51
|
Choi EL, Taheri N, Chandra A, Hayashi Y. Cellular Senescence, Inflammation, and Cancer in the Gastrointestinal Tract. Int J Mol Sci 2023; 24:9810. [PMID: 37372958 PMCID: PMC10298598 DOI: 10.3390/ijms24129810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Due to modern medical advancements, greater proportions of the population will continue to age with longer life spans. Increased life span, however, does not always correlate with improved health span, and may result in an increase in aging-related diseases and disorders. These diseases are often attributed to cellular senescence, in which cells become disengaged from the cell cycle and inert to cell death. These cells are characterized by a proinflammatory secretome. The proinflammatory senescence-associated secretory phenotype, although part of a natural function intended to prevent further DNA damage, creates a microenvironment suited to tumor progression. This microenvironment is most evident in the gastrointestinal tract (GI), where a combination of bacterial infections, senescent cells, and inflammatory proteins can lead to oncogenesis. Thus, it is important to find potential senescence biomarkers as targets of novel therapies for GI diseases and disorders including cancers. However, finding therapeutic targets in the GI microenvironment to reduce the risk of GI tumor onset may also be of value. This review summarizes the effects of cellular senescence on GI aging, inflammation, and cancers, and aims to improve our understanding of these processes with a goal of enhancing future therapy.
Collapse
Affiliation(s)
- Egan L. Choi
- Graduate Research Education Program (Choi), Mayo Clinic, Rochester, MN 55905, USA;
| | - Negar Taheri
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Robert and Arlene Kogod Center on Aging (Chandra), Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiro Hayashi
- Department of Physiology and Biomedical Engineering (Taheri, Chandra and Hayashi), Mayo Clinic, Rochester, MN 55905, USA; (N.T.); (A.C.)
- Division of Gastroenterology and Hepatology (Taheri and Hayashi), Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
52
|
Lattanzi G, Strati F, Díaz-Basabe A, Perillo F, Amoroso C, Protti G, Rita Giuffrè M, Iachini L, Baeri A, Baldari L, Cassinotti E, Ghidini M, Galassi B, Lopez G, Noviello D, Porretti L, Trombetta E, Messuti E, Mazzarella L, Iezzi G, Nicassio F, Granucci F, Vecchi M, Caprioli F, Facciotti F. iNKT cell-neutrophil crosstalk promotes colorectal cancer pathogenesis. Mucosal Immunol 2023; 16:326-340. [PMID: 37004750 DOI: 10.1016/j.mucimm.2023.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.
Collapse
Affiliation(s)
- Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco Strati
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Protti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Iachini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Ludovica Baldari
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Galassi
- Medical Oncology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Messuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Mazzarella
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Giandomenica Iezzi
- Department of Visceral Surgery, EOC Translational Research Laboratory, Bellinzona, Switzerland
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy; Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
53
|
Chen YJ, Li GN, Li XJ, Wei LX, Fu MJ, Cheng ZL, Yang Z, Zhu GQ, Wang XD, Zhang C, Zhang JY, Sun YP, Saiyin H, Zhang J, Liu WR, Zhu WW, Guan KL, Xiong Y, Yang Y, Ye D, Chen LL. Targeting IRG1 reverses the immunosuppressive function of tumor-associated macrophages and enhances cancer immunotherapy. SCIENCE ADVANCES 2023; 9:eadg0654. [PMID: 37115931 PMCID: PMC10146892 DOI: 10.1126/sciadv.adg0654] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immune-responsive gene 1 (IRG1) encodes aconitate decarboxylase (ACOD1) that catalyzes the production of itaconic acids (ITAs). The anti-inflammatory function of IRG1/ITA has been established in multiple pathogen models, but very little is known in cancer. Here, we show that IRG1 is expressed in tumor-associated macrophages (TAMs) in both human and mouse tumors. Mechanistically, tumor cells induce Irg1 expression in macrophages by activating NF-κB pathway, and ITA produced by ACOD1 inhibits TET DNA dioxygenases to dampen the expression of inflammatory genes and the infiltration of CD8+ T cells into tumor sites. Deletion of Irg1 in mice suppresses the growth of multiple tumor types and enhances the efficacy of anti-PD-(L)1 immunotherapy. Our study provides a proof of concept that ACOD1 is a potential target for immune-oncology drugs and IRG1-deficient macrophages represent a potent cell therapy strategy for cancer treatment even in pancreatic tumors that are resistant to T cell-based immunotherapy.
Collapse
Affiliation(s)
- Yu-Jia Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Guan-Nan Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xian-Jing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lin-Xing Wei
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Min-Jie Fu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhou-Li Cheng
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zhen Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Gui-Qi Zhu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Shanghai, China
| | - Xu-Dong Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jin-Ye Zhang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow for Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang Province, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of the Ministry of Education, Shanghai, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA
| | - Yue Xiong
- Cullgen Inc., 12671 High Bluff Drive, San Diego, CA 92130, USA
| | - Yong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- Corresponding author. (Y.Y.); (D.Y.); (L.-L.C.)
| | - Dan Ye
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Corresponding author. (Y.Y.); (D.Y.); (L.-L.C.)
| | - Lei-Lei Chen
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital, Fudan University; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology); Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education); Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
- Corresponding author. (Y.Y.); (D.Y.); (L.-L.C.)
| |
Collapse
|
54
|
Carnevale S, Di Ceglie I, Grieco G, Rigatelli A, Bonavita E, Jaillon S. Neutrophil diversity in inflammation and cancer. Front Immunol 2023; 14:1180810. [PMID: 37180120 PMCID: PMC10169606 DOI: 10.3389/fimmu.2023.1180810] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Neutrophils are the most abundant circulating leukocytes in humans and the first immune cells recruited at the site of inflammation. Classically perceived as short-lived effector cells with limited plasticity and diversity, neutrophils are now recognized as highly heterogenous immune cells, which can adapt to various environmental cues. In addition to playing a central role in the host defence, neutrophils are involved in pathological contexts such as inflammatory diseases and cancer. The prevalence of neutrophils in these conditions is usually associated with detrimental inflammatory responses and poor clinical outcomes. However, a beneficial role for neutrophils is emerging in several pathological contexts, including in cancer. Here we will review the current knowledge of neutrophil biology and heterogeneity in steady state and during inflammation, with a focus on the opposing roles of neutrophils in different pathological contexts.
Collapse
Affiliation(s)
| | | | - Giovanna Grieco
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Sebastien Jaillon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
55
|
Gungabeesoon J, Gort-Freitas NA, Kiss M, Bolli E, Messemaker M, Siwicki M, Hicham M, Bill R, Koch P, Cianciaruso C, Duval F, Pfirschke C, Mazzola M, Peters S, Homicsko K, Garris C, Weissleder R, Klein AM, Pittet MJ. A neutrophil response linked to tumor control in immunotherapy. Cell 2023; 186:1448-1464.e20. [PMID: 37001504 PMCID: PMC10132778 DOI: 10.1016/j.cell.2023.02.032] [Citation(s) in RCA: 123] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/10/2023] [Accepted: 02/24/2023] [Indexed: 04/01/2023]
Abstract
Neutrophils accumulate in solid tumors, and their abundance correlates with poor prognosis. Neutrophils are not homogeneous, however, and could play different roles in cancer therapy. Here, we investigate the role of neutrophils in immunotherapy, leading to tumor control. We show that successful therapies acutely expanded tumor neutrophil numbers. This expansion could be attributed to a Sellhi state rather than to other neutrophils that accelerate tumor progression. Therapy-elicited neutrophils acquired an interferon gene signature, also seen in human patients, and appeared essential for successful therapy, as loss of the interferon-responsive transcription factor IRF1 in neutrophils led to failure of immunotherapy. The neutrophil response depended on key components of anti-tumor immunity, including BATF3-dependent DCs, IL-12, and IFNγ. In addition, we found that a therapy-elicited systemic neutrophil response positively correlated with disease outcome in lung cancer patients. Thus, we establish a crucial role of a neutrophil state in mediating effective cancer therapy.
Collapse
Affiliation(s)
- Jeremy Gungabeesoon
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | | | - Máté Kiss
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - Evangelia Bolli
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - Marius Messemaker
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Mehdi Hicham
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - Ruben Bill
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Chiara Cianciaruso
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - Florent Duval
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Solange Peters
- Service of Medical Oncology, Department of Oncology, CHUV, Lausanne, Switzerland; Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Krisztian Homicsko
- AGORA Cancer Research Center, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; Department of Oncology, CHUV, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland.
| |
Collapse
|
56
|
Wang T, Zhou Y, Zhou Z, Zhang P, Yan R, Sun L, Ma W, Zhang T, Shen S, Liu H, Lu H, Ye L, Feng J, Chen Z, Zhong X, Wu G, Cai Y, Jia W, Gao P, Zhang H. Secreted protease PRSS35 suppresses hepatocellular carcinoma by disabling CXCL2-mediated neutrophil extracellular traps. Nat Commun 2023; 14:1513. [PMID: 36934105 PMCID: PMC10024721 DOI: 10.1038/s41467-023-37227-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Hepatocytes function largely through the secretion of proteins that regulate cell proliferation, metabolism, and intercellular communications. During the progression of hepatocellular carcinoma (HCC), the hepatocyte secretome changes dynamically as both a consequence and a causative factor in tumorigenesis, although the full scope of secreted protein function in this process remains unclear. Here, we show that the secreted pseudo serine protease PRSS35 functions as a tumor suppressor in HCC. Mechanistically, we demonstrate that active PRSS35 is processed via cleavage by proprotein convertases. Active PRSS35 then suppresses protein levels of CXCL2 through targeted cleavage of tandem lysine (KK) recognition motif. Consequently, CXCL2 degradation attenuates neutrophil recruitment to tumors and formation of neutrophil extracellular traps, ultimately suppressing HCC progression. These findings expand our understanding of the hepatocyte secretome's role in cancer development while providing a basis for the clinical translation of PRRS35 as a therapeutic target or diagnostic biomarker.
