51
|
Li D, Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 2020; 219:e202001108. [PMID: 32330234 PMCID: PMC7265316 DOI: 10.1083/jcb.202001108] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Translation control is critical to regulate protein expression. By directly adjusting protein levels, cells can quickly respond to dynamic transitions during stem cell differentiation and embryonic development. Ribosomes are multisubunit cellular assemblies that mediate translation. Previously seen as invariant machines with the same composition of components in all conditions, recent studies indicate that ribosomes are heterogeneous and that different ribosome types can preferentially translate specific subsets of mRNAs. Such heterogeneity and specialized translation functions are very important in stem cells and development, as they allow cells to quickly respond to stimuli through direct changes of protein abundance. In this review, we discuss ribosome heterogeneity that arises from multiple features of rRNAs, including rRNA variants and rRNA modifications, and ribosomal proteins, including their stoichiometry, compositions, paralogues, and posttranslational modifications. We also discuss alterations of ribosome-associated proteins (RAPs), with a particular focus on their consequent specialized translational control in stem cells and development.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
52
|
Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020; 10:biom10050783. [PMID: 32443616 PMCID: PMC7277114 DOI: 10.3390/biom10050783] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
Collapse
Affiliation(s)
- Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-358-4280
| |
Collapse
|
53
|
Janin M, Coll-SanMartin L, Esteller M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol Cancer 2020; 19:70. [PMID: 32241281 PMCID: PMC7114786 DOI: 10.1186/s12943-020-01192-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic and epigenetic changes deregulate RNA and protein expression in cancer cells. In this regard, tumors exhibit an abnormal proteome in comparison to the corresponding normal tissues. Translation control is a crucial step in the regulation of gene expression regulation under normal and pathological conditions that ultimately determines cellular fate. In this context, evidence shows that transfer and ribosomal RNA (tRNA and rRNA) modifications affect the efficacy and fidelity of translation. The number of RNA modifications increases with the complexity of organisms, suggesting an evolutionary diversification of the possibilities for fine-tuning the functions of coding and non-coding RNAs. In this review, we focus on alterations of modifications of transfer and ribosomal RNA that affect translation in human cancer. This variation in the RNA modification status can be the result of altered modifier expression (writers, readers or erasers), but also due to components of the machineries (C/D or H/ACA boxes) or alterations of proteins involved in modifier expression. Broadening our understanding of the mechanisms by which site-specific modifications modulate ribosome activity in the context of tumorigenesis will enable us to enrich our knowledge about how ribosomes can influence cell fate and form the basis of new therapeutic opportunities.
Collapse
Affiliation(s)
- Maxime Janin
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Laia Coll-SanMartin
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
54
|
Chua BA, Van Der Werf I, Jamieson C, Signer RAJ. Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell 2020; 26:138-159. [PMID: 32032524 PMCID: PMC7158223 DOI: 10.1016/j.stem.2020.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular identity is not driven by differences in genomic content but rather by epigenomic, transcriptomic, and proteomic heterogeneity. Although regulation of the epigenome plays a key role in shaping stem cell hierarchies, differential expression of transcripts only partially explains protein abundance. The epitranscriptome, translational control, and protein degradation have emerged as fundamental regulators of proteome complexity that regulate stem cell identity and function. Here, we discuss how post-transcriptional mechanisms enable stem cell homeostasis and responsiveness to developmental cues and environmental stressors by rapidly shaping the content of their proteome and how these processes are disrupted in pre-malignant and malignant states.
Collapse
Affiliation(s)
- Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
| | - Inge Van Der Werf
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA; Sanford Stem Cell Clinical Center, La Jolla, CA 92037, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA; Sanford Stem Cell Clinical Center, La Jolla, CA 92037, USA.
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA.
| |
Collapse
|
55
|
Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, Hatai H, Miyoshi N, Nakagawa T, Fukushima R, Miura N. Aberrantly expressed snoRNA, snRNA, piRNA and tRFs in canine melanoma. Vet Comp Oncol 2019; 18:353-361. [PMID: 31769925 DOI: 10.1111/vco.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022]
Abstract
Among small non-coding RNAs (sncRNAs/sRNAs), the functional regulation of microRNAs (miRNAs) has been studied in canine oral melanoma (COM). However, the expression level of other sncRNAs, like small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), transfer RNA-derived fragments (tRFs) and PIWI-interacting RNAs (piRNAs), in COM is unknown. The aim of this study was to investigate sncRNAs other than miRNAs in COM from our small RNA sequencing project (PRJNA516252). We found that several snRNAs and piRNAs were upregulated, whereas tRFs and snoRNAs were downregulated in COM. Upregulation of U1 snRNA and piR-972, and downregulation of tRNA-ser (1) and snoRA24 was confirmed in dog melanoma tissue and cell lines by quantitative reverse transcription PCR. Consistently, the expression of tRNA-ser (1) and snoRA24 in plasma of COM cases was also decreased. Finally, we found a similar expression trend of U1 and snoRA24 in the human cutaneous melanoma cell line, MEWO, compared with human epidermal melanocyte cells (HEMa-Lp). In our study, snRNA, snoRNA, tRFs and piRNA were dysregulated during melanoma progression. Moreover, the melanoma-associated expression of U1 and snoRA24 was similar in human and dog melanoma.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Hui-Wen Chen
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuiko Tanaka
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima, Japan
| | - Hitoshi Hatai
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuji Fukushima
- Animal Medical Centre, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.,The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
56
|
MacNeil DE, Lambert-Lanteigne P, Autexier C. N-terminal residues of human dyskerin are required for interactions with telomerase RNA that prevent RNA degradation. Nucleic Acids Res 2019; 47:5368-5380. [PMID: 30931479 PMCID: PMC6547437 DOI: 10.1093/nar/gkz233] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
The telomerase holoenzyme responsible for maintaining telomeres in vertebrates requires many components in vivo, including dyskerin. Dyskerin binds and regulates the accumulation of the human telomerase RNA, hTR, as well as other non-coding RNAs that share the conserved H/ACA box motif. The precise mechanism by which dyskerin controls hTR levels is unknown, but is evidenced by defective hTR accumulation caused by substitutions in dyskerin, that are observed in the X-linked telomere biology disorder dyskeratosis congenita (X-DC). To understand the role of dyskerin in hTR accumulation, we analyzed X-DC substitutions K39E and K43E in the poorly characterized dyskerin N-terminus, and A353V within the canonical RNA binding domain (the PUA). These variants exhibited impaired binding to hTR and polyadenylated hTR species, while interactions with other H/ACA RNAs appear largely unperturbed by the N-terminal substitutions. hTR accumulation and telomerase activity defects of dyskerin-deficient cells were rescued by wildtype dyskerin but not the variants. hTR 3′ extended or polyadenylated species did not accumulate, suggesting hTR precursor degradation occurs upstream of mature complex assembly in the absence of dyskerin binding. Our findings demonstrate that the dyskerin-hTR interaction mediated by PUA and N-terminal residues of dyskerin is crucial to prevent unchecked hTR degradation.
Collapse
Affiliation(s)
- Deanna E MacNeil
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Patrick Lambert-Lanteigne
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada
| | - Chantal Autexier
- Jewish General Hospital of McGill University, Lady Davis Institute, Montreal, Quebec H3T 1E2, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| |
Collapse
|
57
|
Gatsiou A, Stellos K. Dawn of Epitranscriptomic Medicine. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e001927. [PMID: 30354331 DOI: 10.1161/circgen.118.001927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Medicine is at the crossroads of expanding disciplines. Prompt adaptation of medicine to each rapidly advancing research field, bridging bench to bedside, is a key step toward health improvement. Cardiovascular disease still ranks first among the mortality causes in the Western world, indicating a poor adaptation rate of cardiovascular medicine, albeit the gigantic scientific breakthroughs of this century. This urges the cardiovascular research field to explore novel concepts with promising prognostic and therapeutic potential. This review attempts to introduce the newly emerging field of epitranscriptome (or else known as RNA epigenetics) to cardiovascular researchers and clinicians summarizing its applications on health and disease. The traditionally perceived, intermediate carrier of genetic information or as contemporary revised as, occasionally, even the final product of gene expression, RNA, is dynamically subjected to >140 different kinds of chemical modifications determining its fate, which may profoundly impact the cellular responses and thus both health and disease course. Which are the most prevalent types of these RNA modifications, how are they catalyzed, how are they regulated, which role may they play in health and disease, and which are the implications for the cardiovascular medicine are few important questions that are discussed in the present review.
