51
|
Tsiouplis NJ, Bailey DW, Chiou LF, Wissink FJ, Tsagaratou A. TET-Mediated Epigenetic Regulation in Immune Cell Development and Disease. Front Cell Dev Biol 2021; 8:623948. [PMID: 33520997 PMCID: PMC7843795 DOI: 10.3389/fcell.2020.623948] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidation products in DNA. The oxidized methylcytosines (oxi-mCs) facilitate DNA demethylation and are also novel epigenetic marks. TET loss-of-function is strongly associated with cancer; TET2 loss-of-function mutations are frequently observed in hematological malignancies that are resistant to conventional therapies. Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we seek to provide a conceptual framework of the mechanisms that fine tune TET activity. Then, we specifically focus on the multifaceted roles of TET proteins in regulating gene expression in immune cell development, function, and disease.
Collapse
Affiliation(s)
- Nikolas James Tsiouplis
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| | - David Wesley Bailey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States.,University of North Carolina Center of Translational Immunology, Chapel Hill, NC, United States.,University of North Carolina Institute of Inflammatory Disease, Chapel Hill, NC, United States
| | - Lilly Felicia Chiou
- University of North Carolina Curriculum in Genetics and Molecular Biology, Chapel Hill, NC, United States
| | - Fiona Jane Wissink
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
| | - Ageliki Tsagaratou
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States.,University of North Carolina Center of Translational Immunology, Chapel Hill, NC, United States.,University of North Carolina Institute of Inflammatory Disease, Chapel Hill, NC, United States.,University of North Carolina Curriculum in Genetics and Molecular Biology, Chapel Hill, NC, United States.,University of North Carolina Department of Genetics, Chapel Hill, NC, United States.,University of North Carolina Department of Microbiology and Immunology, Chapel Hill, NC, United States
| |
Collapse
|
52
|
Tsagaratou A. Deciphering the multifaceted roles of TET proteins in T-cell lineage specification and malignant transformation. Immunol Rev 2021; 300:22-36. [PMID: 33410200 DOI: 10.1111/imr.12940] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
TET proteins are DNA demethylases that can oxidize 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine (5hmC) and other oxidized mC bases (oxi-mCs). Importantly, TET proteins govern cell fate decisions during development of various cell types by activating a cell-specific gene expression program. In this review, we focus on the role of TET proteins in T-cell lineage specification. We explore the multifaceted roles of TET proteins in regulating gene expression in the contexts of T-cell development, lineage specification, function, and disease. Finally, we discuss the future directions and experimental strategies required to decipher the precise mechanisms employed by TET proteins to fine-tune gene expression and safeguard cell identity.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Institute of Inflammatory Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
53
|
Pairwise Proximity‐Differentiated Visualization of Single‐Cell DNA Epigenetic Marks. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
54
|
Xue J, Chen F, Su L, Cao X, Bai M, Zhao Y, Fan C, Zhao Y. Pairwise Proximity‐Differentiated Visualization of Single‐Cell DNA Epigenetic Marks. Angew Chem Int Ed Engl 2020; 60:3428-3432. [PMID: 33135308 DOI: 10.1002/anie.202011172] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Jing Xue
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| | - Li Su
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| | - Xiaowen Cao
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| | - Min Bai
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| | - Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| | - Chunhai Fan
- Institute of Molecular Medicine Renji Hospital School of Medicine and School of Chemistry and Chemical Engineering Shanghai Jiao Tong University Shanghai 200127 China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science The Key Laboratory of Biomedical Information Engineering of Ministry of Education School of Life Science and Technology Xi'an Jiaotong University Xianning West Road Xi'an Shaanxi 710049 China
| |
Collapse
|
55
|
Tomkuvienė M, Ikasalaitė D, Slyvka A, Rukšėnaitė A, Ravichandran M, Jurkowski TP, Bochtler M, Klimašauskas S. Enzymatic Hydroxylation and Excision of Extended 5-Methylcytosine Analogues. J Mol Biol 2020; 432:6157-6167. [PMID: 33065111 PMCID: PMC7763475 DOI: 10.1016/j.jmb.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 11/28/2022]
Abstract
Methylation of cytosine to 5-methylcytosine (mC) is a prevalent reversible epigenetic mark in vertebrates established by DNA methyltransferases (MTases); the methylation mark can be actively erased via a multi-step demethylation mechanism involving oxidation by Ten-eleven translocation (TET) enzyme family dioxygenases, excision of the latter oxidation products by thymine DNA (TDG) or Nei-like 1 (NEIL1) glycosylases followed by base excision repair to restore the unmodified state. Here we probed the activity of the mouse TET1 (mTET1) and Naegleria gruberi TET (nTET) oxygenases with DNA substrates containing extended derivatives of the 5-methylcytosine carrying linear carbon chains and adjacent unsaturated CC bonds. We found that the nTET and mTET1 enzymes were active on modified mC residues in single-stranded and double-stranded DNA in vitro, while the extent of the reactions diminished with the size of the extended group. Iterative rounds of nTET hydroxylations of ssDNA proceeded with high stereo specificity and included not only the natural alpha position but also the adjoining carbon atom in the extended side chain. The regioselectivity of hydroxylation was broken when the reactive carbon was adjoined with an sp1 or sp2 system. We also found that NEIL1 but not TDG was active with bulky TET-oxidation products. These findings provide important insights into the mechanism of these biologically important enzymatic reactions.
Collapse
Affiliation(s)
- Miglė Tomkuvienė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Diana Ikasalaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Anton Slyvka
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Audronė Rukšėnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | | | | | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania.
| |
Collapse
|
56
|
Kato M, Onoyama I, Kawakami M, Yoshida S, Kawamura K, Kodama K, Hori E, Cui L, Matsumura Y, Yagi H, Asanoma K, Yahata H, Itakura A, Takeda S, Kato K. Downregulation of 5-hydroxymethylcytosine is associated with the progression of cervical intraepithelial neoplasia. PLoS One 2020; 15:e0241482. [PMID: 33141854 PMCID: PMC7608920 DOI: 10.1371/journal.pone.0241482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022] Open
Abstract
Around the world, cervical cancer is one of the most common neoplastic diseases among women, and the prognosis of patients in an advanced stage remains poor. To reduce the mortality rate of cervical cancer, early diagnosis and treatment are essential. DNA methylation is an important aspect of gene regulation, and aberrant DNA methylation contributes to carcinogenesis and cancer progression in various cancers. Although 5-methylcytosine (5mC) has been analyzed intensively, the function of 5-hydroxymethylcytosine (5hmC) has not been clarified. The purpose of our study was to identify the molecular biomarkers for early diagnosis of cervical tumors due to epigenetic alterations. To assess the clinical relevance of DNA methylation, we used immunohistochemistry (IHC) to characterize the level of 5hmC in 102 archived human cervical intraepithelial neoplasia (CIN) samples and cervical cancer specimens. The level of 5hmC was significantly decreased between CIN2 and CIN3. The progression of cervical tumors is caused by a reduction of TP53 and RB1 because of HPV infection. We observed that Tp53 and Rb1 were knocked down in mouse embryonic fibroblasts (MEF), a model of normal cells. The level of 5hmC was reduced in Tp53-knockdown cells, and the expression levels of DNA methyltransferase 1 (DNMT1) and ten-eleven translocation methylcytosine dioxygenase 1 (TET1) were induced. In contrast, there was no significant change in Rb1-knockdown cells. Mechanistically, we focused on apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) 3B (A3B) as a cause of 5hmC reduction after TP53 knockdown. In the human cell line HHUA with a wild-type TP53 gene, A3B was induced in TP53-knockdown cells, and A3B knockdown recovered 5hmC levels in TP53-knockdown cells. These data indicate that TP53 suppression leads to 5hmC reduction in part through A3B induction. Moreover, IHC showed that expression levels of A3B in CIN3 were significantly higher than those in both normal epithelium and in CIN2. In conclusion, 5hmC levels are decreased between CIN2 and CIN3 through the TP53-A3B pathway. Since A3B could impair genome stability, 5hmC loss might increase the chances of accumulating mutations and of progressing from CIN3 to cervical cancer. Thus, these epigenetic changes could predict whether CINs are progressing to cancer or disappearing.
Collapse
Affiliation(s)
- Masaya Kato
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Minoru Kawakami
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Yoshida
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiko Kawamura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keisuke Kodama
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Cui
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Atsuo Itakura
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, School of Medical Sciences, Juntendo University, Tokyo, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
57
|
Fletcher SC, Coleman ML. Human 2-oxoglutarate-dependent oxygenases: nutrient sensors, stress responders, and disease mediators. Biochem Soc Trans 2020; 48:1843-1858. [PMID: 32985654 PMCID: PMC7609023 DOI: 10.1042/bst20190333] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate (2OG)-dependent oxygenases are a conserved enzyme class that catalyse diverse oxidative reactions across nature. In humans, these enzymes hydroxylate a broad range of biological substrates including DNA, RNA, proteins and some metabolic intermediates. Correspondingly, members of the 2OG-dependent oxygenase superfamily have been linked to fundamental biological processes, and found dysregulated in numerous human diseases. Such findings have stimulated efforts to understand both the biochemical activities and cellular functions of these enzymes, as many have been poorly studied. In this review, we focus on human 2OG-dependent oxygenases catalysing the hydroxylation of protein and polynucleotide substrates. We discuss their modulation by changes in the cellular microenvironment, particularly with respect to oxygen, iron, 2OG and the effects of oncometabolites. We also describe emerging evidence that these enzymes are responsive to cellular stresses including hypoxia and DNA damage. Moreover, we examine how dysregulation of 2OG-dependent oxygenases is associated with human disease, and the apparent paradoxical role for some of these enzymes during cancer development. Finally, we discuss some of the challenges associated with assigning biochemical activities and cellular functions to 2OG-dependent oxygenases.