Collapse
Affiliation(s)
- Ting Wang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingli Zhou
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zilong Zhou
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Pinggen Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ronghui Yan
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhao Ma
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiying Liu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Lu
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ling Ye
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junru Feng
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaolin Chen
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gao Wu
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongping Cai
- Department of Pathology, School of Medicine, Anhui Medical University, Hefei, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Ping Gao
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Anhui Province Key Laboratory of Biomedical Aging Research, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
57
|
de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023; 41:374-403. [PMID: 36917948 DOI: 10.1016/j.ccell.2023.02.016] [Citation(s) in RCA: 966] [Impact Index Per Article: 483.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
Cancers represent complex ecosystems comprising tumor cells and a multitude of non-cancerous cells, embedded in an altered extracellular matrix. The tumor microenvironment (TME) includes diverse immune cell types, cancer-associated fibroblasts, endothelial cells, pericytes, and various additional tissue-resident cell types. These host cells were once considered bystanders of tumorigenesis but are now known to play critical roles in the pathogenesis of cancer. The cellular composition and functional state of the TME can differ extensively depending on the organ in which the tumor arises, the intrinsic features of cancer cells, the tumor stage, and patient characteristics. Here, we review the importance of the TME in each stage of cancer progression, from tumor initiation, progression, invasion, and intravasation to metastatic dissemination and outgrowth. Understanding the complex interplay between tumor cell-intrinsic, cell-extrinsic, and systemic mediators of disease progression is critical for the rational development of effective anti-cancer treatments.
Collapse
Affiliation(s)
- Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, 1011 Lausanne, Switzerland; Agora Cancer Center Lausanne, and Swiss Cancer Center Léman, 1011 Lausanne, Switzerland.
| |
Collapse
|
58
|
Segal BH, Giridharan T, Suzuki S, Khan ANH, Zsiros E, Emmons TR, Yaffe MB, Gankema AAF, Hoogeboom M, Goetschalckx I, Matlung HL, Kuijpers TW. Neutrophil interactions with T cells, platelets, endothelial cells, and of course tumor cells. Immunol Rev 2023; 314:13-35. [PMID: 36527200 PMCID: PMC10174640 DOI: 10.1111/imr.13178] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neutrophils sense microbes and host inflammatory mediators, and traffic to sites of infection where they direct a broad armamentarium of antimicrobial products against pathogens. Neutrophils are also activated by damage-associated molecular patterns (DAMPs), which are products of cellular injury that stimulate the innate immune system through pathways that are similar to those activated by microbes. Neutrophils and platelets become activated by injury, and cluster and cross-signal to each other with the cumulative effect of driving antimicrobial defense and hemostasis. In addition, neutrophil extracellular traps are extracellular chromatin and granular constituents that are generated in response to microbial and damage motifs and are pro-thrombotic and injurious. Although neutrophils can worsen tissue injury, neutrophils may also have a role in facilitating wound repair following injury. A central theme of this review relates to how critical functions of neutrophils that evolved to respond to infection and damage modulate the tumor microenvironment (TME) in ways that can promote or limit tumor progression. Neutrophils are reprogrammed by the TME, and, in turn, can cross-signal to tumor cells and reshape the immune landscape of tumors. Importantly, promising new therapeutic strategies have been developed to target neutrophil recruitment and function to make cancer immunotherapy more effective.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Tiffany R Emmons
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael B Yaffe
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela A F Gankema
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark Hoogeboom
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ines Goetschalckx
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Hanke L Matlung
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Molecular Hematology, Sanquin Research, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children's Hospital Amsterdam University Medical Center (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
59
|
Moretta L, Sozzani S. Legends of allergy and immunology: Alberto Mantovani, a visionary scientist unraveling the complexity of innate immunity in cancer and inflammation. Allergy 2023; 78:886-888. [PMID: 36373227 DOI: 10.1111/all.15580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Lorenzo Moretta
- Tumor Immunology, Bambino Gesù Children's Hospital, Rome, Italy
| | - Silvano Sozzani
- Department Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
60
|
Linde IL, Prestwood TR, Qiu J, Pilarowski G, Linde MH, Zhang X, Shen L, Reticker-Flynn NE, Chiu DKC, Sheu LY, Van Deursen S, Tolentino LL, Song WC, Engleman EG. Neutrophil-activating therapy for the treatment of cancer. Cancer Cell 2023; 41:356-372.e10. [PMID: 36706760 PMCID: PMC9968410 DOI: 10.1016/j.ccell.2023.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 11/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Despite their cytotoxic capacity, neutrophils are often co-opted by cancers to promote immunosuppression, tumor growth, and metastasis. Consequently, these cells have received little attention as potential cancer immunotherapeutic agents. Here, we demonstrate in mouse models that neutrophils can be harnessed to induce eradication of tumors and reduce metastatic seeding through the combined actions of tumor necrosis factor, CD40 agonist, and tumor-binding antibody. The same combination activates human neutrophils in vitro, enabling their lysis of human tumor cells. Mechanistically, this therapy induces rapid mobilization and tumor infiltration of neutrophils along with complement activation in tumors. Complement component C5a activates neutrophils to produce leukotriene B4, which stimulates reactive oxygen species production via xanthine oxidase, resulting in oxidative damage and T cell-independent clearance of multiple tumor types. These data establish neutrophils as potent anti-tumor immune mediators and define an inflammatory pathway that can be harnessed to drive neutrophil-mediated eradication of cancer.
Collapse
Affiliation(s)
- Ian L Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tyler R Prestwood
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jingtao Qiu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Genay Pilarowski
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Miles H Linde
- Program in Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiangyue Zhang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lei Shen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Lauren Y Sheu
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Simon Van Deursen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lorna L Tolentino
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edgar G Engleman
- Program in Immunology, Stanford University, Stanford, CA 94305, USA; Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
61
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|
62
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
63
|
Chan L, Wood GA, Wootton SK, Bridle BW, Karimi K. Neutrophils in Dendritic Cell-Based Cancer Vaccination: The Potential Roles of Neutrophil Extracellular Trap Formation. Int J Mol Sci 2023; 24:ijms24020896. [PMID: 36674412 PMCID: PMC9866544 DOI: 10.3390/ijms24020896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Neutrophils have conflicting roles in the context of cancers, where they have been associated with contributing to both anti-tumor and pro-tumor responses. Their functional heterogenicity is plastic and can be manipulated by environmental stimuli, which has fueled an area of research investigating therapeutic strategies targeting neutrophils. Dendritic cell (DC)-based cancer vaccination is an immunotherapy that has exhibited clinical promise but has shown limited clinical efficacy. Enhancing our understanding of the communications occurring during DC cancer vaccination can uncover opportunities for enhancing the DC vaccine platform. There have been observed communications between neutrophils and DCs during natural immune responses. However, their crosstalk has been poorly studied in the context of DC vaccination. Here, we review the dual functionality of neutrophils in the context of cancers, describe the crosstalk between neutrophils and DCs during immune responses, and discuss their implications in DC cancer vaccination. This discussion will focus on how neutrophil extracellular traps can influence immune responses in the tumor microenvironment and what roles they may play in promoting or hindering DC vaccine-induced anti-tumor efficacy.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 54668)
| |
Collapse
|
64
|
Chan L, Mehrani Y, Wood GA, Bridle BW, Karimi K. Dendritic Cell-Based Vaccines Recruit Neutrophils to the Local Draining Lymph Nodes to Prime Natural Killer Cell Responses. Cells 2022; 12:cells12010121. [PMID: 36611923 PMCID: PMC9818417 DOI: 10.3390/cells12010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC)-based cancer vaccines are a form of immunotherapy that activates the innate and adaptive immune systems to combat cancers. Neutrophils contribute to cancer biology and have the potential to be exploited by immunotherapeutic platforms to enhance anti-tumor immune responses. We previously showed that DC vaccines elicit the expansion of mouse interferon (IFN)γ-producing mature natural killer (NK) cells to elevate anti-tumor responses. Here, we demonstrate the rapid recruitment of neutrophils to the draining lymph nodes of DC-vaccinated mice. This was accompanied by an increase in the total number of NK cells producing IFNγ and expressing CD107a, a marker of degranulation that demonstrates NK cell functional activity. Furthermore, the depletion of neutrophils in DC-immunized mice resulted in decreased numbers of NK cells in draining lymph nodes compared to the controls. Interestingly, the increased number of IFNγ- and CD107a-expressing NK cells in DC-immunized mice was not detected in mice depleted of neutrophils. Further investigations showed that DC vaccines induced IFNγ- and TNFα-producing CD8+ T cells that also expressed CD107a, but depletion of neutrophils did not have any impact on the CD8+ T cell population. Our findings suggest that neutrophil-mediated anti-tumor immunity induced by a DC vaccine platform could be targeted to provide innovative strategies to enhance its clinical efficacy.