Collapse
Affiliation(s)
- Aikaterini Gatsiou
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.)
| | - Konstantinos Stellos
- Institute of Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany (A.G., K.S.).,Department of Cardiology, Center of Internal Medicine, Goethe University Frankfurt, Germany (A.G., K.S.).,German Center of Cardiovascular Research, Rhein-Main Partner Site, Frankfurt (A.G., K.S.).,Cardiovascular Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom (K.S.).,Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals National Health System Foundation Trust, United Kingdom (K.S.)
| |
Collapse
|
58
|
McMahon M, Contreras A, Holm M, Uechi T, Forester CM, Pang X, Jackson C, Calvert ME, Chen B, Quigley DA, Luk JM, Kelley RK, Gordan JD, Gill RM, Blanchard SC, Ruggero D. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. eLife 2019; 8:48847. [PMID: 31478838 PMCID: PMC6776443 DOI: 10.7554/elife.48847] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/02/2019] [Indexed: 12/19/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a diverse group of non-coding RNAs that direct chemical modifications at specific residues on other RNA molecules, primarily on ribosomal RNA (rRNA). SnoRNAs are altered in several cancers; however, their role in cell homeostasis as well as in cellular transformation remains poorly explored. Here, we show that specific subsets of snoRNAs are differentially regulated during the earliest cellular response to oncogenic RASG12V expression. We describe a novel function for one H/ACA snoRNA, SNORA24, which guides two pseudouridine modifications within the small ribosomal subunit, in RAS-induced senescence in vivo. We find that in mouse models, loss of Snora24 cooperates with RASG12V to promote the development of liver cancer that closely resembles human steatohepatitic hepatocellular carcinoma (HCC). From a clinical perspective, we further show that human HCCs with low SNORA24 expression display increased lipid content and are associated with poor patient survival. We next asked whether ribosomes lacking SNORA24-guided pseudouridine modifications on 18S rRNA have alterations in their biophysical properties. Single-molecule Fluorescence Resonance Energy Transfer (FRET) analyses revealed that these ribosomes exhibit perturbations in aminoacyl-transfer RNA (aa-tRNA) selection and altered pre-translocation ribosome complex dynamics. Furthermore, we find that HCC cells lacking SNORA24-guided pseudouridine modifications have increased translational miscoding and stop codon readthrough frequencies. These findings highlight a role for specific snoRNAs in safeguarding against oncogenic insult and demonstrate a functional link between H/ACA snoRNAs regulated by RAS and the biophysical properties of ribosomes in cancer.
Collapse
Affiliation(s)
- Mary McMahon
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Adrian Contreras
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Mikael Holm
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Tamayo Uechi
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Craig M Forester
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States.,Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation, University of California, San Francisco, San Francisco, United States
| | - Xiaming Pang
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States
| | - Cody Jackson
- Gladstone Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United States
| | - Meredith E Calvert
- Gladstone Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United States
| | - Bin Chen
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, United States.,Department of Pharmacology and Toxicology, Michigan State University, Grand Rapids, United States
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center and Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, United States
| | - John M Luk
- Arbele Corporation, Seattle, United States
| | - R Kate Kelley
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - John D Gordan
- Helen Diller Family Comprehensive Cancer Center, Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Ryan M Gill
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
59
|
Genuth NR, Barna M. Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat Rev Genet 2019; 19:431-452. [PMID: 29725087 DOI: 10.1038/s41576-018-0008-z] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Regulation of mRNA translation offers the opportunity to diversify the expression and abundance of proteins made from individual gene products in cells, tissues and organisms. Emerging evidence has highlighted variation in the composition and activity of several large, highly conserved translation complexes as a means to differentially control gene expression. Heterogeneity and specialized functions of individual components of the ribosome and of the translation initiation factor complexes eIF3 and eIF4F, which are required for recruitment of the ribosome to the mRNA 5' untranslated region, have been identified. In this Review, we summarize the evidence for selective mRNA translation by components of these macromolecular complexes as a means to dynamically control the translation of the proteome in time and space. We further discuss the implications of this form of gene expression regulation for a growing number of human genetic disorders associated with mutations in the translation machinery.
Collapse
Affiliation(s)
- Naomi R Genuth
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Maria Barna
- Departments of Genetics and Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
60
|
Oliveira V, Mahajan N, Bates ML, Tripathi C, Kim KQ, Zaher HS, Maggi Jr LB, Tomasson MH. The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis. FASEB Bioadv 2019; 1:404-414. [PMID: 32095781 PMCID: PMC6996358 DOI: 10.1096/fba.2018-00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/10/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
The orphan small nucleolar RNA (snoRNA) ACA11 is overexpressed as a result of the t(4;14) chromosomal translocation in multiple myeloma (MM), increases reactive oxygen species, and drives cell proliferation. Like other snoRNAs, ACA11 is predominantly localized to a sub-nuclear organelle, the nucleolus. We hypothesized that increased ACA11 expression would increase ribosome biogenesis and protein synthesis. We found that ACA11 overexpression in MM cells increased nucleolar area and number as well as silver-binding nucleolar organizing regions (AgNORs). Supporting these data, samples from t(4;14)-positive patients had higher AgNORs scores than t(4;14)-negative samples. ACA11 also upregulated ribosome production, pre-47S rRNA synthesis, and protein synthesis in a ROS-dependent manner. Lastly, ACA11 overexpression enhanced the response to proteasome inhibitor in MM cells, while no effect was found in response to high doses of melphalan. Together, these data demonstrate that ACA11 stimulates ribosome biogenesis and influences responses to chemotherapy. ACA11 may be a useful target to individualize the treatment for t(4;14)-positive myeloma patients.
Collapse
Affiliation(s)
- Vanessa Oliveira
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
| | - Nitin Mahajan
- Division of Oncology, Department of MedicineSiteman Cancer Center, Washington University School of MedicineSt. LouisMissouri
| | - Melissa L. Bates
- Department of Health and Human PhysiologyUniversity of IowaIowa CityIowa
- Stead Family Department of PediatricsUniversity of IowaIowa CityIowa
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowa
| | - Chakrapani Tripathi
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
| | - Kyusik Q. Kim
- Department of BiologyWashington UniversitySt. LouisMissouri
| | - Hani S. Zaher
- Department of BiologyWashington UniversitySt. LouisMissouri
| | - Leonard B. Maggi Jr
- Division of Oncology, Department of MedicineSiteman Cancer Center, Washington University School of MedicineSt. LouisMissouri
| | - Michael H. Tomasson
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Internal MedicineUniversity of IowaIowa CityIowa
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowa
| |
Collapse
|
61
|
Abstract
While only a small part of the human genome encodes for proteins, biological functions for the so-called junk genome are increasingly being recognized through high-throughput technologies and mechanistic experimental studies. Indeed, novel mechanisms of gene regulation are being discovered that require coordinated interaction between DNA, RNA, and proteins. Therefore, interdisciplinary efforts are still needed to decipher these complex transcriptional networks. In this review, we discuss how non-coding RNAs (ncRNAs) are epigenetically regulated in cancer and metastases and consequently how ncRNAs participate in the sculpting of the epigenetic profile of a cancer cell, thus modulating the expression of other RNA molecules. In the latter case, ncRNAs not only affect the DNA methylation status of certain genomic loci but also interact with histone-modifying complexes, changing the structure of the chromatin itself. We present several examples of epigenetic changes causing aberrant expression of ncRNAs in the context of tumor progression. Interestingly, there are also important epigenetic changes and transcriptional regulatory effects derived from their aberrant expression. As ncRNAs can also be used as biomarkers for diagnosis and prognosis or explored as potential targets, we present insights into the use of ncRNAs for targeted cancer therapy.
