51
|
Gupta VK, Kim M, Bakshi U, Cunningham KY, Davis JM, Lazaridis KN, Nelson H, Chia N, Sung J. A predictive index for health status using species-level gut microbiome profiling. Nat Commun 2020; 11:4635. [PMID: 32934239 PMCID: PMC7492273 DOI: 10.1038/s41467-020-18476-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
Providing insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, we introduce the Gut Microbiome Health Index (GMHI), a biologically-interpretable mathematical formula for predicting the likelihood of disease independent of the clinical diagnosis. GMHI is formulated upon 50 microbial species associated with healthy gut ecosystems. These species are identified through a multi-study, integrative analysis on 4347 human stool metagenomes from 34 published studies across healthy and 12 different nonhealthy conditions, i.e., disease or abnormal bodyweight. When demonstrated on our population-scale meta-dataset, GMHI is the most robust and consistent predictor of disease presence (or absence) compared to α-diversity indices. Validation on 679 samples from 9 additional studies results in a balanced accuracy of 73.7% in distinguishing healthy from non-healthy groups. Our findings suggest that gut taxonomic signatures can predict health status, and highlight how data sharing efforts can provide broadly applicable discoveries. A biologically-interpretable and robust metric that provides insight into one’s health status from a gut microbiome sample is an important clinical goal in current human microbiome research. Herein, the authors introduce a species-level index that predicts the likelihood of having a disease.
Collapse
Affiliation(s)
- Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Minsuk Kim
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Utpal Bakshi
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin Y Cunningham
- Graduate Research Education Program (GREP), Mayo Clinic, Rochester, MN, 55905, USA.,Department of Computer Science and Engineering, University of Minnesota Twin-Cities, Minneapolis, MN, 55455, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Konstantinos N Lazaridis
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Heidi Nelson
- Emeritus Chair, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas Chia
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA. .,Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
52
|
Abstract
Observational findings achieved during the past two decades suggest that the intestinal microbiota may contribute to the metabolic health of the human host and, when aberrant, to the pathogenesis of various common metabolic disorders including obesity, type 2 diabetes, non-alcoholic liver disease, cardio-metabolic diseases and malnutrition. However, to gain a mechanistic understanding of how the gut microbiota affects host metabolism, research is moving from descriptive microbiota census analyses to cause-and-effect studies. Joint analyses of high-throughput human multi-omics data, including metagenomics and metabolomics data, together with measures of host physiology and mechanistic experiments in humans, animals and cells hold potential as initial steps in the identification of potential molecular mechanisms behind reported associations. In this Review, we discuss the current knowledge on how gut microbiota and derived microbial compounds may link to metabolism of the healthy host or to the pathogenesis of common metabolic diseases. We highlight examples of microbiota-targeted interventions aiming to optimize metabolic health, and we provide perspectives for future basic and translational investigations within the nascent and promising research field.
Collapse
|
53
|
Van Rossum T, Ferretti P, Maistrenko OM, Bork P. Diversity within species: interpreting strains in microbiomes. Nat Rev Microbiol 2020; 18:491-506. [PMID: 32499497 PMCID: PMC7610499 DOI: 10.1038/s41579-020-0368-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 02/06/2023]
Abstract
Studying within-species variation has traditionally been limited to culturable bacterial isolates and low-resolution microbial community fingerprinting. Metagenomic sequencing and technical advances have enabled culture-free, high-resolution strain and subspecies analyses at high throughput and in complex environments. This holds great scientific promise but has also led to an overwhelming number of methods and terms to describe infraspecific variation. This Review aims to clarify these advances by focusing on the diversity within bacterial and archaeal species in the context of microbiomics. We cover foundational microevolutionary concepts relevant to population genetics and summarize how within-species variation can be studied and stratified directly within microbial communities with a focus on metagenomics. Finally, we describe how common applications of within-species variation can be achieved using metagenomic data. We aim to guide the selection of appropriate terms and analytical approaches to facilitate researchers in benefiting from the increasing availability of large, high-resolution microbiome genetic sequencing data.
Collapse
Affiliation(s)
- Thea Van Rossum
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Pamela Ferretti
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
54
|
Silva JA, Marchesi A, Wiese B, Nader-Macias MEF. Screening of autochthonous vaginal beneficial lactobacilli strains by their growth at high temperatures for technological applications. Antonie van Leeuwenhoek 2020; 113:1393-1409. [PMID: 32725571 DOI: 10.1007/s10482-020-01431-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/27/2020] [Indexed: 12/30/2022]
Abstract
The pharmaceutical industry shows an emerging interest in formulas that contain live and beneficial microorganisms, also known as probiotics or pharmabiotics, which in many cases, are host-specific. The resistance to higher temperature is an essential feature of these microorganisms when working on the design of products for vaginal formula. In order to obtain a high number of viable cells and a prolonged shelf life in the designed product, it is required to apply technological procedures using high temperatures or abrupt changes of them, which result in conditions that are different from the optimal growth temperature and can affect the metabolic capabilities of the bacteria when administered to the host in order to reestablish the ecological mucosa. The aim of this work was to evaluate the behavior of 30 different species and strains of autochthonous beneficial vaginal lactobacilli (BVL) when exposed to high temperatures, determine their survival capabilities and analyze their pre-adaptation to those temperatures, in order that they still maintain their viability after technological processes and further conservation. BVL were exhibited to temperatures higher than optimal, with the purpose of evaluating their growth kinetics and parameters. Later, they were exposed to higher temperatures, and then, returned to their optimal, to determine if they were able to grow again. The strains that showed higher resistance were selected, and their viability and beneficial properties studied further. The growth kinetics of strains exposed to higher temperatures showed different patterns, which provided evidence that the thermal adaptation is strain-dependent and is not related to any particular species and/or metabolic group in which the strains were taxonomically classified. The pre-adaptive step allowed the growth of some of the strains, preserving their viability and probiotic properties after the high temperatures were applied. The results shows that BVL can be exposed to high temperatures used in different technological processes that are applied for pharmabiotic formulations, such as spray dried or vacuum rotary evaporation, and/or during the conservation period. The results obtained indicate that some specific BVL strains resist high temperatures and grow afterwards at optimal conditions.
Collapse
Affiliation(s)
| | | | - Birgitt Wiese
- Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | | |
Collapse
|
55
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
56
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020. [PMID: 32531278 DOI: 10.1101/2020.01.23.916296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities.
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
57
|
Abstract
Shotgun metagenomic sequencing has revolutionized our ability to detect and characterize the diversity and function of complex microbial communities. In this review, we highlight the benefits of using metagenomics as well as the breadth of conclusions that can be made using currently available analytical tools, such as greater resolution of species and strains across phyla and functional content, while highlighting challenges of metagenomic data analysis. Major challenges remain in annotating function, given the dearth of functional databases for environmental bacteria compared to model organisms, and the technical difficulties of metagenome assembly and phasing in heterogeneous environmental samples. In the future, improvements and innovation in technology and methodology will lead to lowered costs. Data integration using multiple technological platforms will lead to a better understanding of how to harness metagenomes. Subsequently, we will be able not only to characterize complex microbiomes but also to manipulate communities to achieve prosperous outcomes for health, agriculture, and environmental sustainability.
Collapse
Affiliation(s)
- Felicia N New
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA;
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
58
|
Ellegaard KM, Suenami S, Miyazaki R, Engel P. Vast Differences in Strain-Level Diversity in the Gut Microbiota of Two Closely Related Honey Bee Species. Curr Biol 2020; 30:2520-2531.e7. [PMID: 32531278 PMCID: PMC7342003 DOI: 10.1016/j.cub.2020.04.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 01/31/2023]
Abstract
Most bacterial species encompass strains with vastly different gene content. Strain diversity in microbial communities is therefore considered to be of functional importance. Yet little is known about the extent to which related microbial communities differ in diversity at this level and which underlying mechanisms may constrain and maintain strain-level diversity. Here, we used shotgun metagenomics to characterize and compare the gut microbiota of two honey bee species, Apis mellifera and Apis cerana, which diverged about 6 mya. Although the host species are colonized largely by the same bacterial 16S rRNA phylotypes, we find that their communities are host specific when analyzed with genomic resolution. Moreover, despite their similar ecology, A. mellifera displayed a much higher diversity of strains and functional gene content in the microbiota compared to A. cerana, both per colony and per individual bee. In particular, the gene repertoire for polysaccharide degradation was massively expanded in the microbiota of A. mellifera relative to A. cerana. Bee management practices, divergent ecological adaptation, or habitat size may have contributed to the observed differences in microbiota genomic diversity of these key pollinator species. Our results illustrate that the gut microbiota of closely related animal hosts can differ vastly in genomic diversity while displaying similar levels of diversity based on the 16S rRNA gene. Such differences are likely to have consequences for gut microbiota functioning and host-symbiont interactions, highlighting the need for metagenomic studies to understand the ecology and evolution of microbial communities. Metagenomics reveals differences in gut microbiota diversity beyond the 16S rRNA gene Apis cerana and Apis mellifera harbor distinct species and strains in their gut Diversity is much higher in A. mellifera per individual bee and within colonies Major differences in functions are related to polysaccharide degradation
Collapse
Affiliation(s)
- Kirsten M Ellegaard
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 305-8566 Tsukuba, Japan; Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, 169-8555 Tokyo, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 305-8572 Tsukuba, Japan
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
59
|
Bisanz JE, Soto-Perez P, Noecker C, Aksenov AA, Lam KN, Kenney GE, Bess EN, Haiser HJ, Kyaw TS, Yu FB, Rekdal VM, Ha CWY, Devkota S, Balskus EP, Dorrestein PC, Allen-Vercoe E, Turnbaugh PJ. A Genomic Toolkit for the Mechanistic Dissection of Intractable Human Gut Bacteria. Cell Host Microbe 2020; 27:1001-1013.e9. [PMID: 32348781 PMCID: PMC7292766 DOI: 10.1016/j.chom.2020.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/20/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Despite the remarkable microbial diversity found within humans, our ability to link genes to phenotypes is based upon a handful of model microorganisms. We report a comparative genomics platform for Eggerthella lenta and other Coriobacteriia, a neglected taxon broadly relevant to human health and disease. We uncover extensive genetic and metabolic diversity and validate a tool for mapping phenotypes to genes and sequence variants. We also present a tool for the quantification of strains from metagenomic sequencing data, enabling the identification of genes that predict bacterial fitness. Competitive growth is reproducible under laboratory conditions and attributable to intrinsic growth rates and resource utilization. Unique signatures of in vivo competition in gnotobiotic mice include an adhesin enriched in poor colonizers. Together, these computational and experimental resources represent a strong foundation for the continued mechanistic dissection of the Coriobacteriia and a template that can be applied to study other genetically intractable taxa.