Collapse
Affiliation(s)
- Sally C. Fletcher
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Mathew L. Coleman
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
58
|
Misawa K, Yamada S, Mima M, Nakagawa T, Kurokawa T, Imai A, Mochizuki D, Shinmura D, Yamada T, Kita J, Ishikawa R, Yamaguchi Y, Misawa Y, Kanazawa T, Kawasaki H, Mineta H. Long interspersed nuclear element 1 hypomethylation has novel prognostic value and potential utility in liquid biopsy for oral cavity cancer. Biomark Res 2020; 8:53. [PMID: 33110605 PMCID: PMC7585304 DOI: 10.1186/s40364-020-00235-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Background New biomarkers are urgently needed to improve personalized treatment approaches for head and neck squamous cell carcinoma (HNSCC). Global DNA hypomethylation has wide-ranging functions in multistep carcinogenesis, and the hypomethylation of long interspersed nucleotide element-1 (LINE-1) is related to increased retrotransposon activity and induced genome instability. However, little information is available regarding LINE-1 hypomethylation and its prognostic implications in HNSCC. Methods In this study, we analyzed LINE-1 hypomethylation levels in a well-characterized dataset of 317 primary HNSCC tissues and 225 matched pairs of normal mucosa tissues, along with five oral cavity cancer (OCC) circulating tumor DNA (ctDNA) samples using quantitative real-time methylation and unmethylation PCR. The analysis was performed according to various clinical characteristics and prognostic implications. Results The results demonstrated that LINE-1 hypomethylation levels were significantly higher in the HNSCC tissues than in corresponding normal tissues from the same individuals (P < 0.001). Univariate analysis revealed that high levels of LINE-1 hypomethylation were correlated with poor disease-free survival (DFS; log-rank test, P = 0.038), whereas multivariate analysis demonstrated that they were significant independent prognostic factor for DFS (hazard ratio: 2.10, 95% confidence interval: 1.02–4.36; P = 0.045). Moreover, samples with high LINE-1 hypomethylation levels exhibited the greatest decrease in 5-hydroxymethylcytosine (5-hmC) levels and increase in tumor-suppressor gene methylation index (P = 0.006 and P < 0.001, respectively). Further, ctDNA studies also showed that LINE-1 hypomethylation had high predictive ability in OCC. Conclusions LINE-1 hypomethylation is associated with a higher risk of early OCC relapse, and is hence, a potential predictive biomarker for OCC. Furthermore, 5-hmC levels also exhibited predictive potential in OCC, based on their inverse correlation with LINE-1 hypomethylation levels. LINE-1 hypomethylation analysis, therefore, has applications in determining patient prognosis and real-time surveillance of disease recurrence, and could serve as an alternative method for OCC screening. Supplementary information Supplementary information accompanies this paper at 10.1186/s40364-020-00235-y.
Collapse
Affiliation(s)
- Kiyoshi Misawa
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Satoshi Yamada
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Masato Mima
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomoya Kurokawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Imai
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Daiki Mochizuki
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Daichi Shinmura
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Taiki Yamada
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Junya Kita
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Ryuji Ishikawa
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Yuki Yamaguchi
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Yuki Misawa
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| | - Takeharu Kanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Jichi Medical University, Shimotsuke, Tochigi Japan
| | - Hideya Kawasaki
- Preeminent Medical Photonics Education and Research Center Institute for NanoSuit Research, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Mineta
- Department of Otorhinolaryngology /Head and Neck Surgery, 1-20-1 Handayama, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192 Japan
| |
Collapse
|
59
|
Reversal of nucleobase methylation by dioxygenases. Nat Chem Biol 2020; 16:1160-1169. [DOI: 10.1038/s41589-020-00675-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
60
|
Alhmoud JF, Mustafa AG, Malki MI. Targeting DNA Repair Pathways in Hematological Malignancies. Int J Mol Sci 2020; 21:ijms21197365. [PMID: 33036137 PMCID: PMC7582413 DOI: 10.3390/ijms21197365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
DNA repair plays an essential role in protecting cells that are repeatedly exposed to endogenous or exogenous insults that can induce varying degrees of DNA damage. Any defect in DNA repair mechanisms results in multiple genomic changes that ultimately may result in mutation, tumor growth, and/or cell apoptosis. Furthermore, impaired repair mechanisms can also lead to genomic instability, which can initiate tumorigenesis and development of hematological malignancy. This review discusses recent findings and highlights the importance of DNA repair components and the impact of their aberrations on hematological malignancies.
Collapse
Affiliation(s)
- Jehad F. Alhmoud
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Ayman G. Mustafa
- College of Medicine, QU Health, Qatar University, P. O. Box 2713 Doha, Qatar;
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P. O. Box 2713 Doha, Qatar;
- Correspondence: ; Tel.: +97-44403-7847
| |
Collapse
|
61
|
Yang Z, Jiang H. A chromatin perspective on metabolic and genotoxic impacts on hematopoietic stem and progenitor cells. Cell Mol Life Sci 2020; 77:4031-4047. [PMID: 32318759 PMCID: PMC7541408 DOI: 10.1007/s00018-020-03522-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Fate determination in self-renewal and differentiation of hematopoietic stem and progenitor cells (HSCs and HPCs) is ultimately controlled by gene expression, which is profoundly influenced by the global and local chromatin state. Cellular metabolism directly influences the chromatin state through the dynamic regulation of the enzymatic activities that modify DNA and histones, but also generates genotoxic metabolites that can damage DNA and thus pose threat to the genome integrity. On the other hand, mechanisms modulating the chromatin state impact metabolism by regulating the expression and activities of key metabolic enzymes. Moreover, through regulating either DNA damage response directly or expression of genes involved in this process, chromatin modulators play active and crucial roles in guarding the genome integrity, breaching of which results in defective HSPC function. Therefore, HSPC function is regulated by the dynamic and two-way interactions between metabolism and chromatin. Here, we review recent advances that provide a chromatin perspective on the major impacts the metabolic and genotoxic factors can have on HSPC function and fate determination.
Collapse
Affiliation(s)
- Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
62
|
Eckenroth BE, Cao VB, Averill AM, Dragon JA, Doublié S. Unique Structural Features of Mammalian NEIL2 DNA Glycosylase Prime Its Activity for Diverse DNA Substrates and Environments. Structure 2020; 29:29-42.e4. [PMID: 32846144 DOI: 10.1016/j.str.2020.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/10/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022]
Abstract
Oxidative damage on DNA arising from both endogenous and exogenous sources can result in base modifications that promote errors in replication as well as generating sites of base loss (abasic sites) that present unique challenges to maintaining genomic integrity. These lesions are excised by DNA glycosylases in the first step of the base excision repair pathway. Here we present the first crystal structure of a NEIL2 glycosylase, an enzyme active on cytosine oxidation products and abasic sites. The structure reveals an unusual "open" conformation not seen in NEIL1 or NEIL3 orthologs. NEIL2 is predicted to adopt a "closed" conformation when bound to its substrate. Combined crystallographic and solution-scattering studies show the enzyme to be conformationally dynamic in a manner distinct among the NEIL glycosylases and provide insight into the unique substrate preference of this enzyme. In addition, we characterized three cancer variants of human NEIL2, namely S140N, G230W, and G303R.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA.
| | - Vy Bao Cao
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Stafford Hall, 95 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
63
|
Eldin P, Péron S, Galashevskaya A, Denis-Lagache N, Cogné M, Slupphaug G, Briant L. Impact of HIV-1 Vpr manipulation of the DNA repair enzyme UNG2 on B lymphocyte class switch recombination. J Transl Med 2020; 18:310. [PMID: 32778120 PMCID: PMC7418440 DOI: 10.1186/s12967-020-02478-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background HIV-1 Vpr encodes a 14 kDa protein that has been implicated in viral pathogenesis through modulation of several host cell functions. In addition to pro-apoptotic and cytostatic properties, Vpr can redirect cellular E3 ubiquitin ligases (such as DCAF1-Cul4A E3 ligase complex) to target many host proteins and interfere with their functions. Among them, Vpr binds the uracil DNA glycosylase UNG2, which controls genome uracilation, and induces its specific degradation leading to loss of uracil removal activity in infected cells. Considering the essential role of UNG2 in antibody diversification in B-cells, we evaluated the impact of Vpr on UNG2 fate in B lymphocytes and examined the functional consequences of UNG2 modulations on class switch recombination (CSR). Methods The impact of Vpr-induced UNG2 deregulation on CSR proficiency was evaluated by using virus-like particles able to deliver Vpr protein to target cells including the murine model CSR B cell line CH12F3 and mouse primary B-cells. Co-culture experiments were used to re-examine the ability of Vpr to be released by HIV-1 infected cells and to effectively accumulate in bystander B-cells. Vpr-mediated UNG2 modulations were monitored by following UNG2 protein abundance and uracil removal enzymatic activity. Results In this study we report the ability of Vpr to reduce immunoglobulin class switch recombination (CSR) in immortalized and primary mouse B-cells through the degradation of UNG2. We also emphasize that Vpr is released by producing cells and penetrates bystander B lymphocytes. Conclusions This work therefore opens up new perspectives to study alterations of the B-cell response by using Vpr as a specific CSR blocking tool. Moreover, our results raise the question of whether extracellular HIV-1 Vpr detected in some patients may manipulate the antibody diversification process that engineers an adapted response against pathogenic intruders and thereby contribute to the intrinsic B-cell humoral defect reported in infected patients.