Collapse
Affiliation(s)
- Lily Chan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Clinical Science, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran
| | - Geoffrey A. Wood
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-(519)-824-4120 (ext. 54668)
| |
Collapse
|
65
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
66
|
Chen S, Zhang Q, Lu L, Xu C, Li J, Zha J, Ma F, Luo HR, Hsu AY. Heterogeneity of neutrophils in cancer: one size does not fit all. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0426. [PMID: 36514901 PMCID: PMC9755961 DOI: 10.20892/j.issn.2095-3941.2022.0426] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils play an essential role in the defense against bacterial infections and orchestrate both the innate and adaptive immune responses. With their abundant numbers, diverse function and short life span, these cells are at the forefront of immune responses, and have gained attention in recent years because of their presence in tumor sites. Neutrophil involvement pertains to tumor cells' ability to construct a suitable tumor microenvironment (TME) that accelerates their own growth and malignancy, by facilitating their interaction with surrounding cells through the circulatory and lymphatic systems, thereby influencing tumor development and progression. Studies have indicated both pro- and anti-tumor properties of infiltrating neutrophils. The TME can exploit neutrophil function, recruitment, and even production, thus resulting in pro-tumor properties of neutrophils, including promotion of genetic instability, tumor cell proliferation, angiogenesis and suppression of anti-tumor or inflammatory response. In contrast, neutrophils can mediate anti-tumor resistance by direct cytotoxicity to the tumor cells or by facilitating anti-tumor functions via crosstalk with T cells. Here, we summarize current knowledge regarding the effects of neutrophil heterogeneity under homeostatic and tumor conditions, including neutrophil phenotype and function, in cancer biology.
Collapse
Affiliation(s)
- Song Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Qingyu Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Lisha Lu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Chunhui Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiajia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Jiali Zha
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Hongbo R. Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Laboratory Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Alan Y. Hsu
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Laboratory Medicine, The Stem Cell Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| |
Collapse
|
67
|
Xue R, Zhang Q, Cao Q, Kong R, Xiang X, Liu H, Feng M, Wang F, Cheng J, Li Z, Zhan Q, Deng M, Zhu J, Zhang Z, Zhang N. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature 2022; 612:141-147. [PMID: 36352227 DOI: 10.1038/s41586-022-05400-x] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022]
Abstract
The heterogeneity of the tumour immune microenvironment (TIME), organized by various immune and stromal cells, is a major contributing factor of tumour metastasis, relapse and drug resistance1-3, but how different TIME subtypes are connected to the clinical relevance in liver cancer remains unclear. Here we performed single-cell RNA-sequencing (scRNA-seq) analysis of 189 samples collected from 124 patients and 8 mice with liver cancer. With more than 1 million cells analysed, we stratified patients into five TIME subtypes, including immune activation, immune suppression mediated by myeloid or stromal cells, immune exclusion and immune residence phenotypes. Different TIME subtypes were spatially organized and associated with chemokine networks and genomic features. Notably, tumour-associated neutrophil (TAN) populations enriched in the myeloid-cell-enriched subtype were associated with an unfavourable prognosis. Through in vitro induction of TANs and ex vivo analyses of patient TANs, we showed that CCL4+ TANs can recruit macrophages and that PD-L1+ TANs can suppress T cell cytotoxicity. Furthermore, scRNA-seq analysis of mouse neutrophil subsets revealed that they are largely conserved with those of humans. In vivo neutrophil depletion in mouse models attenuated tumour progression, confirming the pro-tumour phenotypes of TANs. With this detailed cellular heterogeneity landscape of liver cancer, our study illustrates diverse TIME subtypes, highlights immunosuppressive functions of TANs and sheds light on potential immunotherapies targeting TANs.
Collapse
Affiliation(s)
- Ruidong Xue
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Qiming Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China
| | - Qi Cao
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Ruirui Kong
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Xiao Xiang
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Hengkang Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Mei Feng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Fangyanni Wang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Jinghui Cheng
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Zhao Li
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Qimin Zhan
- International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Mi Deng
- International Cancer Institute, Peking University Health Science Center, Beijing, China
| | - Jiye Zhu
- Beijing Key Surgical Basic Research Laboratory of Liver Cirrhosis and Liver Cancer, Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, China. .,Changping Laboratory, Beijing, China.
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China. .,International Cancer Institute, Peking University Health Science Center, Beijing, China. .,Yunnan Baiyao Group, Kunming, China.
| |
Collapse
|
68
|
Tang Z, Wang Q, Chen P, Guo H, Shi J, Pan Y, Li C, Zhou C. Computational recognition of LncRNA signatures in tumor-associated neutrophils could have implications for immunotherapy and prognostic outcome of non-small cell lung cancer. Front Genet 2022; 13:1002699. [PMID: 36386809 PMCID: PMC9649922 DOI: 10.3389/fgene.2022.1002699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cancer immune function and tumor microenvironment are governed by long noncoding RNAs (lncRNAs). Nevertheless, it has yet to be established whether lncRNAs play a role in tumor-associated neutrophils (TANs). Here, a computing framework based on machine learning was used to identify neutrophil-specific lncRNA with prognostic significance in squamous cell carcinoma and lung adenocarcinoma using univariate Cox regression to comprehensively analyze immune, lncRNA, and clinical characteristics. The risk score was determined using LASSO Cox regression analysis. Meanwhile, we named this risk score as “TANlncSig.” TANlncSig was able to distinguish between better and worse survival outcomes in various patient datasets independently of other clinical variables. Functional assessment of TANlncSig showed it is a marker of myeloid cell infiltration into tumor infiltration and myeloid cells directly or indirectly inhibit the anti-tumor immune response by secreting cytokines, expressing immunosuppressive receptors, and altering metabolic processes. Our findings highlighted the value of TANlncSig in TME as a marker of immune cell infiltration and showed the values of lncRNAs as indicators of immunotherapy.
Collapse
Affiliation(s)
- Zhuoran Tang
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Qi Wang
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Peixin Chen
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Haoyue Guo
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Jinpeng Shi
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Yingying Pan
- Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
| | - Chunyu Li
- Department of Integrated Traditional Chinese and Western Medicine, International Medical School, Tianjin Medical University, Tianjin, China
- *Correspondence: Caicun Zhou, ; Chunyu Li,
| | - Caicun Zhou
- Department of Medical Oncology, Tongji University Affiliated Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University, Shanghai, China
- *Correspondence: Caicun Zhou, ; Chunyu Li,
| |
Collapse
|
69
|
Yao Y, Gu L, Zuo Z, Wang D, Zhou T, Xu X, Yang L, Huang X, Wang L. Necroptosis-related lncRNAs: Combination of bulk and single-cell sequencing reveals immune landscape alteration and a novel prognosis stratification approach in lung adenocarcinoma. Front Oncol 2022; 12:1010976. [PMID: 36605426 PMCID: PMC9808398 DOI: 10.3389/fonc.2022.1010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/26/2022] [Indexed: 01/07/2023] Open
Abstract
Necroptosis, which is recently recognized as a form of programmed cell death, plays a critical role in cancer biology, including tumorigenesis and cancer immunology. It was recognized not only to defend against tumor progression by suppressing adaptive immune responses but also to promote tumorigenesis and cancer metastasis after recruiting inflammatory responses. Thus the crucial role of necrosis in tumorigenesis has attracted increasing attention. Due to the heterogeneity of the tumor immune microenvironment (TIME) in lung adenocarcinoma (LUAD), the prognosis and the response to immunotherapy vary distinctly across patients, underscoring the need for a stratification algorithm for clinical practice. Although previous studies have formulated the crucial role of lncRNAs in tumorigenicity, the relationship between necroptosis-related lncRNAs, TIME, and the prognosis of patients with LUAD was still elusive. In the current study, a robust and novel prognostic stratification model based on Necroptosis-related LncRNA Risk Scoring (NecroLRS) and clinicopathological parameters was constructed and systemically validated in both internal and external validation cohorts. The expression profile of four key lncRNAs was further validated by qRT-PCR in 4 human LUAD cell lines. And a novel immune landscape alteration was observed between NecroLRS-High and -Low patients. To further elucidate the mechanism of necroptosis in the prognosis of LUAD from a single-cell perspective, a novel stratification algorithm based on K-means clustering was introduced to extract both malignant and NecroLRS-High subsets from epithelial cells. And the necroptosis-related immune infiltration landscape and developmental trajectory were investigated respectively. Critically, NecroLRS was found to be positively correlated with neutrophil enrichment, inflammatory immune response, and malignant phenotypes of LUAD. In addition, novel ligand-receptor pairs between NecroLRS-High cells and other immunocytes were investigated and optimal therapeutic compounds were screened to provide potential targets for future studies. Taken together, our findings reveal emerging mechanisms of necroptosis-induced immune microenvironment alteration on the deteriorative prognosis and may contribute to improved prognosis and individualized precision therapy for patients with LUAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lehe Yang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Xiaoying Huang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| | - Liangxing Wang
- *Correspondence: Lehe Yang, ; Xiaoying Huang, ; Liangxing Wang,
| |
Collapse
|
70
|
Aronowitz AL, Ali SR, Glaun MDE, Amit M. Acetylcholine in Carcinogenesis and Targeting Cholinergic Receptors in Oncology. Adv Biol (Weinh) 2022; 6:e2200053. [PMID: 35858206 DOI: 10.1002/adbi.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tumor cells modulate and are modulated by their microenvironments, which include the nervous system. Accumulating evidence links the overexpression and activity of nicotinic and muscarinic cholinergic receptor subtypes to tumorigenesis in breast, ovarian, prostate, gastric, pancreatic, and head and neck cancers. Nicotinic and muscarinic receptors have downstream factors are associated with angiogenesis, cell proliferation and migration, antiapoptotic signaling, and survival. Clinical trials analyzing the efficacy of various therapies targeting cholinergic signaling or downstream pathways of acetylcholine have shed promising light on novel cancer therapeutics. Although the evidence for cholinergic signaling involvement in tumor development is substantial, a more detailed understanding of the acetylcholine-induced mechanisms of tumorigenesis remains to be unlocked. Such an understanding would enable the development of clinical applications ranging from the identification of novel biomarkers to the utilization of existing drugs to modulate cholinergic signaling to the development of novel cancer therapies, as discussed in this review.
