51
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|
52
|
Jayaraj GG, Hipp MS, Hartl FU. Functional Modules of the Proteostasis Network. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033951. [PMID: 30833457 DOI: 10.1101/cshperspect.a033951] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cells invest in an extensive network of factors to maintain protein homeostasis (proteostasis) and prevent the accumulation of potentially toxic protein aggregates. This proteostasis network (PN) comprises the machineries for the biogenesis, folding, conformational maintenance, and degradation of proteins with molecular chaperones as central coordinators. Here, we review recent progress in understanding the modular architecture of the PN in mammalian cells and how it is modified during cell differentiation. We discuss the capacity and limitations of the PN in maintaining proteome integrity in the face of proteotoxic stresses, such as aggregate formation in neurodegenerative diseases. Finally, we outline various pharmacological interventions to ameliorate proteostasis imbalance.
Collapse
Affiliation(s)
- Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| |
Collapse
|
53
|
Alasady MJ, Mendillo ML. The Multifaceted Role of HSF1 in Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1243:69-85. [PMID: 32297212 DOI: 10.1007/978-3-030-40204-4_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat Shock Factor 1 (HSF1), the master transcriptional regulator of the heat shock response (HSR), was first cloned more than 30 years ago. Most early research interrogating the role that HSF1 plays in biology focused on its cytoprotective functions, as a factor that promotes the survival of organisms by protecting against the proteotoxicity associated with neurodegeneration and other pathological conditions. However, recent studies have revealed a deleterious role of HSF1, as a factor that is co-opted by cancer cells to promote their own survival to the detriment of the organism. In cancer, HSF1 operates in a multifaceted manner to promote oncogenic transformation, proliferation, metastatic dissemination, and anti-cancer drug resistance. Here we review our current understanding of HSF1 activation and function in malignant progression and discuss the potential for HSF1 inhibition as a novel anticancer strategy. Collectively, this ever-growing body of work points to a prominent role of HSF1 in nearly every aspect of carcinogenesis.
Collapse
Affiliation(s)
- Milad J Alasady
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
54
|
Kuta R, Larochelle N, Fernandez M, Pal A, Minotti S, Tibshirani M, St Louis K, Gentil BJ, Nalbantoglu JN, Hermann A, Durham HD. Depending on the stress, histone deacetylase inhibitors act as heat shock protein co-inducers in motor neurons and potentiate arimoclomol, exerting neuroprotection through multiple mechanisms in ALS models. Cell Stress Chaperones 2020; 25:173-191. [PMID: 31900865 PMCID: PMC6985055 DOI: 10.1007/s12192-019-01064-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Upregulation of heat shock proteins (HSPs) is an approach to treatment of neurodegenerative disorders with impaired proteostasis. Many neurons, including motor neurons affected in amyotrophic lateral sclerosis (ALS), are relatively resistant to stress-induced upregulation of HSPs. This study demonstrated that histone deacetylase (HDAC) inhibitors enable the heat shock response in cultured spinal motor neurons, in a stress-dependent manner, and can improve the efficacy of HSP-inducing drugs in murine spinal cord cultures subjected to thermal or proteotoxic stress. The effect of particular HDAC inhibitors differed with the stress paradigm. The HDAC6 (class IIb) inhibitor, tubastatin A, acted as a co-inducer of Hsp70 (HSPA1A) expression with heat shock, but not with proteotoxic stress induced by expression of mutant SOD1 linked to familial ALS. Certain HDAC class I inhibitors (the pan inhibitor, SAHA, or the HDAC1/3 inhibitor, RGFP109) were HSP co-inducers comparable to the hydroxyamine arimoclomol in response to proteotoxic stress, but not thermal stress. Regardless, stress-induced Hsp70 expression could be enhanced by combining an HDAC inhibitor with either arimoclomol or with an HSP90 inhibitor that constitutively induced HSPs. HDAC inhibition failed to induce Hsp70 in motor neurons expressing ALS-linked mutant FUS, in which the heat shock response was suppressed; yet SAHA, RGFP109, and arimoclomol did reduce loss of nuclear FUS, a disease hallmark, and HDAC inhibition rescued the DNA repair response in iPSC-derived motor neurons carrying the FUSP525Lmutation, pointing to multiple mechanisms of neuroprotection by both HDAC inhibiting drugs and arimoclomol.
Collapse
Affiliation(s)
- Rachel Kuta
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Nancy Larochelle
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Mario Fernandez
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Arun Pal
- Department Neurology, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Sandra Minotti
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Michael Tibshirani
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Kyle St Louis
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Benoit J Gentil
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Josephine N Nalbantoglu
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada
| | - Andreas Hermann
- Translational Neurodegeneration Section "Albrecht-Kossel", Department of Neurology and Center for Transdisciplinary Neuroscience (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany and German Center for Neurodegenerative Diseases (DZNE) Rostock, Rostock, Germany
| | - Heather D Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, 3801 University St., Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
55
|
A negative feedback mechanism links UBC gene expression to ubiquitin levels by affecting RNA splicing rather than transcription. Sci Rep 2019; 9:18556. [PMID: 31811203 PMCID: PMC6898720 DOI: 10.1038/s41598-019-54973-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
UBC gene plays a critical role in maintaining ubiquitin (Ub) homeostasis. It is upregulated under stress conditions, and herein we report that it is downregulated upon Ub overexpression. Downregulation occurs in a dose-dependent manner, suggesting the existence of a fine-tuned Ub sensing mechanism. This “sensor” requires a conjugation competent ubiquitin to detect Ub levels. Searching the sensor among the transcription factors involved in basal and stress-induced UBC gene expression was unsuccessful. Neither HSF1 and HSF2, nor Sp1 and YY1 are affected by the increased Ub levels. Moreover, mutagenesis of their binding sites in the UBC promoter-driven reporter constructs does not impair the downmodulation effect. Epigenetic studies show that H2A and H2B ubiquitination within the UBC promoter region is unchanged upon ubiquitin overexpression. Noteworthy, quantification of nascent RNA molecules excludes that the downmodulation arises in the transcription initiation step, rather pointing towards a post-transcriptional mechanism. Indeed, a significantly higher fraction of unspliced UBC mRNA is detected in ubiquitin overexpressing cells, compared to empty vector transfected cells. Our findings suggest how increasing cellular ubiquitin levels may control the expression of UBC gene by negatively affecting the splicing of its pre-mRNA, providing a straightforward feedback strategy for the homeostatic control of ubiquitin pools.
Collapse
|
56
|
Ganner A, Gerber J, Ziegler AK, Li Y, Kandzia J, Matulenski T, Kreis S, Breves G, Klein M, Walz G, Neumann-Haefelin E. CBP-1/p300 acetyltransferase regulates SKN-1/Nrf cellular levels, nuclear localization, and activity in C. elegans. Exp Gerontol 2019; 126:110690. [PMID: 31419472 DOI: 10.1016/j.exger.2019.110690] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 08/11/2019] [Indexed: 11/28/2022]
Abstract
SKN-1/Nrf transcription factors regulate diverse biological processes essentially stress defense, detoxification, and longevity. Studies in model organisms have identified a broad range of regulatory processes and mechanisms that profoundly influence SKN-1/Nrf functions. Defining the mechanisms how SKN-1 is regulated will provide insight how cells defend against diverse stressors contributing to aging and disease. In this study, we demonstrate a crucial role for the acetyltransferase CBP-1, the C. elegans homolog of mammalian CREB-binding protein CBP/p300 in the activation of SKN-1. cbp-1 is essential for tolerance of oxidative stress and normal lifespan. CBP-1 directly interacts with SKN-1 and increases SKN-1 protein abundance. In particular CBP-1 modulates SKN-1 nuclear translocation under basal conditions and in response to stress and promotes SKN-1-dependent transcription of protective genes. Moreover, CBP-1 is required for SKN-1 nuclear recruitment, transcriptional activity, and longevity due to reduced insulin/IGF-1-like signaling, mTOR-, and GSK-3 signaling. Our findings establish the acetyltransferase CBP-1 as a critical activator of SKN-1 that directly modulates SKN-1 protein stability, nuclear localization, and function to ascertain normal stress response and lifespan.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Julia Gerber
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anna-Katharina Ziegler
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Yujie Li
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jakob Kandzia
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Tanja Matulenski
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Saskia Kreis
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Department of Physiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
57
|
Frottin F, Schueder F, Tiwary S, Gupta R, Körner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS. The nucleolus functions as a phase-separated protein quality control compartment. Science 2019; 365:342-347. [PMID: 31296649 DOI: 10.1126/science.aaw9157] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/23/2019] [Accepted: 06/27/2019] [Indexed: 12/24/2022]
Abstract
The nuclear proteome is rich in stress-sensitive proteins, which suggests that effective protein quality control mechanisms are in place to ensure conformational maintenance. We investigated the role of the nucleolus in this process. In mammalian tissue culture cells under stress conditions, misfolded proteins entered the granular component (GC) phase of the nucleolus. Transient associations with nucleolar proteins such as NPM1 conferred low mobility to misfolded proteins within the liquid-like GC phase, avoiding irreversible aggregation. Refolding and extraction of proteins from the nucleolus during recovery from stress was Hsp70-dependent. The capacity of the nucleolus to store misfolded proteins was limited, and prolonged stress led to a transition of the nucleolar matrix from liquid-like to solid, with loss of reversibility and dysfunction in quality control. Thus, we suggest that the nucleolus has chaperone-like properties and can promote nuclear protein maintenance under stress.