Collapse
|
62
|
Guide snoRNAs: Drivers or Passengers in Human Disease? BIOLOGY 2018; 8:biology8010001. [PMID: 30577491 PMCID: PMC6466398 DOI: 10.3390/biology8010001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/17/2023]
Abstract
In every domain of life, RNA-protein interactions play a significant role in co- and post-transcriptional modifications and mRNA translation. RNA performs diverse roles inside the cell, and therefore any aberrancy in their function can cause various diseases. During maturation from its primary transcript, RNA undergoes several functionally important post-transcriptional modifications including pseudouridylation and ribose 2′-O-methylation. These modifications play a critical role in the stability of the RNA. In the last few decades, small nucleolar RNAs (snoRNAs) were revealed to be one of the main components to guide these modifications. Due to their active links to the nucleoside modification, deregulation in the snoRNA expressions can cause multiple disorders in humans. Additionally, host genes carrying snoRNA-encoding sequences in their introns also show differential expression in disease. Although few reports support a causal link between snoRNA expression and disease manifestation, this emerging field will have an impact on the way we think about biomarkers or identify novel targets for therapy. This review focuses on the intriguing aspect of snoRNAs that function as a guide in post-transcriptional RNA modification, and regulation of their host genes in human disease.
Collapse
|
63
|
Ribosome biogenesis: An emerging druggable pathway for cancer therapeutics. Biochem Pharmacol 2018; 159:74-81. [PMID: 30468711 DOI: 10.1016/j.bcp.2018.11.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 01/05/2023]
Abstract
Ribosomes are nanomachines essential for protein production in all living cells. Ribosome synthesis increases in cancer cells to cope with a rise in protein synthesis and sustain unrestricted growth. This increase in ribosome biogenesis is reflected by severe morphological alterations of the nucleolus, the cell compartment where the initial steps of ribosome biogenesis take place. Ribosome biogenesis has recently emerged as an effective target in cancer therapy, and several compounds that inhibit ribosome production or function, killing preferentially cancer cells, have entered clinical trials. Recent research indicates that cells express heterogeneous populations of ribosomes and that the composition of ribosomes may play a key role in tumorigenesis, exposing novel therapeutic opportunities. Here, we review recent data demonstrating that ribosome biogenesis is a promising druggable pathway in cancer therapy, and discuss future research perspectives.
Collapse
|
64
|
Morena F, Argentati C, Bazzucchi M, Emiliani C, Martino S. Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes (Basel) 2018; 9:E329. [PMID: 29958477 PMCID: PMC6070936 DOI: 10.3390/genes9070329] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/15/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Sequence databases and transcriptome-wide mapping have revealed different reversible and dynamic chemical modifications of the nitrogen bases of RNA molecules. Modifications occur in coding RNAs and noncoding-RNAs post-transcriptionally and they can influence the RNA structure, metabolism, and function. The result is the expansion of the variety of the transcriptome. In fact, depending on the type of modification, RNA molecules enter into a specific program exerting the role of the player or/and the target in biological and pathological processes. Many research groups are exploring the role of RNA modifications (alias epitranscriptome) in cell proliferation, survival, and in more specialized activities. More recently, the role of RNA modifications has been also explored in stem cell biology. Our understanding in this context is still in its infancy. Available evidence addresses the role of RNA modifications in self-renewal, commitment, and differentiation processes of stem cells. In this review, we will focus on five epitranscriptomic marks: N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, Pseudouridine (Ψ) and Adenosine-to-Inosine editing. We will provide insights into the function and the distribution of these chemical modifications in coding RNAs and noncoding-RNAs. Mainly, we will emphasize the role of epitranscriptomic mechanisms in the biology of naïve, primed, embryonic, adult, and cancer stem cells.
Collapse
Affiliation(s)
- Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, 06126 Perugia, Italy.
- CEMIN, Center of Excellence of Nanostructured Innovative Materials, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
65
|
de Rooij LPMH, Chan DCH, Keyvani Chahi A, Hope KJ. Post-transcriptional regulation in hematopoiesis: RNA binding proteins take control 1. Biochem Cell Biol 2018; 97:10-20. [PMID: 29898370 DOI: 10.1139/bcb-2017-0310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP-RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.
Collapse
Affiliation(s)
- Laura P M H de Rooij
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Derek C H Chan
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ava Keyvani Chahi
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Kristin J Hope
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
66
|
Dai T, Pu Q, Guo Y, Zuo C, Bai S, Yang Y, Yin D, Li Y, Sheng S, Tao Y, Fang J, Yu W, Xie G. Analogous modified DNA probe and immune competition method-based electrochemical biosensor for RNA modification. Biosens Bioelectron 2018; 114:72-77. [PMID: 29783144 DOI: 10.1016/j.bios.2018.05.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022]
Abstract
N6-methyladenosine (m6A), one of the most abundant RNA methylation which is ubiquitous in eukaryotic RNA, plays vital roles in many biological progresses. Therefore, the rapid and accurate quantitative detection of m6A is particularly important for its functional research. Herein, a label-free and highly selective electrochemical immunosensor was developed for the detection of m6A. The method is established on that the anti-m6A-Ab can recognize both m6A-RNA and m6A-DNA. An analogous modified DNA probe (L1) serves as a signal molecule, by competing with m6A-RNA for binding to Abs to broaden the linear range. The detection of m6A-RNA by this method is unaffected by the lengths and base sequences of RNA. Under optimal conditions, the proposed immunosensor presented a wide linear range from 0.05 to 200 nM with a detection limit as low as 0.016 nM (S/N = 3). The specificity and reproducibility of the method are satisfactory. Furthermore, the developed immunosensor was validated for m6A determination in human cell lines. Thus, the immunosensor provides a promising platform for m6A-RNA detection with simplicity, high specificity and sensitivity.
Collapse
Affiliation(s)
- Tao Dai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Qinli Pu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, PR China
| | - Chen Zuo
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Shulian Bai
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Dan Yin
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Yi Li
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Shangchun Sheng
- Clinical Laboratory of the Affiliated Hospital of Chengdu University, Chengdu 610000, PR China
| | - Yiyi Tao
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Jie Fang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Wen Yu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China
| | - Guoming Xie
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, No. 1 Yi Xue Yuan Road, Chongqing 400016, PR China.
| |
Collapse
|
67
|
Guzzi N, Cieśla M, Ngoc PCT, Lang S, Arora S, Dimitriou M, Pimková K, Sommarin MNE, Munita R, Lubas M, Lim Y, Okuyama K, Soneji S, Karlsson G, Hansson J, Jönsson G, Lund AH, Sigvardsson M, Hellström-Lindberg E, Hsieh AC, Bellodi C. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells. Cell 2018; 173:1204-1216.e26. [PMID: 29628141 DOI: 10.1016/j.cell.2018.03.008] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/19/2018] [Accepted: 03/01/2018] [Indexed: 12/27/2022]
Abstract
Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ "writer" PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease.