Collapse
Affiliation(s)
- Jordan E Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paola Soto-Perez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Cecilia Noecker
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Alexander A Aksenov
- Collaborative Mass Spectrometry Innovation Center, Department of Pediatrics, Center for Microbiome Innovation, Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, CA 92093, USA
| | - Kathy N Lam
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Grace E Kenney
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Elizabeth N Bess
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Henry J Haiser
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Than S Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Feiqiao B Yu
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Vayu M Rekdal
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Connie W Y Ha
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Suzanne Devkota
- Department of Medicine, Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Department of Pediatrics, Center for Microbiome Innovation, Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, CA 92093, USA
| | - Emma Allen-Vercoe
- Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
60
|
Dabke K, Hendrick G, Devkota S. The gut microbiome and metabolic syndrome. J Clin Invest 2020; 129:4050-4057. [PMID: 31573550 DOI: 10.1172/jci129194] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metabolic syndrome (MetS) is a constellation of risk factors that, if left untreated, will often progress to greater metabolic defects such as type 2 diabetes and nonalcoholic fatty liver disease. While these risk factors have been established for over 40 years, the definition of MetS warrants reconsideration in light of the substantial data that have emerged from studies of the gut microbiome. In this Review we present the existing recent literature that supports the gut microbiome's potential influence on the various risk factors of MetS. The interplay of the intestinal microbiota with host metabolism has been shown to be mediated by a myriad of factors, including a defective gut barrier, bile acid metabolism, antibiotic use, and the pleiotropic effects of microbially produced metabolites. These data show that events that start in the gut, often in response to external cues such as diet and circadian disruption, have far-reaching effects beyond the gut.
Collapse
Affiliation(s)
| | - Gustaf Hendrick
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences and.,Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
61
|
Plaza Oñate F, Le Chatelier E, Almeida M, Cervino ACL, Gauthier F, Magoulès F, Ehrlich SD, Pichaud M. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics 2020; 35:1544-1552. [PMID: 30252023 PMCID: PMC6499236 DOI: 10.1093/bioinformatics/bty830] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/29/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
Motivation Analysis toolkits for shotgun metagenomic data achieve strain-level characterization of complex microbial communities by capturing intra-species gene content variation. Yet, these tools are hampered by the extent of reference genomes that are far from covering all microbial variability, as many species are still not sequenced or have only few strains available. Binning co-abundant genes obtained from de novo assembly is a powerful reference-free technique to discover and reconstitute gene repertoire of microbial species. While current methods accurately identify species core parts, they miss many accessory genes or split them into small gene groups that remain unassociated to core clusters. Results We introduce MSPminer, a computationally efficient software tool that reconstitutes Metagenomic Species Pan-genomes (MSPs) by binning co-abundant genes across metagenomic samples. MSPminer relies on a new robust measure of proportionality coupled with an empirical classifier to group and distinguish not only species core genes but accessory genes also. Applied to a large scale metagenomic dataset, MSPminer successfully delineates in a few hours the gene repertoires of 1661 microbial species with similar specificity and higher sensitivity than existing tools. The taxonomic annotation of MSPs reveals microorganisms hitherto unknown and brings coherence in the nomenclature of the species of the human gut microbiota. The provided MSPs can be readily used for taxonomic profiling and biomarkers discovery in human gut metagenomic samples. In addition, MSPminer can be applied on gene count tables from other ecosystems to perform similar analyses. Availability and implementation The binary is freely available for non-commercial users at www.enterome.com/downloads. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Florian Plaza Oñate
- Enterome, 94-96 Avenue Ledru Rollin, Paris, France
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
- To whom correspondence should be addressed. E-mail:
| | | | - Mathieu Almeida
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | | | - Franck Gauthier
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | - Frédéric Magoulès
- CentraleSupélec, Université Paris Saclay, 9 rue Joliot Curie, Gif-sur-Yvette, France
| | - S Dusko Ehrlich
- MGP MetaGénoPolis, INRA, Université Paris-Saclay, Jouy en Josas, France
| | | |
Collapse
|
62
|
Wu Y, Zheng Y, Chen Y, Chen G, Zheng H, Hu F. Apis cerana gut microbiota contribute to host health though stimulating host immune system and strengthening host resistance to Nosema ceranae. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192100. [PMID: 32537206 PMCID: PMC7277281 DOI: 10.1098/rsos.192100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/28/2020] [Indexed: 05/26/2023]
Abstract
Gut microbial communities play vital roles in the modulation of many insects' immunity, including Apis mellifera. However, little is known about the interaction of Apis cerana gut bacteria and A. cerana immune system. Here in this study, we conducted a comparison between germ-free gut microbiota deficient (GD) workers and conventional gut community (CV) workers, to reveal the possible impact of gut microbiota on the expression of A. cerana antimicrobial peptides and immune regulate pathways. We also test whether A. cerana gut microbiota can strengthen host resistance to Nosema ceranae. We find that the expression of apidaecin, abaecin and hymenoptaecin were significantly upregulated with the presence of gut bacteria, and JNK pathway was activated; in the meanwhile, the existence of gut bacteria inhibited the proliferation of Nosema ceranae. These demonstrated the essential role of A. cerana gut microbiota to host health and provided critical insight into the honeybee host-microbiome interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
63
|
Di Rienzi SC, Britton RA. Adaptation of the Gut Microbiota to Modern Dietary Sugars and Sweeteners. Adv Nutr 2020; 11:616-629. [PMID: 31696209 PMCID: PMC7231582 DOI: 10.1093/advances/nmz118] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/15/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
The consumption of sugar has become central to the Western diet. Cost and health concerns associated with sucrose spurred the development and consumption of other sugars and sweeteners, with the average American consuming 10 times more sugar than 100 y ago. In this review, we discuss how gut microbes are affected by changes in the consumption of sugars and other sweeteners through transcriptional, abundance, and genetic adaptations. We propose that these adaptations result in microbes taking on different metabolic, ecological, and genetic profiles along the intestinal tract. We suggest novel approaches to assess the consequences of these changes on host-microbe interactions to determine the safety of novel sugars and sweeteners.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
64
|
Paun A, Yau C, Meshkibaf S, Daigneault MC, Marandi L, Mortin-Toth S, Bar-Or A, Allen-Vercoe E, Poussier P, Danska JS. Association of HLA-dependent islet autoimmunity with systemic antibody responses to intestinal commensal bacteria in children. Sci Immunol 2020; 4:4/32/eaau8125. [PMID: 30709843 DOI: 10.1126/sciimmunol.aau8125] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022]
Abstract
Microbiome sequence analyses have suggested that changes in gut bacterial composition are associated with autoimmune disease in humans and animal models. However, little is known of the mechanisms through which the gut microbiota influences autoimmune responses to distant tissues. Here, we evaluated systemic antibody responses against cultured human gut bacterial strains to determine whether observed patterns of anticommensal antibody (ACAb) responses are associated with type 1 diabetes (T1D) in two cohorts of pediatric study participants. In the first cohort, ACAb responses in sera collected from participants within 6 months of T1D diagnosis were compared with age-matched healthy controls and also with patients with recent onset Crohn's disease. ACAb responses against multiple bacterial species discriminated among these three groups. In the second cohort, we asked whether ACAb responses present before diagnosis were associated with later T1D development and with HLA genotype in participants who were discordant for subsequent progression to diabetes. Serum IgG2 antibodies against Roseburia faecis and against a bacterial consortium were associated with future T1D diagnosis in an HLA DR3/DR4 haplotype-dependent manner. These analyses reveal associations between antibody responses to intestinal microbes and HLA-DR genotype and islet autoantibody specificity and with a future diagnosis of T1D. Further, we present a platform to investigate antibacterial antibodies in biological fluids that is applicable to studies of autoimmune diseases and responses to therapeutic interventions.
