation and packaging in Drosophila germ cells. J Cell Sci 2021; 134:237786. [PMID: 33632744 DOI: 10.1242/jcs.258391] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Germ cells undergo distinct nuclear processes as they differentiate into gametes. Although these events must be coordinated to ensure proper maturation, the stage-specific transport of proteins in and out of germ cell nuclei remains incompletely understood. Our efforts to genetically characterize Drosophila genes that exhibit enriched expression in germ cells led to the finding that loss of the highly conserved Importin β/karyopherin family member Importin-9 (Ipo9, herein referring to Ranbp9) results in female and male sterility. Immunofluorescence and fluorescent in situ hybridization revealed that Ipo9KO mutants display chromosome condensation and segregation defects during meiosis. In addition, Ipo9KO mutant males form abnormally structured sperm and fail to properly exchange histones for protamines. Ipo9 physically interacts with proteasome proteins, and Ipo9 mutant males exhibit disruption of the nuclear localization of several proteasome components. Thus, Ipo9 coordinates the nuclear import of functionally related factors necessary for the completion of gametogenesis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Victor Palacios
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Garrett C Kimble
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
87
|
Wang Y, Zhang L, Ren H, Ma L, Guo J, Mao D, Lu Z, Lu L, Yan D. Role of Hakai in m 6A modification pathway in Drosophila. Nat Commun 2021; 12:2159. [PMID: 33846330 PMCID: PMC8041851 DOI: 10.1038/s41467-021-22424-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, is installed by a multi-component writer complex; however, the exact roles of each component remain poorly understood. Here we show that a potential E3 ubiquitin ligase Hakai colocalizes and interacts with other m6A writer components, and Hakai mutants exhibit typical m6A pathway defects in Drosophila, such as lowered m6A levels in mRNA, aberrant Sxl alternative splicing, wing and behavior defects. Hakai, Vir, Fl(2)d and Flacc form a stable complex, and disruption of either Hakai, Vir or Fl(2)d led to the degradation of the other three components. Furthermore, MeRIP-seq indicates that the effective m6A modification is mostly distributed in 5’ UTRs in Drosophila, in contrast to the mammalian system. Interestingly, we demonstrate that m6A modification is deposited onto the Sxl mRNA in a sex-specific fashion, which depends on the m6A writer. Together, our work not only advances the understanding of mechanism and regulation of the m6A writer complex, but also provides insights into how Sxl cooperate with the m6A pathway to control its own splicing. Drosophila m6A writer complex regulates alternative splicing of the Sex-lethal gene. Here the authors show that a potential E3 ligase Hakai interacts with the fly m6A writer complex and that m6A level is reduced in Hakai mutant flies.
Collapse
Affiliation(s)
- Yanhua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lifeng Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Ren
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Ma
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Guo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Decai Mao
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Zhongwen Lu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Lu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
88
|
Huang C, Xu R, Liégeois S, Chen D, Li Z, Ferrandon D. Differential Requirements for Mediator Complex Subunits in Drosophila melanogaster Host Defense Against Fungal and Bacterial Pathogens. Front Immunol 2021; 11:478958. [PMID: 33746938 PMCID: PMC7977287 DOI: 10.3389/fimmu.2020.478958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The humoral immune response to bacterial or fungal infections in Drosophila relies largely on a transcriptional response mediated by the Toll and Immune deficiency NF-κB pathways. Antimicrobial peptides are potent effectors of these pathways and allow the organism to attack invading pathogens. Dorsal-related Immune Factor (DIF), a transcription factor regulated by the Toll pathway, is required in the host defense against fungal and some Gram-positive bacterial infections. The Mediator complex is involved in the initiation of transcription of most RNA polymerase B (PolB)-dependent genes by forming a functional bridge between transcription factors bound to enhancer regions and the gene promoter region and then recruiting the PolB pre-initiation complex. Mediator is formed by several modules that each comprises several subunits. The Med17 subunit of the head module of Mediator has been shown to be required for the expression of Drosomycin, which encodes a potent antifungal peptide, by binding to DIF. Thus, Mediator is expected to mediate the host defense against pathogens controlled by the Toll pathway-dependent innate immune response. Here, we first focus on the Med31 subunit of the middle module of Mediator and find that it is required in host defense against Aspergillus fumigatus, Enterococcus faecalis, and injected but not topically-applied Metarhizium robertsii. Thus, host defense against M. robertsii requires Dif but not necessarily Med31 in the two distinct infection models. The induction of some Toll-pathway-dependent genes is decreased after a challenge of Med31 RNAi-silenced flies with either A. fumigatus or E. faecalis, while these flies exhibit normal phagocytosis and melanization. We have further tested most Mediator subunits using RNAi by monitoring their survival after challenges to several other microbial infections known to be fought off through DIF. We report that the host defense against specific pathogens involves a distinct set of Mediator subunits with only one subunit for C. glabrata or Erwinia carotovora carotovora, at least one for M. robertsii or a somewhat extended repertoire for A. fumigatus (at least eight subunits) and E. faecalis (eight subunits), with two subunits, Med6 and Med11 being required only against A. fumigatus. Med31 but not Med17 is required in fighting off injected M. robertsii conidia. Thus, the involvement of Mediator in Drosophila innate immunity is more complex than expected.