Collapse
Affiliation(s)
- Patrick Eldin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | - Sophie Péron
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Anastasia Galashevskaya
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Nicolas Denis-Lagache
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Michel Cogné
- Contrôle de la Réponse Immune B et des Lymphoproliférations (CBRIL), UMR CNRS 7276 INSERM 1262, Centre de Biologie et de Recherche en Santé (CBRS), Faculté de Limoges, 2 rue du Dr. Marcland, 87000, Limoges, France
| | - Geir Slupphaug
- Proteomics and Modomics Experimental Core (PROMEC), Department of Cancer Research and Molecular Medicine, Laboratory Centre, Norwegian University of Science and Technology (NTNU), 5th Floor. Erling Skjalgssons gt. 1, 7491, Trondheim, Norway
| | - Laurence Briant
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| |
Collapse
|
64
|
Vander Zanden CM, Czarny RS, Ho EN, Robertson AB, Ho PS. Structural adaptation of vertebrate endonuclease G for 5-hydroxymethylcytosine recognition and function. Nucleic Acids Res 2020; 48:3962-3974. [PMID: 32095813 PMCID: PMC7144941 DOI: 10.1093/nar/gkaa117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/07/2023] Open
Abstract
Modified DNA bases functionally distinguish the taxonomic forms of life—5-methylcytosine separates prokaryotes from eukaryotes and 5-hydroxymethylcytosine (5hmC) invertebrates from vertebrates. We demonstrate here that mouse endonuclease G (mEndoG) shows specificity for both 5hmC and Holliday junctions. The enzyme has higher affinity (>50-fold) for junctions over duplex DNAs. A 5hmC-modification shifts the position of the cut site and increases the rate of DNA cleavage in modified versus unmodified junctions. The crystal structure of mEndoG shows that a cysteine (Cys69) is positioned to recognize 5hmC through a thiol-hydroxyl hydrogen bond. Although this Cys is conserved from worms to mammals, a two amino acid deletion in the vertebrate relative to the invertebrate sequence unwinds an α-helix, placing the thiol of Cys69 into the mEndoG active site. Mutations of Cys69 with alanine or serine show 5hmC-specificity that mirrors the hydrogen bonding potential of the side chain (C–H < S–H < O–H). A second orthogonal DNA binding site identified in the mEndoG structure accommodates a second arm of a junction. Thus, the specificity of mEndoG for 5hmC and junctions derives from structural adaptations that distinguish the vertebrate from the invertebrate enzyme, thereby thereby supporting a role for 5hmC in recombination processes.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ryan S Czarny
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Ethan N Ho
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Adam B Robertson
- Department of Molecular Microbiology, Oslo University Hospital, Sognsvannsveien 20, NO-0027 Oslo, Norway
| | - P Shing Ho
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
65
|
Kafer GR, Cesare AJ. A Survey of Essential Genome Stability Genes Reveals That Replication Stress Mitigation Is Critical for Peri-Implantation Embryogenesis. Front Cell Dev Biol 2020; 8:416. [PMID: 32548123 PMCID: PMC7274024 DOI: 10.3389/fcell.2020.00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022] Open
Abstract
Murine development demands that pluripotent epiblast stem cells in the peri-implantation embryo increase from approximately 120 to 14,000 cells between embryonic days (E) 4.5 and E7.5. This is possible because epiblast stem cells can complete cell cycles in under 3 h in vivo. To ensure conceptus fitness, epiblast cells must undertake this proliferative feat while maintaining genome integrity. How epiblast cells maintain genome health under such an immense proliferation demand remains unclear. To illuminate the contribution of genome stability pathways to early mammalian development we systematically reviewed knockout mouse data from 347 DDR and repair associated genes. Cumulatively, the data indicate that while many DNA repair functions are dispensable in embryogenesis, genes encoding replication stress response and homology directed repair factors are essential specifically during the peri-implantation stage of early development. We discuss the significance of these findings in the context of the unique proliferative demands placed on pluripotent epiblast stem cells.
Collapse
Affiliation(s)
| | - Anthony J. Cesare
- Genome Integrity Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
66
|
TET1 promotes growth of T-cell acute lymphoblastic leukemia and can be antagonized via PARP inhibition. Leukemia 2020; 35:389-403. [PMID: 32409690 DOI: 10.1038/s41375-020-0864-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer characterized by skewed epigenetic patterns, raising the possibility of therapeutically targeting epigenetic factors in this disease. Here we report that among different cancer types, epigenetic factor TET1 is highly expressed in T-ALL and is crucial for human T-ALL cell growth in vivo. Knockout of TET1 in mice and knockdown in human T cell did not perturb normal T-cell proliferation, indicating that TET1 expression is dispensable for normal T-cell growth. The promotion of leukemic growth by TET1 was dependent on its catalytic property to maintain global 5-hydroxymethylcytosine (5hmC) marks, thereby regulate cell cycle, DNA repair genes, and T-ALL associated oncogenes. Furthermore, overexpression of the Tet1-catalytic domain was sufficient to augment global 5hmC levels and leukemic growth of T-ALL cells in vivo. We demonstrate that PARP enzymes, which are highly expressed in T-ALL patients, participate in establishing H3K4me3 marks at the TET1 promoter and that PARP1 interacts with the TET1 protein. Importantly, the growth related role of TET1 in T-ALL could be antagonized by the clinically approved PARP inhibitor Olaparib, which abrogated TET1 expression, induced loss of 5hmC marks, and antagonized leukemic growth of T-ALL cells, opening a therapeutic avenue for this disease.
Collapse
|
67
|
Kaur G, Batra S. Regulation of DNA methylation signatures on NF-κB and STAT3 pathway genes and TET activity in cigarette smoke extract-challenged cells/COPD exacerbation model in vitro. Cell Biol Toxicol 2020; 36:459-480. [PMID: 32342329 DOI: 10.1007/s10565-020-09522-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a global health problem. Currently, there is a lack of knowledge about the pathobiology of this disease and available therapies are ineffective. Cigarette smoking is the leading cause of COPD; however, not all smokers develop COPD. Exacerbations of COPD caused by microbes are common and detrimental. Approximately 20-50% of patient exacerbations are caused by bacterial colonization in the lower airways. It is generally accepted that epigenetic mechanisms, especially DNA methylation, play an important role during progression of COPD. Thus, we hypothesized that DNA methylation patterns vary significantly following smoke exposure and during exacerbations caused by bacterial infections. To test our hypothesis, we used an in vitro study model that mimics COPD exacerbations and performed extensive studies to understand the role of CpG promoter methylation of NF-κB and STAT3-mediated pathway genes. Both NF-κB and STAT3 transcription factors play critical roles in orchestrating inflammatory responses during cigarette smoke exposure. In brief, human lung adenocarcinoma cells with type II alveolar epithelium characteristics (A549) were challenged with cigarette smoke extract (CSE) or DMSO (control) followed by a 3-h challenge with bacterial lipopolysaccharide (LPS; from Pseudomonas aeruginosa) prior to the termination of CSE exposure (COPD exacerbation group). The production of cytokines/chemokines, regulation of transcription factors, and DNA methylation of specific genes were then assessed. We also studied changes in the expression and activity of ten-eleven translocases (TETs), the enzymes responsible for DNA demethylation, and assessed their role in regulating DNA methylation in the CSE-challenged group. RESULTS There was a significant increase in the release of cytokines/chemokines (IL-8, MCP-1, IL-6 and CCL5) in the COPD exacerbation group as compared to the control group. Hypomethylation of NF-κB-mediated pathway genes correlated with their induction in our COPD exacerbation study model. Further, we observed an important role of TET1/2 in regulating the DNA methylation of NF-κB, STAT3, IKK, and NIK genes and cytokine/chemokine production by A549 cells during CSE challenge. CONCLUSIONS Studies to further define the role of TETs in CSE-mediated epigenetic regulation may lead to the development of better and more effective therapeutic intervention strategies for COPD.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
68
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
69
|
Wilkins OM, Johnson KC, Houseman EA, King JE, Marsit CJ, Christensen BC. Genome-wide characterization of cytosine-specific 5-hydroxymethylation in normal breast tissue. Epigenetics 2019; 15:398-418. [PMID: 31842685 PMCID: PMC7153548 DOI: 10.1080/15592294.2019.1695332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite recent evidence that 5-hydroxymethylcytosine (5hmC) possesses roles in gene regulation distinct from 5-methylcytosine (5mC), relatively little is known regarding the functions of 5hmC in mammalian tissues. To address this issue, we utilized an approach combining both paired bisulfite (BS) and oxidative bisulfite (oxBS) DNA treatment, to resolve genome-wide patterns of 5hmC and 5mC in normal breast tissue from disease-free women. Although less abundant than 5mC, 5hmC was differentially distributed, and consistently enriched among breast-specific enhancers and transcriptionally active chromatin. In contrast, regulatory regions associated with transcriptional inactivity, such as heterochromatin and repressed Polycomb regions, were relatively depleted of 5hmC. Gene regions containing abundant 5hmC were significantly associated with lactate oxidation, immune cell function, and prolactin signaling pathways. Furthermore, genes containing abundant 5hmC were enriched among those actively transcribed in normal breast tissue. Finally, in independent data sets, normal breast tissue 5hmC was significantly enriched among CpG loci demonstrated to have altered methylation in pre-invasive breast cancer and invasive breast tumors. Primarily, our findings identify genomic loci containing abundant 5hmC in breast tissues and provide a genome-wide map of nucleotide-level 5hmC in normal breast tissue. Additionally, these data suggest 5hmC may participate in gene regulatory programs that are dysregulated during breast-related carcinogenesis.