Collapse
Affiliation(s)
- Alexandra Paun
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| | - Christopher Yau
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| | | | - Michelle C Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - Amit Bar-Or
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Neurology, Perelman Center for Advanced Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, U.S.A
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philippe Poussier
- Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON Canada
| | - Jayne S Danska
- Hospital for Sick Children, Toronto, ON, Canada. .,Department of Immunology, University of Toronto, Faculty of Medicine, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Faculty of Medicine, Toronto, ON, Canada
| |
Collapse
|
65
|
Gene amplification as a form of population-level gene expression regulation. Nat Ecol Evol 2020; 4:612-625. [DOI: 10.1038/s41559-020-1132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/29/2020] [Indexed: 11/08/2022]
|
66
|
Prescott SL, Bland JS. Spaceship Earth Revisited: The Co-Benefits of Overcoming Biological Extinction of Experience at the Level of Person, Place and Planet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041407. [PMID: 32098222 PMCID: PMC7068540 DOI: 10.3390/ijerph17041407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Extensive research underscores that we interpret the world through metaphors; moreover, common metaphors are a useful means to enhance the pursuit of personal and collective goals. In the context of planetary health—defined as the interdependent vitality of all natural and anthropogenic ecosystems (social, political and otherwise)—one enduring metaphor can be found in the concept of “Spaceship Earth”. Although not without criticism, the term “Spaceship Earth” has been useful to highlight both resource limitations and the beauty and fragility of delicate ecosystems that sustain life. Rene Dubos, who helped popularize the term, underscored the need for an exposome perspective, one that examines the total accumulated environmental exposures (both detrimental and beneficial) that predict the biological responses of the “total organism to the total environment” over time. In other words, how large-scale environmental changes affect us all personally, albeit in individualized ways. This commentary focuses the ways in which microbes, as an essential part of all ecosystems, provide a vital link between personal and planetary systems, and mediate the biopsychosocial aspects of our individualized experience—and thus health—over our life course journey. A more fine-grained understanding of these dynamics and our power to change them, personally and collectively, lies at the core of restoring “ecosystems balance” for person, place and planet. In particular, restoring human connectedness to the natural world, sense of community and shared purpose must occur in tandem with technological solutions, and will enhance individual empowerment for personal well-being, as well as our collective potential to overcome our grand challenges. Such knowledge can help shape the use of metaphor and re-imagine solutions and novel ways for restoration or rewilding of ecosystems, and the values, behaviors and attitudes to light the path toward exiting the Anthropocene.
Collapse
Affiliation(s)
- Susan L. Prescott
- The ORIGINS Project, Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA;
- Correspondence:
| | - Jeffrey S. Bland
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA;
- Personalized Lifestyle Medicine Institute, Tacoma, WA 98443, USA
| |
Collapse
|
67
|
Zhou W, Spoto M, Hardy R, Guan C, Fleming E, Larson PJ, Brown JS, Oh J. Host-Specific Evolutionary and Transmission Dynamics Shape the Functional Diversification of Staphylococcus epidermidis in Human Skin. Cell 2020; 180:454-470.e18. [PMID: 32004459 PMCID: PMC7192218 DOI: 10.1016/j.cell.2020.01.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022]
Abstract
Metagenomic inferences of bacterial strain diversity and infectious disease transmission studies largely assume a dominant, within-individual haplotype. We hypothesize that within-individual bacterial population diversity is critical for homeostasis of a healthy microbiome and infection risk. We characterized the evolutionary trajectory and functional distribution of Staphylococcus epidermidis-a keystone skin microbe and opportunistic pathogen. Analyzing 1,482 S. epidermidis genomes from 5 healthy individuals, we found that skin S. epidermidis isolates coalesce into multiple founder lineages rather than a single colonizer. Transmission events, natural selection, and pervasive horizontal gene transfer result in population admixture within skin sites and dissemination of antibiotic resistance genes within-individual. We provide experimental evidence for how admixture can modulate virulence and metabolism. Leveraging data on the contextual microbiome, we assess how interspecies interactions can shape genetic diversity and mobile gene elements. Our study provides insights into how within-individual evolution of human skin microbes shapes their functional diversification.
Collapse
Affiliation(s)
- Wei Zhou
- The Jackson Laboratory, Farmington, CT, USA
| | | | | | | | | | | | | | - Julia Oh
- The Jackson Laboratory, Farmington, CT, USA.
| |
Collapse
|
68
|
Mäklin T, Kallonen T, David S, Boinett CJ, Pascoe B, Méric G, Aanensen DM, Feil EJ, Baker S, Parkhill J, Sheppard SK, Corander J, Honkela A. High-resolution sweep metagenomics using fast probabilistic inference. Wellcome Open Res 2020; 5:14. [PMID: 34746439 PMCID: PMC8543175 DOI: 10.12688/wellcomeopenres.15639.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2020] [Indexed: 12/29/2022] Open
Abstract
Determining the composition of bacterial communities beyond the level of a genus or species is challenging because of the considerable overlap between genomes representing close relatives. Here, we present the mSWEEP pipeline for identifying and estimating the relative sequence abundances of bacterial lineages from plate sweeps of enrichment cultures. mSWEEP leverages biologically grouped sequence assembly databases, applying probabilistic modelling, and provides controls for false positive results. Using sequencing data from major pathogens, we demonstrate significant improvements in lineage quantification and detection accuracy. Our pipeline facilitates investigating cultures comprising mixtures of bacteria, and opens up a new field of plate sweep metagenomics.
Collapse
Affiliation(s)
- Tommi Mäklin
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Teemu Kallonen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Christine J. Boinett
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - David M. Aanensen
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Stephen Baker
- Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jukka Corander
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Antti Honkela
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
69
|
Sterlin D, Fadlallah J, Slack E, Gorochov G. The antibody/microbiota interface in health and disease. Mucosal Immunol 2020; 13:3-11. [PMID: 31413347 DOI: 10.1038/s41385-019-0192-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
Abstract
The human intestine is densely colonized with commensal microbes that stimulate the immune system. While secretory Immunoglobulin (Ig) A is known to play a crucial role in gut microbiota compartmentalization, secretory IgM, and systemic IgG have recently been highlighted in host-microbiota interactions as well. In this review, we discuss important aspects of secretory IgA biology, but rather than focusing on mechanistic aspects of IgA impact on microbiota, we stress the current knowledge of systemic antibody responses to whole gut microbiota, in particular their generation, specificities, and function. We also provide a comprehensive picture of secretory IgM biology. Finally, therapeutic and diagnostic implications of these novel findings for the treatment of various diseases are outlined.
Collapse
Affiliation(s)
- Delphine Sterlin
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, 75013, Paris, France.,Unit of Antibodies in Therapy and Pathology, Institut Pasteur, UMR1222 Inserm, F-75015, Paris, France
| | - Jehane Fadlallah
- Université Paris Diderot Paris 7, Department of Clinical Immunology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), EA3518, 75010, Paris, France
| | - Emma Slack
- Institute of Food Sciences, Nutrition and Health, ETH Zurich, 8093, Zürich, Switzerland.
| | - Guy Gorochov
- Sorbonne Université, Inserm, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), AP-HP Hôpital Pitié-Salpêtrière, 75013, Paris, France.
| |
Collapse
|
70
|
Comprehensive analysis of chromosomal mobile genetic elements in the gut microbiome reveals phylum-level niche-adaptive gene pools. PLoS One 2019; 14:e0223680. [PMID: 31830054 PMCID: PMC6907783 DOI: 10.1371/journal.pone.0223680] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Mobile genetic elements (MGEs) drive extensive horizontal transfer in the gut microbiome. This transfer could benefit human health by conferring new metabolic capabilities to commensal microbes, or it could threaten human health by spreading antibiotic resistance genes to pathogens. Despite their biological importance and medical relevance, MGEs from the gut microbiome have not been systematically characterized. Here, we present a comprehensive analysis of chromosomal MGEs in the gut microbiome using a method that enables the identification of the mobilizable unit of MGEs. We curated a database of 5,219 putative MGEs encompassing seven MGE classes called ImmeDB. We observed that many MGEs carry genes that could confer an adaptive advantage to the gut environment including gene families involved in antibiotic resistance, bile salt detoxification, mucus degradation, capsular polysaccharide biosynthesis, polysaccharide utilization, and sporulation. We find that antibiotic resistance genes are more likely to be spread by conjugation via integrative conjugative elements or integrative mobilizable elements than transduction via prophages. Horizontal transfer of MGEs is extensive within phyla but rare across phyla, supporting phylum level niche-adaptive gene pools in the gut microbiome. ImmeDB will be a valuable resource for future studies on the gut microbiome and MGE communities.
Collapse
|
71
|
Garud NR, Pollard KS. Population Genetics in the Human Microbiome. Trends Genet 2019; 36:53-67. [PMID: 31780057 DOI: 10.1016/j.tig.2019.10.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
While the human microbiome's structure and function have been extensively studied, its within-species genetic diversity is less well understood. However, genetic mutations in the microbiome can confer biomedically relevant traits, such as the ability to extract nutrients from food, metabolize drugs, evade antibiotics, and communicate with the host immune system. The population genetic processes by which these traits evolve are complex, in part due to interacting ecological and evolutionary forces in the microbiome. Advances in metagenomic sequencing, coupled with bioinformatics tools and population genetic models, facilitate quantification of microbiome genetic variation and inferences about how this diversity arises, evolves, and correlates with traits of both microbes and hosts. In this review, we explore the population genetic forces (mutation, recombination, drift, and selection) that shape microbiome genetic diversity within and between hosts, as well as efforts towards predictive models that leverage microbiome genetics.