Collapse
Affiliation(s)
- Chuqin Huang
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Di Chen
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
89
|
Erkelenz S, Stanković D, Mundorf J, Bresser T, Claudius AK, Boehm V, Gehring NH, Uhlirova M. Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Res 2021; 49:1688-1707. [PMID: 33444449 PMCID: PMC7897482 DOI: 10.1093/nar/gkaa1274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Pre-mRNA splicing catalyzed by the spliceosome represents a critical step in the regulation of gene expression contributing to transcriptome and proteome diversity. The spliceosome consists of five small nuclear ribonucleoprotein particles (snRNPs), the biogenesis of which remains only partially understood. Here we define the evolutionarily conserved protein Ecdysoneless (Ecd) as a critical regulator of U5 snRNP assembly and Prp8 stability. Combining Drosophila genetics with proteomic approaches, we demonstrate the Ecd requirement for the maintenance of adult healthspan and lifespan and identify the Sm ring protein SmD3 as a novel interaction partner of Ecd. We show that the predominant task of Ecd is to deliver Prp8 to the emerging U5 snRNPs in the cytoplasm. Ecd deficiency, on the other hand, leads to reduced Prp8 protein levels and compromised U5 snRNP biogenesis, causing loss of splicing fidelity and transcriptome integrity. Based on our findings, we propose that Ecd chaperones Prp8 to the forming U5 snRNP allowing completion of the cytoplasmic part of the U5 snRNP biogenesis pathway necessary to meet the cellular demand for functional spliceosomes.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| | - Juliane Mundorf
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tina Bresser
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Ann-Katrin Claudius
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Volker Boehm
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Niels H Gehring
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany.,Institute for Genetics, University of Cologne, Cologne 50674, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
90
|
Everman ER, Cloud-Richardson KM, Macdonald SJ. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation. Genetics 2021; 217:1-20. [PMID: 33683361 PMCID: PMC8045719 DOI: 10.1093/genetics/iyaa020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
A range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale. Using a combination of quantitative trait locus (QTL) mapping and RNA sequencing in the Drosophila Synthetic Population Resource, we demonstrate that resistance to the toxic effects of ingested copper in D. melanogaster is genetically complex and influenced by allelic and expression variation at multiple loci. QTL mapping identified several QTL that account for a substantial fraction of heritability. Additionally, we find that copper resistance is impacted by variation in behavioral avoidance of copper and may be subject to life-stage specific regulation. Gene expression analysis further demonstrated that resistant and sensitive strains are characterized by unique expression patterns. Several of the candidate genes identified via QTL mapping and RNAseq have known copper-specific functions (e.g., Ccs, Sod3, CG11825), and others are involved in the regulation of other heavy metals (e.g., Catsup, whd). We validated several of these candidate genes with RNAi suggesting they contribute to variation in adult copper resistance. Our study illuminates the interconnected roles that allelic and expression variation, organism life stage, and behavior play in copper resistance, allowing a deeper understanding of the diverse mechanisms through which metal pollution can negatively impact organisms.