Collapse
Affiliation(s)
- F Frottin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - F Schueder
- Research Group "Molecular Imaging and Bionanotechnology," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - S Tiwary
- Research Group "Computational Systems Biochemistry," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - R Gupta
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - R Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - T Schlichthaerle
- Research Group "Molecular Imaging and Bionanotechnology," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - J Cox
- Research Group "Computational Systems Biochemistry," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - R Jungmann
- Research Group "Molecular Imaging and Bionanotechnology," Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany. .,Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, D-80539 Munich, Germany
| | - F U Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany. .,Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
| | - M S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany. .,Munich Cluster for Systems Neurology (SyNergy), D-80336 Munich, Germany
| |
Collapse
|
58
|
Joutsen J, Sistonen L. Tailoring of Proteostasis Networks with Heat Shock Factors. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a034066. [PMID: 30420555 DOI: 10.1101/cshperspect.a034066] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heat shock factors (HSFs) are the main transcriptional regulators of the heat shock response and indispensable for maintaining cellular proteostasis. HSFs mediate their protective functions through diverse genetic programs, which are composed of genes encoding molecular chaperones and other genes crucial for cell survival. The mechanisms that are used to tailor HSF-driven proteostasis networks are not yet completely understood, but they likely comprise from distinct combinations of both genetic and proteomic determinants. In this review, we highlight the versatile HSF-mediated cellular functions that extend from cellular stress responses to various physiological and pathological processes, and we underline the key advancements that have been achieved in the field of HSF research during the last decade.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
59
|
Rawat S, Anusha V, Jha M, Sreedurgalakshmi K, Raychaudhuri S. Aggregation of Respiratory Complex Subunits Marks the Onset of Proteotoxicity in Proteasome Inhibited Cells. J Mol Biol 2019; 431:996-1015. [DOI: 10.1016/j.jmb.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
|
60
|
Huang W, Li H, Cheng C, Ren C, Chen T, Jiang X, Cheng K, Luo P, Hu C. Analysis of the transcriptome data in Litopenaeus vannamei reveals the immune basis and predicts the hub regulation-genes in response to high-pH stress. PLoS One 2018; 13:e0207771. [PMID: 30517152 PMCID: PMC6281221 DOI: 10.1371/journal.pone.0207771] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/06/2018] [Indexed: 11/18/2022] Open
Abstract
Soil salinization erodes the farmlands and poses a serious threat to human life, reuse of the saline-alkali lands as cultivated resources becomes increasingly prominent. Pacific white shrimp (Litopenaeus vannamei) is an important farmed aquatic species for the development and utilization of the saline-alkali areas. However, little is known about the adaptation mechanism of this species in terms of high-pH stress. In the present study, a transcriptome analysis on the gill tissues of L. vannamei in response to high-pH stress (pH 9.3 ± 0.1) was conducted. After analyzing, the cyclic nucleotide gated channel-Ca2+ (CNGC-Ca2+) and patched 1 (Ptc1) were detected as the majority annotated components in the cAMP signaling pathway (KO04024), indicating that the CNGC-Ca2+ and Ptc1 might be the candidate components for transducing and maintaining the high-pH stress signals, respectively. The immunoglobulin superfamily (IgSF), heat shock protein (HSP), glutathione s-transferase (GST), prophenoloxidase/phenoloxidase (proPO/PO), superoxide dismutase (SOD), anti-lipopolysaccharide factor (ALF) and lipoprotein were discovered as the major transcribed immune factors in response to high-pH stress. To further detect hub regulation-genes, protein-protein interaction (PPI) networks were constructed; the genes/proteins "Polymerase (RNA) II (DNA directed) polypeptide A" (POLR2A), "Histone acetyltransferase p300" (EP300) and "Heat shock 70kDa protein 8" (HSPA8) were suggested as the top three hub regulation-genes in response to acute high-pH stress; the genes/proteins "Heat shock 70kDa protein 4" (HSPA4), "FBJ murine osteosarcoma viral oncogene homolog" (FOS) and "Nucleoporin 54kDa" (NUP54) were proposed as the top three hub regulation-genes involved in adapting endurance high-pH stress; the protein-interactions of "EP300-HSPA8" and "HSPA4-NUP54" were detected as the most important biological interactions in response to the high-pH stress; and the HSP70 family genes might play essential roles in the adaptation of the high-pH stress environment in L. vannamei. These findings provide the first insight into the molecular and immune basis of L. vannamei in terms of high-pH environments, and the construction of a PPI network might improve our understanding in revealing the hub regulation-genes in response to abiotic stress in shrimp species and might be beneficial for further studies.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Hongmei Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
| | | | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- * E-mail: (CH); (PL)
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (CH); (PL)
| |
Collapse
|
61
|
Abstract
Protein homeostasis, or proteostasis, is required for proper cell function and thus must be
under tight maintenance in all circumstances. In crowded cell conditions, protein folding is sometimes
unfavorable, and this condition is worsened during stress situations. Cells cope with such stress
through the use of a Protein Quality Control system, which uses molecular chaperones and heat shock
proteins as its major players. This system aids with folding, avoiding misfolding and/or reversing aggregation.
A pivotal regulator of the response to heat stress is Heat Shock Factor, which is recruited to
the promoters of the chaperone genes, inducting their expression. This mini review aims to cover our
general knowledge on the structure and function of this factor.
Collapse
Affiliation(s)
- Natália Galdi Quel
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Carlos H.I. Ramos
- Institute of Chemistry and Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
62
|
An H, Williams NG, Shelkovnikova TA. NEAT1 and paraspeckles in neurodegenerative diseases: A missing lnc found? Noncoding RNA Res 2018; 3:243-252. [PMID: 30533572 PMCID: PMC6257911 DOI: 10.1016/j.ncrna.2018.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are among the most common causes of disability worldwide. Although neurodegenerative diseases are heterogeneous in both their clinical features and the underlying physiology, they are all characterised by progressive loss of specific neuronal populations. Recent experimental evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the CNS in health and disease. Nuclear Paraspeckle Assembly Transcript 1 (NEAT1) is an abundant, ubiquitously expressed lncRNA, which forms a scaffold for a specific RNA granule in the nucleus, or nuclear body, the paraspeckle. Paraspeckles act as molecular hubs for cellular processes commonly affected by neurodegeneration. Transcriptomic analyses of the diseased human tissue have revealed altered NEAT1 levels in the CNS in major neurodegenerative disorders as well as in some disease models. Although it is clear that changes in NEAT1 expression (and in some cases, paraspeckle assembly) accompany neuronal damage, our understanding of NEAT1 contribution to the disease pathogenesis is still rudimentary. In this review, we have summarised the available knowledge on NEAT1 involvement in the molecular processes linked to neurodegeneration and on NEAT1 dysregulation in this type of disease, with a special focus on amyotrophic lateral sclerosis. The goal of this review is to attract the attention of researchers in the field of neurodegeneration to NEAT1 and paraspeckles.
Collapse
Affiliation(s)
- Haiyan An
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Non G Williams
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Tatyana A Shelkovnikova
- Medicines Discovery Institute, School of Biosciences, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
63
|
Brunquell J, Raynes R, Bowers P, Morris S, Snyder A, Lugano D, Deonarine A, Westerheide SD. CCAR-1 is a negative regulator of the heat-shock response in Caenorhabditis elegans. Aging Cell 2018; 17:e12813. [PMID: 30003683 PMCID: PMC6156500 DOI: 10.1111/acel.12813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Defects in protein quality control during aging are central to many human diseases, and strategies are needed to better understand mechanisms of controlling the quality of the proteome. The heat-shock response (HSR) is a conserved survival mechanism mediated by the transcription factor HSF1 which functions to maintain proteostasis. In mammalian cells, HSF1 is regulated by a variety of factors including the prolongevity factor SIRT1. SIRT1 promotes the DNA-bound state of HSF1 through deacetylation of the DNA-binding domain of HSF1, thereby enhancing the HSR. SIRT1 is also regulated by various factors, including negative regulation by the cell-cycle and apoptosis regulator CCAR2. CCAR2 negatively regulates the HSR, possibly through its inhibitory interaction with SIRT1. We were interested in studying conservation of the SIRT1/CCAR2 regulatory interaction in Caenorhabditis elegans, and in utilizing this model organism to observe the effects of modulating sirtuin activity on the HSR, longevity, and proteostasis. The HSR is highly conserved in C. elegans and is mediated by the HSF1 homolog, HSF-1. We have uncovered that negative regulation of the HSR by CCAR2 is conserved in C. elegans and is mediated by the CCAR2 ortholog, CCAR-1. This negative regulation requires the SIRT1 homolog SIR-2.1. In addition, knockdown of CCAR-1 via ccar-1 RNAi works through SIR-2.1 to enhance stress resistance, motility, longevity, and proteostasis. This work therefore highlights the benefits of enhancing sirtuin activity to promote the HSR at the level of the whole organism.