Collapse
Affiliation(s)
- Nandita R Garud
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA.
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
72
|
Harris EV, de Roode JC, Gerardo NM. Diet-microbiome-disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathog 2019; 15:e1007891. [PMID: 31671152 PMCID: PMC6822718 DOI: 10.1371/journal.ppat.1007891] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abiotic and biotic factors can affect host resistance to parasites. Host diet and host gut microbiomes are two increasingly recognized factors influencing disease resistance. In particular, recent studies demonstrate that (1) particular diets can reduce parasitism; (2) diets can alter the gut microbiome; and (3) the gut microbiome can decrease parasitism. These three separate relationships suggest the existence of indirect links through which diets reduce parasitism through an alteration of the gut microbiome. However, such links are rarely considered and even more rarely experimentally validated. This is surprising because there is increasing discussion of the therapeutic potential of diets and gut microbiomes to control infectious disease. To elucidate these potential indirect links, we review and examine studies on a wide range of animal systems commonly used in diet, microbiome, and disease research. We also examine the relative benefits and disadvantages of particular systems for the study of these indirect links and conclude that mice and insects are currently the best animal systems to test for the effect of diet-altered protective gut microbiomes on infectious disease. Focusing on these systems, we provide experimental guidelines and highlight challenges that must be overcome. Although previous studies have recommended these systems for microbiome research, here we specifically recommend these systems because of their proven relationships between diet and parasitism, between diet and the microbiome, and between the microbiome and parasite resistance. Thus, they provide a sound foundation to explore the three-way interaction between diet, the microbiome, and infectious disease.
Collapse
Affiliation(s)
- Erica V. Harris
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Jacobus C. de Roode
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Nicole M. Gerardo
- Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
73
|
Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A, Tegetmeyer HE, Dubilier N, Petersen J. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol 2019; 4:2487-2497. [DOI: 10.1038/s41564-019-0572-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|
74
|
A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med 2019; 25:1442-1452. [PMID: 31477907 DOI: 10.1038/s41591-019-0559-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
Our understanding of how the gut microbiome interacts with its human host has been restrained by limited access to longitudinal datasets to examine stability and dynamics, and by having only a few isolates to test mechanistic hypotheses. Here, we present the Broad Institute-OpenBiome Microbiome Library (BIO-ML), a comprehensive collection of 7,758 gut bacterial isolates paired with 3,632 genome sequences and longitudinal multi-omics data. We show that microbial species maintain stable population sizes within and across humans and that commonly used 'omics' survey methods are more reliable when using averages over multiple days of sampling. Variation of gut metabolites within people over time is associated with amino acid levels, and differences across people are associated with differences in bile acids. Finally, we show that genomic diversification can be used to infer eco-evolutionary dynamics and in vivo selection pressures for strains within individuals. The BIO-ML is a unique resource designed to enable hypothesis-driven microbiome research.
Collapse
|
75
|
Katsila T, Balasopoulou A, Tsagaraki I, Patrinos GP. Pharmacomicrobiomics informs clinical pharmacogenomics. Pharmacogenomics 2019; 20:731-739. [PMID: 31368841 DOI: 10.2217/pgs-2019-0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Microbiota-host-xenobiotics interactions in humans become of prime interest when clinical pharmacogenomics is to be implemented. Despite the advent of technology, information still needs to be translated into knowledge for optimum patient stratification and disease management. Material & methods: Herein, we mined metagenomic, pharmacometagenomic and pharmacomicrobiomic datasets to map microbiota-host-drugs networks. Results: Datasets were multifaceted and voluminous. Interoperability, data sparsity and scarcity remain a challenge. Mapping microbiota-host-drugs networks allowed the prediction of drug response/toxicity and modulation of the microbiota-host-drugs interplay. Conclusion: Our approach triangulated microbiota, host and drug networks revealing the need for contextual data and open science via microattribution to accelerate knowledge growth. Our findings may serve as a data storehouse for a user-friendly query system, coupled with databanks and databases.
Collapse
Affiliation(s)
- Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece.,Institute of Chemical Biology, National Hellenic Research Centre, Athens, Greece
| | - Angeliki Balasopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | - Ioanna Tsagaraki
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece.,Department of Pathology, College of Medicine & Health Sciences, Al Ain, United Arab Emirates.,Zayed Center of Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
76
|
Polar bear evolution is marked by rapid changes in gene copy number in response to dietary shift. Proc Natl Acad Sci U S A 2019; 116:13446-13451. [PMID: 31209046 DOI: 10.1073/pnas.1901093116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polar bear (Ursus maritimus) and brown bear (Ursus arctos) are recently diverged species that inhabit vastly differing habitats. Thus, analysis of the polar bear and brown bear genomes represents a unique opportunity to investigate the evolutionary mechanisms and genetic underpinnings of rapid ecological adaptation in mammals. Copy number (CN) differences in genomic regions between closely related species can underlie adaptive phenotypes and this form of genetic variation has not been explored in the context of polar bear evolution. Here, we analyzed the CN profiles of 17 polar bears, 9 brown bears, and 2 black bears (Ursus americanus). We identified an average of 318 genes per individual that showed evidence of CN variation (CNV). Nearly 200 genes displayed species-specific CN differences between polar bear and brown bear species. Principal component analysis of gene CN provides strong evidence that CNV evolved rapidly in the polar bear lineage and mainly resulted in CN loss. Olfactory receptors composed 47% of CN differentiated genes, with the majority of these genes being at lower CN in the polar bear. Additionally, we found significantly fewer copies of several genes involved in fatty acid metabolism as well as AMY1B, the salivary amylase-encoding gene in the polar bear. These results suggest that natural selection shaped patterns of CNV in response to the transition from an omnivorous to primarily carnivorous diet during polar bear evolution. Our analyses of CNV shed light on the genomic underpinnings of ecological adaptation during polar bear evolution.
Collapse
|
77
|
Lauer S, Gresham D. An evolving view of copy number variants. Curr Genet 2019; 65:1287-1295. [PMID: 31076843 DOI: 10.1007/s00294-019-00980-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 01/08/2023]
Abstract
Copy number variants (CNVs) are regions of the genome that vary in integer copy number. CNVs, which comprise both amplifications and deletions of DNA sequence, have been identified across all domains of life, from bacteria and archaea to plants and animals. CNVs are an important source of genetic diversity, and can drive rapid adaptive evolution and progression of heritable and somatic human diseases, such as cancer. However, despite their evolutionary importance and clinical relevance, CNVs remain understudied compared to single-nucleotide variants (SNVs). This is a consequence of the inherent difficulties in detecting CNVs at low-to-intermediate frequencies in heterogeneous populations of cells. Here, we discuss molecular methods used to detect CNVs, the limitations associated with using these techniques, and the application of new and emerging technologies that present solutions to these challenges. The goal of this short review and perspective is to highlight aspects of CNV biology that are understudied and define avenues for further research that address specific gaps in our knowledge of these complex alleles. We describe our recently developed method for CNV detection in which a fluorescent gene functions as a single-cell CNV reporter and present key findings from our evolution experiments in Saccharomyces cerevisiae. Using a CNV reporter, we found that CNVs are generated at a high rate and undergo selection with predictable dynamics across independently evolving replicate populations. Many CNVs appear to be generated through DNA replication-based processes that are mediated by the presence of short, interrupted, inverted-repeat sequences. Our results have important implications for the role of CNVs in evolutionary processes and the molecular mechanisms that underlie CNV formation. We discuss the possible extension of our method to other applications, including tracking the dynamics of CNVs in models of human tumors.
Collapse
Affiliation(s)
- Stephanie Lauer
- Institute for Systems Genetics, New York University Langone Health, New York, NY, USA
| | - David Gresham
- Center for Genomics and System Biology, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
78
|
Zeevi D, Korem T, Godneva A, Bar N, Kurilshikov A, Lotan-Pompan M, Weinberger A, Fu J, Wijmenga C, Zhernakova A, Segal E. Structural variation in the gut microbiome associates with host health. Nature 2019; 568:43-48. [PMID: 30918406 DOI: 10.1038/s41586-019-1065-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
Differences in the presence of even a few genes between otherwise identical bacterial strains may result in critical phenotypic differences. Here we systematically identify microbial genomic structural variants (SVs) and find them to be prevalent in the human gut microbiome across phyla and to replicate in different cohorts. SVs are enriched for CRISPR-associated and antibiotic-producing functions and depleted from housekeeping genes, suggesting that they have a role in microbial adaptation. We find multiple associations between SVs and host disease risk factors, many of which replicate in an independent cohort. Exploring genes that are clustered in the same SV, we uncover several possible mechanistic links between the microbiome and its host, including a region in Anaerostipes hadrus that encodes a composite inositol catabolism-butyrate biosynthesis pathway, the presence of which is associated with lower host metabolic disease risk. Overall, our results uncover a nascent layer of variability in the microbiome that is associated with microbial adaptation and host health.