Collapse
Affiliation(s)
- Owen M Wilkins
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - E Andres Houseman
- Department of Biostatistics, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Jessica E King
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
70
|
Srivastava M, Chen Z, Zhang H, Tang M, Wang C, Jung SY, Chen J. Replisome Dynamics and Their Functional Relevance upon DNA Damage through the PCNA Interactome. Cell Rep 2019; 25:3869-3883.e4. [PMID: 30590055 PMCID: PMC6364303 DOI: 10.1016/j.celrep.2018.11.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/09/2018] [Accepted: 11/28/2018] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic cells use copious measures to ensure accurate duplication of the genome. Various genotoxic agents pose threats to the ongoing replication fork that, if not efficiently dealt with, can result in replication fork collapse. It is unknown how replication fork is precisely controlled and regulated under different conditions. Here, we examined the complexity of replication fork composition upon DNA damage by using a PCNA-based proteomic screen to uncover known and unexplored players involved in replication and replication stress response. We used camptothecin or UV radiation, which lead to fork-blocking lesions, to establish a comprehensive proteomics map of the replisome under such replication stress conditions. We identified and examined two potential candidate proteins WIZ and SALL1 for their roles in DNA replication and replication stress response. In addition, our unbiased screen uncovered many prospective candidate proteins that help fill the knowledge gap in understanding chromosomal DNA replication and DNA repair.
Collapse
Affiliation(s)
- Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Yun Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Shukla V, Halabelian L, Balagere S, Samaniego-Castruita D, Feldman DE, Arrowsmith CH, Rao A, Aravind L. HMCES Functions in the Alternative End-Joining Pathway of the DNA DSB Repair during Class Switch Recombination in B Cells. Mol Cell 2019; 77:384-394.e4. [PMID: 31806351 DOI: 10.1016/j.molcel.2019.10.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/06/2019] [Accepted: 10/22/2019] [Indexed: 01/08/2023]
Abstract
HMCES (5hmC binding, embryonic stem cell-specific-protein), originally identified as a protein capable of binding 5-hydroxymethylcytosine (5hmC), an epigenetic modification generated by TET proteins, was previously reported to covalently crosslink to DNA at abasic sites via a conserved cysteine. We show here that Hmces-deficient mice display normal hematopoiesis without global alterations in 5hmC. HMCES specifically enables DNA double-strand break repair through the microhomology-mediated alternative-end-joining (Alt-EJ) pathway during class switch recombination (CSR) in B cells, and HMCES deficiency leads to a significant defect in CSR. HMCES mediates Alt-EJ through its SOS-response-associated-peptidase domain (SRAPd), a function that requires DNA binding but is independent of its autopeptidase and DNA-crosslinking activities. We show that HMCES is recruited to switch regions of the immunoglobulin locus and provide a potential structural basis for the interaction of HMCES with long DNA overhangs generated by Alt-EJ during CSR. Our studies provide further evidence for a specialized role for HMCES in DNA repair.
Collapse
Affiliation(s)
- Vipul Shukla
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sanjana Balagere
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Daniela Samaniego-Castruita
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Douglas E Feldman
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, CA 93033, USA
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada.
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; Department of Pharmacology and Moores Cancer Center, University of San Diego, California, 9500 Gilman Drive, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
72
|
Armstrong MJ, Jin Y, Allen EG, Jin P. Diverse and dynamic DNA modifications in brain and diseases. Hum Mol Genet 2019; 28:R241-R253. [PMID: 31348493 PMCID: PMC6872432 DOI: 10.1093/hmg/ddz179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is a class of epigenetic modification essential for coordinating gene expression timing and magnitude throughout normal brain development and for proper brain function following development. Aberrant methylation changes are associated with changes in chromatin architecture, transcriptional alterations and a host of neurological disorders and diseases. This review highlights recent advances in our understanding of the methylome's functionality and covers potential new roles for DNA methylation, their readers, writers, and erasers. Additionally, we examine novel insights into the relationship between the methylome, DNA-protein interactions, and their contribution to neurodegenerative diseases. Lastly, we outline the gaps in our knowledge that will likely be filled through the widespread use of newer technologies that provide greater resolution into how individual cell types are affected by disease and the contribution of each individual modification site to disease pathogenicity.
Collapse
Affiliation(s)
- Matthew J Armstrong
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Yulin Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Emily G Allen
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
73
|
Aloia L, McKie MA, Vernaz G, Cordero-Espinoza L, Aleksieva N, van den Ameele J, Antonica F, Font-Cunill B, Raven A, Aiese Cigliano R, Belenguer G, Mort RL, Brand AH, Zernicka-Goetz M, Forbes SJ, Miska EA, Huch M. Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nat Cell Biol 2019; 21:1321-1333. [PMID: 31685987 PMCID: PMC6940196 DOI: 10.1038/s41556-019-0402-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.
Collapse
Affiliation(s)
- Luigi Aloia
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Mikel Alexander McKie
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Grégoire Vernaz
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Lucía Cordero-Espinoza
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Niya Aleksieva
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Jelle van den Ameele
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesco Antonica
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Berta Font-Cunill
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Alexander Raven
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | - German Belenguer
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Richard L Mort
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, UK
| | - Andrea H Brand
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA, USA
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Eric A Miska
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Meritxell Huch
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
74
|
Torchinsky D, Michaeli Y, Gassman NR, Ebenstein Y. Simultaneous detection of multiple DNA damage types by multi-colour fluorescent labelling. Chem Commun (Camb) 2019; 55:11414-11417. [PMID: 31482872 DOI: 10.1039/c9cc05198h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein we present an assay allowing concurrent detection of oxidative DNA damage and photoproducts. We apply DNA repair enzymes specific for each lesion type to incorporate spectrally distinct fluorescent nucleotides, enabling simultaneous quantification of the lesions on individual DNA molecules. We follow the repair of both damage types in skin cells exposed to artificial sunlight.
Collapse
Affiliation(s)
- Dmitry Torchinsky
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | | | | | | |
Collapse
|
75
|
Total DNA Methylation Changes Reflect Random Oxidative DNA Damage in Gliomas. Cells 2019; 8:cells8091065. [PMID: 31514401 PMCID: PMC6770701 DOI: 10.3390/cells8091065] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
DNA modifications can be used to monitor pathological processes. We have previously shown that estimating the amount of the main DNA epigenetic mark, 5-methylcytosine (m5C), is an efficient and reliable way to diagnose brain tumors, hypertension, and other diseases. Abnormal increases of reactive oxygen species (ROS) are a driving factor for mutations that lead to changes in m5C levels and cancer evolution. 8-oxo-deoxyguanosine (8-oxo-dG) is a specific marker of ROS-driven DNA-damage, and its accumulation makes m5C a hotspot for mutations. It is unknown how m5C and 8-oxo-dG correlate with the malignancy of gliomas. We analyzed the total contents of m5C and 8-oxo-dG in DNA from tumor tissue and peripheral blood samples from brain glioma patients. We found an opposite relationship in the amounts of m5C and 8-oxo-dG, which correlated with glioma grade in the way that low level of m5C and high level of 8-oxo-dG indicated increased glioma malignancy grade. Our results could be directly applied to patient monitoring and treatment protocols for gliomas, as well as bolster previous findings, suggesting that spontaneously generated ROS react with m5C. Because of the similar mechanisms of m5C and guanosine oxidation, we concluded that 8-oxo-dG could also predict glioma malignancy grade and global DNA demethylation in cancer cells.
Collapse
|
76
|
Lee Chong T, Ahearn EL, Cimmino L. Reprogramming the Epigenome With Vitamin C. Front Cell Dev Biol 2019; 7:128. [PMID: 31380368 PMCID: PMC6646595 DOI: 10.3389/fcell.2019.00128] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
The erasure of epigenetic modifications across the genome of somatic cells is an essential requirement during their reprogramming into induced pluripotent stem cells (iPSCs). Vitamin C plays a pivotal role in remodeling the epigenome by enhancing the activity of Jumonji-C domain-containing histone demethylases (JHDMs) and the ten-eleven translocation (TET) proteins. By maintaining differentiation plasticity in culture, vitamin C also improves the quality of tissue specific stem cells derived from iPSCs that are highly sought after for use in regenerative medicine. The ability of vitamin C to potentiate the activity of histone and DNA demethylating enzymes also has clinical application in the treatment of cancer. Vitamin C deficiency has been widely reported in cancer patients and has recently been shown to accelerate cancer progression in disease models. Therapies involving high-dose vitamin C administration are currently gaining traction in the treatment of epigenetic dysregulation, by targeting aberrant histone and DNA methylation patterns associated with cancer progression.