Collapse
Affiliation(s)
- Nicola Guzzi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Maciej Cieśla
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Phuong Cao Thi Ngoc
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Stefan Lang
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Marios Dimitriou
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kristyna Pimková
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mikael N E Sommarin
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Michal Lubas
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Yiting Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kazuki Okuyama
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jenny Hansson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anders H Lund
- Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Andrew C Hsieh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Departments of Medicine and Genome Sciences, University of Washington, Seattle, WA, USA
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
68
|
Abstract
The ribosome is a complex molecular machine composed of numerous distinct proteins and nucleic acids and is responsible for protein synthesis in every living cell. Ribosome biogenesis is one of the most multifaceted and energy- demanding processes in biology, involving a large number of assembly and maturation factors, the functions of which are orchestrated by multiple cellular inputs, including mitogenic signals and nutrient availability. Although causal associations between inherited mutations affecting ribosome biogenesis and elevated cancer risk have been established over the past decade, mechanistic data have emerged suggesting a broader role for dysregulated ribosome biogenesis in the development and progression of most spontaneous cancers. In this Opinion article, we highlight the most recent findings that provide new insights into the molecular basis of ribosome biogenesis in cancer and offer our perspective on how these observations present opportunities for the design of new targeted cancer treatments.
Collapse
Affiliation(s)
- Joffrey Pelletier
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Duran i Reynals, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain; at the Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA; and at the Unit of Biochemistry, Department of Physiological Sciences II, Faculty of Medicine, Campus Universitari de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), University of Barcelona, 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Siniša Volarević
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia; and at the Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
69
|
Visualization of chemical modifications in the human 80S ribosome structure. Nature 2017; 551:472-477. [PMID: 29143818 DOI: 10.1038/nature24482] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.
Collapse
|
70
|
RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes (Basel) 2017; 8:genes8110301. [PMID: 29104216 PMCID: PMC5704214 DOI: 10.3390/genes8110301] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
Pseudouridine is the most abundant modification found in RNA. Today, thanks to next-generation sequencing techniques used in the detection of RNA modifications, pseudouridylation sites have been described in most eukaryotic RNA classes. In the present review, we will first consider the available information on the functional roles of pseudouridine(s) in different RNA species. We will then focus on how alterations in the pseudouridylation process may be connected with a series of human pathologies, including inherited disorders, cancer, diabetes, and viral infections. Finally, we will discuss how the availability of novel technical approaches are likely to increase the knowledge in this field.
Collapse
|
71
|
Identification of sites of 2'-O-methylation vulnerability in human ribosomal RNAs by systematic mapping. Sci Rep 2017; 7:11490. [PMID: 28904332 PMCID: PMC5597630 DOI: 10.1038/s41598-017-09734-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022] Open
Abstract
Ribosomal RNA modifications are important in optimizing ribosome function. Sugar 2'-O-methylation performed by fibrillarin-associated box C/D antisense guide snoRNAs impacts all steps of translation, playing a role in disease etiology (cancer). As it renders adjacent phosphodiester bonds resistant to alkaline treatment, 2'-O-methylation can be monitored qualitatively and quantitatively by applying next-generation sequencing to fragments of randomly cleaved RNA. We remapped all sites of 2'-O-methylation in human rRNAs in two isogenic diploid cell lines, one producing and one not producing the antitumor protein p53. We identified sites naturally modified only partially (confirming the existence in cells of compositionally distinct ribosomes with potentially specialized functions) and sites whose 2'-O-methylation is sensitive to p53. We mapped sites particularly vulnerable to a reduced level of the methyltransferase fibrillarin. The remarkable fact that these are largely sites of natural hypomodification provides initial insights into the mechanism of partial RNA modification. Sites where methylation appeared vulnerable lie peripherally on the 3-D structure of the ribosomal subunits, whereas the numerous modifications present at the core of the subunits, where the functional centers lie, appeared robustly made. We suggest that vulnerable sites of 2'-O-methylation are highly likely to undergo specific regulation during normal and pathological processes.
Collapse
|
72
|
Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC, Rajasingh J. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 2017; 28:81-90. [PMID: 28869095 DOI: 10.1016/j.tcm.2017.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.
Collapse
Affiliation(s)
- Thuy Cao
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Saheli Samanta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | | | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
73
|
Non-coding RNAs and disease: the classical ncRNAs make a comeback. Biochem Soc Trans 2017; 44:1073-8. [PMID: 27528754 DOI: 10.1042/bst20160089] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 01/16/2023]
Abstract
Many human diseases have been attributed to mutation in the protein coding regions of the human genome. The protein coding portion of the human genome, however, is very small compared with the non-coding portion of the genome. As such, there are a disproportionate number of diseases attributed to the coding compared with the non-coding portion of the genome. It is now clear that the non-coding portion of the genome produces many functional non-coding RNAs and these RNAs are slowly being linked to human diseases. Here we discuss examples where mutation in classical non-coding RNAs have been attributed to human disease and identify the future potential for the non-coding portion of the genome in disease biology.
Collapse
|
74
|
Henras AK, Plisson-Chastang C, Humbert O, Romeo Y, Henry Y. Synthesis, Function, and Heterogeneity of snoRNA-Guided Posttranscriptional Nucleoside Modifications in Eukaryotic Ribosomal RNAs. Enzymes 2017; 41:169-213. [PMID: 28601222 DOI: 10.1016/bs.enz.2017.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ribosomal RNAs contain numerous 2'-O-methylated nucleosides and pseudouridines. Methylation of the 2' oxygen of ribose moieties and isomerization of uridines into pseudouridines are catalyzed by C/D and H/ACA small nucleolar ribonucleoprotein particles, respectively. We review the composition, structure, and mode of action of archaeal and eukaryotic C/D and H/ACA particles. Most rRNA modifications cluster in functionally crucial regions of the rRNAs, suggesting they play important roles in translation. Some of these modifications promote global translation efficiency or modulate translation fidelity. Strikingly, recent quantitative nucleoside modification profiling methods have revealed that a subset of modification sites is not always fully modified. The finding of such ribosome heterogeneity is in line with the concept of specialized ribosomes that could preferentially translate specific mRNAs. This emerging concept is supported by findings that some human diseases are caused by defects in the rRNA modification machinery correlated with a significant alteration of IRES-dependent translation.
Collapse
Affiliation(s)
- Anthony K Henras
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| | - Célia Plisson-Chastang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Odile Humbert
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Romeo
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Henry
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
75
|
Drosophila dyskerin is required for somatic stem cell homeostasis. Sci Rep 2017; 7:347. [PMID: 28337032 PMCID: PMC5428438 DOI: 10.1038/s41598-017-00446-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/27/2017] [Indexed: 02/07/2023] Open
Abstract
Drosophila represents an excellent model to dissect the roles played by the evolutionary conserved family of eukaryotic dyskerins. These multifunctional proteins are involved in the formation of H/ACA snoRNP and telomerase complexes, both involved in essential cellular tasks. Since fly telomere integrity is guaranteed by a different mechanism, we used this organism to investigate the specific role played by dyskerin in somatic stem cell maintenance. To this aim, we focussed on Drosophila midgut, a hierarchically organized and well characterized model for stemness analysis. Surprisingly, the ubiquitous loss of the protein uniquely affects the formation of the larval stem cell niches, without altering other midgut cell types. The number of adult midgut precursor stem cells is dramatically reduced, and this effect is not caused by premature differentiation and is cell-autonomous. Moreover, a few dispersed precursors found in the depleted midguts can maintain stem identity and the ability to divide asymmetrically, nor show cell-growth defects or undergo apoptosis. Instead, their loss is mainly specifically dependent on defective amplification. These studies establish a strict link between dyskerin and somatic stem cell maintenance in a telomerase-lacking organism, indicating that loss of stemness can be regarded as a conserved, telomerase-independent effect of dyskerin dysfunction.