Collapse
Affiliation(s)
- David Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. .,Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| | - Tal Korem
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA.,Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Kurilshikov
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.,Department of Immunology, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel. .,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
79
|
IgA Responses to Microbiota. Immunity 2019; 49:211-224. [PMID: 30134201 DOI: 10.1016/j.immuni.2018.08.011] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/03/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Various immune mechanisms are deployed in the mucosa to confront the immense diversity of resident bacteria. A substantial fraction of the commensal microbiota is coated with immunoglobulin A (IgA) antibodies, and recent findings have established the identities of these bacteria under homeostatic and disease conditions. Here we review the current understanding of IgA biology, and present a framework wherein two distinct types of humoral immunity coexist in the gastrointestinal mucosa. Homeostatic IgA responses employ a polyreactive repertoire to bind a broad but taxonomically distinct subset of microbiota. In contrast, mucosal pathogens and vaccines elicit high-affinity, T cell-dependent antibody responses. This model raises fundamental questions including how polyreactive IgA specificities are generated, how these antibodies exert effector functions, and how they exist together with other immune responses during homeostasis and disease.
Collapse
|
80
|
Park CJ, Andam CP. Within-Species Genomic Variation and Variable Patterns of Recombination in the Tetracycline Producer Streptomyces rimosus. Front Microbiol 2019; 10:552. [PMID: 30949149 PMCID: PMC6437091 DOI: 10.3389/fmicb.2019.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, most notably oxytetracycline, which have been widely used against many gram-positive and gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ = 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving DNA more often than others, strains that tend to frequently recombine with specific partners, genes that often experience recombination more than others, and variable sizes of recombined DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus is partly explained by differences in recombination among strains. These results have important implications on current efforts for natural drug discovery, the ecological role of strain-level variation in microbial populations, and addressing the fundamental question of why microbes have pan-genomes.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Cheryl P Andam
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
81
|
Klimina KM, Kasianov AS, Poluektova EU, Emelyanov KV, Voroshilova VN, Zakharevich NV, Kudryavtseva AV, Makeev VJ, Danilenko VN. Employing toxin-antitoxin genome markers for identification of Bifidobacterium and Lactobacillus strains in human metagenomes. PeerJ 2019; 7:e6554. [PMID: 30863681 PMCID: PMC6404652 DOI: 10.7717/peerj.6554] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/02/2019] [Indexed: 01/22/2023] Open
Abstract
Recent research has indicated that in addition to the unique genotype each individual may also have a unique microbiota composition. Difference in microbiota composition may emerge from both its species and strain constituents. It is important to know the precise composition especially for the gut microbiota (GM), since it can contribute to the health assessment, personalized treatment, and disease prevention for individuals and groups (cohorts). The existing methods for species and strain composition in microbiota are not always precise and usually not so easy to use. Probiotic bacteria of the genus Bifidobacterium and Lactobacillus make an essential component of human GM. Previously we have shown that in certain Bifidobacterium and Lactobacillus species the RelBE and MazEF superfamily of toxin-antitoxin (TA) systems may be used as functional biomarkers to differentiate these groups of bacteria at the species and strain levels. We have composed a database of TA genes of these superfamily specific for all lactobacilli and bifidobacteria species with complete genome sequence and confirmed that in all Lactobacillus and Bifidobacterium species TA gene composition is species and strain specific. To analyze composition of species and strains of two bacteria genera, Bifidobacterium and Lactobacillus, in human GM we developed TAGMA (toxin antitoxin genes for metagenomes analyses) software based on polymorphism in TA genes. TAGMA was tested on gut metagenomic samples. The results of our analysis have shown that TAGMA can be used to characterize species and strains of Lactobacillus and Bifidobacterium in metagenomes.
Collapse
Affiliation(s)
- Ksenia M Klimina
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Artem S Kasianov
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena U Poluektova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vsevolod J Makeev
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Valery N Danilenko
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
82
|
Chronic Inflammatory Diseases: Are We Ready for Microbiota-based Dietary Intervention? Cell Mol Gastroenterol Hepatol 2019; 8:61-71. [PMID: 30836147 PMCID: PMC6517864 DOI: 10.1016/j.jcmgh.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
The last 15 years have witnessed the emergence of a new field of research that focuses on the roles played by the intestinal microbiota in health and disease. This research field has produced accumulating evidence indicating that dysregulation of host-microbiota interactions contributes to a range of chronic inflammatory diseases, including inflammatory bowel diseases, colorectal cancer, and metabolic syndrome. Although dysregulation of the microbiota can take complex forms, in some cases, specific bacterial species that can drive specific clinical outcomes have been identified. Among the numerous factors influencing the intestinal microbiota composition, diet is a central actor, wherein numerous dietary factors can beneficially or detrimentally impact the host/microbiota relationship. This review will highlight recent literature that has advanced understanding of microbiota-diet-disease interplay, with a central focus on the following question: Are we ready to use intestinal microbiota composition-based personalized dietary interventions to treat chronic inflammatory diseases?
Collapse
|
83
|
De Filippis F, Pasolli E, Tett A, Tarallo S, Naccarati A, De Angelis M, Neviani E, Cocolin L, Gobbetti M, Segata N, Ercolini D. Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host Microbe 2019; 25:444-453.e3. [DOI: 10.1016/j.chom.2019.01.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 11/14/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
|
84
|
Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L. 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 2019; 37:179-185. [PMID: 30718868 PMCID: PMC6784896 DOI: 10.1038/s41587-018-0008-8] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/13/2018] [Indexed: 12/22/2022]
Abstract
Reference genomes are essential for metagenomic analyses and functional characterization of the human gut microbiota. We present the Culturable Genome Reference (CGR), a collection of 1,520 nonredundant, high-quality draft genomes generated from >6,000 bacteria cultivated from fecal samples of healthy humans. Of the 1,520 genomes, which were chosen to cover all major bacterial phyla and genera in the human gut, 264 are not represented in existing reference genome catalogs. We show that this increase in the number of reference bacterial genomes improves the rate of mapping metagenomic sequencing reads from 50% to >70%, enabling higher-resolution descriptions of the human gut microbiome. We use the CGR genomes to annotate functions of 338 bacterial species, showing the utility of this resource for functional studies. We also carry out a pan-genome analysis of 38 important human gut species, which reveals the diversity and specificity of functional enrichment between their core and dispensable genomes. A resource of >1,500 bacterial reference genomes sheds light on the human gut microbiome.
Collapse
Affiliation(s)
- Yuanqiang Zou
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Wenbin Xue
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Guangwen Luo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Panpan Qin
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ruijin Guo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Haipeng Sun
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yan Xia
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Suisha Liang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Ying Dai
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Daiwei Wan
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Rongrong Jiang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Lili Su
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Zhuye Jie
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Tongkun Guo
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Zhongkui Xia
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Chuan Liu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China
| | - Jinghong Yu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yuxiang Lin
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Shanmei Tang
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, College of Food Sciences, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, China.,China National Genebank, BGI-Shenzhen, Shenzhen, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,School of Bioscience and Biotechnology, South China University of Technology, Guangzhou, China.
| | - Huijue Jia
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,Macau University of Science and Technology, Taipa, Macau, China.
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, China. .,China National Genebank, BGI-Shenzhen, Shenzhen, China. .,Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, Shenzhen, China. .,Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, China. .,Department of Digestive Diseases, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
85
|
Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol 2019; 17:e3000102. [PMID: 30673701 PMCID: PMC6361464 DOI: 10.1371/journal.pbio.3000102] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota are shaped by a combination of ecological and evolutionary forces. While the ecological dynamics have been extensively studied, much less is known about how species of gut bacteria evolve over time. Here, we introduce a model-based framework for quantifying evolutionary dynamics within and across hosts using a panel of metagenomic samples. We use this approach to study evolution in approximately 40 prevalent species in the human gut. Although the patterns of between-host diversity are consistent with quasi-sexual evolution and purifying selection on long timescales, we identify new genealogical signatures that challenge standard population genetic models of these processes. Within hosts, we find that genetic differences that accumulate over 6-month timescales are only rarely attributable to replacement by distantly related strains. Instead, the resident strains more commonly acquire a smaller number of putative evolutionary changes, in which nucleotide variants or gene gains or losses rapidly sweep to high frequency. By comparing these mutations with the typical between-host differences, we find evidence that some sweeps may be seeded by recombination, in addition to new mutations. However, comparisons of adult twins suggest that replacement eventually overwhelms evolution over multi-decade timescales, hinting at fundamental limits to the extent of local adaptation. Together, our results suggest that gut bacteria can evolve on human-relevant timescales, and they highlight the connections between these short-term evolutionary dynamics and longer-term evolution across hosts.