Collapse
Affiliation(s)
- Jessica Brunquell
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Rachel Raynes
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Philip Bowers
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Stephanie Morris
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Alana Snyder
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Doreen Lugano
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Andrew Deonarine
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| | - Sandy D. Westerheide
- Cell Biology, Microbiology and Molecular BiologyUniversity of South FloridaTampaFloridaUSA
| |
Collapse
|
64
|
Modulation of Heat Shock Factor 1 Activity through Silencing of Ser303/Ser307 Phosphorylation Supports a Metabolic Program Leading to Age-Related Obesity and Insulin Resistance. Mol Cell Biol 2018; 38:MCB.00095-18. [PMID: 29941492 DOI: 10.1128/mcb.00095-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Activation of the adaptive response to cellular stress orchestrated by heat shock factor 1 (HSF1), which is an evolutionarily conserved transcriptional regulator of chaperone response and cellular bioenergetics in diverse model systems, is a central feature of organismal defense from environmental and cellular stress. HSF1 activity, induced by proteostatic, metabolic, and growth factor signals, is regulated by posttranscriptional modifications, yet the mechanisms that regulate HSF1 and particularly the functional significance of these modifications in modulating its biological activity in vivo remain unknown. HSF1 phosphorylation at both Ser303 (S303) and Ser307 (S307) has been shown to repress HSF1 transcriptional activity under normal physiological growth conditions. To determine the biological relevance of these HSF1 phosphorylation events, we generated a knock-in mouse model in which S303 and S307 were replaced with alanine (HSF1303A/307A). Our results confirmed that loss of phosphorylation in HSF1303A/307A cells and tissues increases protein stability but also markedly sensitizes HSF1 activation under normal and heat- or nutrient-induced stress conditions. Interestingly, the enhanced HSF1 activation in HSF1303A/307A mice activates a supportive metabolic program that aggravates the development of age-dependent obesity, fatty liver diseases, and insulin resistance. Thus, these findings highlight the importance of a posttranslational mechanism (through phosphorylation at S303 and S307 sites) of regulation of the HSF1-mediated transcriptional program that moderates the severity of nutrient-induced metabolic diseases.
Collapse
|
65
|
Bianchi M, Crinelli R, Arbore V, Magnani M. Induction of ubiquitin C ( UBC) gene transcription is mediated by HSF1: role of proteotoxic and oxidative stress. FEBS Open Bio 2018; 8:1471-1485. [PMID: 30186748 PMCID: PMC6120222 DOI: 10.1002/2211-5463.12484] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 06/26/2018] [Indexed: 12/14/2022] Open
Abstract
The polyubiquitin gene ubiquitin C (UBC) is considered a stress protective gene and is upregulated under various stressful conditions, which is probably a consequence of an increased demand for ubiquitin in order to remove toxic misfolded proteins. We previously identified heat shock elements (HSEs) within the UBC promoter, which are responsible for heat shock factor (HSF)1‐driven induction of the UBC gene and are activated by proteotoxic stress. Here, we determined the molecular players driving the UBC gene transcriptional response to arsenite treatment, mainly addressing the role of the nuclear factor‐erythroid 2‐related factor 2 (Nrf2)‐mediated antioxidant pathway. Exposure of HeLa cells to arsenite caused a time‐dependent increase of UBCmRNA, while cell viability and proteasome activity were not affected. Nuclear accumulation of HSF1 and Nrf2 transcription factors was detected upon both arsenite and MG132 treatment, while HSF2 nuclear levels increased in MG132‐treated cells. Notably, siRNA‐mediated knockdown of Nrf2 did not reduce UBC transcription under either basal or stressful conditions, but significantly impaired the constitutive and inducible expression of well‐known antioxidant response element‐dependent genes. A chromatin immunoprecipitation assay consistently failed to detect Nrf2 binding to the UBC promoter sequence. By contrast, depletion of HSF1, but not HSF2, significantly compromised stress‐induced UBC expression. Critically, HSF1‐mediated UBC trans‐activation upon arsenite exposure relies on transcription factor binding to previously mapped distal HSEs, as demonstrated to occur under proteasome inhibition. These data highlight HSF1 as the pivotal transcription factor that translates different stress signals into UBC gene transcriptional induction.
Collapse
Affiliation(s)
- Marzia Bianchi
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section University of Urbino 'Carlo Bo' Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section University of Urbino 'Carlo Bo' Italy
| | - Vanessa Arbore
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section University of Urbino 'Carlo Bo' Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section University of Urbino 'Carlo Bo' Italy
| |
Collapse
|
66
|
|
67
|
Neckers L, Blagg B, Haystead T, Trepel JB, Whitesell L, Picard D. Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 2018; 23:467-482. [PMID: 29392504 PMCID: PMC6045531 DOI: 10.1007/s12192-018-0877-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
The molecular chaperone Hsp90 is one component of a highly complex and interactive cellular proteostasis network (PN) that participates in protein folding, directs misfolded and damaged proteins for destruction, and participates in regulating cellular transcriptional responses to environmental stress, thus promoting cell and organismal survival. Over the last 20 years, it has become clear that various disease states, including cancer, neurodegeneration, metabolic disorders, and infection by diverse microbes, impact the PN. Among PN components, Hsp90 was among the first to be pharmacologically targeted with small molecules. While the number of Hsp90 inhibitors described in the literature has dramatically increased since the first such small molecule was described in 1994, it has become increasingly apparent that not all of these agents have been sufficiently validated for specificity, mechanism of action, and lack of off-target effects. Given the less than expected activity of Hsp90 inhibitors in cancer-related human clinical trials, a re-evaluation of potentially confounding off-target effects, as well as confidence in target specificity and mechanism of action, is warranted. In this commentary, we provide feasible approaches to achieve these goals and we discuss additional considerations to improve the clinical efficacy of Hsp90 inhibitors in treating cancer and other diseases.
Collapse
Affiliation(s)
- Len Neckers
- Urologic Oncology Branch, National Cancer Institute, Bethesda, MD, 20892, USA.
| | - Brian Blagg
- Warren Family Research Center for Drug Discovery and Development, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Luke Whitesell
- Whitehead Institute, Cambridge, MA, 02142, USA
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Didier Picard
- Département de Biologie Cellulaire, Université de Genève, 1211, Geneva 4, Switzerland.