Collapse
|
76
|
Esteller M, Pandolfi PP. The Epitranscriptome of Noncoding RNAs in Cancer. Cancer Discov 2017; 7:359-368. [PMID: 28320778 DOI: 10.1158/2159-8290.cd-16-1292] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/05/2017] [Accepted: 02/28/2017] [Indexed: 01/28/2023]
Abstract
The activity of RNA is controlled by different types of post-transcriptional modifications, such as the addition of methyl groups and other chemical and structural changes, that have been recently described in human cells by high-throughput sequencing. Herein, we will discuss how the so-called epitranscriptome is disrupted in cancer and what the contribution of its writers, readers, and erasers to the process of cellular transformation is, particularly focusing on the epigenetic modifications of ncRNAs.Significance: Chemical modifications of RNA play a central role in the control of messenger and ncRNA activity and, thus, are tightly regulated in cells. In this review, we provide insight into how these marks are altered in cancer cells and how this knowledge can be translated to the clinical setting. Cancer Discov; 7(4); 359-68. ©2017 AACR.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia, Spain
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Departments of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
77
|
Marcel V, Catez F, Berger CM, Perrial E, Plesa A, Thomas X, Mattei E, Hayette S, Saintigny P, Bouvet P, Diaz JJ, Dumontet C. Expression Profiling of Ribosome Biogenesis Factors Reveals Nucleolin as a Novel Potential Marker to Predict Outcome in AML Patients. PLoS One 2017; 12:e0170160. [PMID: 28103300 PMCID: PMC5245884 DOI: 10.1371/journal.pone.0170160] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/30/2016] [Indexed: 01/20/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease. Prognosis is mainly influenced by patient age at diagnosis and cytogenetic alterations, two of the main factors currently used in AML patient risk stratification. However, additional criteria are required to improve the current risk classification and better adapt patient care. In neoplastic cells, ribosome biogenesis is increased to sustain the high proliferation rate and ribosome composition is altered to modulate specific gene expression driving tumorigenesis. Here, we investigated the usage of ribosome biogenesis factors as clinical markers in adult patients with AML. We showed that nucleoli, the nucleus compartments where ribosome production takes place, are modified in AML by analyzing a panel of AML and healthy donor cells using immunofluorescence staining. Using four AML series, including the TCGA dataset, altogether representing a total of about 270 samples, we showed that not all factors involved in ribosome biogenesis have clinical values although ribosome biogenesis is increased in AML. Interestingly, we identified the regulator of ribosome production nucleolin (NCL) as over-expressed in AML blasts. Moreover, we found in two series that high NCL mRNA expression level was associated with a poor overall survival, particular in elderly patients. Multivariate analyses taking into account age and cytogenetic risk indicated that NCL expression in blast cells is an independent marker of reduced survival. Our study identifies NCL as a potential novel prognostic factor in AML. Altogether, our results suggest that the ribosome biogenesis pathway may be of interest as clinical markers in AML.
Collapse
MESH Headings
- Adolescent
- Adult
- Age Factors
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Child
- Child, Preschool
- Female
- Gene Expression Profiling
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Nuclear Proteins/genetics
- Phosphoproteins/genetics
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA-Binding Proteins/genetics
- Ribosomes/genetics
- Ribosomes/metabolism
- Up-Regulation
- Young Adult
- Nucleolin
Collapse
Affiliation(s)
- Virginie Marcel
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Nuclear domains and pathologies team, Cancer Cell Plasticity Department, Lyon, France
| | - Frédéric Catez
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Nuclear domains and pathologies team, Cancer Cell Plasticity Department, Lyon, France
| | - Caroline M. Berger
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Nuclear domains and pathologies team, Cancer Cell Plasticity Department, Lyon, France
| | - Emeline Perrial
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Anticancer antibodies team, Immunity, Microenvironment and Virus Department, Lyon, France
| | - Adriana Plesa
- Department of Biology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Xavier Thomas
- Department of Hematology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Eve Mattei
- Department of Biology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Sandrine Hayette
- Department of Biology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - Pierre Saintigny
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Department of Medecine, Centre Léon Bérard, Lyon, France
| | - Philippe Bouvet
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Nuclear domains and pathologies team, Cancer Cell Plasticity Department, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Jacques Diaz
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Nuclear domains and pathologies team, Cancer Cell Plasticity Department, Lyon, France
| | - Charles Dumontet
- Cancer Research Center of Lyon, UMR INSERM 1052 CNRS 5286, Centre Léon Bérard, Lyon, France
- Université Lyon 1, Lyon, France
- Anticancer antibodies team, Immunity, Microenvironment and Virus Department, Lyon, France
| |
Collapse
|
78
|
Sloan KE, Warda AS, Sharma S, Entian KD, Lafontaine DLJ, Bohnsack MT. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol 2016; 14:1138-1152. [PMID: 27911188 PMCID: PMC5699541 DOI: 10.1080/15476286.2016.1259781] [Citation(s) in RCA: 449] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
rRNAs are extensively modified during their transcription and subsequent maturation in the nucleolus, nucleus and cytoplasm. RNA modifications, which are installed either by snoRNA-guided or by stand-alone enzymes, generally stabilize the structure of the ribosome. However, they also cluster at functionally important sites of the ribosome, such as the peptidyltransferase center and the decoding site, where they facilitate efficient and accurate protein synthesis. The recent identification of sites of substoichiometric 2'-O-methylation and pseudouridylation has overturned the notion that all rRNA modifications are constitutively present on ribosomes, highlighting nucleotide modifications as an important source of ribosomal heterogeneity. While the mechanisms regulating partial modification and the functions of specialized ribosomes are largely unknown, changes in the rRNA modification pattern have been observed in response to environmental changes, during development, and in disease. This suggests that rRNA modifications may contribute to the translational control of gene expression.
Collapse
Affiliation(s)
- Katherine E Sloan
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Ahmed S Warda
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany
| | - Sunny Sharma
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Karl-Dieter Entian
- c Institute for Molecular Biosciences, Goethe University , Frankfurt am Main , Germany
| | - Denis L J Lafontaine
- b RNA Molecular Biology and Center for Microscopy and Molecular Imaging, F.R.S./FNRS, Université Libre de Bruxelles , Charleroi-Gosselies , Belgium
| | - Markus T Bohnsack
- a Institute for Molecular Biology, University Medical Center Göttingen, Georg-August-University , Göttingen , Germany.,d Göttingen Centre for Molecular Biosciences, Georg-August-University , Göttingen , Germany
| |
Collapse
|
79
|
Zhang Y, Xu C, Gu D, Wu M, Yan B, Xu Z, Wang Y, Liu H. H/ACA Box Small Nucleolar RNA 7A Promotes the Self-Renewal of Human Umbilical Cord Mesenchymal Stem Cells. Stem Cells 2016; 35:222-235. [PMID: 27573912 DOI: 10.1002/stem.2490] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/12/2016] [Accepted: 08/10/2016] [Indexed: 01/08/2023]
Abstract
Human umbilical cord blood derived mesenchymal stem cells (uMSC) are pluripotent cells that have been now considered as a promising candidate for various cell-based therapies. However, their limited in vitro proliferation ability and the gradual loss of pluripotency set barricades for further usages. Emerging evidence suggests that small nucleolar RNAs (snoRNA) are actively involved in cell proliferation especially in tumor cells, but their roles in stem cells are largely unknown. In this study, we demonstrated that H/ACA box small nucleolar RNA 7A (SNORA7A) is inversely correlated to the decreased proliferation rate during in vitro passaging of uMSC. Further investigations indicate that SNORA7A overexpression can promote uMSC proliferation and self-renewal. The inhibition of SNORA7A using antisense oligonucleotides significantly reduces the expression and the binding of SNORA7A to DKC1, core protein that essential to form small nucleolar ribonucleo-particles (snoRNP) complex and catalyze pseudouridines in 28S RNA. And the inhibition also significantly suppresses uMSC proliferation and self-renewal. Moreover, overexpression of SNORA7A transcripts with mutations of binding regions for snoRNP core proteins and 28S RNA did not induce proliferation and self-renewal. Besides, SNORA7A also suppresses both the osteogenic and adipogenic differentiation, strengthening its self-renewal maintaining roles in uMSC. Taken together, our study for the first time showed that H/ACA box snoRNAs are actively involved in MSC proliferation as well as pluripotency control, and we identify SNORA7A as one of the critical snoRNAs that regulate the proliferation and self-renewal of uMSC through snoRNP recruiting. Stem Cells 2017;35:222-235.