Collapse
Affiliation(s)
- Alexandra L Aronowitz
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,McGovern Medical School at UTHealth, Houston, TX, 77555, USA
| | - Shahrukh R Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Medical Branch, Galveston, TX, 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otolaryngology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
71
|
Zheng Z, Xu Y, Shi Y, Shao C. Neutrophils in the tumor microenvironment and their functional modulation by mesenchymal stromal cells. Cell Immunol 2022; 379:104576. [DOI: 10.1016/j.cellimm.2022.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
|
72
|
Zahid KR, Raza U, Tumbath S, Jiang L, Xu W, Huang X. Neutrophils: Musketeers against immunotherapy. Front Oncol 2022; 12:975981. [PMID: 36091114 PMCID: PMC9453237 DOI: 10.3389/fonc.2022.975981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Neutrophils, the most copious leukocytes in human blood, play a critical role in tumorigenesis, cancer progression, and immune suppression. Recently, neutrophils have attracted the attention of researchers, immunologists, and oncologists because of their potential role in orchestrating immune evasion in human diseases including cancer, which has led to a hot debate redefining the contribution of neutrophils in tumor progression and immunity. To make this debate fruitful, this review seeks to provide a recent update about the contribution of neutrophils in immune suppression and tumor progression. Here, we first described the molecular pathways through which neutrophils aid in cancer progression and orchestrate immune suppression/evasion. Later, we summarized the underlying molecular mechanisms of neutrophil-mediated therapy resistance and highlighted various approaches through which neutrophil antagonism may heighten the efficacy of the immune checkpoint blockade therapy. Finally, we have highlighted several unsolved questions and hope that answering these questions will provide a new avenue toward immunotherapy revolution.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Soumya Tumbath
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiang Jiang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Wenjuan Xu
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiumei Huang
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Xiumei Huang,
| |
Collapse
|
73
|
Tumor-polarized GPX3 + AT2 lung epithelial cells promote premetastatic niche formation. Proc Natl Acad Sci U S A 2022; 119:e2201899119. [PMID: 35914155 PMCID: PMC9371733 DOI: 10.1073/pnas.2201899119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cellular and molecular components required for the formation of premetastatic niche (PMN) to promote lung metastasis need to be further investigated. Lung epithelial cells have been reported to exhibit immunomodulatory roles in lung homeostasis and also to mediate immunosuppressive PMN formation in lung metastasis. Here, by single-cell sequencing, we identified a tumor-polarized subpopulation of alveolar type 2 (AT2) epithelial cells with increased expression of glutathione peroxidase 3 (GPX3) and high production of interleukin (IL)-10 in the PMN. IL-10-producing GPX3+ AT2 cells inhibited CD4+ T cell proliferation but enhanced regulatory T cell generation. Mechanistically, tumor exosome-inducing GPX3 expression is required for GPX3+ AT2 cells to preferentially produce IL-10 by stabilizing hypoxia-inducible factor 1 (HIF-1α) and promoting HIF-1α-induced IL-10 production. Accordingly, conditional knockout of GPX3 in AT2 cells suppressed lung metastasis in spontaneous metastatic models. Together, our findings reveal a role of tumor-polarized GPX3+ AT2 cells in promoting lung PMN formation, adding insights into immune evasion in lung metastasis and providing potential targets for the intervention of tumor metastasis.
Collapse
|
74
|
Chang Y, Syahirah R, Wang X, Jin G, Torregrosa-Allen S, Elzey BD, Hummel SN, Wang T, Li C, Lian X, Deng Q, Broxmeyer HE, Bao X. Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy. Cell Rep 2022; 40:111128. [PMID: 35858579 PMCID: PMC9327527 DOI: 10.1016/j.celrep.2022.111128] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 04/07/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Neutrophils, the most abundant white blood cells in circulation, are closely related to cancer development and progression. Healthy primary neutrophils present potent cytotoxicity against various cancer cell lines through direct contact and via generation of reactive oxygen species. However, due to their short half-life and resistance to genetic modification, neutrophils have not yet been engineered with chimeric antigen receptors (CARs) to enhance their antitumor cytotoxicity for targeted immunotherapy. Here, we genetically engineered human pluripotent stem cells with synthetic CARs and differentiated them into functional neutrophils by implementing a chemically defined platform. The resulting CAR neutrophils present superior and specific cytotoxicity against tumor cells both in vitro and in vivo. Collectively, we established a robust platform for massive production of CAR neutrophils, paving the way to myeloid cell-based therapeutic strategies that would boost current cancer-treatment approaches. Neutrophils are important innate immune cells that mediate both protumor and antitumor activities. Chang et al. genetically engineer human pluripotent stem cells to produce chimeric antigen receptor (CAR) neutrophils that display superior antitumor activities and improve survival in an in situ glioblastoma xenograft model.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Xuepeng Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | | | - Bennett D Elzey
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Sydney N Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Can Li
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xiaojun Lian
- Department of Biomedical Engineering, The Huck Institutes of the Life Sciences, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Qing Deng
- Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA.
| |
Collapse
|
75
|
Tumor-associated neutrophils and neutrophil-targeted cancer therapies. Biochim Biophys Acta Rev Cancer 2022; 1877:188762. [PMID: 35853517 DOI: 10.1016/j.bbcan.2022.188762] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/08/2023]
Abstract
Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.
Collapse
|
76
|
Abstract
In Nature, Chou et al. identify a subset of innate-like αβ T cells with high cytotoxic potential that accumulate in tumors and elicit an anti-tumor response. Given their capacity to maintain an activation state without undergoing exhaustion, these innate-like T cells may represent effective therapeutic agents for cell-based approaches.
Collapse
Affiliation(s)
- Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
77
|
Kim GT, Kim EY, Shin SH, Lee H, Lee SH, Sohn KY, Kim JW. Improving anticancer effect of aPD-L1 through lowering neutrophil infiltration by PLAG in tumor implanted with MB49 mouse urothelial carcinoma. BMC Cancer 2022; 22:727. [PMID: 35787261 PMCID: PMC9251917 DOI: 10.1186/s12885-022-09815-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The PD-L1 antibody is an immune checkpoint inhibitor (ICI) attracting attention. The third-generation anticancer drug has been proven to be very effective due to fewer side effects and higher tumor-specific reactions than conventional anticancer drugs. However, as tumors produce additional resistance in the host immune system, the effectiveness of ICI is gradually weakening. Therefore, it is very important to develop a combination therapy that increases the anticancer effect of ICI by removing anticancer resistance factors present around the tumor. METHODS The syngeneic model was used (n = 6) to investigate the enhanced anti-tumor effect of PD-L1 antibody with the addition of PLAG. MB49 murine urothelial cancer cells were implanted into the C57BL/6 mice subcutaneously. PLAG at different dosages (50/100 mpk) was daily administered orally for another 4 weeks with or without 5 mpk PD-L1 antibody (10F.9G2). PD-L1 antibody was delivered via IP injection once a week. RESULTS The aPD-L1 monotherapy group inhibited tumor growth of 56% compared to the positive group, while the PLAG and aPD-L1 co-treatment inhibited by 89%. PLAG treatment effectively reduced neutrophils infiltrating localized in tumor and converted to a tumor microenvironment with anti-tumor effective T-cells. PLAG increased tumor infiltration of CD8 positive cytotoxic T-cell populations while effectively inhibiting the infiltration of neoplastic T-cells such as CD4/FoxP3. Eventually, neutrophil-induced tumor ICI resistance was resolved by restoring the neutrophil-to-lymphocyte ratio to the normal range. In addition, regulation of cytokine and chemokine factors that inhibit neutrophil infiltration and increase the killing activity of cytotoxic T cells was observed in the tumors of mice treated with PLAG + aPD-L1. CONCLUSIONS PLAG effectively turned the tumor-promoting microenvironment into a tumor-suppressing microenvironment. As a molecule that increases the anti-tumor effectiveness of aPD-L1, PLAG has the potential to be an essential and effective ICI co-therapeutic agent.