| |
Collapse
|
68
|
Kale supplementation up-regulates HSP70 and suppresses cognitive decline in a mouse model of accelerated senescence. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
69
|
Huang C, Wu J, Xu L, Wang J, Chen Z, Yang R. Regulation of HSF1 protein stabilization: An updated review. Eur J Pharmacol 2018; 822:69-77. [PMID: 29341886 DOI: 10.1016/j.ejphar.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 01/09/2018] [Indexed: 12/12/2022]
Abstract
Heat shock factor 1 (HSF1) is a transcriptional factor that determines the efficiency of heat shock responses (HSRs) in the cell. Given its function has been extensively studied in recent years, HSF1 is considered a potential target for the treatment of disorders associated with protein aggregation. The activity of HSF1 is traditionally regulated at the transcriptional level in which the transactivation domain of HSF1 is modified by extensive array of pos-translational modifications, such as phosphorylation, sumoylation, and acetylation. Recently, HSF1 is also reported to be regulated at the monomeric level. For example, in neurodegenerative disorders such as Huntington's disease and Alzheimer's disease the expression levels of the monomeric HSF1 are found to be reduced markedly. Methylene blue (MB) and riluzole, two clinical available drugs, increase the amount of the monomeric HSF1 in both cells and animals. Since the monomeric HSF1 not only determines the efficiency of HSRs, but exerts protective effects in a trimerization-independent manner, increasing the amount of the monomeric HSF1 via stabilization of HSF1 may be an alternative strategy for the amplification of HSR. However, to date we have no outlined knowledges about HSF1 protein stabilization, though studies regarding the regulation of the monomeric HSF1 have been documented in recent years. Here, we summarize the regulation of the monomeric HSF1 by some previously reported factors, such as synuclein, Huntingtin (Htt), TDP-43, unfolded protein response (UPR), MB and doxorubicin (DOX), as well as their possible mechanisms, aiming to push the understanding about HSF1 protein stabilization.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Li Xu
- Department of Ultrasound, Danyang People's Hospital, #2 Xinmin Western Road, Danyang 212300, Jiangsu, China
| | - Jili Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, # 6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Jiangsu Province, #20Xisi Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
70
|
Oda T, Sekimoto T, Kurashima K, Fujimoto M, Nakai A, Yamashita T. Acute HSF1 depletion induces cellular senescence through the MDM2-p53-p21 pathway in human diploid fibroblasts. J Cell Sci 2018; 131:jcs.210724. [DOI: 10.1242/jcs.210724] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Heat shock transcription factor 1 (HSF1) regulates the expression of a wide array of genes, control of the expression of heat shock proteins (HSPs) and cell growth. Although acute depletion of HSF1 induces cellular senescence, the underlying mechanisms are poorly understood. Here, we report that HSF1 depletion-induced senescence (HDIS) of human diploid fibroblasts (HDFs) was independent of HSP-mediated proteostasis but dependent on activation of the p53-p21 pathway, partly because of the increased expression of dehydrogenase/reductase 2 (DHRS2), a putative MDM2 inhibitor. We observed that HDIS occurred without decreased levels of major HSPs or increased proteotoxic stress in HDFs. Additionally, an inhibitor of HSP70 family proteins increased proteotoxicity and suppressed cell growth, but failed to induce senescence. Importantly, we found that activation of the p53-p21 pathway due to reduced MDM2-dependent p53 degradation was required for HDIS. Furthermore, we provide evidence that increased DHRS2 expression contributes to p53 stabilization and HDIS. Collectively, our observations uncovered a molecular pathway in which HSF1 depletion-induced DHRS2 expression leads to activation of the MDM2-p53-p21 pathway required for HDIS.
Collapse
Affiliation(s)
- Tsukasa Oda
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Takayuki Sekimoto
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Kiminori Kurashima
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | - Takayuki Yamashita
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
71
|
Neueder A, Gipson TA, Batterton S, Lazell HJ, Farshim PP, Paganetti P, Housman DE, Bates GP. HSF1-dependent and -independent regulation of the mammalian in vivo heat shock response and its impairment in Huntington's disease mouse models. Sci Rep 2017; 7:12556. [PMID: 28970536 PMCID: PMC5624871 DOI: 10.1038/s41598-017-12897-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/30/2017] [Indexed: 01/20/2023] Open
Abstract
The heat shock response (HSR) is a mechanism to cope with proteotoxic stress by inducing the expression of molecular chaperones and other heat shock response genes. The HSR is evolutionarily well conserved and has been widely studied in bacteria, cell lines and lower eukaryotic model organisms. However, mechanistic insights into the HSR in higher eukaryotes, in particular in mammals, are limited. We have developed an in vivo heat shock protocol to analyze the HSR in mice and dissected heat shock factor 1 (HSF1)-dependent and -independent pathways. Whilst the induction of proteostasis-related genes was dependent on HSF1, the regulation of circadian function related genes, indicating that the circadian clock oscillators have been reset, was independent of its presence. Furthermore, we demonstrate that the in vivo HSR is impaired in mouse models of Huntington's disease but we were unable to corroborate the general repression of transcription that follows a heat shock in lower eukaryotes.
Collapse
Affiliation(s)
- Andreas Neueder
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.
| | - Theresa A Gipson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Sophie Batterton
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Hayley J Lazell
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Pamela P Farshim
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Paolo Paganetti
- Neuroscience Discovery, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
- Laboratory for Biomedical Neuroscience, Neurocenter of Southern Switzerland, EOC, c/o SIRM, Torricella-Taverne, Switzerland
| | - David E Housman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Gillian P Bates
- UCL Huntington's Disease Centre, Sobell Department of Motor Neuroscience, UCL Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
72
|
Vilaboa N, Boré A, Martin-Saavedra F, Bayford M, Winfield N, Firth-Clark S, Kirton SB, Voellmy R. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival. Nucleic Acids Res 2017; 45:5797-5817. [PMID: 28369544 PMCID: PMC5449623 DOI: 10.1093/nar/gkx194] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small molecules and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic analysis of structure–activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA-binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naïve and -depleted cells, our results suggest that a large majority of heat-induced genes is positively regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.,CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Alba Boré
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.,CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco Martin-Saavedra
- Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain.,CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Melanie Bayford
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Natalie Winfield
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Stuart Firth-Clark
- Domainex Ltd, Chesterford Research Park, Little Chesterford, Saffron Walden, Essex CB10 1XL, UK
| | - Stewart B Kirton
- University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | | |
Collapse
|
73
|
San Gil R, Ooi L, Yerbury JJ, Ecroyd H. The heat shock response in neurons and astroglia and its role in neurodegenerative diseases. Mol Neurodegener 2017; 12:65. [PMID: 28923065 PMCID: PMC5604514 DOI: 10.1186/s13024-017-0208-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
Protein inclusions are a predominant molecular pathology found in numerous neurodegenerative diseases, including amyotrophic lateral sclerosis and Huntington's disease. Protein inclusions form in discrete areas of the brain characteristic to the type of neurodegenerative disease, and coincide with the death of neurons in that region (e.g. spinal cord motor neurons in amyotrophic lateral sclerosis). This suggests that the process of protein misfolding leading to inclusion formation is neurotoxic, and that cell-autonomous and non-cell autonomous mechanisms that maintain protein homeostasis (proteostasis) can, at times, be insufficient to prevent protein inclusion formation in the central nervous system. The heat shock response is a pro-survival pathway induced under conditions of cellular stress that acts to maintain proteostasis through the up-regulation of heat shock proteins, a superfamily of molecular chaperones, other co-chaperones and mitotic regulators. The kinetics and magnitude of the heat shock response varies in a stress- and cell-type dependent manner. It remains to be determined if and/or how the heat shock response is activated in the different cell-types that comprise the central nervous system (e.g. neurons and astroglia) in response to protein misfolding events that precede cellular dysfunctions in neurodegenerative diseases. This is particularly relevant considering emerging evidence demonstrating the non-cell autonomous nature of amyotrophic lateral sclerosis and Huntington's disease (and other neurodegenerative diseases) and the destructive role of astroglia in disease progression. This review highlights the complexity of heat shock response activation and addresses whether neurons and glia sense and respond to protein misfolding and aggregation associated with neurodegenerative diseases, in particular Huntington's disease and amyotrophic lateral sclerosis, by inducing a pro-survival heat shock response.
Collapse
Affiliation(s)
- Rebecca San Gil
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Northfields Ave, Wollongong, 2522 Australia
| |
Collapse
|
74
|
Li J, Labbadia J, Morimoto RI. Rethinking HSF1 in Stress, Development, and Organismal Health. Trends Cell Biol 2017; 27:895-905. [PMID: 28890254 DOI: 10.1016/j.tcb.2017.08.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 11/29/2022]
Abstract
The heat shock response (HSR) was originally discovered as a transcriptional response to elevated temperature shock and led to the identification of heat shock proteins and heat shock factor 1 (HSF1). Since then HSF1 has been shown to be important for combating other forms of environmental perturbations as well as genetic variations that cause proteotoxic stress. The HSR has long been thought to be an absolute response to conditions of cell stress and the primary mechanism by which HSF1 promotes organismal health by preventing protein aggregation and subsequent proteome imbalance. Accumulating evidence now shows that HSF1, the central player in the HSR, is regulated according to specific cellular requirements through cell-autonomous and non-autonomous signals, and directs transcriptional programs distinct from the HSR during development and in carcinogenesis. We discuss here these 'non-canonical' roles of HSF1, its regulation in diverse conditions of development, reproduction, metabolism, and aging, and posit that HSF1 serves to integrate diverse biological and pathological responses.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA; Present address: Functional and Chemical Genomics Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Johnathan Labbadia
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA; Present address: Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, WC1E 6BT, UK
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
75
|
Budzyński MA, Crul T, Himanen SV, Toth N, Otvos F, Sistonen L, Vigh L. Chaperone co-inducer BGP-15 inhibits histone deacetylases and enhances the heat shock response through increased chromatin accessibility. Cell Stress Chaperones 2017; 22:717-728. [PMID: 28474205 PMCID: PMC5573690 DOI: 10.1007/s12192-017-0798-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/22/2017] [Accepted: 04/07/2017] [Indexed: 01/20/2023] Open
Abstract
Defects in cellular protein homeostasis are associated with many severe and prevalent pathological conditions such as neurodegenerative diseases, muscle dystrophies, and metabolic disorders. One way to counteract these defects is to improve the protein homeostasis capacity through induction of the heat shock response. Despite numerous attempts to develop strategies for chemical activation of the heat shock response by heat shock transcription factor 1 (HSF1), the underlying mechanisms of drug candidates' mode of action are poorly understood. To lower the threshold for the heat shock response activation, we used the chaperone co-inducer BGP-15 that was previously shown to have beneficial effects on several proteinopathic disease models. We found that BGP-15 treatment combined with heat stress caused a substantial increase in HSF1-dependent heat shock protein 70 (HSPA1A/B) expression already at a febrile range of temperatures. Moreover, BGP-15 alone inhibited the activity of histone deacetylases (HDACs), thereby increasing chromatin accessibility at multiple genomic loci including the stress-inducible HSPA1A. Intriguingly, treatment with well-known potent HDAC inhibitors trichostatin A and valproic acid enhanced the heat shock response and improved cytoprotection. These results present a new pharmacological strategy for restoring protein homeostasis by inhibiting HDACs, increasing chromatin accessibility, and lowering the threshold for heat shock response activation.