Collapse
Affiliation(s)
- Nandita R. Garud
- Gladstone Institutes, San Francisco, California, United States of America
| | - Benjamin H. Good
- Department of Physics, University of California, Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, Berkeley, California, United States of America
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
86
|
Proal A, Marshall T. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in the Era of the Human Microbiome: Persistent Pathogens Drive Chronic Symptoms by Interfering With Host Metabolism, Gene Expression, and Immunity. Front Pediatr 2018; 6:373. [PMID: 30564562 PMCID: PMC6288442 DOI: 10.3389/fped.2018.00373] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
The illness ME/CFS has been repeatedly tied to infectious agents such as Epstein Barr Virus. Expanding research on the human microbiome now allows ME/CFS-associated pathogens to be studied as interacting members of human microbiome communities. Humans harbor these vast ecosystems of bacteria, viruses and fungi in nearly all tissue and blood. Most well-studied inflammatory conditions are tied to dysbiosis or imbalance of the human microbiome. While gut microbiome dysbiosis has been identified in ME/CFS, microbes and viruses outside the gut can also contribute to the illness. Pathobionts, and their associated proteins/metabolites, often control human metabolism and gene expression in a manner that pushes the body toward a state of illness. Intracellular pathogens, including many associated with ME/CFS, drive microbiome dysbiosis by directly interfering with human transcription, translation, and DNA repair processes. Molecular mimicry between host and pathogen proteins/metabolites further complicates this interference. Other human pathogens disable mitochondria or dysregulate host nervous system signaling. Antibodies and/or clonal T cells identified in patients with ME/CFS are likely activated in response to these persistent microbiome pathogens. Different human pathogens have evolved similar survival mechanisms to disable the host immune response and host metabolic pathways. The metabolic dysfunction driven by these organisms can result in similar clusters of inflammatory symptoms. ME/CFS may be driven by this pathogen-induced dysfunction, with the nature of dysbiosis and symptom presentation varying based on a patient's unique infectious and environmental history. Under such conditions, patients would benefit from treatments that support the human immune system in an effort to reverse the infectious disease process.
Collapse
Affiliation(s)
- Amy Proal
- Autoimmunity Research Foundation, Thousand Oaks, CA, United States
| | | |
Collapse
|
87
|
Lauer S, Avecilla G, Spealman P, Sethia G, Brandt N, Levy SF, Gresham D. Single-cell copy number variant detection reveals the dynamics and diversity of adaptation. PLoS Biol 2018; 16:e3000069. [PMID: 30562346 PMCID: PMC6298651 DOI: 10.1371/journal.pbio.3000069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Copy number variants (CNVs) are a pervasive source of genetic variation and evolutionary potential, but the dynamics and diversity of CNVs within evolving populations remain unclear. Long-term evolution experiments in chemostats provide an ideal system for studying the molecular processes underlying CNV formation and the temporal dynamics with which they are generated, selected, and maintained. Here, we developed a fluorescent CNV reporter to detect de novo gene amplifications and deletions in individual cells. We used the CNV reporter in Saccharomyces cerevisiae to study CNV formation at the GAP1 locus, which encodes the general amino acid permease, in different nutrient-limited chemostat conditions. We find that under strong selection, GAP1 CNVs are repeatedly generated and selected during the early stages of adaptive evolution, resulting in predictable dynamics. Molecular characterization of CNV-containing lineages shows that the CNV reporter detects different classes of CNVs, including aneuploidies, nonreciprocal translocations, tandem duplications, and complex CNVs. Despite GAP1's proximity to repeat sequences that facilitate intrachromosomal recombination, breakpoint analysis revealed that short inverted repeat sequences mediate formation of at least 50% of GAP1 CNVs. Inverted repeat sequences are also found at breakpoints at the DUR3 locus, where CNVs are selected in urea-limited chemostats. Analysis of 28 CNV breakpoints indicates that inverted repeats are typically 8 nucleotides in length and separated by 40 bases. The features of these CNVs are consistent with origin-dependent inverted-repeat amplification (ODIRA), suggesting that replication-based mechanisms of CNV formation may be a common source of gene amplification. We combined the CNV reporter with barcode lineage tracking and found that 102-104 independent CNV-containing lineages initially compete within populations, resulting in extreme clonal interference. However, only a small number (18-21) of CNV lineages ever constitute more than 1% of the CNV subpopulation, and as selection progresses, the diversity of CNV lineages declines. Our study introduces a novel means of studying CNVs in heterogeneous cell populations and provides insight into their dynamics, diversity, and formation mechanisms in the context of adaptive evolution.
Collapse
Affiliation(s)
- Stephanie Lauer
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Grace Avecilla
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Pieter Spealman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Gunjan Sethia
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Nathan Brandt
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Sasha F. Levy
- Joint Initiative for Metrology in Biology, National Institute of Standards and Technology, Stanford University, Stanford, California, United States of America
| | - David Gresham
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
88
|
Carrera-Quintanar L, Ortuño-Sahagún D, Franco-Arroyo NN, Viveros-Paredes JM, Zepeda-Morales AS, Lopez-Roa RI. The Human Microbiota and Obesity: A Literature Systematic Review of In Vivo Models and Technical Approaches. Int J Mol Sci 2018; 19:ijms19123827. [PMID: 30513674 PMCID: PMC6320813 DOI: 10.3390/ijms19123827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/14/2022] Open
Abstract
Obesity is a noncommunicable disease that affects a considerable part of humanity. Recently, it has been recognized that gut microbiota constitutes a fundamental factor in the triggering and development of a large number of pathologies, among which obesity is one of the most related to the processes of dysbiosis. In this review, different animal model approaches, methodologies, and genome scale metabolic databases were revisited to study the gut microbiota and its relationship with metabolic disease. As a data source, PubMed for English-language published material from 1 January 2013, to 22 August 2018, were screened. Some previous studies were included if they were considered classics or highly relevant. Studies that included innovative technical approaches or different in vivo or in vitro models for the study of the relationship between gut microbiota and obesity were selected after a 16-different-keyword exhaustive search. A clear panorama of the current available options for the study of microbiota’s influence on obesity, both for animal model election and technical approaches, is presented to the researcher. All the knowledge generated from the study of the microbiota opens the possibility of considering fecal transplantation as a relevant therapeutic alternative for obesity and other metabolic disease treatment.
Collapse
Affiliation(s)
- Lucrecia Carrera-Quintanar
- Laboratorio de Ciencias de los Alimentos, Departamento de Reproducción Humana, Crecimiento y Desarrollo Infantil, Universidad de Guadalajara, CUCS, Guadalajara Jalisco 45180, Mexico.
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB) CUCS, Universidad de Guadalajara, Guadalajara Jalisco 45180, Mexico.
| | - Noel N Franco-Arroyo
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| | - Juan M Viveros-Paredes
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| | - Adelaida S Zepeda-Morales
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| | - Rocio I Lopez-Roa
- Laboratorio de Investigación y Desarrollo Farmacéutico, Universidad de Guadalajara, CUCEI, Guadalajara Jalisco 44430, Mexico.
| |
Collapse
|
89
|
Arnold JW, Simpson JB, Roach J, Bruno-Barcena JM, Azcarate-Peril MA. Prebiotics for Lactose Intolerance: Variability in Galacto-Oligosaccharide Utilization by Intestinal Lactobacillus rhamnosus. Nutrients 2018; 10:E1517. [PMID: 30332787 PMCID: PMC6213946 DOI: 10.3390/nu10101517] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Lactose intolerance, characterized by a decrease in host lactase expression, affects approximately 75% of the world population. Galacto-oligosaccharides (GOS) are prebiotics that have been shown to alleviate symptoms of lactose intolerance and to modulate the intestinal microbiota, promoting the growth of beneficial microorganisms. We hypothesized that mechanisms of GOS utilization by intestinal bacteria are variable, impacting efficacy and response, with differences occurring at the strain level. This study aimed to determine the mechanisms by which human-derived Lactobacillus rhamnosus strains metabolize GOS. Genomic comparisons between strains revealed differences in carbohydrate utilization components, including transporters, enzymes for degradation, and transcriptional regulation, despite a high overall sequence identity (>95%) between strains. Physiological and transcriptomics analyses showed distinct differences in carbohydrate metabolism profiles and GOS utilization between strains. A putative operon responsible for GOS utilization was identified and characterized by genetic disruption of the 6-phospho-β-galactosidase, which had a critical role in GOS utilization. Our findings highlight the importance of strain-specific bacterial metabolism in the selection of probiotics and synbiotics to alleviate symptoms of gastrointestinal disorders including lactose intolerance.
Collapse
Affiliation(s)
- Jason W Arnold
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Joshua B Simpson
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jeffery Roach
- Research Computing, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jose M Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27607, USA.
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, and UNC Microbiome Core, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
90
|
AluScanCNV2: An R package for copy number variation calling and cancer risk prediction with next-generation sequencing data. Genes Dis 2018; 6:43-46. [PMID: 30906832 PMCID: PMC6411622 DOI: 10.1016/j.gendis.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
The usage of next-generation sequencing (NGS) to detect copy number variation (CNV) is widely accepted in cancer research. Based on an AluScanCNV software developed by us previously, an AluScanCNV2 software has been developed in the present study as an R package that performs CNV detection from NGS data obtained through AluScan, whole-genome sequencing or other targeted NGS platforms. Its applications would include the expedited usage of somatic CNVs for cancer subtyping, and usage of recurrent germline CNVs to perform machine learning-assisted prediction of a test subject's susceptibility to cancer.
Collapse
|
91
|
Wang Z, Lou H, Wang Y, Shamir R, Jiang R, Chen T. GePMI: A statistical model for personal intestinal microbiome identification. NPJ Biofilms Microbiomes 2018; 4:20. [PMID: 30210803 PMCID: PMC6123480 DOI: 10.1038/s41522-018-0065-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/19/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Human gut microbiomes consist of a large number of microbial genomes, which vary by diet and health conditions and from individual to individual. In the present work, we asked whether such variation or similarity could be measured and, if so, whether the results could be used for personal microbiome identification (PMI). To address this question, we herein propose a method to estimate the significance of similarity among human gut metagenomic samples based on reference-free, long k-mer features. Using these features, we find that pairwise similarities between the metagenomes of any two individuals obey a beta distribution and that a p value derived accordingly well characterizes whether two samples are from the same individual or not. We develop a computational framework called GePMI (Generating inter-individual similarity distribution for Personal Microbiome Identification) and apply it to several human gut metagenomic datasets (>300 individuals and >600 samples in total). From the results of GePMI, most of the human gut microbiomes can be identified (auROC = 0.9470, auPRC = 0.8702). Even after antibiotic treatment or fecal microbiota transplantation, the individual k-mer signature still maintains a certain specificity.