Collapse
Affiliation(s)
- Yan Zhang
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Chen Xu
- Department of Spinal Surgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, People's Republic of China
| | - Daolan Gu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Minjuan Wu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Binghao Yan
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhenyu Xu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Yue Wang
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| | - Houqi Liu
- Translational Medicine Research Center, Translational Medicine Academy, Second Military Medical University, Shanghai, People's Republic of China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
80
|
The importance of being (slightly) modified: The role of rRNA editing on gene expression control and its connections with cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:330-338. [PMID: 27815156 DOI: 10.1016/j.bbcan.2016.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/12/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022]
Abstract
In human ribosomal RNAs, over 200 residues are modified by specific, RNA-driven enzymatic complexes or stand-alone, RNA-independent enzymes. In most cases, modification sites are placed in specific positions within important functional areas of the ribosome. Some evidence indicates that the altered control in ribosomal RNA modifications may affect ribosomal function during mRNA translation. Here we provide an overview of the connections linking ribosomal RNA modifications to ribosome function, and suggest how aberrant modifications may affect the control of the expression of key cancer genes, thus contributing to tumor development. In addition, the future perspectives in this field are discussed.
Collapse
|
81
|
Abstract
Cells adapt to their environment by linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. Among these, mechanisms that couple environmental cues to the regulation of protein translation are not well understood. Chemical modifications of RNA allow rapid cellular responses to external stimuli by modulating a wide range of fundamental biochemical properties and processes, including the stability, splicing and translation of messenger RNA. In this Review, we focus on the occurrence of N6-methyladenosine (m6A), 5-methylcytosine (m5C) and pseudouridine (Ψ) in RNA, and describe how these RNA modifications are implicated in regulating pluripotency, stem cell self-renewal and fate specification. Both post-transcriptional modifications and the enzymes that catalyse them modulate stem cell differentiation pathways and are essential for normal development.
Collapse
Affiliation(s)
- Michaela Frye
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sandra Blanco
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
- CIC bioGUNE, Bizkaia Technology Park, Building 801A, Derio, Bizkaia 48160, Spain
| |
Collapse
|
82
|
Zhao Y, Karijolich J, Glaunsinger B, Zhou Q. Pseudouridylation of 7SK snRNA promotes 7SK snRNP formation to suppress HIV-1 transcription and escape from latency. EMBO Rep 2016; 17:1441-1451. [PMID: 27558685 DOI: 10.15252/embr.201642682] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/28/2016] [Indexed: 12/16/2022] Open
Abstract
The 7SK snRNA sequesters P-TEFb, a general transcription elongation factor and human co-factor for HIV-1 Tat protein, into the catalytically inactive 7SK snRNP Little is known about how 7SK RNA is regulated to perform this function. Here, we show that most of 7SK is pseudouridylated at position U250 by the predominant cellular pseudouridine synthase machinery, the DKC1-box H/ACA RNP Pseudouridylation is critical to stabilize 7SK snRNP, as its abolishment by either mutation at or around U250 or depletion of DKC1, the catalytic component of the box H/ACA RNP, disrupts 7SK snRNP and releases P-TEFb to form the super elongation complex (SEC) and the Brd4-P-TEFb complex. The SEC is then recruited by Tat to the HIV-1 promoter to stimulate viral transcription and escape from latency. Thus, although 7SK RNA levels remain mostly unchanged, its function is modulated by pseudouridylation, which in turn controls transcription of both HIV-1 and cellular genes.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - John Karijolich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Britt Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Qiang Zhou
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
83
|
Human Ribosomal RNA-Derived Resident MicroRNAs as the Transmitter of Information upon the Cytoplasmic Cancer Stress. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7562085. [PMID: 27517048 PMCID: PMC4969525 DOI: 10.1155/2016/7562085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/19/2016] [Indexed: 12/13/2022]
Abstract
Dysfunction of ribosome biogenesis induces divergent ribosome-related diseases including ribosomopathy and occasionally results in carcinogenesis. Although many defects in ribosome-related genes have been investigated, little is known about contribution of ribosomal RNA (rRNA) in ribosome-related disorders. Meanwhile, microRNA (miRNA), an important regulator of gene expression, is derived from both coding and noncoding region of the genome and is implicated in various diseases. Therefore, we performed in silico analyses using M-fold, TargetScan, GeneCoDia3, and so forth to investigate RNA relationships between rRNA and miRNA against cellular stresses. We have previously shown that miRNA synergism is significantly correlated with disease and the miRNA package is implicated in memory for diseases; therefore, quantum Dynamic Nexus Score (DNS) was also calculated using MESer program. As a result, seventeen RNA sequences identical with known miRNAs were detected in the human rRNA and termed as rRNA-hosted miRNA analogs (rmiRNAs). Eleven of them were predicted to form stem-loop structures as pre-miRNAs, and especially one stem-loop was completely identical with hsa-pre-miR-3678 located in the non-rDNA region. Thus, these rmiRNAs showed significantly high DNS values, participation in regulation of cancer-related pathways, and interaction with nucleolar RNAs, suggesting that rmiRNAs may be stress-responsible resident miRNAs which transmit stress-tuning information in multiple levels.
Collapse
|
84
|
Abstract
The past several years have seen dramatic leaps in our understanding of how gene expression is rewired at the translation level during tumorigenesis to support the transformed phenotype. This work has been driven by an explosion in technological advances and is revealing previously unimagined regulatory mechanisms that dictate functional expression of the cancer genome. In this Review we discuss emerging trends and exciting new discoveries that reveal how this translational circuitry contributes to specific aspects of tumorigenesis and cancer cell function, with a particular focus on recent insights into the role of translational control in the adaptive response to oncogenic stress conditions.
Collapse
Affiliation(s)
- Morgan L Truitt
- Department of Urology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
85
|
MacInnes AW. The role of the ribosome in the regulation of longevity and lifespan extension. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:198-212. [PMID: 26732699 DOI: 10.1002/wrna.1325] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
The most energy-consuming process that a cell must undertake to stay viable is the continuous biogenesis of ribosomes for the translation of RNA into protein. Given the inextricable links between energy consumption and cellular lifespan, it is not surprising that mutations and environmental cues that reduce ribosome biogenesis result in an extension of eukaryotic lifespan. This review goes into detail describing recent discoveries of different and often unexpected elements that play a role in the regulation of longevity by virtue of their ribosome biogenesis functions. These roles include controlling the transcription and processing of ribosomal RNA (rRNA), the translation of ribosomal protein (RP) genes, and the number of ribosomes overall. Together these findings suggest that a fundamental mechanism across eukaryotic species for extending lifespan is to slow down or halt the expenditure of cellular energy that is normally absorbed by the manufacturing and assembly of new ribosomes.