Collapse
Affiliation(s)
- Taylor Lee Chong
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Emily L Ahearn
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
77
|
Kuhns KJ, Lopez-Bertoni H, Coulter JB, Bressler JP. TET1 regulates DNA repair in human glial cells. Toxicol Appl Pharmacol 2019; 380:114646. [PMID: 31278917 DOI: 10.1016/j.taap.2019.114646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022]
Abstract
Glioblastomas are the most aggressive of malignant brain cancers with a median patient survival of approximately 18 months. We recently demonstrated that Tet methylcytosine dioxygenase 1(TET1) is involved in cellular responses to ionizing radiation (IR) in glial-, glioblastoma-, and non-tumor-derived cells. This study used a lentiviral-mediated knockdown of TET1 to further dissect the contribution of TET1 to the DNA damage response in glial cell lines by evaluating its role in DNA repair. TET1-deficient glial cell lines displayed attenuated cytotoxicity compared to non-targeted knockdown after treatment with IR but these differences were not observed between control and TET1 deficient in response to inhibitors of Na+/K+-ATPase. Additionally, the percentage of glial cells displaying γH2A.x foci was greatly reduced in TET1-deficient glial cells compared to non-targeted knockdown conditions in response to IR and topoisomerase inhibitors. We also observed a lower percentage and a delay in 53BP1 foci formation, a marker of non-homologous end-joining, in response to IR and topoisomerase inhibitors in TET1-deficient glial cells. DNA-PK, another marker of non-homologous end-joining, was also lower in TET1-deficient glial cell lines. Interestingly, TET1-deficient glial cells displayed higher numbers of DNA strand breaks compared to control cells and repaired DNA breaks less efficiently in Comet assays. We suggest that attenuated DNA repair in TET1 deficient gliomas leads to genomic instability, which underlies poor patient survival.
Collapse
Affiliation(s)
- Katherine J Kuhns
- Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Hernando Lopez-Bertoni
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Jonathan B Coulter
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD 21205, USA; Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | - Joseph P Bressler
- Department of Neurology, Hugo W. Moser Research Institute at Kennedy Krieger, 707 N. Broadway, Baltimore, MD 21205, USA; Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
78
|
Abstract
CONTEXT.— The steady rise in the incidence of cutaneous malignant melanoma and its inherently difficult-to-interpret histopathology continues to fuel an increasing demand for diagnostically and prognostically insightful adjunctive molecular tests among both clinicians and dermatopathologists. A number of DNA, RNA, and epigenetically based assays have now been developed and are at various stages of experimental and/or clinical use. OBJECTIVE.— To examine the evidence for the utility and limitations of these leading candidates for the diagnosis and risk stratification of melanoma and related melanocytic neoplasms. DATA SOURCES.— The available English medical literature was reviewed in the preparation of this manuscript. CONCLUSIONS.— Comparative genomic hybridization, fluorescence in situ hybridization, RNA-based gene expression profiling, and immunohistochemical assays for novel genetic and epigenetic markers will help bring diagnostic and prognostic accuracy to the assessment of melanocytic neoplasms.
Collapse
Affiliation(s)
- Jonathan J Lee
- From the Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Lee); and the Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Drs Lee and Lian)
| | - Christine G Lian
- From the Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Lee); and the Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Drs Lee and Lian)
| |
Collapse
|
79
|
Bussaglia E, Antón R, Nomdedéu JF, Fuentes-Prior P. TET2 missense variants in human neoplasia. A proposal of structural and functional classification. Mol Genet Genomic Med 2019; 7:e00772. [PMID: 31187595 PMCID: PMC6625141 DOI: 10.1002/mgg3.772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background The human TET2 gene plays a pivotal role in the epigenetic regulation of normal and malignant hematopoiesis. Somatic TET2 mutations have been repeatedly identified in age‐related clonal hematopoiesis and in myeloid neoplasms ranging from acute myeloid leukemia (AML) to myeloproliferative neoplasms. However, there have been no attempts to systematically explore the structural and functional consequences of the hundreds of TET2 missense variants reported to date. Methods We have sequenced the TET2 gene in 189 Spanish AML patients using Sanger sequencing and NGS protocols. Next, we performed a thorough bioinformatics analysis of TET2 protein and of the expected impact of all reported TET2 missense variants on protein structure and function, exploiting available structure‐and‐function information as well as 3D structure prediction tools. Results We have identified 38 TET2 allelic variants in the studied patients, including two frequent SNPs: p.G355D (10 cases) and p.I1762V (28 cases). Four of the detected mutations are reported here for the first time: c.122C>T (p.P41L), c.4535C>G (p.A1512G), c.4760A>G (p.D1587G), and c.5087A>T (p.Y1696F). We predict a complex multidomain architecture for the noncatalytic regions of TET2, and in particular the presence of well‐conserved α+β globular domains immediately preceding and following the actual catalytic unit. Further, we provide a rigorous interpretation of over 430 missense SNVs that affect the TET2 catalytic domain, and we hypothesize explanations for ~700 additional variants found within the regulatory regions of the protein. Finally, we propose a systematic classification of all missense mutants and SNPs reported to date into three major categories (severe, moderate, and mild), based on their predicted structural and functional impact. Conclusions The proposed classification of missense TET2 variants would help to assess their clinical impact on human neoplasia and may guide future structure‐and‐function investigations of TET family members.
Collapse
Affiliation(s)
- Elena Bussaglia
- Hematology Department and Diagnostic Hematology Group, Barcelona, Spain
| | - Rosa Antón
- Molecular Bases of Disease, The Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josep F Nomdedéu
- Hematology Department and Diagnostic Hematology Group, Barcelona, Spain
| | - Pablo Fuentes-Prior
- Molecular Bases of Disease, The Biomedical Research Institute Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
80
|
Schoeler K, Aufschnaiter A, Messner S, Derudder E, Herzog S, Villunger A, Rajewsky K, Labi V. TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells. FEBS J 2019; 286:3566-3581. [PMID: 31120187 PMCID: PMC6851767 DOI: 10.1111/febs.14934] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Upon activation by antigen, B cells form germinal centres where they clonally expand and introduce affinity-enhancing mutations into their B-cell receptor genes. Somatic mutagenesis and class switch recombination (CSR) in germinal centre B cells are initiated by the activation-induced cytidine deaminase (AID). Upon germinal centre exit, B cells differentiate into antibody-secreting plasma cells. Germinal centre maintenance and terminal fate choice require transcriptional reprogramming that associates with a substantial reconfiguration of DNA methylation patterns. Here we examine the role of ten-eleven-translocation (TET) proteins, enzymes that facilitate DNA demethylation and promote a permissive chromatin state by oxidizing 5-methylcytosine, in antibody-mediated immunity. Using a conditional gene ablation strategy, we show that TET2 and TET3 guide the transition of germinal centre B cells to antibody-secreting plasma cells. Optimal AID expression requires TET function, and TET2 and TET3 double-deficient germinal centre B cells show defects in CSR. However, TET2/TET3 double-deficiency does not prevent the generation and selection of high-affinity germinal centre B cells. Rather, combined TET2 and TET3 loss-of-function in germinal centre B cells favours C-to-T and G-to-A transition mutagenesis, a finding that may be of significance for understanding the aetiology of B-cell lymphomas evolving in conditions of reduced TET function.
Collapse
Affiliation(s)
- Katia Schoeler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Aufschnaiter
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Simon Messner
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin-Buch, Germany
| | - Verena Labi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Austria
| |
Collapse
|
81
|
Yan J, Shun MC, Zhang Y, Hao C, Skowronski J. HIV-1 Vpr counteracts HLTF-mediated restriction of HIV-1 infection in T cells. Proc Natl Acad Sci U S A 2019; 116:9568-9577. [PMID: 31019079 PMCID: PMC6511057 DOI: 10.1073/pnas.1818401116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses, including HIV-1, possess the ability to enter the nucleus through nuclear pore complexes and can infect interphase cells, including those actively replicating chromosomal DNA. Viral accessory proteins hijack host cell E3 enzymes to antagonize intrinsic defenses, and thereby provide a more permissive environment for virus replication. The HIV-1 Vpr accessory protein reprograms CRL4DCAF1 E3 to antagonize select postreplication DNA repair enzymes and activates the DNA damage checkpoint in the G2 cell cycle phase. However, little is known about the roles played by these Vpr targets in HIV-1 replication. Here, using a sensitive pairwise replication competition assay, we show that Vpr endows HIV-1 with a strong replication advantage in activated primary CD4+ T cells and established T cell lines. This effect is disabled by a Vpr mutation that abolishes binding to CRL4DCAF1 E3, thereby disrupting Vpr antagonism of helicase-like transcription factor (HLTF) DNA helicase and other DNA repair pathway targets, and by another mutation that prevents induction of the G2 DNA damage checkpoint. Consistent with these findings, we also show that HLTF restricts HIV-1 replication, and that this restriction is antagonized by HIV-1 Vpr. Furthermore, our data imply that HIV-1 Vpr uses additional, yet to be identified mechanisms to facilitate HIV-1 replication in T cells. Overall, we demonstrate that multiple aspects of the cellular DNA repair machinery restrict HIV-1 replication in dividing T cells, the primary target of HIV-1 infection, and describe newly developed approaches to dissect key components.
