51
|
Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L, Speros XS, Sabu S, Xu P, Wu LJ. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 2021; 35:109080. [PMID: 33951432 PMCID: PMC8164475 DOI: 10.1016/j.celrep.2021.109080] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Although an imbalance between neuronal excitation and inhibition underlies seizures, clinical approaches that target these mechanisms are insufficient in containing seizures in patients with epilepsy, raising the need for alternative approaches. Brain-resident microglia contribute to the development and stability of neuronal structure and functional networks that are perturbed during seizures. However, the extent of microglial contributions in response to seizures in vivo remain to be elucidated. Using two-photon in vivo imaging to visualize microglial dynamics, we show that severe seizures induce formation of microglial process pouches that target but rarely engulf beaded neuronal dendrites. Microglial process pouches are stable for hours, although they often shrink in size. We further find that microglial process pouches are associated with a better structural resolution of beaded dendrites. These findings provide evidence for the structural resolution of injured dendrites by microglia as a form of neuroprotection.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | - Mingshu Mo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Antony Brayan Campos-Salazar
- Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xenophon S Speros
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Sruchika Sabu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
52
|
Sharma K, Bisht K, Eyo UB. A Comparative Biology of Microglia Across Species. Front Cell Dev Biol 2021; 9:652748. [PMID: 33869210 PMCID: PMC8047420 DOI: 10.3389/fcell.2021.652748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Microglia are unique brain-resident, myeloid cells. They have received growing interest for their implication in an increasing number of neurodevelopmental, acute injury, and neurodegenerative disorders of the central nervous system (CNS). Fate-mapping studies establish microglial ontogeny from the periphery during development, while recent transcriptomic studies highlight microglial identity as distinct from other CNS cells and peripheral myeloid cells. This evidence for a unique microglial ontogeny and identity raises questions regarding their identity and functions across species. This review will examine the available evidence for microglia in invertebrate and vertebrate species to clarify similarities and differences in microglial identity, ontogeny, and physiology across species. This discussion highlights conserved and divergent microglial properties through evolution. Finally, we suggest several interesting research directions from an evolutionary perspective to adequately understand the significance of microglia emergence. A proper appreciation of microglia from this perspective could inform the development of specific therapies geared at targeting microglia in various pathologies.
Collapse
Affiliation(s)
- Kaushik Sharma
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Kanchan Bisht
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
53
|
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert MÈ, Tremblay MÈ. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front Cell Neurosci 2021; 15:647378. [PMID: 33737867 PMCID: PMC7961561 DOI: 10.3389/fncel.2021.647378] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is marked by cardio-respiratory alterations, with increasing reports also indicating neurological and psychiatric symptoms in infected individuals. During COVID-19 pathology, the central nervous system (CNS) is possibly affected by direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, exaggerated systemic inflammatory responses, or hypoxia. Psychosocial stress imposed by the pandemic further affects the CNS of COVID-19 patients, but also the non-infected population, potentially contributing to the emergence or exacerbation of various neurological or mental health disorders. Microglia are central players of the CNS homeostasis maintenance and inflammatory response that exert their crucial functions in coordination with other CNS cells. During homeostatic challenges to the brain parenchyma, microglia modify their density, morphology, and molecular signature, resulting in the adjustment of their functions. In this review, we discuss how microglia may be involved in the neuroprotective and neurotoxic responses against CNS insults deriving from COVID-19. We examine how these responses may explain, at least partially, the neurological and psychiatric manifestations reported in COVID-19 patients and the general population. Furthermore, we consider how microglia might contribute to increased CNS vulnerability in certain groups, such as aged individuals and people with pre-existing conditions.