Collapse
|
86
|
Dinman JD. Pathways to Specialized Ribosomes: The Brussels Lecture. J Mol Biol 2016; 428:2186-94. [PMID: 26764228 DOI: 10.1016/j.jmb.2015.12.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/17/2022]
Abstract
"Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, 4062 Campus Drive, College Park, MD 20742, USA.
| |
Collapse
|
87
|
The noncoding RNAs SNORD50A and SNORD50B bind K-Ras and are recurrently deleted in human cancer. Nat Genet 2015; 48:53-8. [PMID: 26595770 DOI: 10.1038/ng.3452] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/27/2015] [Indexed: 11/08/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are conserved noncoding RNAs best studied as ribonucleoprotein (RNP) guides in RNA modification. To explore their role in cancer, we compared 5,473 tumor-normal genome pairs to identify snoRNAs with frequent copy number loss. The SNORD50A-SNORD50B snoRNA locus was deleted in 10-40% of 12 common cancers, where its loss was associated with reduced survival. A human protein microarray screen identified direct SNORD50A and SNORD50B RNA binding to K-Ras. Loss of SNORD50A and SNORD50B increased the amount of GTP-bound, active K-Ras and hyperactivated Ras-ERK1/ERK2 signaling. Loss of these snoRNAs also increased binding by farnesyltransferase to K-Ras and increased K-Ras prenylation, suggesting that KRAS mutation might synergize with SNORD50A and SNORD50B loss in cancer. In agreement with this hypothesis, CRISPR-mediated deletion of SNORD50A and SNORD50B in KRAS-mutant tumor cells enhanced tumorigenesis, and SNORD50A and SNORD50B deletion and oncogenic KRAS mutation co-occurred significantly in multiple human tumor types. SNORD50A and SNORD50B snoRNAs thus directly bind and inhibit K-Ras and are recurrently deleted in human cancer.
Collapse
|
88
|
Shi Z, Barna M. Translating the genome in time and space: specialized ribosomes, RNA regulons, and RNA-binding proteins. Annu Rev Cell Dev Biol 2015; 31:31-54. [PMID: 26443190 DOI: 10.1146/annurev-cellbio-100814-125346] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution.
Collapse
Affiliation(s)
- Zhen Shi
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| | - Maria Barna
- Department of Developmental Biology and Department of Genetics, Stanford University, Stanford, California 94305;
| |
Collapse
|
89
|
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification that occurs in the messenger RNA (mRNA) of most eukaryotes. In this review, Yue et al. summarize recent progress in the study of the m6A mRNA methylation machineries across eukaryotes and discuss their newly uncovered roles in post-transcriptional gene expression regulation. N6-methyladenosine (m6A) is the most prevalent and internal modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, although its functional relevance remained a mystery for decades. This modification is installed by the m6A methylation “writers” and can be reversed by demethylases that serve as “erasers.” In this review, we mainly summarize recent progress in the study of the m6A mRNA methylation machineries across eukaryotes and discuss their newly uncovered biological functions. The broad roles of m6A in regulating cell fates and embryonic development highlight the existence of another layer of epigenetic regulation at the RNA level, where mRNA is subjected to chemical modifications that affect protein expression.
Collapse
Affiliation(s)
- Yanan Yue
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jianzhao Liu
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, USA; Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
90
|
Karijolich J, Yi C, Yu YT. Transcriptome-wide dynamics of RNA pseudouridylation. Nat Rev Mol Cell Biol 2015; 16:581-5. [PMID: 26285676 DOI: 10.1038/nrm4040] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pseudouridylation is the most abundant internal post-transcriptional modification of stable RNAs, with fundamental roles in the biogenesis and function of spliceosomal small nuclear RNAs (snRNAs) and ribosomal RNAs (rRNAs). Recently, the first transcriptome-wide maps of RNA pseudouridylation were published, greatly expanding the catalogue of known pseudouridylated RNAs. These data have further implicated RNA pseudouridylation in the cellular stress response and, moreover, have established that mRNAs are also targets of pseudouridine synthases, potentially representing a novel mechanism for expanding the complexity of the cellular proteome.
Collapse
Affiliation(s)
- John Karijolich
- Department of Plant and Microbial Biology, University of California, 565 Li Ka Shing Center #3370, Berkeley, California 94720-337, USA
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Synthetic and Functional Biomolecules Center and Peking-Tsinghua Center for Life Sciences, Peking University, 5 Summer Palace Road, Haidian District, Beijing 100871, China
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Avenue, Box 712 Rochester, New York 14642, USA
| |
Collapse
|
91
|
Abstract
Modifications of mRNAs can have a profound effect on cellular function and differentiation. In this issue of Cell Stem Cell, Batista et al. (2014) describe fundamental parameters of N(6)-methyl-adenosine modification of mRNAs in embryonic stem cells and provide strong evidence that modification plays a role in exit from pluripotency toward differentiation.
Collapse
Affiliation(s)
- Aimee L Jalkanen
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
92
|
Abstract
Ribosomes are cellular ribonucleoprotein particles required for a fundamental mechanism, translation of the genetic information into proteins. Ribosome biogenesis is a highly complex pathway involving many maturation steps: ribosomal RNA (rRNA) synthesis, rRNA processing, pre-rRNA modifications, its assembly with ribosomal proteins in the nuceolus, export of the subunit precursors to the nucleoplasm and the cytoplasm. Ribosome biogenesis has mainly being investigated in yeast during these last 25 years. However, recent works have shown that, despite many similarities between yeast and human ribosome structure and biogenesis, human pre-rRNA processing is far more complex than in yeast. In order to better understand diseases related to a malfunction in ribosome synthesis, the ribosomopathies, research should be conducted directly in human cells and animal models.
Collapse
Affiliation(s)
- Lionel Tafforeau
- Laboratoire de biologie cellulaire, institut de recherche en biosciences, université de Mons, place du Parc 20, 7000 Mons, Belgique
| |
Collapse
|
93
|
Zakari M, Trimble Ross R, Peak A, Blanchette M, Seidel C, Gerton JL. The SMC Loader Scc2 Promotes ncRNA Biogenesis and Translational Fidelity. PLoS Genet 2015; 11:e1005308. [PMID: 26176819 PMCID: PMC4503661 DOI: 10.1371/journal.pgen.1005308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/28/2015] [Indexed: 11/18/2022] Open
Abstract
The Scc2-Scc4 complex is essential for loading the cohesin complex onto DNA. Cohesin has important roles in chromosome segregation, DSB repair, and chromosome condensation. Here we report that Scc2 is important for gene expression in budding yeast. Scc2 and the transcriptional regulator Paf1 collaborate to promote the production of Box H/ACA snoRNAs which guide pseudouridylation of RNAs including ribosomal RNA. Mutation of SCC2 was associated with defects in the production of ribosomal RNA, ribosome assembly, and splicing. While the scc2 mutant does not have a general defect in protein synthesis, it shows increased frameshifting and reduced cap-independent translation. These findings suggest Scc2 normally promotes a gene expression program that supports translational fidelity. We hypothesize that translational dysfunction may contribute to the human disorder Cornelia de Lange syndrome, which is caused by mutations in NIPBL, the human ortholog of SCC2.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Universite Pierre et Marie Curie (Paris VI), Paris, France
| | - Rhonda Trimble Ross
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Marco Blanchette
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|
94
|
Penzo M, Rocchi L, Brugiere S, Carnicelli D, Onofrillo C, Couté Y, Brigotti M, Montanaro L. Human ribosomes from cells with reduced dyskerin levels are intrinsically altered in translation. FASEB J 2015; 29:3472-82. [PMID: 25934701 DOI: 10.1096/fj.15-270991] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/21/2015] [Indexed: 12/19/2022]
Abstract
Dyskerin is a pseudouridine (ψ) synthase involved in fundamental cellular processes including uridine modification in rRNA and small nuclear RNA and telomere stabilization. Dyskerin functions are altered in X-linked dyskeratosis congenita (X-DC) and cancer. Dyskerin's role in rRNA pseudouridylation has been suggested to underlie the alterations in mRNA translation described in cells lacking dyskerin function, although relevant direct evidences are currently lacking. Our purpose was to establish definitely whether defective dyskerin function might determine an intrinsic ribosomal defect leading to an altered synthetic activity. Therefore, ribosomes from dyskerin-depleted human cells were purified and 1) added to a controlled reticulocyte cell-free system devoid of ribosomes to study mRNA translation; 2) analyzed for protein contamination and composition by mass spectrometry, 3) analyzed for global pseudouridylation levels. Ribosomes purified from dyskerin-depleted cells showed altered translational fidelity and internal ribosome entry site (IRES)-mediated translation. These ribosomes displayed reduced uridine modification, whereas they were not different in terms of protein contamination or ribosomal protein composition with respect to ribosomes from matched control cells with full dyskerin activity. In conclusion, lack of dyskerin function in human cells induces a defect in rRNA uridine modification, which is sufficient to alter ribosome activity.