Collapse
Affiliation(s)
- Junpeng Yan
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Ming-Chieh Shun
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Yi Zhang
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Caili Hao
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| | - Jacek Skowronski
- Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, OH 44106
| |
Collapse
|
82
|
Wilson RL, François M, Jankovic-Karasoulos T, McAninch D, McCullough D, Leifert WR, Roberts CT, Bianco-Miotto T. Characterization of 5-methylcytosine and 5-hydroxymethylcytosine in human placenta cell types across gestation. Epigenetics 2019; 14:660-671. [PMID: 31038385 DOI: 10.1080/15592294.2019.1609866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The placenta is an important organ in pregnancy, however, very little is understood about placental development at a molecular level. This includes the role of epigenetic mechanisms and how they change throughout gestation. DNA methylation studies in this organ are complicated by the different cell types that make up the placenta, each with their own unique transcriptome and epigenome. Placental dysfunction is often associated with pregnancy complications such as preeclampsia (PE). Aberrant DNA methylation in the placenta has been identified in pregnancy complications. We used immunohistochemistry (IHC) and immunofluorescence (IF) to localize 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in placenta tissue from first and second trimester as well as uncomplicated term and PE samples. IHC analysis of whole placental tissues showed 5-mC increased across gestation. When cytotrophoblasts (CTB) and syncytiotrophoblasts (STB) were isolated and assessed using IF, both 5-mC and 5-hmC increased in term CTBs compared to first/second-trimester samples. Staining intensity of 5-hmC was higher in first/second trimester STBs compared to CTBs (P = 0.0011). Finally, IHC staining of term tissue from PE and uncomplicated pregnancies revealed higher 5-mC staining intensity in placentas from PE pregnancies (P = 0.028). Our study has shown increased 5-mC and 5-hmC staining intensities across gestation and differed between two trophoblast populations. Differences in DNA methylation profiles between placental cell types may be indicative of different functions and requires further study to elucidate what changes accompany placental pathologies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- a Center for Fetal and Placental Research , Cincinnati Children's Hospital and Medical Research Center , Cincinnati , OH , USA.,b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Maxime François
- d CSIRO Health and Biosecurity , Future Science Platforms Probing Biosystems , Adelaide , Australia.,e School of Biological Sciences , University of Adelaide , Adelaide , Australia
| | - Tanja Jankovic-Karasoulos
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Dale McAninch
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Dylan McCullough
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Wayne R Leifert
- d CSIRO Health and Biosecurity , Future Science Platforms Probing Biosystems , Adelaide , Australia.,e School of Biological Sciences , University of Adelaide , Adelaide , Australia
| | - Claire T Roberts
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Tina Bianco-Miotto
- c Robinson Research Institute , University of Adelaide , Adelaide , Australia.,f School of Agriculture, Food and Wine, Waite Research Institute , University of Adelaide , Adelaide , Australia
| |
Collapse
|
83
|
Kondo Y. Genome-Epigenome-Senescence: Is TET1 a Caretaker of p53-Injured Lung Cancer Cells? Cancer Res 2019; 79:1751-1752. [PMID: 30987976 DOI: 10.1158/0008-5472.can-19-0645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 11/16/2022]
Abstract
The study by Filipczak and colleagues identified the interplay between mutant p53 proteins and methylcytosine dioxygenase ten-eleven translocation 1 (TET1) in lung cancers. p53 transversion mutations were closely associated with high TET1 expression, which prevented genomic instability-associated cellular senescence. Depletion of TET1 was synergistic with classical antitumor drugs, such as cisplatin or doxorubicin, providing an attractive rationale for targeted therapies against TET1 combined with antitumor drugs in patients with p53-mutant lung cancer.See related article by Filipczak et al., p. 1758.
Collapse
Affiliation(s)
- Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
84
|
Feng Y, Li X, Cassady K, Zou Z, Zhang X. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front Oncol 2019; 9:210. [PMID: 31001476 PMCID: PMC6454012 DOI: 10.3389/fonc.2019.00210] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Over the last decade, investigation of Ten-Eleven Translocation 2 (TET2) gene function and TET2 mutation have become of increasing interest in the field of hematology. This heightened interest was sparked by the seminal discoveries that (1) TET2 mutation is associated with development of hematological malignancies and that (2) the TET family of proteins is critical in promoting DNA demethylation and immune homeostasis. Since then, additional studies have begun to unravel the question “Does TET2 have additional biological functions in the regulation of hematopoiesis?” Here, we present a mini-review focused on the current understanding of TET2 in hematopoiesis, hematological malignancies, and immune regulation. Importantly, we highlight the critical function that TET2 facilitates in maintaining the stability of the genome. Based on our review of the literature, we provide a new hypothesis that loss of TET2 may lead to dysregulation of the DNA repair response, augment genome instability, and subsequently sensitize myeloid leukemia cells to PARP inhibitor treatment.
Collapse
Affiliation(s)
- Yimei Feng
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Xiaoping Li
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| | - Kaniel Cassady
- Irell and Manella Graduate School of Biological Sciences of City of Hope, Duarte, CA, United States.,Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, United States
| | - Zhongmin Zou
- Department of Chemical Defense, School of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, China
| |
Collapse
|
85
|
Nakatsukasa H, Oda M, Yin J, Chikuma S, Ito M, Koga-Iizuka M, Someya K, Kitagawa Y, Ohkura N, Sakaguchi S, Koya I, Sanosaka T, Kohyama J, Tsukada YI, Yamanaka S, Takamura-Enya T, Lu Q, Yoshimura A. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression. Int Immunol 2019; 31:335-347. [DOI: 10.1093/intimm/dxz008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Mayumi Oda
- Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jinghua Yin
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | | | - Minako Ito
- Department of Microbiology and Immunology
| | | | | | - Yohko Kitagawa
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan
| | - Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita 565-0871, Japan
| | - Ikuko Koya
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yu-ichi Tsukada
- Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Soichiro Yamanaka
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, Shimo-Ogino 1030, Atsugi-shi 243-0292, Japan
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011, China
| | | |
Collapse
|
86
|
Zhang J, Tan P, Guo L, Gong J, Ma J, Li J, Lee M, Fang S, Jing J, Johnson G, Sun D, Cao WM, Dashwood R, Han L, Zhou Y, Dong WG, Huang Y. p53-dependent autophagic degradation of TET2 modulates cancer therapeutic resistance. Oncogene 2019; 38:1905-1919. [PMID: 30390073 PMCID: PMC6419514 DOI: 10.1038/s41388-018-0524-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/04/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022]
Abstract
Tumor cells with p53 inactivation frequently exhibit chemotherapy resistance, which poses a long-standing challenge to cancer treatment. Here we unveiled a previously unrecognized role of TET2 in mediating p53-loss induced chemotherapy resistance in colon cancer. Deletion of TET2 in p53-null colon cancer cells enhanced DNA damage and restored chemotherapy sensitivity. By taking a two-pronged approach that combined pharmacological inhibition with genetic depletion, we discovered that p53 destabilized TET2 at the protein level by promoting its autophagic degradation. At the molecular level, we further revealed a physical association between TET2 and p53 that facilitated the nucleoplasmic shuttling of TET2, as well as its recruitment to the autophagosome for degradation. Our study has unveiled a functional interplay between TET2 and p53 during anti-cancer therapy. Our findings establish the rationale for targeting TET2 to overcome chemotherapy resistance associated with mutant p53 tumors.
Collapse
Affiliation(s)
- Jixiang Zhang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Lei Guo
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Jing Gong
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jingjing Ma
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Shaohai Fang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Gavin Johnson
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Deqiang Sun
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China, 310022
| | - Roderick Dashwood
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
- Department of Molecular & Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Medical Physiology, College of Medicine, Texas A&M University, Temple, TX, 76504, USA.
| | - Wei-Guo Dong
- Department of gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA.
- Department of Molecular & Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
87
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
88
|
Cui L, Hu J, Wang M, Li CC, Zhang CY. Label-Free and Immobilization-Free Electrochemical Magnetobiosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Anal Chem 2018; 91:1232-1236. [PMID: 30588799 DOI: 10.1021/acs.analchem.8b04663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA 5-hydroxymethylcytosine (5-hmC) is an important epigenetic biomarker for tumorigenesis, and the loss of 5-hmC levels is associated with leukemia and melanoma cancers. However, it is a great challenge to discriminate 5-hmC from 5-methylcytosine (5-mC) using the conventional bisulfite conversion methods. Herein, we report a label-free and immobilization-free electrochemical magnetobiosensor for sensitive quantification of 5-hmC in genomic DNA based on a dual signal amplification strategy coupled with terminal deoxynucleotidyl transferase (TDT) enzymatic amplification and Ru(III) redox cycling. This screen-printed carbon electrode (SPCE)-based electrochemical magnetobiosensor shows distinct advantages of having low cost and simple fabrication and being label-free, immobilization-free, PCR-free, and radioactive-free. It exhibits high sensitivity with a detection limit of as low as 9.06 fM and a large dynamic range from 0.01 to 1000 pM. Importantly, this biosensor can discriminate 5-hmC from cytosine and 5-mC, and it can successfully detect 5-hmC in live cells.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan , Shandong 250014 , PR China
| | - Juan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan , Shandong 250014 , PR China
| | - Meng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan , Shandong 250014 , PR China
| | - Chen-Chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan , Shandong 250014 , PR China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals , Shandong Normal University , Jinan , Shandong 250014 , PR China
| |
Collapse
|
89
|
Fabbrizi MR, Warshowsky KE, Zobel CL, Hallahan DE, Sharma GG. Molecular and epigenetic regulatory mechanisms of normal stem cell radiosensitivity. Cell Death Discov 2018; 4:117. [PMID: 30588339 PMCID: PMC6299079 DOI: 10.1038/s41420-018-0132-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Ionizing radiation (IR) therapy is a major cancer treatment modality and an indispensable auxiliary treatment for primary and metastatic cancers, but invariably results in debilitating organ dysfunctions. IR-induced depletion of neural stem/progenitor cells in the subgranular zone of the dentate gyrus in the hippocampus where neurogenesis occurs is considered largely responsible for deficiencies such as learning, memory, and spatial information processing in patients subjected to cranial irradiation. Similarly, IR therapy-induced intestinal injuries such as diarrhea and malabsorption are common side effects in patients with gastrointestinal tumors and are believed to be caused by intestinal stem cell drop out. Hematopoietic stem cell transplantation is currently used to reinstate blood production in leukemia patients and pre-clinical treatments show promising results in other organs such as the skin and kidney, but ethical issues and logistic problems make this route difficult to follow. An alternative way to restore the injured tissue is to preserve the stem cell pool located in that specific tissue/organ niche, but stem cell response to ionizing radiation is inadequately understood at the molecular mechanistic level. Although embryonic and fetal hypersensity to IR has been very well known for many decades, research on embryonic stem cell models in culture concerning molecular mechanisms have been largely inconclusive and often in contradiction of the in vivo observations. This review will summarize the latest discoveries on stem cell radiosensitivity, highlighting the possible molecular and epigenetic mechanism(s) involved in DNA damage response and programmed cell death after ionizing radiation therapy specific to normal stem cells. Finally, we will analyze the possible contribution of stem cell-specific chromatin's epigenetic constitution in promoting normal stem cell radiosensitivity.