Collapse
Affiliation(s)
- Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Tim Crul
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland
| | - Noemi Toth
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Ferenc Otvos
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland.
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, FI-20520, Turku, Finland.
| | - Laszlo Vigh
- Biological Research Centre of the Hungarian Academy of Sciences, Szeged, 6726, Hungary.
| |
Collapse
|
76
|
Gomez-Pastor R, Burchfiel ET, Thiele DJ. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol 2017; 19:4-19. [PMID: 28852220 DOI: 10.1038/nrm.2017.73] [Citation(s) in RCA: 459] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The heat shock transcription factors (HSFs) were discovered over 30 years ago as direct transcriptional activators of genes regulated by thermal stress, encoding heat shock proteins. The accepted paradigm posited that HSFs exclusively activate the expression of protein chaperones in response to conditions that cause protein misfolding by recognizing a simple promoter binding site referred to as a heat shock element. However, we now realize that the mammalian family of HSFs comprises proteins that independently or in concert drive combinatorial gene regulation events that activate or repress transcription in different contexts. Advances in our understanding of HSF structure, post-translational modifications and the breadth of HSF-regulated target genes have revealed exciting new mechanisms that modulate HSFs and shed new light on their roles in physiology and pathology. For example, the ability of HSF1 to protect cells from proteotoxicity and cell death is impaired in neurodegenerative diseases but can be exploited by cancer cells to support their growth, survival and metastasis. These new insights into HSF structure, function and regulation should facilitate the development tof new disease therapeutics to manipulate this transcription factor family.
Collapse
Affiliation(s)
- Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine
| | | | - Dennis J Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine.,Department of Biochemistry, Duke University School of Medicine.,Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
77
|
Parveen S, Vedagiri D, Nair HG, Parthasarathy H, Harshan KH. Unconventional MAPK-GSK-3β Pathway Behind Atypical Epithelial-Mesenchymal Transition In Hepatocellular Carcinoma. Sci Rep 2017; 7:8842. [PMID: 28821798 PMCID: PMC5562823 DOI: 10.1038/s41598-017-09179-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
We recently reported an atypical epithelial mesenchymal transition (EMT) in human hepatoma cell culture Huh7.5, which was non-responsive to the canonical EMT-transcription factors. Here we characterize major pathways regulating this atypical EMT through whole genome transcriptome profiling and molecular analysis, and identify a unique regulation of EMT by GSK-3β. Our analysis reveals remarkable suppression of several key liver-specific markers in Huh7.5M cells indicating that EMT not only changes the epithelial properties, but alters the characteristics associated with hepatocytes as well. One key finding of this study is that GSK-3β, a known antagonist to β-Catenin signaling and a major pro-apoptotic regulator, is critical for the maintenance of EMT in Huh7.5M cells as its inhibition reversed EMT. Importantly, through these studies we identify that maintenance of EMT by GSK-3β in Huh7.5M is regulated by p38MAPK and ERK1/2 that has not been reported elsewhere and is distinct from another metastatic non-hepatic cell line MDA-MB-231. These data showcase the existence of non-canonical mechanisms behind EMT. The atypicalness of this system underlines the existence of tremendous diversity in cancer-EMT and warrants the necessity to take a measured approach while dealing with metastasis and cancer drug resistance.
Collapse
Affiliation(s)
- Sana Parveen
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Dhiviya Vedagiri
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Hitha Gopalan Nair
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | | | | |
Collapse
|
78
|
Wang T, Chen YPP, MacLeod IM, Pryce JE, Goddard ME, Hayes BJ. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping. BMC Genomics 2017; 18:618. [PMID: 28810831 PMCID: PMC5558724 DOI: 10.1186/s12864-017-4030-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Using whole genome sequence data might improve genomic prediction accuracy, when compared with high-density SNP arrays, and could lead to identification of casual mutations affecting complex traits. For some traits, the most accurate genomic predictions are achieved with non-linear Bayesian methods. However, as the number of variants and the size of the reference population increase, the computational time required to implement these Bayesian methods (typically with Monte Carlo Markov Chain sampling) becomes unfeasibly long. Results Here, we applied a new method, HyB_BR (for Hybrid BayesR), which implements a mixture model of normal distributions and hybridizes an Expectation-Maximization (EM) algorithm followed by Markov Chain Monte Carlo (MCMC) sampling, to genomic prediction in a large dairy cattle population with imputed whole genome sequence data. The imputed whole genome sequence data included 994,019 variant genotypes of 16,214 Holstein and Jersey bulls and cows. Traits included fat yield, milk volume, protein kg, fat% and protein% in milk, as well as fertility and heat tolerance. HyB_BR achieved genomic prediction accuracies as high as the full MCMC implementation of BayesR, both for predicting a validation set of Holstein and Jersey bulls (multi-breed prediction) and a validation set of Australian Red bulls (across-breed prediction). HyB_BR had a ten fold reduction in compute time, compared with the MCMC implementation of BayesR (48 hours versus 594 hours). We also demonstrate that in many cases HyB_BR identified sequence variants with a high posterior probability of affecting the milk production or fertility traits that were similar to those identified in BayesR. For heat tolerance, both HyB_BR and BayesR found variants in or close to promising candidate genes associated with this trait and not detected by previous studies. Conclusions The results demonstrate that HyB_BR is a feasible method for simultaneous genomic prediction and QTL mapping with whole genome sequence in large reference populations.
Collapse
Affiliation(s)
- Tingting Wang
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3083, Australia. .,Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia. .,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.
| | - Yi-Ping Phoebe Chen
- School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia
| | - Jennie E Pryce
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, 3083, Australia
| | - Michael E Goddard
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,Faculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Ben J Hayes
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Melbourne, VIC, 3083, Australia.,Dairy Futures Cooperative Research Centre, Melbourne, VIC, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
79
|
Bhardwaj M, Paul S, Jakhar R, Khan I, Kang JI, Kim HM, Yun JW, Lee SJ, Cho HJ, Lee HG, Kang SC. Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells. Oncotarget 2017; 8:112426-112441. [PMID: 29348836 PMCID: PMC5762521 DOI: 10.18632/oncotarget.20113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Heat shock transcription factor-1 (HSF-1) guards the cancerous cells proteome against the alterations in protein homeostasis generated by their hostile tumor microenvironment. Contrasting with the classical induction of heat shock proteins, the pro-oncogenic activities of HSF-1 remains to be explored. Therefore, cancer's fragile proteostatic pathway governed by HSF-1 could be a potential therapeutic target and novel biomarker by natural compounds. Vitexin, a natural flavonoid has been documented as a potent anti-tumor agent on various cell lines. However, in the present study, when human colorectal carcinoma HCT-116 cells were exposed to vitexin, the induction of HSF-1 downstream target proteins, such as heat shock proteins were suppressed. We identified HSF-1 as a potential molecular target of vitexin that interact with DNA-binding domain of HSF-1, which inhibited HSF-1 oligomerization and activation (in silico). Consequently, HSF-1 hyperphosphorylation mediated by JNK operation causes transcriptional inactivation of HSF-1, and supported ROS-mediated autophagy induction. Interestingly, in HSF-1 immunoprecipitated and silenced HCT-116 cells, co-expression of apolipoprotein 1 (ApoL1) and JNK was observed which promoted the caspase independent autophagic cell death accompanied by p62 downregulation and increased LC3-I to LC3-II conversion. Finally, in vivo findings confirmed that vitexin suppressed tumor growth through activation of autophagic cascade in HCT-116 xenograft model. Taken together, our study insights a probable novel association between HSF-1 and ApoL-1 was established in this study, which supports HSF-1 as a potential target of vitexin to improve treatment outcome in colorectal cancer.