Collapse
Affiliation(s)
- Marianna Penzo
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Laura Rocchi
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Sabine Brugiere
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Domenica Carnicelli
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Carmine Onofrillo
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Yohann Couté
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Maurizio Brigotti
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| | - Lorenzo Montanaro
- *Department of Experimental, Diagnostic, and Specialty Medicine, Alma Mater Studiorum-Università di Bologna, Bologna, Italy; University Grenoble Alpes, Commissariat à l'Énergie Atomique, Institut Régional de Travail Social, and Institut National de la Santé et de la Recherche Médicale, Biologie à Grande Echelle, Grenoble, France
| |
Collapse
|
95
|
Henriksson S, Farnebo M. On the road with WRAP53β: guardian of Cajal bodies and genome integrity. Front Genet 2015; 6:91. [PMID: 25852739 PMCID: PMC4371746 DOI: 10.3389/fgene.2015.00091] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
The WRAP53 gene encodes both an antisense transcript (WRAP53α) that stabilizes the tumor suppressor p53 and a protein (WRAP53β) involved in maintenance of Cajal bodies, telomere elongation and DNA repair. WRAP53β is one of many proteins containing WD40 domains, known to mediate a variety of cellular processes. These proteins lack enzymatic activity, acting instead as platforms for the assembly of large complexes of proteins and RNAs thus facilitating their interactions. WRAP53β mediates site-specific interactions between Cajal body factors and DNA repair proteins. Moreover, dysfunction of this protein has been linked to premature aging, cancer and neurodegeneration. Here we summarize the current state of knowledge concerning the multifaceted roles of WRAP53β in intracellular trafficking, formation of the Cajal body, DNA repair and maintenance of genomic integrity and discuss potential crosstalk between these processes.
Collapse
Affiliation(s)
- Sofia Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm, Sweden
| | - Marianne Farnebo
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
96
|
Lafontaine DLJ. Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat Struct Mol Biol 2015; 22:11-9. [PMID: 25565028 DOI: 10.1038/nsmb.2939] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/26/2014] [Indexed: 12/22/2022]
Abstract
The ribosome, central to protein synthesis in all cells, is a complex multicomponent assembly with rRNA at its functional core. During the process of ribosome biogenesis, diverse noncoding RNAs participate in controlling the quantity and quality of this rRNA. In this Review, I discuss the multiple roles assumed by noncoding RNAs during the different steps of ribosome biogenesis and how they contribute to the generation of ribosome heterogeneity, which affects normal and pathophysiological processes.
Collapse
Affiliation(s)
- Denis L J Lafontaine
- RNA Molecular Biology, Fonds National de la Recherche Scientifique, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
97
|
Marcel V, Catez F, Diaz JJ. p53, a translational regulator: contribution to its tumour-suppressor activity. Oncogene 2015; 34:5513-23. [DOI: 10.1038/onc.2015.25] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/14/2022]
|
98
|
Zhu X. Current insights into the diagnosis and treatment of inherited bone marrow failure syndromes in China. Stem Cell Investig 2015; 2:15. [PMID: 27358883 DOI: 10.3978/j.issn.2306-9759.2015.07.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/16/2015] [Indexed: 11/14/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFs) account for 20% of pediatric BMFs. Although recommendations for the diagnosis and treatment of IBMFs in China have been published recently, improvements are still needed in making precise diagnoses and properly treating pediatric patients with IBMFs. This review provides current insights into IBMFs in China. The data of our single institution data showed that pediatric patients with IBMFs accounted for 7.4% of BMFs. However, the number of reported cases with IBMFs may be underestimated than the actual morbidity in China because of limitations in the detection approaches and lacking of awareness of these diseases in local hospitals. Although patients with IBMFs are candidates for bone marrow transplantation or gene therapy, their phenotypic heterogeneity can delay or incompetent diagnosis. The golden standard test for Fanconi anemia is the chromosome breakage test, but it can be completed by few hospital and diagnostic companies in China. In addition, there are still no consistent standardized testing methods for other rare IBMFs. Recently, the combined application of targeted capture and next-generation sequencing (NGS) provides and accurate and efficient diagnostic method for IBMFs.
Collapse
Affiliation(s)
- Xiaofan Zhu
- Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
99
|
Angrisani A, Vicidomini R, Turano M, Furia M. Human dyskerin: beyond telomeres. Biol Chem 2014; 395:593-610. [PMID: 24468621 DOI: 10.1515/hsz-2013-0287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/24/2014] [Indexed: 12/15/2022]
Abstract
Human dyskerin is an evolutively conserved protein that participates in diverse nuclear complexes: the H/ACA snoRNPs, that control ribosome biogenesis, RNA pseudouridylation, and stability of H/ACA snoRNAs; the scaRNPs, that control pseudouridylation of snRNAs; and the telomerase active holoenzyme, which safeguards telomere integrity. The biological importance of dyskerin is further outlined by the fact that its deficiency causes the X-linked dyskeratosis congenita disease, while its over-expression characterizes several types of cancers and has been proposed as prognostic marker. The role of dyskerin in telomere maintenance has widely been discussed, while its functions as H/ACA sno/scaRNP component has been so far mostly overlooked and represent the main goal of this review. Here we summarize how increasing evidence indicates that the snoRNA/microRNA pathways can be interlaced, and that dyskerin-dependent RNA pseudouridylation represents a flexible mechanism able to modulate RNA function in different ways, including modulation of splicing, change of mRNA coding properties, and selective regulation of IRES-dependent translation. We also propose a speculative model that suggests that the dynamics of pre-assembly and nuclear import of H/ACA RNPs are crucial regulatory steps that can be finely controlled in the cytoplasm in response to developmental, differentiative and stress stimuli.
Collapse
|
100
|
McMahon M, Contreras A, Ruggero D. Small RNAs with big implications: new insights into H/ACA snoRNA function and their role in human disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:173-89. [PMID: 25363811 DOI: 10.1002/wrna.1266] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/25/2014] [Accepted: 08/07/2014] [Indexed: 12/26/2022]
Abstract
A myriad of structurally and functionally diverse noncoding RNAs (ncRNAs) have recently been implicated in numerous human diseases including cancer. Small nucleolar RNAs (snoRNAs), the most abundant group of intron-encoded ncRNAs, are classified into two families (box C/D snoRNAs and box H/ACA snoRNAs) and are required for post-transcriptional modifications on ribosomal RNA (rRNA). There is now a growing appreciation that nucleotide modifications on rRNA may impart regulatory potential to the ribosome; however, the functional consequence of site-specific snoRNA-guided modifications remains poorly defined. Discovered almost 20 years ago, H/ACA snoRNAs are required for the conversion of specific uridine residues to pseudouridine on rRNA. Interestingly, recent reports indicate that the levels of subsets of H/ACA snoRNAs required for pseudouridine modifications at specific sites on rRNA are altered in several diseases, particularly cancer. In this review, we describe recent advances in understanding the downstream consequences of H/ACA snoRNA-guided modifications on ribosome function, discuss the possible mechanism by which H/ACA snoRNAs may be regulated, and explore prospective expanding functions of H/ACA snoRNAs. Furthermore, we discuss the potential biological implications of alterations in H/ACA snoRNA expression in several human diseases.
Collapse
Affiliation(s)
- Mary McMahon
- School of Medicine and Department of Urology, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|