Collapse
Affiliation(s)
- Guen Tae Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Eun Young Kim
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Su-Hyun Shin
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Hyowon Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Se Hee Lee
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Ki-Young Sohn
- Enzychem Lifesciences, 10F aT Center 27 Gangnam-daero, Seoul, South Korea
| | - Jae Wha Kim
- grid.249967.70000 0004 0636 3099Division of Systems Biology and Bioengineering, Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Kwahak-ro, Daejeon, South Korea
| |
Collapse
|
78
|
Zhou X, Yao L, Zhou X, Cong R, Luan J, Wei X, Zhang X, Song N. Pyroptosis-Related lncRNA Prognostic Model for Renal Cancer Contributes to Immunodiagnosis and Immunotherapy. Front Oncol 2022; 12:837155. [PMID: 35860590 PMCID: PMC9291251 DOI: 10.3389/fonc.2022.837155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
BackgroundRenal clear cell cancer (ccRCC) is one of the most common cancers in humans. Thus, we aimed to construct a risk model to predict the prognosis of ccRCC effectively.MethodsWe downloaded RNA sequencing (RNA-seq) data and clinical information of 539 kidney renal clear cell carcinoma (KIRC) patients and 72 normal humans from The Cancer Genome Atlas (TCGA) database and divided the data into training and testing groups randomly. Pyroptosis-related lncRNAs (PRLs) were obtained through Pearson correlation between pyroptosis genes and all lncRNAs (p < 0.05, coeff > 0.3). Univariate and multivariate Cox regression analyses were then performed to select suitable lncRNAs. Next, a novel signature was constructed and evaluated by survival analysis and ROC analysis. The same observation applies to the testing group to validate the value of the signature. By gene set enrichment analysis (GSEA), we predicted the underlying signaling pathway. Furthermore, we calculated immune cell infiltration, immune checkpoint, the T-cell receptor/B-cell receptor (TCR/BCR), SNV, and Tumor Immune Dysfunction and Exclusion (TIDE) scores in TCGA database. We also validated our model with an immunotherapy cohort. Finally, the expression of PRLs was validated by quantitative PCR (qPCR).ResultsWe constructed a prognostic signature composed of six key lncRNAs (U62317.1, MIR193BHG, LINC02027, AC121338.2, AC005785.1, AC156455.1), which significantly predict different overall survival (OS) rates. The efficiency was demonstrated using the receiver operating characteristic (ROC) curve. The signature was observed to be an independent prognostic factor in cohorts. In addition, we found the PRLs promote the tumor progression via immune-related pathways revealed in GSEA. Furthermore, the TCR, BCR, and SNV data were retrieved to screen immune features, and immune cell scores were calculated to measure the effect of the immune microenvironment on the risk model, indicating that high- and low-risk scores have different immune statuses. The TIDE algorithm was then used to predict the immune checkpoint blockade (ICB) response of our model, and subclass mapping was used to verify our model in another immunotherapy cohort data. Finally, qPCR validates the PRLs in cell lines.ConclusionThis study provided a new risk model to evaluate ccRCC and may be pyroptosis-related therapeutic targets in the clinic.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaochen Luan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Ninghong Song,
| |
Collapse
|
79
|
Chen W, Huang J, Wang W, Wang Y, Chen H, Wang Q, Zhang Y, Liu Q, Yang D. Multi-tissue scRNA-seq reveals immune cell landscape of turbot ( Scophthalmus maximus). FUNDAMENTAL RESEARCH 2022; 2:550-561. [PMID: 38933994 PMCID: PMC11197760 DOI: 10.1016/j.fmre.2021.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 10/19/2022] Open
Abstract
In vertebrates, bony fishes possess not only innate immune cells but also T and B cells that are equivalent to those in mammals. However, the precise sub-cluster of immune cells in teleost fish remains largely unknown. Herein, we developed a dynamic bacterial infection model in turbot (Scophthalmus maximus) and created a fish immune cell landscape (FICL) for a primary lymphoid organ (head kidney), a secondary lymphoid organ (spleen), and barrier tissues (gills and posterior intestine). Moreover, through comprehensive characterization of the expression profiles of 16 clusters, including dendritic cells-like (DCs-like), macrophages (MΦs), neutrophils, NK cells, as well as 12 sub-clusters of T and B cells, we found that CD8+ CTLs, CD4-CD8- T, Th17 and ILC3-2 like cells possess a bifunctional role associated with cytotoxicity and immunoregulation during bacterial infection. To our knowledge, these results could provide a useful resource for a better understanding of immune cells in teleost fish and could act as a comprehensive knowledge base for assessing the evolutionary mechanism of adaptive immunity in vertebrates.
Collapse
Affiliation(s)
- Weijie Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianchang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dahai Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| |
Collapse
|
80
|
Bafor EE, Valencia JC, Young HA. Double Negative T Regulatory Cells: An Emerging Paradigm Shift in Reproductive Immune Tolerance? Front Immunol 2022; 13:886645. [PMID: 35844500 PMCID: PMC9283768 DOI: 10.3389/fimmu.2022.886645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Immune regulation of female reproductive function plays a crucial role in fertility, as alterations in the relationship between immune and reproductive processes result in autoimmune subfertility or infertility. The breakdown of immune tolerance leads to ovulation dysfunction, implantation failure, and pregnancy loss. In this regard, immune cells with regulatory activities are essential to restore self-tolerance. Apart from regulatory T cells, double negative T regulatory cells (DNTregs) characterized by TCRαβ+/γδ+CD3+CD4–CD8– (and negative for natural killer cell markers) are emerging as effector cells capable of mediating immune tolerance in the female reproductive system. DNTregs are present in the female reproductive tract of humans and murine models. However, their full potential as immune regulators is evolving, and studies so far indicate that DNTregs exhibit features that can also maintain tolerance in the female reproductive microenvironment. This review describes recent progress on the presence, role and mechanisms of DNTregs in the female reproductive system immune regulation and tolerance. In addition, we address how DNTregs can potentially provide a paradigm shift from the known roles of conventional regulatory T cells and immune tolerance by maintaining and restoring balance in the reproductive microenvironment of female fertility.
Collapse
Affiliation(s)
- Enitome E Bafor
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Julio C Valencia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Howard A Young
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
81
|
Russo M, Nastasi C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front Oncol 2022; 12:871513. [PMID: 35664746 PMCID: PMC9160747 DOI: 10.3389/fonc.2022.871513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The importance of the tumor microenvironment (TME) in dynamically regulating cancer progression and influencing the therapeutic outcome is widely accepted and appreciated. Several therapeutic strategies to modify or modulate the TME, like angiogenesis or immune checkpoint inhibitors, showed clinical efficacy and received approval from regulatory authorities. Within recent decades, new promising strategies targeting myeloid cells have been implemented in preclinical cancer models. The predominance of specific cell phenotypes in the TME has been attributed to pro- or anti-tumoral. Hence, their modulation can, in turn, alter the responses to standard-of-care treatments, making them more or less effective. Here, we summarize and discuss the current knowledge and the correlated challenges about the tumor-associated macrophages and neutrophils targeting strategies, current treatments, and future developments.
Collapse
Affiliation(s)
- Massimo Russo
- Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, Mario Negri Pharmacological Research Institute (IRCCS), Milan, Italy
| |
Collapse
|
82
|
Kim Y, Kim D, Sung WJ, Hong J. High-Grade Endometrial Stromal Sarcoma: Molecular Alterations and Potential Immunotherapeutic Strategies. Front Immunol 2022; 13:837004. [PMID: 35242139 PMCID: PMC8886164 DOI: 10.3389/fimmu.2022.837004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Endometrial stromal tumor (EST) is an uncommon and unusual mesenchymal tumor of the uterus characterized by multicolored histopathological, immunohistochemical, and molecular features. The morphology of ESTs is similar to normal endometrial stromal cells during the proliferative phase of the menstrual cycle. ESTs were first classified into benign and malignant based on the number of mitotic cells. However, recently WHO has divided ESTs into four categories: endometrial stromal nodules (ESN), undifferentiated uterine sarcoma (UUS), low-grade endometrial stromal sarcoma (LG-ESS), and high-grade endometrial stromal sarcoma (HG-ESS). HG-ESS is the most malignant of these categories, with poor clinical outcomes compared to other types. With advances in molecular biology, ESTs have been further classified with morphological identification. ESTs, including HG-ESS, is a relatively rare type of cancer, and the therapeutics are not being developed compared to other cancers. However, considering the tumor microenvironment of usual stromal cancers, the advance of immunotherapy shows auspicious outcomes reported in many different stromal tumors and non-identified uterine cancers. These studies show the high possibility of successful immunotherapy in HG-ESS patients in the future. In this review, we are discussing the background of ESTs and the BCOR and the development of HG-ESS by mutations of BCOR or other related genes. Among the gene mutations of HG-ESSs, BCOR shows the most common mutations in different ways. In current tumor therapies, immunotherapy is one of the most effective therapeutic approaches. In order to connect immunotherapy with HG-ESS, the understanding of tumor microenvironment (TME) is required. The TME of HG-ESS shows the mixture of tumor cells, vessels, immune cells and non-malignant stromal cells. Macrophages, neutrophils, dendritic cells and natural killer cells lose their expected functions, but rather show pro-tumoral functions by the matricellular proteins, extracellular matrix and other complicated environment in TME. In order to overcome the current therapeutic limitations of HG-ESS, immunotherapies should be considered in addition to the current surgical strategies. Checkpoint inhibitors, cytokine-based immunotherapies, immune cell therapies are good candidates to be considered as they show promising results in other stromal cancers and uterine cancers, while less studied because of the rarity of ESTs. Based on the advance of knowledge of immune therapies in HG-ESS, the new strategies can also be applied to the current therapies and also in other ESTs.