Collapse
Affiliation(s)
- Elizabeth R Everman
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
- Center for Computational Biology, University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
91
|
Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW, Secombe J. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 2021; 34:108753. [PMID: 33596422 PMCID: PMC7945993 DOI: 10.1016/j.celrep.2021.108753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.
Collapse
Affiliation(s)
- Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Emily L Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
92
|
Swamy KBS, Schuyler SC, Leu JY. Protein Complexes Form a Basis for Complex Hybrid Incompatibility. Front Genet 2021; 12:609766. [PMID: 33633780 PMCID: PMC7900514 DOI: 10.3389/fgene.2021.609766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Proteins are the workhorses of the cell and execute many of their functions by interacting with other proteins forming protein complexes. Multi-protein complexes are an admixture of subunits, change their interaction partners, and modulate their functions and cellular physiology in response to environmental changes. When two species mate, the hybrid offspring are usually inviable or sterile because of large-scale differences in the genetic makeup between the two parents causing incompatible genetic interactions. Such reciprocal-sign epistasis between inter-specific alleles is not limited to incompatible interactions between just one gene pair; and, usually involves multiple genes. Many of these multi-locus incompatibilities show visible defects, only in the presence of all the interactions, making it hard to characterize. Understanding the dynamics of protein-protein interactions (PPIs) leading to multi-protein complexes is better suited to characterize multi-locus incompatibilities, compared to studying them with traditional approaches of genetics and molecular biology. The advances in omics technologies, which includes genomics, transcriptomics, and proteomics can help achieve this end. This is especially relevant when studying non-model organisms. Here, we discuss the recent progress in the understanding of hybrid genetic incompatibility; omics technologies, and how together they have helped in characterizing protein complexes and in turn multi-locus incompatibilities. We also review advances in bioinformatic techniques suitable for this purpose and propose directions for leveraging the knowledge gained from model-organisms to identify genetic incompatibilities in non-model organisms.
Collapse
Affiliation(s)
- Krishna B. S. Swamy
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
93
|
Chetverina D, Erokhin M, Schedl P. GAGA factor: a multifunctional pioneering chromatin protein. Cell Mol Life Sci 2021; 78:4125-4141. [PMID: 33528710 DOI: 10.1007/s00018-021-03776-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer-promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a "pioneer" factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia.
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow, 119334, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
94
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
95
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
96
|
Moutaoufik MT, Tanguay RM. Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperones 2021; 26:265-274. [PMID: 32888179 PMCID: PMC7736433 DOI: 10.1007/s12192-020-01156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Robert M Tanguay
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada.
| |
Collapse
|
97
|
Meep, a Novel Regulator of Insulin Signaling, Supports Development and Insulin Sensitivity via Maintenance of Protein Homeostasis in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2020; 10:4399-4410. [PMID: 32998936 PMCID: PMC7718763 DOI: 10.1534/g3.120.401688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for developmental growth and adult homeostasis, yet the downstream regulators of this signaling pathway are not completely understood. Using the model organism Drosophila melanogaster, we took a genomic approach to identify novel mediators of insulin signaling. These studies led to the identification of Meep, encoded by the gene CG32335. Expression of this gene is both insulin receptor- and diet-dependent. We found that Meep was specifically required in the developing fat body to tolerate a high-sugar diet (HSD). Meep is not essential on a control diet, but when reared on an HSD, knockdown of meep causes hyperglycemia, reduced growth, developmental delay, pupal lethality, and reduced longevity. These phenotypes stem in part from Meep’s role in promoting insulin sensitivity and protein stability. This work suggests a critical role for protein homeostasis in development during overnutrition. Because Meep is conserved and obesity-associated in mammals, future studies on Meep may help to understand the role of proteostasis in insulin-resistant type 2 diabetes.