Collapse
Affiliation(s)
- Monika Bhardwaj
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Souren Paul
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Rekha Jakhar
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Imran Khan
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Ji In Kang
- Disease Molecule Biochemistry Laboratory, Graduate School of Medical Science and Engineering (GSMSE), KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Ho Min Kim
- Disease Molecule Biochemistry Laboratory, Graduate School of Medical Science and Engineering (GSMSE), KAIST, Yuseong-gu, Daejeon, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hee Jun Cho
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.,Department of Biomolecular Science, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Kyoungsan, Kyoungbook, Republic of Korea
| |
Collapse
|
80
|
Dayalan Naidu S, Dinkova-Kostova AT. Regulation of the mammalian heat shock factor 1. FEBS J 2017; 284:1606-1627. [PMID: 28052564 DOI: 10.1111/febs.13999] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/17/2016] [Accepted: 01/03/2017] [Indexed: 12/21/2022]
Abstract
Living organisms are endowed with the capability to tackle various forms of cellular stress due to the presence of molecular chaperone machinery complexes that are ubiquitous throughout the cell. During conditions of proteotoxic stress, the transcription factor heat shock factor 1 (HSF1) mediates the elevation of heat shock proteins, which are crucial components of the chaperone complex machinery and function to ameliorate protein misfolding and aggregation and restore protein homeostasis. In addition, HSF1 orchestrates a versatile transcriptional programme that includes genes involved in repair and clearance of damaged macromolecules and maintenance of cell structure and metabolism, and provides protection against a broad range of cellular stress mediators, beyond heat shock. Here, we discuss the structure and function of the mammalian HSF1 and its regulation by post-translational modifications (phosphorylation, sumoylation and acetylation), proteasomal degradation, and small-molecule activators and inhibitors.
Collapse
Affiliation(s)
- Sharadha Dayalan Naidu
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
| | - Albena T Dinkova-Kostova
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, UK
- Department of Pharmacology and Molecular Sciences, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
81
|
Sala AJ, Bott LC, Morimoto RI. Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol 2017; 216:1231-1241. [PMID: 28400444 PMCID: PMC5412572 DOI: 10.1083/jcb.201612111] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 01/22/2023] Open
Abstract
The proteostasis network (PN) regulates protein synthesis, folding, transport, and degradation to maintain proteome integrity and limit the accumulation of protein aggregates, a hallmark of aging and degenerative diseases. In multicellular organisms, the PN is regulated at the cellular, tissue, and systemic level to ensure organismal health and longevity. Here we review these three layers of PN regulation and examine how they collectively maintain cellular homeostasis, achieve cell type-specific proteomes, and coordinate proteostasis across tissues. A precise understanding of these layers of control has important implications for organismal health and could offer new therapeutic approaches for neurodegenerative diseases and other chronic disorders related to PN dysfunction.
Collapse
Affiliation(s)
- Ambre J Sala
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208
| | - Laura C Bott
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208
| |
Collapse
|
82
|
Kim Guisbert KS, Guisbert E. SF3B1 is a stress-sensitive splicing factor that regulates both HSF1 concentration and activity. PLoS One 2017; 12:e0176382. [PMID: 28445500 PMCID: PMC5406028 DOI: 10.1371/journal.pone.0176382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The heat shock response (HSR) is a well-conserved, cytoprotective stress response that activates the HSF1 transcription factor. During severe stress, cells inhibit mRNA splicing which also serves a cytoprotective function via inhibition of gene expression. Despite their functional interconnectedness, there have not been any previous reports of crosstalk between these two pathways. In a genetic screen, we identified SF3B1, a core component of the U2 snRNP subunit of the spliceosome, as a regulator of the heat shock response in Caenorhabditis elegans. Here, we show that this regulatory connection is conserved in cultured human cells and that there are at least two distinct pathways by which SF3B1 can regulate the HSR. First, inhibition of SF3B1 with moderate levels of Pladienolide B, a previously established small molecule inhibitor of SF3B1, affects the transcriptional activation of HSF1, the transcription factor that mediates the HSR. However, both higher levels of Pladienolide B and SF3B1 siRNA knockdown also change the concentration of HSF1, a form of HSR regulation that has not been previously documented during normal physiology but is observed in some forms of cancer. Intriguingly, mutations in SF3B1 have also been associated with several distinct types of cancer. Finally, we show that regulation of alternative splicing by SF3B1 is sensitive to temperature, providing a new mechanism by which temperature stress can remodel the transcriptome.
Collapse
Affiliation(s)
- Karen S. Kim Guisbert
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
| | - Eric Guisbert
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, United States of America
- * E-mail:
| |
Collapse
|
83
|
Huang C, Hu W, Wang J, Tong L, Lu X, Wu F, Ling Y, Jiang B, Zhang W, Chen Z, Xiong Q, Qin Y, Yang R. Methylene blue increases the amount of HSF1 through promotion of PKA-mediated increase in HSF1-p300 interaction. Int J Biochem Cell Biol 2017; 84:75-88. [DOI: 10.1016/j.biocel.2017.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
|
84
|
Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, Ross CA, Eroglu C, Thiele DJ. Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun 2017; 8:14405. [PMID: 28194040 PMCID: PMC5316841 DOI: 10.1038/ncomms14405] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/21/2016] [Indexed: 01/26/2023] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disease caused by poly-glutamine expansion in the Htt protein, resulting in Htt misfolding and cell death. Expression of the cellular protein folding and pro-survival machinery by heat shock transcription factor 1 (HSF1) ameliorates biochemical and neurobiological defects caused by protein misfolding. We report that HSF1 is degraded in cells and mice expressing mutant Htt, in medium spiny neurons derived from human HD iPSCs and in brain samples from patients with HD. Mutant Htt increases CK2α' kinase and Fbxw7 E3 ligase levels, phosphorylating HSF1 and promoting its proteasomal degradation. An HD mouse model heterozygous for CK2α' shows increased HSF1 and chaperone levels, maintenance of striatal excitatory synapses, clearance of Htt aggregates and preserves body mass compared with HD mice homozygous for CK2α'. These results reveal a pathway that could be modulated to prevent neuronal dysfunction and muscle wasting caused by protein misfolding in HD.