Collapse
Affiliation(s)
- Maria Rita Fabbrizi
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Kacie E. Warshowsky
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Cheri L. Zobel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
| | - Dennis E. Hallahan
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| | - Girdhar G. Sharma
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park, Saint Louis, MO 63108 USA
- Siteman Cancer Center, Washington University School of Medicine, Saint Louis, MO 63108 USA
| |
Collapse
|
90
|
Chen LL, Lin HP, Zhou WJ, He CX, Zhang ZY, Cheng ZL, Song JB, Liu P, Chen XY, Xia YK, Chen XF, Sun RQ, Zhang JY, Sun YP, Song L, Liu BJ, Du RK, Ding C, Lan F, Huang SL, Zhou F, Liu S, Xiong Y, Ye D, Guan KL. SNIP1 Recruits TET2 to Regulate c-MYC Target Genes and Cellular DNA Damage Response. Cell Rep 2018; 25:1485-1500.e4. [PMID: 30404004 PMCID: PMC6317994 DOI: 10.1016/j.celrep.2018.10.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
The TET2 DNA dioxygenase regulates gene expression by catalyzing demethylation of 5-methylcytosine, thus epigenetically modulating the genome. TET2 does not contain a sequence-specific DNA-binding domain, and how it is recruited to specific genomic sites is not fully understood. Here we carried out a mammalian two-hybrid screen and identified multiple transcriptional regulators potentially interacting with TET2. The SMAD nuclear interacting protein 1 (SNIP1) physically interacts with TET2 and bridges TET2 to bind several transcription factors, including c-MYC. SNIP1 recruits TET2 to the promoters of c-MYC target genes, including those involved in DNA damage response and cell viability. TET2 protects cells from DNA damage-induced apoptosis dependending on SNIP1. Our observations uncover a mechanism for targeting TET2 to specific promoters through a ternary interaction with a co-activator and many sequence-specific DNA-binding factors. This study also reveals a TET2-SNIP1-c-MYC pathway in mediating DNA damage response, thereby connecting epigenetic control to maintenance of genome stability.
Collapse
Affiliation(s)
- Lei-Lei Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huai-Peng Lin
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Medical College of Xiamen University, Xiamen 361102, China
| | - Wen-Jie Zhou
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chen-Xi He
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Yong Zhang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhou-Li Cheng
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jun-Bin Song
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Liu
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin-Yu Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Kun Xia
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiu-Fei Chen
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ren-Qiang Sun
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing-Ye Zhang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Ping Sun
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Song
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Bing-Jie Liu
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Rui-Kai Du
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, National Center for National Center for Protein Science (The PHOENIX Center), Beijing, China
| | - Fei Lan
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sheng-Lin Huang
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Feng Zhou
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center, Key Laboratory of Breast Cancer in Shanghai, Innovation Center for Cell Signaling Network, Cancer Institutes, Fudan University, Shanghai, China
| | - Yue Xiong
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Dan Ye
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Kun-Liang Guan
- Huashan Hospital and Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
91
|
HIV-1 Vpr Reprograms CLR4 DCAF1 E3 Ubiquitin Ligase to Antagonize Exonuclease 1-Mediated Restriction of HIV-1 Infection. mBio 2018; 9:mBio.01732-18. [PMID: 30352932 PMCID: PMC6199497 DOI: 10.1128/mbio.01732-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-1 polymerase reverse transcribes the viral RNA genome into imperfectly double-stranded proviral DNA, containing gaps and flaps, for integration into the host cell chromosome. HIV-1 reverse transcripts share characteristics with cellular DNA replication intermediates and are thought to be converted into fully double-stranded DNA by cellular postreplication DNA repair enzymes. Therefore, the finding that the HIV-1 accessory protein Vpr antagonizes select postreplication DNA repair enzymes that can process HIV-1 reverse transcripts has been surprising. Here, we show that one such Vpr-antagonized enzyme, exonuclease 1, inhibits HIV-1 replication in T cells. We identify exonuclease 1 as a member of a new class of HIV-1 restriction factors in T cells and propose that certain modes of DNA “repair” inhibit HIV-1 infection. Viral accessory proteins hijack host cell E3 ubiquitin ligases to antagonize innate/intrinsic defenses and thereby provide a more permissive environment for virus replication. Human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr reprograms CRL4DCAF1 E3 to antagonize select postreplication DNA repair enzymes, but the significance and role of these Vpr interactions are poorly understood. To gain additional insights, we performed a focused screen for substrates of CRL4DCAF1 E3 reprogrammed by HIV-1 Vpr among known postreplication DNA repair proteins and identified exonuclease 1 (Exo1) as a novel direct HIV-1 Vpr target. We show that HIV-1 Vpr recruits Exo1 to the CRL4DCAF1 E3 complex for ubiquitination and subsequent proteasome-dependent degradation and that Exo1 levels are depleted in HIV-1-infected cells in a Vpr-dependent manner. We also show that Exo1 inhibits HIV-1 replication in T cells. Notably, the antagonism of Exo1 is a conserved function of main group HIV-1 and its ancestor Vpr proteins in the simian immunodeficiency virus from chimpanzee (SIVcpz) lineage, further underscoring the relevance of our findings. Overall, our studies (i) reveal that HIV-1 Vpr extensively remodels the cellular postreplication DNA repair machinery by impinging on multiple repair pathways, (ii) support a model in which Vpr promotes HIV-1 replication by antagonizing select DNA repair enzymes, and (iii) highlight the importance of a new class of restrictions placed on HIV-1 replication in T cells by the cellular DNA repair machinery.
Collapse
|
92
|
Wu X, Li G, Xie R. Decoding the role of TET family dioxygenases in lineage specification. Epigenetics Chromatin 2018; 11:58. [PMID: 30290828 PMCID: PMC6172806 DOI: 10.1186/s13072-018-0228-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of methylcytosine oxidase ten-eleven translocation (TET) proteins, we have witnessed an exponential increase in studies examining their roles in epigenetic regulation. TET family proteins catalyze the sequential oxidation of 5-methylcytosine (5mC) to oxidized methylcytosines including 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine. TETs contribute to the regulation of lineage-specific gene expression via modulating DNA 5mC/5hmC balances at the proximal and distal regulatory elements of cell identity genes, and therefore enhance chromatin accessibility and gene transcription. Emerging evidence suggests that TET dioxygenases participate in the establishment and/or maintenance of hypomethylated bivalent domains at multiple differentiation-associated genes, and thus ensure developmental plasticity. Here, we review the current state of knowledge concerning TET family proteins, DNA hydroxymethylation, their distribution, and function in endoderm, mesoderm, and neuroectoderm specification. We will summarize the evidence pertaining to their crucial regulatory roles in lineage commitment and development.
Collapse
Affiliation(s)
- Xinwei Wu
- Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Gang Li
- Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Ruiyu Xie
- Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
93
|
Karabulutoglu M, Finnon R, Imaoka T, Friedl AA, Badie C. Influence of diet and metabolism on hematopoietic stem cells and leukemia development following ionizing radiation exposure. Int J Radiat Biol 2018; 95:452-479. [PMID: 29932783 DOI: 10.1080/09553002.2018.1490042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE The review aims to discuss the prominence of dietary and metabolic regulators in maintaining hematopoietic stem cell (HSC) function, long-term self-renewal, and differentiation. RESULTS Most adult stem cells are preserved in a quiescent, nonmotile state in vivo which acts as a "protective state" for stem cells to reduce endogenous stress provoked by DNA replication and cellular respiration as well as exogenous environmental stress. The dynamic balance between quiescence, self-renewal and differentiation is critical for supporting a functional blood system throughout life of an organism. Stress-conditions, for example ionizing radiation exposure can trigger the blood forming HSCs to proliferate and migrate through extramedullary tissues to expand the number of HSCs and increase hematopoiesis. In addition, a wealth of investigation validated that deregulation of this balance plays a critical pathogenic role in various different hematopoietic diseases including the leukemia development. CONCLUSION The review summarizes the current knowledge on how alterations in dietary and metabolic factors could alter the risk of leukemia development following ionizing radiation exposure by inhibiting or even reversing the leukemic progression. Understanding the influence of diet, metabolism, and epigenetics on radiation-induced leukemogenesis may lead to the development of practical interventions to reduce the risk in exposed populations.