Collapse
|
98
|
Comoletti D, Trobiani L, Chatonnet A, Bourne Y, Marchot P. Comparative mapping of selected structural determinants on the extracellular domains of cholinesterase-like cell-adhesion molecules. Neuropharmacology 2020; 184:108381. [PMID: 33166544 DOI: 10.1016/j.neuropharm.2020.108381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 11/18/2022]
Abstract
Cell adhesion generally involves formation of homophilic or heterophilic protein complexes between two cells to form transcellular junctions. Neural cell-adhesion members of the α/β-hydrolase fold superfamily of proteins use their extracellular or soluble cholinesterase-like domain to bind cognate partners across cell membranes, as illustrated by the neuroligins. These cell-adhesion molecules currently comprise the synaptic organizers neuroligins found in all animal phyla, along with three proteins found only in invertebrates: the guidance molecule neurotactin, the glia-specific gliotactin, and the basement membrane protein glutactin. Although these proteins share a cholinesterase-like fold, they lack one or more residues composing the catalytic triad responsible for the enzymatic activity of the cholinesterases. Conversely, they are found in various subcellular localisations and display specific disulfide bonding and N-glycosylation patterns, along with individual surface determinants possibly associated with recognition and binding of protein partners. Formation of non-covalent dimers typical of the cholinesterases is documented for mammalian neuroligins, yet whether invertebrate neuroligins and their neurotactin, gliotactin and glutactin relatives also form dimers in physiological conditions is unknown. Here we provide a brief overview of the localization, function, evolution, and conserved versus individual structural determinants of these cholinesterase-like cell-adhesion proteins. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Davide Comoletti
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand; Child Health Institute of New Jersey, New Brunswick, NJ 08901, USA; Department of Neuroscience and Cell Biology Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Laura Trobiani
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Arnaud Chatonnet
- Lab 'Dynamique Musculaire et Métabolisme', Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE) / Université Montpellier, Montpellier, France
| | - Yves Bourne
- Lab 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Univ, Faculté des Sciences - Campus Luminy, Marseille, France
| | - Pascale Marchot
- Lab 'Architecture et Fonction des Macromolécules Biologiques (AFMB)', Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Univ, Faculté des Sciences - Campus Luminy, Marseille, France.
| |
Collapse
|
99
|
Zheng J, Chen X, Yang Y, Tan CSH, Tian R. Mass Spectrometry-Based Protein Complex Profiling in Time and Space. Anal Chem 2020; 93:598-619. [DOI: 10.1021/acs.analchem.0c04332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiangnan Zheng
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiong Chen
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Yang
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chris Soon Heng Tan
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
100
|
Spannl S, Buhl T, Nellas I, Zeidan SA, Iyer KV, Khaliullina H, Schultz C, Nadler A, Dye NA, Eaton S. Glycolysis regulates Hedgehog signalling via the plasma membrane potential. EMBO J 2020; 39:e101767. [PMID: 33021744 PMCID: PMC7604625 DOI: 10.15252/embj.2019101767] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Changes in cell metabolism and plasma membrane potential have been linked to shifts between tissue growth and differentiation, and to developmental patterning. How such changes mediate these effects is poorly understood. Here, we use the developing wing of Drosophila to investigate the interplay between cell metabolism and a key developmental regulator-the Hedgehog (Hh) signalling pathway. We show that reducing glycolysis both lowers steady-state levels of ATP and stabilizes Smoothened (Smo), the 7-pass transmembrane protein that transduces the Hh signal. As a result, the transcription factor Cubitus interruptus accumulates in its full-length, transcription activating form. We show that glycolysis is required to maintain the plasma membrane potential and that plasma membrane depolarization blocks cellular uptake of N-acylethanolamides-lipoprotein-borne Hh pathway inhibitors required for Smo destabilization. Similarly, pharmacological inhibition of glycolysis in mammalian cells induces ciliary translocation of Smo-a key step in pathway activation-in the absence of Hh. Thus, changes in cell metabolism alter Hh signalling through their effects on plasma membrane potential.
Collapse
Affiliation(s)
- Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of BiochemistryFaculty of MedicineUniversity of TorontoTorontoONCanada
| | - Tomasz Buhl
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Ioannis Nellas
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - Salma A Zeidan
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
| | - K Venkatesan Iyer
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Helena Khaliullina
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Present address:
Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Carsten Schultz
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Department of Chemical Physiology and BiochemistryOregon Health and Science UniversityPortlandORUSA
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Natalie A Dye
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Biotechnologisches ZentrumTechnische Universität DresdenDresdenGermany
- Center for Systems Biology DresdenDresdenGermany
| |
Collapse
|