Collapse
Affiliation(s)
- Rocio Gomez-Pastor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Eileen T. Burchfiel
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Daniel W. Neef
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Alex M. Jaeger
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Elisa Cabiscol
- Departament de Ciencies Mediques Basiques, IRB Lleida, Universitat de Lleida, Lleida 25008, Spain
| | - Spencer U. McKinstry
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Argenia Doss
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Donald C. Lo
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Sergey S. Akimov
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
85
|
Zheng X, Krakowiak J, Patel N, Beyzavi A, Ezike J, Khalil AS, Pincus D. Dynamic control of Hsf1 during heat shock by a chaperone switch and phosphorylation. eLife 2016; 5. [PMID: 27831465 PMCID: PMC5127643 DOI: 10.7554/elife.18638] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023] Open
Abstract
Heat shock factor (Hsf1) regulates the expression of molecular chaperones to maintain protein homeostasis. Despite its central role in stress resistance, disease and aging, the mechanisms that control Hsf1 activity remain unresolved. Here we show that in budding yeast, Hsf1 basally associates with the chaperone Hsp70 and this association is transiently disrupted by heat shock, providing the first evidence that a chaperone repressor directly regulates Hsf1 activity. We develop and experimentally validate a mathematical model of Hsf1 activation by heat shock in which unfolded proteins compete with Hsf1 for binding to Hsp70. Surprisingly, we find that Hsf1 phosphorylation, previously thought to be required for activation, in fact only positively tunes Hsf1 and does so without affecting Hsp70 binding. Our work reveals two uncoupled forms of regulation - an ON/OFF chaperone switch and a tunable phosphorylation gain - that allow Hsf1 to flexibly integrate signals from the proteostasis network and cell signaling pathways. DOI:http://dx.doi.org/10.7554/eLife.18638.001 Proteins are strings of amino acids that carry out crucial activities inside cells, such as harvesting energy and generating the building blocks that cells need to grow. In order to carry out their specific roles inside the cell, the proteins need to “fold” into precise three-dimensional shapes. Protein folding is critical for life, and cells don’t leave it up to chance. Cells employ “molecular chaperones” to help proteins to fold properly. However, under some conditions – such as high temperature – proteins are more difficult to fold and the chaperones can become overwhelmed. In these cases, unfolded proteins can pile up in the cell. This leads not only to the cell being unable to work properly, but also to the formation of toxic “aggregates”. These aggregates are tangles of unfolded proteins that are hallmarks of many neurodegenerative diseases such as Alzheimer’s, Parkinson’s and amyotrophic lateral sclerosis (ALS). Protein aggregates can be triggered by high temperature in a condition termed “heat shock”. A sensor named heat shock factor 1 (Hsf1 for short) increases the amount of chaperones following heat shock. But what controls the activity of Hsf1? To answer this question, Zheng, Krakowiak et al. combined mathematical modelling and experiments in yeast cells. The most important finding is that the ‘on/off switch’ that controls Hsf1 is based on whether Hsf1 is itself bound to a chaperone. When bound to the chaperone, Hsf1 is turned ‘off’; when the chaperone falls off, Hsf1 turns ‘on’ and makes more chaperones; when there are enough chaperones, they once again bind to Hsf1 and turn it back ‘off’. In this way, Hsf1 and the chaperones form a feedback loop that ensures that there are always enough chaperones to keep the cell’s proteins folded. Now that we know how Hsf1 is controlled, can we harness this understanding to tune the activity of Hsf1 without disrupting how the chaperones work? If we can activate Hsf1, we can provide cells with more chaperones. This could be a therapeutic strategy to combat neurodegenerative diseases. DOI:http://dx.doi.org/10.7554/eLife.18638.002
Collapse
Affiliation(s)
- Xu Zheng
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Joanna Krakowiak
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Nikit Patel
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, United States
| | - Ali Beyzavi
- Department of Mechanical Engineering, Boston University, Boston, United States
| | - Jideofor Ezike
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Ahmad S Khalil
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, United States
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, United States
| |
Collapse
|
86
|
Su KH, Dai C. Metabolic control of the proteotoxic stress response: implications in diabetes mellitus and neurodegenerative disorders. Cell Mol Life Sci 2016; 73:4231-4248. [PMID: 27289378 PMCID: PMC5599143 DOI: 10.1007/s00018-016-2291-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/12/2022]
Abstract
Proteome homeostasis, or proteostasis, is essential to maintain cellular fitness and its disturbance is associated with a broad range of human health conditions and diseases. Cells are constantly challenged by various extrinsic and intrinsic insults, which perturb cellular proteostasis and provoke proteotoxic stress. To counter proteomic perturbations and preserve proteostasis, cells mobilize the proteotoxic stress response (PSR), an evolutionarily conserved transcriptional program mediated by heat shock factor 1 (HSF1). The HSF1-mediated PSR guards the proteome against misfolding and aggregation. In addition to proteotoxic stress, emerging studies reveal that this proteostatic mechanism also responds to cellular energy state. This regulation is mediated by the key cellular metabolic sensor AMP-activated protein kinase (AMPK). In this review, we present an overview of the maintenance of proteostasis by HSF1, the metabolic regulation of the PSR, particularly focusing on AMPK, and their implications in the two major age-related diseases-diabetes mellitus and neurodegenerative disorders.
Collapse
Affiliation(s)
- Kuo-Hui Su
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - Chengkai Dai
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA.
| |
Collapse
|
87
|
Li J, Chauve L, Phelps G, Brielmann RM, Morimoto RI. E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response. Genes Dev 2016; 30:2062-2075. [PMID: 27688402 PMCID: PMC5066613 DOI: 10.1101/gad.283317.116] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/06/2016] [Indexed: 01/08/2023]
Abstract
Heat-shock factor (HSF) is the master transcriptional regulator of the heat-shock response (HSR) and is essential for stress resilience. HSF is also required for metazoan development; however, its function and regulation in this process are poorly understood. Here, we characterize the genomic distribution and transcriptional activity of Caenorhabditis elegans HSF-1 during larval development and show that the developmental HSF-1 transcriptional program is distinct from the HSR. HSF-1 developmental activation requires binding of E2F/DP to a GC-rich motif that facilitates HSF-1 binding to a heat-shock element (HSE) that is degenerate from the consensus HSE sequence and adjacent to the E2F-binding site at promoters. In contrast, induction of the HSR is independent of these promoter elements or E2F/DP and instead requires a distinct set of tandem canonical HSEs. Together, E2F and HSF-1 directly regulate a gene network, including a specific subset of chaperones, to promote protein biogenesis and anabolic metabolism, which are essential in development.
Collapse
Affiliation(s)
- Jian Li
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Laetitia Chauve
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Grace Phelps
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Renée M Brielmann
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| | - Richard I Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
88
|
Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases. Mol Cell Biol 2016; 36:2403-17. [PMID: 27354066 PMCID: PMC5007788 DOI: 10.1128/mcb.00292-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 12/04/2022] Open
Abstract
Heat shock factor 1 (HSF1) monitors the structural integrity of the proteome. Phosphorylation at S326 is a hallmark for HSF1 activation, but the identity of the kinase(s) phosphorylating this site has remained elusive. We show here that the dietary agent phenethyl isothiocyanate (PEITC) inhibits heat shock protein 90 (Hsp90), the main negative regulator of HSF1; activates p38 mitogen-activated protein kinase (MAPK); and increases S326 phosphorylation, trimerization, and nuclear translocation of HSF1, and the transcription of a luciferase reporter, as well as the endogenous prototypic HSF1 target Hsp70. In vitro, all members of the p38 MAPK family rapidly and stoichiometrically catalyze the S326 phosphorylation. The use of stable knockdown cell lines and inhibitors indicated that among the p38 MAPKs, p38γ is the principal isoform responsible for the phosphorylation of HSF1 at S326 in cells. A protease-mass spectrometry approach confirmed S326 phosphorylation and unexpectedly revealed that p38 MAPK also catalyzes the phosphorylation of HSF1 at S303/307, previously known repressive posttranslational modifications. Thus, we have identified p38 MAPKs as highly efficient catalysts for the phosphorylation of HSF1. Furthermore, our findings suggest that the magnitude and persistence of activation of p38 MAPK are important determinants of the extent and duration of the heat shock response.
Collapse
|
89
|
Tamaru T, Ikeda M. Circadian adaptation to cell injury stresses: a crucial interplay of BMAL1 and HSF1. J Physiol Sci 2016; 66:303-6. [PMID: 26910317 PMCID: PMC10717996 DOI: 10.1007/s12576-016-0436-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
The circadian clock system confers daily anticipatory physiological processes with the ability to be reset by environmental cues. This "circadian adaptation system" (CAS), driven by cell-autonomous molecular clocks, orchestrates various rhythmic physiological processes in the entire body. Hence, the dysfunction of these clocks exacerbates various diseases, which may partially be due to the impairment of protective pathways. If this is the case, how does the CAS respond to cell injury stresses that are critical in maintaining health and life by evoking protective pathways? To address this question, here we review and discuss recent evidence revealing life-protective (pro-survival) molecular networks between clock (e.g., BMAL1, CLOCK, and PER2) and adaptation (e.g., HSF1, Nrf2, NF-κB, and p53) pathways, which are evoked by various cell injury stresses (e.g., heat, reactive oxygen species, and UV). The CK2 protein kinase-integrated interplay of the BMAL1 (clock) and HSF1 (heat-shock response) pathways is one of the crucial events in CAS.
Collapse
Affiliation(s)
- Teruya Tamaru
- Department of Physiology and Advanced Research Center for Medical Science, Toho University School of Medicine, 5-21-16 Ohmori-nishi Ohta-ku, Tokyo, 143-8540, Japan.
| | - Masaaki Ikeda
- Department of Physiology, Faculty of Medicine, Saitama Medical University, 38 Morohongo Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
- Molecular Clock Project, Project Research Division, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan
| |
Collapse
|
90
|
Affiliation(s)
- Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University School of Medicine, Ube, Japan
| |
Collapse
|
91
|
Pan XY, Zhao W, Zeng XY, Lin J, Li MM, Shen XT, Liu SW. Heat Shock Factor 1 Mediates Latent HIV Reactivation. Sci Rep 2016; 6:26294. [PMID: 27189267 PMCID: PMC4870680 DOI: 10.1038/srep26294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5'-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS.
Collapse
Affiliation(s)
- Xiao-Yan Pan
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| | - Xiao-Yun Zeng
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jian Lin
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Min-Min Li
- Center for Clinical Laboratory, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xin-Tian Shen
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shu-Wen Liu
- Guangdong Provincial Key Laboratory of Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.,State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou, China
| |
Collapse
|
92
|
Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation. Mol Cell 2016; 62:63-78. [PMID: 27052732 DOI: 10.1016/j.molcel.2016.02.025] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role.