Collapse
Affiliation(s)
- Zicheng Wang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNLIST and Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Huazhe Lou
- Bioinformatics Division, BNLIST and Department of Computer Science and Technology, Tsinghua University, 100084 Beijing, China
| | - Ying Wang
- Department of Automation, Xiamen University, 361005 Fujian, China
| | - Ron Shamir
- Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNLIST and Department of Automation, Tsinghua University, 100084 Beijing, China
| | - Ting Chen
- Bioinformatics Division, BNLIST and Department of Computer Science and Technology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
92
|
Koehler S, Gaedeke R, Thompson C, Bongrand C, Visick K, Ruby E, McFall-Ngai M. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ Microbiol 2018; 21:10.1111/1462-2920.14392. [PMID: 30136358 PMCID: PMC6386636 DOI: 10.1111/1462-2920.14392] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 11/29/2022]
Abstract
Among horizontally acquired symbioses, the mechanisms underlying microbial strain- and species-level specificity remain poorly understood. Here, confocal-microscopy analyses and genetic manipulation of the squid-vibrio association revealed quantitative differences in a symbiont's capacity to interact with the host during initial engagement. Specifically, dominant strains of Vibrio fischeri, 'D-type', previously named for their dominant, single-strain colonization of the squid's bioluminescent organ, were compared with 'S-type', or 'sharing', strains, which can co-colonize the organ. These D-type strains typically: (i) formed aggregations of 100s-1000s of cells on the light-organ surface, up to 3 orders of magnitude larger than those of S-type strains; (ii) showed dominance in co-aggregation experiments, independent of inoculum size or strain proportion; (iii) perturbed larger areas of the organ's ciliated surface; and, (iv) appeared at the pore of the organ approximately 4×s more quickly than S-type strains. At least in part, genes responsible for biofilm synthesis control the hyperaggregation phenotype of a D-type strain. Other marine vibrios produced relatively small aggregations, while an array of marine Gram-positive and -negative species outside of the Vibrionaceae did not attach to the organ's surface. These studies provide insight into the impact of strain variation on early events leading to establishment of an environmentally acquired symbiosis.
Collapse
Affiliation(s)
- Sabrina Koehler
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Roxane Gaedeke
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Cecilia Thompson
- Department of Microbiology and Immunology, Loyola University Chicago, IL, USA
| | - Clotilde Bongrand
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Karen Visick
- Department of Microbiology and Immunology, Loyola University Chicago, IL, USA
| | - Edward Ruby
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
93
|
Reese AT, Dunn RR. Drivers of Microbiome Biodiversity: A Review of General Rules, Feces, and Ignorance. mBio 2018; 9:e01294-18. [PMID: 30065092 PMCID: PMC6069118 DOI: 10.1128/mbio.01294-18] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 01/16/2023] Open
Abstract
The alpha diversity of ecologic communities is affected by many biotic and abiotic drivers and, in turn, affects ecosystem functioning. Yet, patterns of alpha diversity in host-associated microbial communities (microbiomes) are poorly studied and the appropriateness of general theory is untested. Expanding diversity theory to include microbiomes is essential as diversity is a frequently cited metric of their status. Here, we review and newly analyze reports of alpha diversity for animal gut microbiomes. We demonstrate that both diet and body size affect diversity in the gut but that gut physiology (fermenter versus simple) is the most important driver. We also assess the advantages of various diversity metrics. The importance of diversity in microbiomes is often assumed but has not been tested outright. Therefore, we close by discussing how to integrate microbiomes into the field of biodiversity-ecosystem functioning to more clearly understand when and why a host supports diverse microbial communities.
Collapse
Affiliation(s)
- Aspen T Reese
- Society of Fellows, Harvard University, Cambridge, Massachusetts
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
| |
Collapse
|
94
|
Zolfo M, Asnicar F, Manghi P, Pasolli E, Tett A, Segata N. Profiling microbial strains in urban environments using metagenomic sequencing data. Biol Direct 2018; 13:9. [PMID: 29743119 PMCID: PMC5944035 DOI: 10.1186/s13062-018-0211-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background The microbial communities populating human and natural environments have been extensively characterized with shotgun metagenomics, which provides an in-depth representation of the microbial diversity within a sample. Microbes thriving in urban environments may be crucially important for human health, but have received less attention than those of other environments. Ongoing efforts started to target urban microbiomes at a large scale, but the most recent computational methods to profile these metagenomes have never been applied in this context. It is thus currently unclear whether such methods, that have proven successful at distinguishing even closely related strains in human microbiomes, are also effective in urban settings for tasks such as cultivation-free pathogen detection and microbial surveillance. Here, we aimed at a) testing the currently available metagenomic profiling tools on urban metagenomics; b) characterizing the organisms in urban environment at the resolution of single strain and c) discussing the biological insights that can be inferred from such methods. Results We applied three complementary methods on the 1614 metagenomes of the CAMDA 2017 challenge. With MetaMLST we identified 121 known sequence-types from 15 species of clinical relevance. For instance, we identified several Acinetobacter strains that were close to the nosocomial opportunistic pathogen A. nosocomialis. With StrainPhlAn, a generalized version of the MetaMLST approach, we inferred the phylogenetic structure of Pseudomonas stutzeri strains and suggested that the strain-level heterogeneity in environmental samples is higher than in the human microbiome. Finally, we also probed the functional potential of the different strains with PanPhlAn. We further showed that SNV-based and pangenome-based profiling provide complementary information that can be combined to investigate the evolutionary trajectories of microbes and to identify specific genetic determinants of virulence and antibiotic resistances within closely related strains. Conclusion We show that strain-level methods developed primarily for the analysis of human microbiomes can be effective for city-associated microbiomes. In fact, (opportunistic) pathogens can be tracked and monitored across many hundreds of urban metagenomes. However, while more effort is needed to profile strains of currently uncharacterized species, this work poses the basis for high-resolution analyses of microbiomes sampled in city and mass transportation environments. Reviewers This article was reviewed by Alexandra Bettina Graf, Daniel Huson and Trevor Cickovski. Electronic supplementary material The online version of this article (10.1186/s13062-018-0211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Moreno Zolfo
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, TN, Italy
| | - Francesco Asnicar
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, TN, Italy
| | - Paolo Manghi
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, TN, Italy
| | - Edoardo Pasolli
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, TN, Italy
| | - Adrian Tett
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, TN, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, TN, Italy.
| |
Collapse
|
95
|
Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Appl Environ Microbiol 2018; 84:AEM.02893-17. [PMID: 29500265 DOI: 10.1128/aem.02893-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Inulin-type fructans (ITF) and arabinoxylan oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at the strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME) after inoculation with feces from one healthy individual was investigated. Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short-chain-length fractions of fructooligosaccharides (FOS) than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially and consumed AXOS to a limited extent. B. adolescentis B72 degraded all fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms were suggested to be complementary and indicated resource partitioning. Specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research.IMPORTANCE It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as ITF and AXOS, in the human colon. However, this process has never been studied for strains coexisting in the same individual. To examine strain-dependent mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the SHIME after inoculation with feces from one healthy individual was investigated. Among the 18 bifidobacterial strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found, indicating that such strains can coexist in the human colon. Such specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects.
Collapse
|
96
|
Eng A, Borenstein E. Taxa-function robustness in microbial communities. MICROBIOME 2018; 6:45. [PMID: 29499759 PMCID: PMC5833107 DOI: 10.1186/s40168-018-0425-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND The species composition of a microbial community is rarely fixed and often experiences fluctuations of varying degrees and at varying frequencies. These perturbations to a community's taxonomic profile naturally also alter the community's functional profile-the aggregate set of genes encoded by community members-ultimately altering the community's overall functional capacities. The magnitude of such functional changes and the specific shift that will occur in each function, however, are strongly dependent on how genes are distributed across community members' genomes. This gene distribution, in turn, is determined by the taxonomic composition of the community and would markedly differ, for example, between communities composed of species with similar genomic content vs. communities composed of species whose genomes encode relatively distinct gene sets. Combined, these observations suggest that community functional robustness to taxonomic perturbations could vary widely across communities with different compositions, yet, to date, a systematic study of the inherent link between community composition and robustness is lacking. RESULTS In this study, we examined how a community's taxonomic composition influences the robustness of that community's functional profile to taxonomic perturbation (here termed taxa-function robustness) across a wide array of environments. Using a novel simulation-based computational model to quantify this taxa-function robustness in host-associated and non-host-associated communities, we find notable differences in robustness between communities inhabiting different body sites, including significantly higher robustness in gut communities compared to vaginal communities that cannot be attributed solely to differences in species richness. We additionally find between-site differences in the robustness of specific functions, some of which are potentially related to site-specific environmental conditions. These taxa-function robustness differences are most strongly associated with differences in overall functional redundancy, though other aspects of gene distribution also influence taxa-function robustness in certain body environments, and are sufficient to cluster communities by environment. Further analysis revealed a correspondence between our robustness estimates and taxonomic and functional shifts observed across human-associated communities. CONCLUSIONS Our analysis approach revealed intriguing taxa-function robustness variation across environments and identified features of community and gene distribution that impact robustness. This approach could be further applied for estimating taxa-function robustness in novel communities and for informing the design of synthetic communities with specific robustness requirements.