Collapse
Affiliation(s)
- Youngah Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea.,Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea
| |
Collapse
|
83
|
Hashimoto K, Nishimura S, Ito T, Kakinoki R, Akagi M. Immunohistochemical expression and clinicopathological assessment of PD-1, PD-L1, NY-ESO-1, and MAGE-A4 expression in highly aggressive soft tissue sarcomas. Eur J Histochem 2022; 66. [PMID: 35448937 PMCID: PMC9046686 DOI: 10.4081/ejh.2022.3393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/16/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy has altered the treatment paradigm for soft tissue sarcomas (STSs). Considering the limited information regarding the clinical significance of immunohistochemical markers in STS, the purpose of this study was to determine the clinical significance of programmed cell death-1 (PD-1), PD ligand-1(PD-L1), New York esophageal squamous cell carcinoma-1 (NY-ESO-1), and melanoma-associated antigen-A4 (MAGE-A4) expression in STSs. Twenty-two patients (median age, 72.5 years) with STSs treated at our hospital were included in this study. The specimens obtained at the time of biopsy were used to perform immunostaining for PD-1, PD-L1, NY-ESO, and MAGE-A4. The rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells and cases were calculated. The correlations among the positive cell rates of the immunohistochemical markers as well as their correlations with the histological grade, tumor size, or maximum standardized uptake (SUVmax) value were also determined. The average rates of PD-1-, PD-L1-, NY-ESO-, and MAGE-A4-positive cells were 4.39%, 28.0%, 18.2%, and 39.4%, respectively. PD-1-, PD-L1-, NY-ESO-1-, and MAGE-A4- positive cell rates showed weak to strong correlations with the SUVmax value. Thus, PD-1, PD-L1, NY-ESO, and MAGE-A4 expressions might be involved in the aggressive elements of STSs.
Collapse
Affiliation(s)
- Kazuhiko Hashimoto
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Shunji Nishimura
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Tomohiko Ito
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Ryosuke Kakinoki
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| | - Masao Akagi
- Department of Orthopedic Surgery, Kindai University Hospital, Osaka-Sayama City, Osaka.
| |
Collapse
|
84
|
Blocking TGF-β Expression Attenuates Tumor Growth in Lung Cancers, Potentially Mediated by Skewing Development of Neutrophils. JOURNAL OF ONCOLOGY 2022; 2022:3447185. [PMID: 35498537 PMCID: PMC9050332 DOI: 10.1155/2022/3447185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
Abstract
In the tumor microenvironment (TME), cells secrete a cytokine known as transforming growth factor-β (TGF-β), which polarizes tumor-associated neutrophils (TANs) towards a protumor phenotype. In this work, C57BL/6 mice with TGF-β1 gene knocked out selectively in myofibroblasts receive orthotopic implantation of Lewis lung carcinoma (LLC). Then, TANs' differentiation and tumor growth are studied both in vivo and in vitro, to examine the potential effects of TGF-β levels in TME on neutrophil polarization and cancer progression. Possible results are anticipated and discussed from various aspects. Though tumor suppression via inhibition of TGF-β signaling has been widely studied in this field, this study is the first to present a detailed experimental design for evaluating the potential antitumor effects of blocking TGF-β expression. This work provides a creative approach for cancer treatment targeting specific cytokines, and the experimental design presented here may apply to future research on other cytokines, promoting the development of novel cancer-treating strategies.
Collapse
|
85
|
Simoncello F, Piperno GM, Caronni N, Amadio R, Cappelletto A, Canarutto G, Piazza S, Bicciato S, Benvenuti F. CXCL5-mediated accumulation of mature neutrophils in lung cancer tissues impairs the differentiation program of anticancer CD8 T cells and limits the efficacy of checkpoint inhibitors. Oncoimmunology 2022; 11:2059876. [PMID: 35402081 PMCID: PMC8993093 DOI: 10.1080/2162402x.2022.2059876] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lung tumor-infiltrating neutrophils are known to support growth and dissemination of cancer cells and to suppress T cell responses. However, the precise impact of tissue neutrophils on programming and differentiation of anticancer CD8 T cells in vivo remains poorly understood. Here, we identified cancer cell-autonomous secretion of CXCL5 as sufficient to drive infiltration of mature, protumorigenic neutrophils in a mouse model of non-small cell lung cancer (NSCLC). Consistently, CXCL5 transcripts correlate with neutrophil density and poor prognosis in a large human lung adenocarcinoma compendium. CXCL5 genetic deletion, unlike antibody-mediated depletion, completely and selectively prevented neutrophils accumulation in lung tissues. Depletion of tumor-infiltrating neutrophils promoted expansion of tumor-specific CD8 T cells, differentiation into effector cells and acquisition of cytolytic functions. Transfer of effector CD8 T cells into neutrophil-rich tumors, inhibited IFN-ϒ production, indicating active suppression of effector functions. Importantly, blocking neutrophils infiltration in the lung, overcame resistance to checkpoint blockade. Hence, this study demonstrates that neutrophils curb acquisition of cytolytic functions in lung tumor tissues and suggests targeting of CXCL5 as a strategy to restore anti-tumoral T cell functions.
Collapse
Affiliation(s)
- Francesca Simoncello
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Ambra Cappelletto
- School of Cardiovascular Sciences, King’s College London, James Black Centre, London
| | - Giulia Canarutto
- Computational Biology, International Centre for Genetic Engineering and Biotechnology. ICGEB, Trieste, Italy
| | - Silvano Piazza
- Computational Biology, International Centre for Genetic Engineering and Biotechnology. ICGEB, Trieste, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| |
Collapse
|
86
|
Velikkakam T, Gollob KJ, Dutra WO. Double-negative T cells: Setting the stage for disease control or progression. Immunology 2022; 165:371-385. [PMID: 34939192 PMCID: PMC10626195 DOI: 10.1111/imm.13441] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Double-negative (DN) T cells are present at relatively low frequencies in human peripheral blood, and are characterized as expressing the alpha-beta or gamma-delta T-cell receptor (TCR), but not the CD4 nor the CD8 co-receptors. Despite their low frequencies, these cells are potent producers of cytokines and, thus, are key orchestrators of immune responses. DN T cells were initially associated with induction of peripheral immunological tolerance and immunomodulatory activities related to disease prevention. However, other studies demonstrated that these cells can also display effector functions associated with pathology development. This apparent contradiction highlighted the heterogeneity of the DN T-cell population. Here, we review phenotypic and functional characteristics of DN T cells, emphasizing their role in human diseases. The need for developing biomarkers to facilitate the translation of studies from animal models to humans will also be discussed. Finally, we will examine DN T cells as promising therapeutic targets to prevent or inhibit human disease development.
Collapse
Affiliation(s)
- Teresiama Velikkakam
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kenneth J. Gollob
- Hospital Israelita Albert Einsten, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| | - Walderez Ornelas Dutra
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Pós-graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais – INCT-DT, Belo Horizonte, Brazil
| |
Collapse
|
87
|
Vasileiou PVS, Siasos G, Gorgoulis VG. Molecular biomarkers in cardio-oncology: Where we stand and where we are heading. Bioessays 2022; 44:e2100234. [PMID: 35352831 DOI: 10.1002/bies.202100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/08/2022]
Abstract
Until recently, cardiotoxicity in the setting of a malignant disease was attributed solely to the detrimental effects of chemo- and/or radio-therapy to the heart. On this account, the focus was on the evaluation of well-established cardiac biomarkers for the early detection of myocardial damage. Currently, this view has been revised. Cardiotoxicity is not restricted to a single organ but instead affects the endothelium as a whole. Indeed, it has come into light that not only cancer therapy but also malignant cells per se can impair the cardiovascular system, through a paracrine and endocrine mode of action. Even more intriguingly, a clear interplay between molecular pathways involved in cancer and cardiovascular disease has become prevalent, suggesting a common nominator that governs the pathophysiology of these two entities. Taken together, our strategy in the quest of novel biomarkers in the emerging field of cardio-oncology should be critically reshaped.
Collapse
Affiliation(s)
- Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Siasos
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.,Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| |
Collapse
|
88
|
Chen X, Wang D, Zhu X. Application of double-negative T cells in haematological malignancies: recent progress and future directions. Biomark Res 2022; 10:11. [PMID: 35287737 PMCID: PMC8919567 DOI: 10.1186/s40364-022-00360-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Haematologic malignancies account for a large proportion of cancers worldwide. The high occurrence and mortality of haematologic malignancies create a heavy social burden. Allogeneic haematopoietic stem cell transplantation is widely used in the treatment of haematologic malignancies. However, graft-versus-host disease and relapse after allogeneic haematopoietic stem cell transplantation are inevitable. An emerging treatment method, adoptive cellular therapy, has been effectively used in the treatment of haematologic malignancies. T cells, natural killer (NK) cells and tumour-infiltrating lymphocytes (TILs) all have great potential in therapeutic applications, and chimeric antigen receptor T (CAR-T) cell therapy especially has potential, but cytokine release syndrome and off-target effects are common. Efficient anticancer measures are urgently needed. In recent years, double-negative T cells (CD3+CD4-CD8-) have been found to have great potential in preventing allograft/xenograft rejection and inhibiting graft-versus-host disease. They also have substantial ability to kill various cell lines derived from haematologic malignancies in an MHC-unrestricted manner. In addition, healthy donor expanded double-negative T cells retain their antitumour abilities and ability to inhibit graft-versus-host disease after cryopreservation under good manufacturing practice (GMP) conditions, indicating that double-negative T cells may be able to be used as an off-the-shelf product. In this review, we shed light on the potential therapeutic ability of double-negative T cells in treating haematologic malignancies. We hope to exploit these cells as a novel therapy for haematologic malignancies.