Collapse
Affiliation(s)
- Melis Karabulutoglu
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK.,b CRUK & MRC Oxford Institute for Radiation Oncology, Department of Oncology , University of Oxford , Oxford , UK
| | - Rosemary Finnon
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| | - Tatsuhiko Imaoka
- c Department of Radiation Effects Research, National Institute of Radiological Sciences , National Institutes for Quantum and Radiological Science and Technology , Chiba , Japan
| | - Anna A Friedl
- d Department of Radiation Oncology , University Hospital, LMU Munich , Munich , Germany
| | - Christophe Badie
- a Cancer Mechanisms and Biomarkers group, Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Didcot , UK
| |
Collapse
|
94
|
Extensive sex differences at the initiation of genetic recombination. Nature 2018; 561:338-342. [PMID: 30185906 PMCID: PMC6364566 DOI: 10.1038/s41586-018-0492-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 07/18/2018] [Indexed: 12/28/2022]
Abstract
Meiotic recombination differs between males and females; however, when and how these differences are established is unknown. Here we identify extensive sex differences at recombination initiation by mapping hotspots of meiotic DNA double-strand breaks in male and female mice. Contrary to past findings in humans, few hotspots are used uniquely in either sex. Instead, grossly different recombination landscapes result from up to 15-fold differences in hotspot usage between males and females. Indeed, most recombination occurs at sex-biased hotspots. Sex-biased hotspots appear to be partly determined by chromosome structure, and DNA methylation, absent in females at the onset of meiosis, plays a substantial role. Sex differences are also evident later in meiosis as the repair frequency of distal meiotic breaks as crossovers diverges in males and females. Suppression of distal crossovers may help to minimize age-related aneuploidy that arises due to cohesion loss during dictyate arrest in females.
Collapse
|
95
|
Tsagaratou A. TET mediated epigenetic regulation of iNKT cell lineage fate choice and function. Mol Immunol 2018; 101:564-573. [PMID: 30176520 DOI: 10.1016/j.molimm.2018.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/19/2018] [Accepted: 08/18/2018] [Indexed: 12/14/2022]
Abstract
During the last years, intensive research has shed light in the transcriptional networks that shape the invariant NKT (iNKT) cell lineage and guide the choices towards functionally distinct iNKT cell subsets (Constantinides and Bendelac, 2013; Engel and Kronenberg, 2014; Gapin, 2016; Kim et al., 2015). However, the epigenetic players that regulate gene expression and orchestrate the iNKT cell lineage choices remain poorly understood. Here, we summarize recent advances in our understanding of epigenetic regulation of iNKT cell development and lineage choice. Particular emphasis is placed on DNA modifications and the Ten Eleven Translocation (TET) family of DNA demethylases.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, San Diego, CA, 92037, USA.
| |
Collapse
|
96
|
Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 2018; 8:203-212. [PMID: 29161231 DOI: 10.1515/bmc-2017-0024] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded RNAs of 18-25 nucleotides that regulate gene expression at the post-transcriptional level. They are involved in many physiological and pathological processes, including cell proliferation, apoptosis, development and carcinogenesis. Because of the central role of miRNAs in the regulation of gene expression, their expression needs to be tightly controlled. Here, we summarize the different mechanisms of epigenetic regulation of miRNAs, with a particular focus on DNA methylation and histone modification.
Collapse
|
97
|
Forsdyke DR. The chromosomal basis of species initiation: Prdm9 as an anti-speciation gene. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
98
|
Angrish MM, Allard P, McCullough SD, Druwe IL, Helbling Chadwick L, Hines E, Chorley BN. Epigenetic Applications in Adverse Outcome Pathways and Environmental Risk Evaluation. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:045001. [PMID: 29669403 PMCID: PMC6071815 DOI: 10.1289/ehp2322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 02/15/2018] [Accepted: 03/01/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND The epigenome may be an important interface between environmental chemical exposures and human health. However, the links between epigenetic modifications and health outcomes are often correlative and do not distinguish between cause and effect or common-cause relationships. The Adverse Outcome Pathway (AOP) framework has the potential to demonstrate, by way of an inference- and science-based analysis, the causal relationship between chemical exposures, epigenome, and adverse health outcomes. OBJECTIVE The objective of this work is to discuss the epigenome as a modifier of exposure effects and risk, perspectives for integrating toxicoepigenetic data into an AOP framework, tools for the exploration of epigenetic toxicity, and integration of AOP-guided epigenetic information into science and risk-assessment processes. DISCUSSION Organizing epigenetic information into the topology of a qualitative AOP network may help describe how a system will respond to epigenetic modifications caused by environmental chemical exposures. However, understanding the biological plausibility, linking epigenetic effects to short- and long-term health outcomes, and including epigenetic studies in the risk assessment process is met by substantive challenges. These obstacles include understanding the complex range of epigenetic modifications and their combinatorial effects, the large number of environmental chemicals to be tested, and the lack of data that quantitatively evaluate the epigenetic effects of environmental exposure. CONCLUSION We anticipate that epigenetic information organized into AOP frameworks can be consistently used to support biological plausibility and to identify data gaps that will accelerate the pace at which epigenetic information is applied in chemical evaluation and risk-assessment paradigms. https://doi.org/10.1289/EHP2322.
Collapse
Affiliation(s)
- Michelle M Angrish
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Patrick Allard
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| | - Shaun D McCullough
- National Health and Environmental Effects Research Laboratory, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Ingrid L Druwe
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Lisa Helbling Chadwick
- Division of Extramural Research and Training, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Erin Hines
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA
| | - Brian N Chorley
- University of California Los Angeles Institute for Society and Genetics, Los Angeles, California, USA
| |
Collapse
|
99
|
Wiehe RS, Gole B, Chatre L, Walther P, Calzia E, Ricchetti M, Wiesmüller L. Endonuclease G promotes mitochondrial genome cleavage and replication. Oncotarget 2018; 9:18309-18326. [PMID: 29719607 PMCID: PMC5915074 DOI: 10.18632/oncotarget.24822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022] Open
Abstract
Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis.
Collapse
Affiliation(s)
| | - Boris Gole
- Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075, Germany
- Present address: Centre for Human Molecular Genetics and Pharmacogenomics, Medical Faculty, University of Maribor, Maribor, SI-2000, Slovenia
| | - Laurent Chatre
- Department of Developmental and Stem Cell Biology, Institute Pasteur, Stem Cells and Development, 75724 Cedex 15, Paris, France
- Team Stability of Nuclear and Mitochondrial DNA, Unit of Stem Cells and Development, CNRS UMR 3738, 75724 Cedex 15, Paris, France
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, 89081, Germany
| | - Enrico Calzia
- Institute of Anesthesiological Pathophysiology and Process Engineering, Ulm University Hospital, Ulm, 89081, Germany
| | - Miria Ricchetti
- Department of Developmental and Stem Cell Biology, Institute Pasteur, Stem Cells and Development, 75724 Cedex 15, Paris, France
- Team Stability of Nuclear and Mitochondrial DNA, Unit of Stem Cells and Development, CNRS UMR 3738, 75724 Cedex 15, Paris, France
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, 89075, Germany
| |
Collapse
|
100
|
Zhou D, Alver BM, Li S, Hlady RA, Thompson JJ, Schroeder MA, Lee JH, Qiu J, Schwartz PH, Sarkaria JN, Robertson KD. Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues. Genome Biol 2018; 19:43. [PMID: 29587824 PMCID: PMC5872397 DOI: 10.1186/s13059-018-1420-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/12/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are a subpopulation of stem-like cells that contribute to glioblastoma (GBM) aggressiveness, recurrence, and resistance to radiation and chemotherapy. Therapeutically targeting the GSC population may improve patient survival, but unique vulnerabilities need to be identified. RESULTS We isolate GSCs from well-characterized GBM patient-derived xenografts (PDX), characterize their stemness properties using immunofluorescence staining, profile their epigenome including 5mC, 5hmC, 5fC/5caC, and two enhancer marks, and define their transcriptome. Fetal brain-derived neural stem/progenitor cells are used as a comparison to define potential unique and common molecular features between these different brain-derived cells with stem properties. Our integrative study reveals that abnormal expression of ten-eleven-translocation (TET) family members correlates with global levels of 5mC and 5fC/5caC and may be responsible for the distinct levels of these marks between glioma and neural stem cells. Heterogenous transcriptome and epigenome signatures among GSCs converge on several genes and pathways, including DNA damage response and cell proliferation, which are highly correlated with TET expression. Distinct enhancer landscapes are also strongly associated with differential gene regulation between glioma and neural stem cells; they exhibit unique co-localization patterns with DNA epigenetic mark switching events. Upon differentiation, glioma and neural stem cells exhibit distinct responses with regard to TET expression and DNA mark changes in the genome and GSCs fail to properly remodel their epigenome. CONCLUSIONS Our integrative epigenomic and transcriptomic characterization reveals fundamentally distinct yet potentially targetable biologic features of GSCs that result from their distinct epigenomic landscapes.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Bonnie M Alver
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Shuang Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Joyce J Thompson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Mark A Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Epigenomics Translational Program, Mayo Clinic, Rochester, MN, USA
| | - Jingxin Qiu
- Department of Pathology and Laboratory Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Children's Hospital of Orange County Research Institute, Orange, CA, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA. .,Epigenomics Translational Program, Mayo Clinic, Rochester, MN, USA. .,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA. .,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|