Collapse
Affiliation(s)
- Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA, 98102, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA, 98102, USA.
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98102, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
97
|
McNally CP, Eng A, Noecker C, Gagne-Maynard WC, Borenstein E. BURRITO: An Interactive Multi-Omic Tool for Visualizing Taxa-Function Relationships in Microbiome Data. Front Microbiol 2018; 9:365. [PMID: 29545787 PMCID: PMC5837987 DOI: 10.3389/fmicb.2018.00365] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/15/2018] [Indexed: 01/21/2023] Open
Abstract
The abundance of both taxonomic groups and gene categories in microbiome samples can now be easily assayed via various sequencing technologies, and visualized using a variety of software tools. However, the assemblage of taxa in the microbiome and its gene content are clearly linked, and tools for visualizing the relationship between these two facets of microbiome composition and for facilitating exploratory analysis of their co-variation are lacking. Here we introduce BURRITO, a web tool for interactive visualization of microbiome multi-omic data with paired taxonomic and functional information. BURRITO simultaneously visualizes the taxonomic and functional compositions of multiple samples and dynamically highlights relationships between taxa and functions to capture the underlying structure of these data. Users can browse for taxa and functions of interest and interactively explore the share of each function attributed to each taxon across samples. BURRITO supports multiple input formats for taxonomic and metagenomic data, allows adjustment of data granularity, and can export generated visualizations as static publication-ready formatted figures. In this paper, we describe the functionality of BURRITO, and provide illustrative examples of its utility for visualizing various trends in the relationship between the composition of taxa and functions in complex microbiomes.
Collapse
Affiliation(s)
- Colin P. McNally
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Alexander Eng
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Cecilia Noecker
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | | | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Department of Computer Science and Engineering, University of Washington, Seattle, WA, United States
- Santa Fe Institute, Santa Fe, NM, United States
| |
Collapse
|
98
|
Lappan R, Imbrogno K, Sikazwe C, Anderson D, Mok D, Coates H, Vijayasekaran S, Bumbak P, Blyth CC, Jamieson SE, Peacock CS. A microbiome case-control study of recurrent acute otitis media identified potentially protective bacterial genera. BMC Microbiol 2018; 18:13. [PMID: 29458340 PMCID: PMC5819196 DOI: 10.1186/s12866-018-1154-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background Recurrent acute otitis media (rAOM, recurrent ear infection) is a common childhood disease caused by bacteria termed otopathogens, for which current treatments have limited effectiveness. Generic probiotic therapies have shown promise, but seem to lack specificity. We hypothesised that healthy children with no history of AOM carry protective commensal bacteria that could be translated into a specific probiotic therapy to break the cycle of re-infection. We characterised the nasopharyngeal microbiome of these children (controls) in comparison to children with rAOM (cases) to identify potentially protective bacteria. As some children with rAOM do not appear to carry any of the known otopathogens, we also hypothesised that characterisation of the middle ear microbiome could identify novel otopathogens, which may also guide the development of more effective therapies. Results Middle ear fluids, middle ear rinses and ear canal swabs from the cases and nasopharyngeal swabs from both groups underwent 16S rRNA gene sequencing. The nasopharyngeal microbiomes of cases and controls were distinct. We observed a significantly higher abundance of Corynebacterium and Dolosigranulum in the nasopharynx of controls. Alloiococcus, Staphylococcus and Turicella were abundant in the middle ear and ear canal of cases, but were uncommon in the nasopharynx of both groups. Gemella and Neisseria were characteristic of the case nasopharynx, but were not prevalent in the middle ear. Conclusions Corynebacterium and Dolosigranulum are characteristic of a healthy nasopharyngeal microbiome. Alloiococcus, Staphylococcus and Turicella are possible novel otopathogens, though their rarity in the nasopharynx and prevalence in the ear canal means that their role as normal aural flora cannot be ruled out. Gemella and Neisseria are unlikely to be novel otopathogens as they do not appear to colonise the middle ear in children with rAOM. Electronic supplementary material The online version of this article (10.1186/s12866-018-1154-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachael Lappan
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia. .,Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| | - Kara Imbrogno
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Chisha Sikazwe
- Department of Microbiology, PathWest, Perth, WA, Australia
| | - Denise Anderson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Danny Mok
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Harvey Coates
- School of Medicine, The University of Western Australia, Perth, WA, Australia
| | - Shyan Vijayasekaran
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Paul Bumbak
- School of Medicine, The University of Western Australia, Perth, WA, Australia.,Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Christopher C Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.,Department of Microbiology, PathWest, Perth, WA, Australia.,School of Medicine, The University of Western Australia, Perth, WA, Australia.,Princess Margaret Hospital for Children, Perth, WA, Australia
| | - Sarra E Jamieson
- Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia
| | - Christopher S Peacock
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia. .,Telethon Kids Institute, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
99
|
Arnold JW, Simpson JB, Roach J, Kwintkiewicz J, Azcarate-Peril MA. Intra-species Genomic and Physiological Variability Impact Stress Resistance in Strains of Probiotic Potential. Front Microbiol 2018; 9:242. [PMID: 29515537 PMCID: PMC5826259 DOI: 10.3389/fmicb.2018.00242] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/31/2018] [Indexed: 12/28/2022] Open
Abstract
Large-scale microbiome studies have established that most of the diversity contained in the gastrointestinal tract is represented at the strain level; however, exhaustive genomic and physiological characterization of human isolates is still lacking. With increased use of probiotics as interventions for gastrointestinal disorders, genomic and functional characterization of novel microorganisms becomes essential. In this study, we explored the impact of strain-level genomic variability on bacterial physiology of two novel human Lactobacillus rhamnosus strains (AMC143 and AMC010) of probiotic potential in relation to stress resistance. The strains showed differences with known probiotic strains (L. rhamnosus GG, Lc705, and HN001) at the genomic level, including nucleotide polymorphisms, mutations in non-coding regulatory regions, and rearrangements of genomic architecture. Transcriptomics analysis revealed that gene expression profiles differed between strains when exposed to simulated gastrointestinal stresses, suggesting the presence of unique regulatory systems in each strain. In vitro physiological assays to test resistance to conditions mimicking the gut environment (acid, alkali, and bile stress) showed that growth of L. rhamnosus AMC143 was inhibited upon exposure to alkaline pH, while AMC010 and control strain LGG were unaffected. AMC143 also showed a significant survival advantage compared to the other strains upon bile exposure. Reverse transcription qPCR targeting the bile salt hydrolase gene (bsh) revealed that AMC143 expressed bsh poorly (a consequence of a deletion in the bsh promoter and truncation of bsh gene in AMC143), while AMC010 had significantly higher expression levels than AMC143 or LGG. Insertional inactivation of the bsh gene in AMC010 suggested that bsh could be detrimental to bacterial survival during bile stress. Together, these findings show that coupling of classical microbiology with functional genomics methods for the characterization of bacterial strains is critical for the development of novel probiotics, as variability between strains can dramatically alter bacterial physiology and functionality.
Collapse
Affiliation(s)
- Jason W. Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Joshua B. Simpson
- Department of Chemistry, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Jeffrey Roach
- Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - Jakub Kwintkiewicz
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, Microbiome Core Facility, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
100
|
Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, Hohmann EL, Staley C, Khoruts A, Sadowsky MJ, Allegretti JR, Smith MB, Xavier RJ, Alm EJ. Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. Cell Host Microbe 2018; 23:229-240.e5. [PMID: 29447696 PMCID: PMC8318347 DOI: 10.1016/j.chom.2018.01.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/26/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Fecal microbiota transplantation (FMT) from healthy donor to patient is a treatment for microbiome-associated diseases. Although the success of FMT requires donor bacteria to engraft in the patient's gut, the forces governing engraftment in humans are unknown. Here we use an ongoing clinical experiment, the treatment of recurrent Clostridium difficile infection, to uncover the rules of engraftment in humans. We built a statistical model that predicts which bacterial species will engraft in a given host, and developed Strain Finder, a method to infer strain genotypes and track them over time. We find that engraftment can be predicted largely from the abundance and phylogeny of bacteria in the donor and the pre-FMT patient. Furthermore, donor strains within a species engraft in an all-or-nothing manner and previously undetected strains frequently colonize patients receiving FMT. We validated these findings for metabolic syndrome, suggesting that the same principles of engraftment extend to other indications.
Collapse
Affiliation(s)
- Christopher S Smillie
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Computational and Systems Biology, MIT, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA
| | - Jenny Sauk
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Dirk Gevers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jaeyun Sung
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilan Youngster
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth L Hohmann
- Harvard Medical School, Boston, MA, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | - Alexander Khoruts
- BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Division of Gastroenterology, University of Minnesota, St. Paul, MN, USA; Center for Immunology, University of Minnesota, St. Paul, MA, USA
| | | | - Jessica R Allegretti
- Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark B Smith
- The Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Finch Therapeutics, Somerville, MA, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Eric J Alm
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA; Finch Therapeutics, Somerville, MA, USA; Department of Biological Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|