Collapse
Affiliation(s)
- Xingchi Chen
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Dongyao Wang
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China
| | - Xiaoyu Zhu
- Department of hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China. .,Anhui Provincial Key Laboratory of Blood Research and Applications, Hefei, 230001, Anhui, China.
| |
Collapse
|
89
|
Lecot P, Ardin M, Dussurgey S, Alcazer V, Moudombi L, Pereira Abrantes M, Hubert M, Swalduz A, Hernandez‐Vargas H, Viari A, Caux C, Michallet M. Gene signature of circulating platelet‐bound neutrophils is associated with poor prognosis in cancer patients. Int J Cancer 2022; 151:138-152. [PMID: 35253899 PMCID: PMC9311065 DOI: 10.1002/ijc.33991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 11/15/2022]
Abstract
Beyond their critical role in hemostasis, platelets physically interact with neutrophils to form neutrophil‐platelet aggregates (NPAs), enhancing neutrophil effector functions during inflammation. NPAs may also promote disease worsening in various inflammatory diseases. However, characterization of NPAs in cancer remains totally unexplored. Using ImageStreamX (ISX) imaging flow cytometer, we were not only allowed able to detect CD15+ CD14− CD36+ ITGA2B+ NPAs in both healthy donors' (HDs) and cancer patients' bloods, but we also showed that NPAs result from the binding of platelets preferentially to low‐density neutrophils (LDNs) as opposed to normal‐density neutrophils (NDNs). By reanalyzing two independent public scRNAseq data of whole blood leukocytes from cancer patients and HDs, we could identify a subset of neutrophils with high platelet gene expression that may correspond to NPAs. Moreover, we showed that cancer patients' derived NPAs possessed a distinct molecular signature compared to the other neutrophil subsets, independently of platelet genes. Gene ontology (GO) term enrichment analysis of this NPAs‐associated neutrophil transcriptomic signature revealed a significant enrichment of neutrophil degranulation, chemotaxis and trans‐endothelial migration GO terms. Lastly, using The Cancer Genome Atlas (TCGA), we could show by multivariate Cox analysis that the NPAs‐associated neutrophil transcriptomic signature was associated with a worse patient prognosis in several cancer types. These results suggest that neutrophils from NPAs are systemically primed by platelets empowering them with cancer progression capacities once at tumor site. NPAs may therefore hold clinical utility as novel noninvasive blood prognostic biomarker in cancer patients with solid tumors.
Collapse
Affiliation(s)
- Pacôme Lecot
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Maude Ardin
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Sébastien Dussurgey
- Université de Lyon, SFR Biosciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL ‐ 50 Avenue Tony Garnier Lyon France
| | - Vincent Alcazer
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Lyvia Moudombi
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Manuela Pereira Abrantes
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Margaux Hubert
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Aurélie Swalduz
- Department of Lung and Thoracic Medical Oncology Centre Léon Bérard Lyon France
| | - Hector Hernandez‐Vargas
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Alain Viari
- Synergie Lyon Cancer, Plateforme de Bio‐informatique ‘Gilles Thomas’ Lyon France
| | - Christophe Caux
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| | - Marie‐Cécile Michallet
- TERI (Tumor Escape, Resistance and Immunity) Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286 Lyon France
| |
Collapse
|
90
|
Abstract
Neutrophils are the most abundant myeloid cells in human blood and are emerging as important regulators of cancer. However, their functional importance has often been overlooked on the basis that they are short-lived, terminally differentiated and non-proliferative. Recent studies of their prominent roles in cancer have led to a paradigm shift in our appreciation of neutrophil functional diversity. This Review describes how neutrophil diversification, which in some contexts can lead to opposing functions, is generated within the tumour microenvironment as well as systemically. We compare neutrophil heterogeneity in cancer and in other pathophysiological contexts to provide an updated overview of our current knowledge of the functions of neutrophils in cancer.
Collapse
|
91
|
Abstract
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
92
|
Tumour cell apoptosis modulates the colorectal cancer immune microenvironment via interleukin-8-dependent neutrophil recruitment. Cell Death Dis 2022; 13:113. [PMID: 35121727 PMCID: PMC8816934 DOI: 10.1038/s41419-022-04585-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Sporadic apoptosis of tumour cells is a commonly observed feature of colorectal cancer (CRC) and strongly correlates with adverse patient prognosis. The uptake of apoptotic cell debris by neutrophils induces a non-inflammatory, pro-regenerative, and hence potentially pro-tumorigenic phenotype. In this study, we therefore sought to investigate the impact of apoptotic CRC cells on neutrophils and its consequence on other immune cells of the tumour microenvironment. Apoptosis induced by combined TNFα-treatment and UV-C irradiation, as well as various chemotherapeutic agents, led to a substantial release of neutrophil-attracting chemokines, most importantly interleukin-8 (IL-8), in both primary patient-derived and established CRC cells. Accordingly, conditioned media of apoptotic tumour cells selectively stimulated chemotaxis of neutrophils, but not T cells or monocytes. Notably, caspase-inhibition partially reduced IL-8 secretion, suggesting that caspase activity might be required for apoptosis-induced IL-8 release. Moreover, apoptotic tumour cell-conditioned media considerably prolonged neutrophil lifespan and induced an activated CD66bhighCD11bhighCD62Llow phenotype, comparable to that of tumour-associated neutrophils in CRC patients, as assessed by flow cytometry of dissociated CRC tissues. Immunohistochemical analyses of 35 CRC patients further revealed a preferential accumulation of neutrophils at sites of apoptotic tumour cells defined by the expression of epithelial cell-specific caspase-cleaved cytokeratin-18. The same areas were also highly infiltrated by macrophages, while T cells were virtually absent. Notably, neutrophils induced an M2-like CD86lowCD163+CD206+ phenotype in co-cultured monocyte-derived macrophages and suppressed LPS-induced pro-inflammatory cytokine release. In an in vitro transwell model, IL-8 blockade efficiently prevented neutrophil-induced anti-inflammatory macrophage polarisation by inhibiting neutrophil migration towards IL-8 gradients generated by apoptotic CRC cells. To conclude, our data suggest that apoptotic cancer cells release chemotactic factors that attract neutrophils into the tumour, where their interaction with neighbouring macrophages might promote an immunologically unfavourable tumour microenvironment. This effect may contribute to tumour recurrence after chemotherapy-induced apoptosis.
Collapse
|
93
|
Chemokines as Regulators of Neutrophils: Focus on Tumors, Therapeutic Targeting, and Immunotherapy. Cancers (Basel) 2022; 14:cancers14030680. [PMID: 35158948 PMCID: PMC8833344 DOI: 10.3390/cancers14030680] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Neutrophils are the main leukocyte subset present in human blood and play a fundamental role in the defense against infections. Neutrophils are also an important component of the tumor stroma because they are recruited by selected chemokines produced by both cancer cells and other cells of the stroma. Even if their presence has been mostly associated with a bad prognosis, tumor-associated neutrophils are present in different maturation and activation states and can exert both protumor and antitumor activities. In addition, it is now emerging that chemokines not only induce neutrophil directional migration but also have an important role in their activation and maturation. For these reasons, chemokines and chemokine receptors are now considered targets to improve the antitumoral function of neutrophils in cancer immunotherapy. Abstract Neutrophils are an important component of the tumor microenvironment, and their infiltration has been associated with a poor prognosis for most human tumors. However, neutrophils have been shown to be endowed with both protumor and antitumor activities, reflecting their heterogeneity and plasticity in cancer. A growing body of studies has demonstrated that chemokines and chemokine receptors, which are fundamental regulators of neutrophils trafficking, can affect neutrophil maturation and effector functions. Here, we review human and mouse data suggesting that targeting chemokines or chemokine receptors can modulate neutrophil activity and improve their antitumor properties and the efficiency of immunotherapy.
Collapse
|
94
|
Abstract
For the past decade, the role and importance of neutrophils in cancer is being increasingly appreciated. Research has focused on the ability of cancer-related neutrophils to either support tumor growth or interfere with it, showing diverse mechanisms through which the effects of neutrophils take place. In contrast to the historic view of neutrophils as terminally differentiated cells, mounting evidence has demonstrated that neutrophils are a plastic and diverse population of cells. These dynamic and plastic abilities allow them to perform varied and sometimes opposite functions simultaneously. In this review, we summarize and detail clinical and experimental evidence for, and underlying mechanisms of, the dual impact of neutrophils' functions, both supporting and inhibiting cancer development. We first discuss the effects of various basic functions of neutrophils, namely direct cytotoxicity, secretion of reactive oxygen species (ROS), nitric oxide (NO) and proteases, NETosis, autophagy and modulation of other immune cells, on tumor growth and metastatic progression. We then describe the clinical evidence for pro- vs anti-tumor functions of neutrophils in human cancer. We believe and show that the "net" impact of neutrophils in cancer is the sum of a complex balance between contradicting effects which occur simultaneously.