Collapse
Affiliation(s)
- Dig B Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - H Hans Salamanca
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14850, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA.
| |
Collapse
|
93
|
Hentze N, Le Breton L, Wiesner J, Kempf G, Mayer MP. Molecular mechanism of thermosensory function of human heat shock transcription factor Hsf1. eLife 2016; 5. [PMID: 26785146 PMCID: PMC4775227 DOI: 10.7554/elife.11576] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/18/2016] [Indexed: 01/06/2023] Open
Abstract
The heat shock response is a universal homeostatic cell autonomous reaction of organisms to cope with adverse environmental conditions. In mammalian cells, this response is mediated by the heat shock transcription factor Hsf1, which is monomeric in unstressed cells and upon activation trimerizes, and binds to promoters of heat shock genes. To understand the basic principle of Hsf1 activation we analyzed temperature-induced alterations in the conformational dynamics of Hsf1 by hydrogen exchange mass spectrometry. We found a temperature-dependent unfolding of Hsf1 in the regulatory region happening concomitant to tighter packing in the trimerization region. The transition to the active DNA binding-competent state occurred highly cooperative and was concentration dependent. Surprisingly, Hsp90, known to inhibit Hsf1 activation, lowered the midpoint temperature of trimerization and reduced cooperativity of the process thus widening the response window. Based on our data we propose a kinetic model of Hsf1 trimerization.
Collapse
Affiliation(s)
- Nikolai Hentze
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Laura Le Breton
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Jan Wiesner
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Georg Kempf
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
94
|
Neudegger T, Verghese J, Hayer-Hartl M, Hartl FU, Bracher A. Structure of human heat-shock transcription factor 1 in complex with DNA. Nat Struct Mol Biol 2016; 23:140-6. [PMID: 26727489 DOI: 10.1038/nsmb.3149] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023]
Abstract
Heat-shock transcription factor 1 (HSF1) has a central role in mediating the protective response to protein conformational stresses in eukaryotes. HSF1 consists of an N-terminal DNA-binding domain (DBD), a coiled-coil oligomerization domain, a regulatory domain and a transactivation domain. Upon stress, HSF1 trimerizes via its coiled-coil domain and binds to the promoters of heat shock protein-encoding genes. Here, we present cocrystal structures of the human HSF1 DBD in complex with cognate DNA. A comparative analysis of the HSF1 paralog Skn7 from Chaetomium thermophilum showed that single amino acid changes in the DBD can switch DNA binding specificity, thus revealing the structural basis for the interaction of HSF1 with cognate DNA. We used a crystal structure of the coiled-coil domain of C. thermophilum Skn7 to develop a model of the active human HSF1 trimer in which HSF1 embraces the heat-shock-element DNA.
Collapse
Affiliation(s)
- Tobias Neudegger
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jacob Verghese
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Andreas Bracher
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
95
|
Miozzo F, Sabéran-Djoneidi D, Mezger V. HSFs, Stress Sensors and Sculptors of Transcription Compartments and Epigenetic Landscapes. J Mol Biol 2015; 427:3793-816. [DOI: 10.1016/j.jmb.2015.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/02/2015] [Accepted: 10/09/2015] [Indexed: 01/06/2023]
|
96
|
HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol 2015; 26:17-28. [PMID: 26597576 DOI: 10.1016/j.tcb.2015.10.011] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1. However, the mechanisms underlying the persistent activation and function of HSF1 within malignancy remain poorly understood. Emerging evidence reveals that oncogenic signaling mobilizes HSF1 and that cancer cells rely on HSF1 to avert proteomic instability and repress tumor-suppressive amyloidogenesis. In aggregate, these new developments suggest that cancer cells endure chronic proteotoxic stress and that proteomic instability is intrinsically associated with the malignant state, a characteristic that could be exploited to combat cancer.
Collapse
|
97
|
Kim E, Wang B, Sastry N, Masliah E, Nelson PT, Cai H, Liao FF. NEDD4-mediated HSF1 degradation underlies α-synucleinopathy. Hum Mol Genet 2015; 25:211-22. [PMID: 26503960 PMCID: PMC4706110 DOI: 10.1093/hmg/ddv445] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/19/2015] [Indexed: 11/13/2022] Open
Abstract
Cellular protein homeostasis is achieved by a delicate network of molecular chaperones and various proteolytic processes such as ubiquitin–proteasome system (UPS) to avoid a build-up of misfolded protein aggregates. The latter is a common denominator of neurodegeneration. Neurons are found to be particularly vulnerable to toxic stress from aggregation-prone proteins such as α-synuclein. Induction of heat-shock proteins (HSPs), such as through activated heat shock transcription factor 1 (HSF1) via Hsp90 inhibition, is being investigated as a therapeutic option for proteinopathic diseases. HSF1 is a master stress-protective transcription factor which activates genes encoding protein chaperones (e.g. iHsp70) and anti-apoptotic proteins. However, whether and how HSF1 is dysregulated during neurodegeneration has not been studied. Here, we discover aberrant HSF1 degradation by aggregated α-synuclein (or α-synuclein-induced proteotoxic stress) in transfected neuroblastoma cells. HSF1 dysregulation via α-synuclein was confirmed by in vivo assessment of mouse and in situ studies of human specimens with α-synucleinopathy. We demonstrate that elevated NEDD4 is implicated as the responsible ubiquitin E3 ligase for HSF1 degradation through UPS. Furthermore, pharmacologically induced SIRT1-mediated deacetylation can attenuate aberrant NEDD4-mediated HSF1 degradation. Indeed, we define the acetylation status of the Lys 80 residue located in the DNA-binding domain of HSF1 as a critical factor in modulating HSF1 protein stability in addition to its previously identified role in the transcriptional activity. Together with the finding that preserving HSF1 can alleviate α-synuclein toxicity, this study strongly suggests that aberrant HSF1 degradation is a key neurodegenerative mechanism underlying α-synucleinopathy.
Collapse
Affiliation(s)
- Eunhee Kim
- Department of Pharmacology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 874 Union Avenue/Crowe 401, Memphis, TN 38163, USA
| | - Bin Wang
- Department of Pharmacology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 874 Union Avenue/Crowe 401, Memphis, TN 38163, USA
| | - Namratha Sastry
- Transgenics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Peter T Nelson
- Department of Neurology, Sanders-Brown Center on Aging, 800 South Limestone Street, Lexington, KY 40536, USA and
| | - Huaibin Cai
- Transgenics Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Francesca-Fang Liao
- Department of Pharmacology and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 874 Union Avenue/Crowe 401, Memphis, TN 38163, USA,
| |
Collapse
|
98
|
Oral Presentations. Regen Med 2015. [DOI: 10.2217/rme.15.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
99
|
Lamech LT, Haynes CM. The unpredictability of prolonged activation of stress response pathways. J Cell Biol 2015; 209:781-7. [PMID: 26101215 PMCID: PMC4477854 DOI: 10.1083/jcb.201503107] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In response to stress, cellular compartments activate signaling pathways that mediate transcriptional programs to promote survival and reestablish homeostasis. Manipulation of the magnitude and duration of the activation of stress responses has been proposed as a strategy to prevent or repair the damage associated with aging or degenerative diseases. However, as these pathways likely evolved to respond specifically to transient perturbations, the unpredictability of prolonged activation should be considered.
Collapse
Affiliation(s)
- Lilian T Lamech
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Cole M Haynes
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 BCMB Allied Program, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
100
|
Zia A, Bhatti A, John P, Kiani AK. Data interpretation: deciphering the biological function of Type 2 diabetes associated risk loci. Acta Diabetol 2015; 52:789-800. [PMID: 25585593 DOI: 10.1007/s00592-014-0700-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
AIMS Type 2 diabetes (T2D) is a complex multifactorial disorder with more than 40 loci associated with disease susceptibility. Most of these genome-wide significant loci reside in noncoding regions, it is important to decipher the potential regulatory function of these variants and to differentiate between true and tag signals. Nowadays, databases are being developed to study and predict the function of these associated variants, and RegulomeDB is one such database. METHODS We used RegulomeDB to analyze the potential function of the associated variants reported in five genome-wide association studies (GWAS) of T2D. RESULTS We investigated the 1,567 single nucleotide polymorphisms (SNPs) with 989 SNPs with a score of 1-6. Of those 989 SNPs, only 64 returned with RegulomeDB score <3 (evidence of regulatory function), and only four of these were GWAS significant SNPs (THADA/rs10203174, score = 1b; UBE2E2/rs7612463, score = 2a; ARAP1/rs1552224 and TP53INP1/rs8996852, score = 2b). But only 63 % of the annotated SNPs showed regulatory function that is an important limitation of the RegulomeDB as this database only provides information of few regulatory elements. CONCLUSION This study further supports that some of the noncoding GWAS variants are the true associations and not the tag ones. This study also proves the utility and importance of the RegulomeDB and other such databases. Although it is an extensive database of regulatory elements but has certain limitation due to utilization of only few types of regulatory elements and pathways.
Collapse
Affiliation(s)
- Asima Zia
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, Pakistan
| | | | | | | |
Collapse
|