Collapse
|
95
|
Abstract
Studies involving neutrophils are steadily increasing, thus creating a need for more optimized and thorough protocols for studying neutrophil function. Here, we present our protocol for extracting mouse bone marrow neutrophils, estimating the purity of isolated neutrophils, and assessing their ability to induce NETosis upon an external cue. We test two isolation protocols that can be used to attain neutrophils to assess NETosis induction. This approach allows for the parallel assessment of NETosis induction in cohorts larger than 10 samples. For complete details on the use and execution of this protocol, please refer to Lu et al., 2021.
Collapse
Affiliation(s)
- Cassandra J. McGill
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan J. Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA
- USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
96
|
Duits DEM, de Visser KE. Impact of cancer cell-intrinsic features on neutrophil behavior. Semin Immunol 2021; 57:101546. [PMID: 34887163 DOI: 10.1016/j.smim.2021.101546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022]
Abstract
Neutrophils are multifaceted innate immune cells that play a significant role in the progression of cancer by exerting both pro- and anti-tumorigenic functions. The crosstalk between cancer cells and neutrophils is complex and emerging evidence is pointing at cancer cell-intrinsic programs regulating neutrophil abundance, phenotype and function. Cancer cell-derived soluble mediators are key players in modulating the interaction with neutrophils. Here, we review how intrinsic features of cancer cells, including cancer cell genetics, epigenetics, signaling, and metabolism, manipulate neutrophil behavior and how to target these processes to impact cancer progression. A molecular understanding of cancer cell-intrinsic properties that shape the crosstalk with neutrophils will provide novel therapeutic strategies for personalized immunomodulation in cancer patients.
Collapse
Affiliation(s)
- Danique E M Duits
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
97
|
Siwicki M, Pittet MJ. Versatile neutrophil functions in cancer. Semin Immunol 2021; 57:101538. [PMID: 34876331 DOI: 10.1016/j.smim.2021.101538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
Neutrophils have historically been considered a singular, terminally-differentiated cell population, replete with pre-formed granules, poised to react quickly, aggressively, and somewhat non-specifically in the face of a microbial challenge or tissue injury. However, in recent years, neutrophil biologists have started revisiting this simplistic conception. Many studies have identified complexities in neutrophil biology, and these findings have led the field to redefine neutrophil heterogeneity from multiple angles including their development and maturation, their tissue location, and their ability to respond to various (pathological) stimuli. In this review, we discuss the importance of this reassessment within the context of cancer. Experimental evidence supports that neutrophil behavior is diverse, context-dependent, and manipulable; cutting-edge technologies have enabled the identification of neutrophil heterogeneity with high resolution and in an unbiased manner, revealing what may be critical underpinnings of these diverse behaviors, and enabling sophisticated computational assessments of specific programs and interactions. We are coming ever closer to delineating a holistic picture of neutrophil heterogeneity and how it may interplay with cancer stage, tumor microenvironment, and therapy. All of this together paints a promising picture when considering how clinical practice may harness the heterogeneity of these cells, for biomarkers or therapeutic approaches, leveraging what we are learning about these powerful and plentiful immune effectors.
Collapse
Affiliation(s)
- Marie Siwicki
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard, USA.
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard, USA; Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne Branch, Switzerland; AGORA Cancer Research Center, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne and Geneva, Switzerland; Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Center for Translational Research in Onco-Hematology, University of Geneva, Switzerland.
| |
Collapse
|
98
|
Du Y, Khera T, Strunz B, Deterding K, Todt D, Woller N, Engelskircher SA, Hardtke S, Port K, Ponzetta A, Steinmann E, Cornberg M, Hengst J, Björkström NK, Wedemeyer H. Imprint of unconventional T-cell response in acute hepatitis C persists despite successful early antiviral treatment. Eur J Immunol 2021; 52:472-483. [PMID: 34843107 DOI: 10.1002/eji.202149457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022]
Abstract
Unconventional T cells (UTCs) are a heterogeneous group of T cells that typically exhibit rapid responses toward specific antigens from pathogens. Chronic hepatitis C virus (HCV) infection causes dysfunction of several subsets of UTCs. This altered phenotype and function of UTCs can persist over time even after direct-acting antiviral (DAA)-mediated clearance of chronic HCV. However, it is less clear if and how UTCs respond in acute, symptomatic HCV infection, a rare clinical condition, and if rapid DAA treatment of such patients reverses the caused perturbations within UTCs. Here, we comprehensively analyzed the phenotype and reinvigoration capacity of three major UTC populations, mucosal-associated invariant T (MAIT) cells, γδ T cells, and CD4 and CD8 double-negative αβ T cells (DNT cells) before, during, and after DAA-mediated clearance of acute symptomatic HCV infection. Furthermore, MAIT cell functionality was systematically studied. We observed a reduced frequency of MAIT cells. However, remaining cells presented with a near-to-normal phenotype in acute infection, which contrasted with a significant dysfunction upon stimulation that was not restored after viral clearance. Notably, DNT and γδ T cells displayed a strong activation ex-vivo in acute HCV infection, which subsequently normalized during the treatment. In addition, DNT cell activation was specifically associated with liver inflammation and inflammatory cytokines. Altogether, these data provide evidence that UTCs respond in a cell type-specific manner during symptomatic HCV infection. However, even if early treatment is initiated, long-lasting imprints within UTCs remain over time.
Collapse
Affiliation(s)
- Yanqin Du
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tanvi Khera
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Deterding
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Sophie Anna Engelskircher
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Svenja Hardtke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | - Kerstin Port
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andrea Ponzetta
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany.,Center for Individualized Infection Medicine (CIIM), Hannover, Germany.,Twincore, Centre for Experimental and Clinical Infection Research, Hannover, Germany.,Cluster of Excellence Resolving Infection Susceptibility (RESIST: EXC), Hannover Medical School, Hannover, Germany
| | - Julia Hengst
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Heiner Wedemeyer
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), HepNet Study-House, Hannover, Germany
| | -
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
99
|
De Ponte Conti B, Miluzio A, Grassi F, Abrignani S, Biffo S, Ricciardi S. mTOR-dependent translation drives tumor infiltrating CD8 + effector and CD4 + Treg cells expansion. eLife 2021; 10:69015. [PMID: 34787568 PMCID: PMC8598161 DOI: 10.7554/elife.69015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 11/06/2021] [Indexed: 12/03/2022] Open
Abstract
We performed a systematic analysis of the translation rate of tumor-infiltrating lymphocytes (TILs) and the microenvironment inputs affecting it, both in humans and in mice. Measurement of puromycin incorporation, a proxy of protein synthesis, revealed an increase of translating CD4+ and CD8+ cells in tumors, compared to normal tissues. High translation levels are associated with phospho-S6 labeling downstream of mTORC1 activation, whereas low levels correlate with hypoxic areas, in agreement with data showing that T cell receptor stimulation and hypoxia act as translation stimulators and inhibitors, respectively. Additional analyses revealed the specific phenotype of translating TILs. CD8+ translating cells have enriched expression of IFN-γ and CD-39, and reduced SLAMF6, pointing to a cytotoxic phenotype. CD4+ translating cells are mostly regulatory T cells (Tregs) with enriched levels of CTLA-4 and Ki67, suggesting an expanding immunosuppressive phenotype. In conclusion, the majority of translationally active TILs is represented by cytotoxic CD8+ and suppressive CD4+ Tregs, implying that other subsets may be largely composed by inactive bystanders.
Collapse
Affiliation(s)
- Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland
| | - Annarita Miluzio
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana (USI), Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, Universita` degli Studi di Milano, Milan, Italy
| | - Sergio Abrignani
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Bioscience Department, Università degli Studi di Milano, Milan, Italy
| | - Sara Ricciardi
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy.,Bioscience Department, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
100
|
Mouchemore KA, Anderson RL. Immunomodulatory effects of G-CSF in cancer: Therapeutic implications. Semin Immunol 2021; 54:101512. [PMID: 34763974 DOI: 10.1016/j.smim.2021.101512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Numerous preclinical studies have reported a pro-tumour role for granulocyte colony-stimulating factor (G-CSF) that is predominantly mediated by neutrophils and MDSCs, the major G-CSF receptor expressing populations. In the presence of G-CSF (either tumour-derived or exogenous) these myeloid populations commonly exhibit a T cell suppressive phenotype. However, the direct effects of this cytokine on other immune lineages, such as T and NK cells, are not as well established. Herein we discuss the most recent data relating to the effect of G-CSF on the major immune populations, exclusively in the context of cancer. Recent publications have drawn attention to the other tumour-promoting effects of G-CSF on myeloid cells, including NETosis, promotion of cancer stemness and skewed differentiation of bone marrow progenitors towards myelopoiesis. Although G-CSF is safely and commonly used as a supportive therapy to prevent or treat chemotherapy-associated neutropenia in cancer patients, we also discuss the potential impacts of G-CSF on other anti-cancer treatments. Importantly, considerations for immune checkpoint blockade are highlighted, as many publications report a T cell suppressive effect of G-CSF that may diminish the effectiveness of this immunotherapy.
Collapse
Affiliation(s)
- Kellie A Mouchemore
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|