Collapse
Affiliation(s)
| | - Eva Šimončičová
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
54
|
Das R, Chinnathambi S. Microglial remodeling of actin network by Tau oligomers, via G protein-coupled purinergic receptor, P2Y12R-driven chemotaxis. Traffic 2021; 22:153-170. [PMID: 33527700 DOI: 10.1111/tra.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is associated with age-related neurodegeneration, synaptic deformation and chronic inflammation mediated by microglia and infiltrated macrophages in the brain. Tau oligomers can be released from damaged neurons via various mechanisms such as exosomes, neurotransmitter, membrane leakage etc. Microglia sense the extracellular Tau through several cell-surface receptors and mediate chemotaxis and phagocytosis. The purinergic receptor P2Y12R recently gained interest in neurodegeneration for neuro-glial communication and microglial chemotaxis towards the site of plaque deposition. To understand the effect of extracellular Tau oligomers in microglial migration, the P2Y12R-mediated actin remodeling, reorientation of tubulin network and rate of migration were studied in the presence of ATP. The extracellular Tau species directly interacted with P2Y12R and also induced this purinoceptor expression in microglia. Microglial P2Y12R colocalized with remodeled membrane-associated actin network as a component of migration in response to Tau oligomers. As an inducer of P2Y12R, ATP facilitated the localization of P2Y12R in lamellipodia and filopodia during accelerated microglial migration. The direct interaction of extracellular Tau oligomers with microglial P2Y12R would facilitate the signal transduction in both way, directional chemotaxis and receptor-mediated phagocytosis. These unprecedented findings emphasize that microglia can modulate the membrane-associated actin structure and incorporate P2Y12R to perceive the axis and rate of chemotaxis in Tauopathy.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
55
|
Carrera J, Tomberlin J, Kurtz J, Karakaya E, Bostanciklioglu M, Albayram O. Endocannabinoid Signaling for GABAergic-Microglia (Mis)Communication in the Brain Aging. Front Neurosci 2021; 14:606808. [PMID: 33613174 PMCID: PMC7887316 DOI: 10.3389/fnins.2020.606808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.
Collapse
Affiliation(s)
- Jorge Carrera
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jensen Tomberlin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - John Kurtz
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Eda Karakaya
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
56
|
|
57
|
Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia 2020; 69:1637-1653. [PMID: 33369790 DOI: 10.1002/glia.23961] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.
Collapse
Affiliation(s)
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
58
|
Deurveilher S, Golovin T, Hall S, Semba K. Microglia dynamics in sleep/wake states and in response to sleep loss. Neurochem Int 2020; 143:104944. [PMID: 33359188 DOI: 10.1016/j.neuint.2020.104944] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 12/22/2022]
Abstract
Sleep has an essential role for optimal brain function, but the cellular substrates for sleep regulation are not fully understood. Microglia, the immune cells of the brain, have gained increasingly more attention over the last two decades for their important roles in various brain functions that extend beyond their well-known immune function, including brain development, neuronal protection, and synaptic plasticity. Here we review recent advances in understanding: i) morphological and phenotypic dynamics of microglia including process motility/growth and gene/protein expression, and ii) microglia-neuron interactions including phagocytosis and contact at synapses which alters neuronal circuit activity, both under physiological state in the adult brain. We discuss how the microglia-neuron interactions particularly at synapses could influence microglia and neuronal activities across circadian cycles and sleep/wake states. We also review recent findings on how microglia respond to sleep loss. We conclude by pointing out key questions and proposing suggestions for future research to better understand the role of microglia in sleep regulation, sleep homeostasis, and the function of sleep.
Collapse
Affiliation(s)
- Samuel Deurveilher
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Tatjana Golovin
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shannon Hall
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Kazue Semba
- Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychology & Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
59
|
Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron 2020; 109:222-240. [PMID: 33271068 DOI: 10.1016/j.neuron.2020.11.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/11/2022]
Abstract
The functional contribution of microglia to normal brain development, healthy brain function, and neurological disorders is increasingly recognized. However, until recently, the nature of intercellular interactions mediating these effects remained largely unclear. Recent findings show microglia establishing direct contact with different compartments of neurons. Although communication between microglia and neurons involves intermediate cells and soluble factors, direct membrane contacts enable a more precisely regulated, dynamic, and highly effective form of interaction for fine-tuning neuronal responses and fate. Here, we summarize the known ultrastructural, molecular, and functional features of direct microglia-neuron interactions and their roles in brain disease.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Szigony u. 43, 1083 Budapest, Hungary.
| |
Collapse
|
60
|
Konishi H, Kiyama H. Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochem Int 2020; 141:104878. [DOI: 10.1016/j.neuint.2020.104878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 01/01/2023]
|
61
|
Calovi S, Mut-Arbona P, Tod P, Iring A, Nicke A, Mato S, Vizi ES, Tønnesen J, Sperlagh B. P2X7 Receptor-Dependent Layer-Specific Changes in Neuron-Microglia Reactivity in the Prefrontal Cortex of a Phencyclidine Induced Mouse Model of Schizophrenia. Front Mol Neurosci 2020; 13:566251. [PMID: 33262687 PMCID: PMC7686553 DOI: 10.3389/fnmol.2020.566251] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
Background: It has been consistently reported that the deficiency of the adenosine triphosphate (ATP) sensitive purinergic receptor P2X7 (P2X7R) ameliorates symptoms in animal models of brain diseases. Objective: This study aimed to investigate the role of P2X7R in rodent models of acute and subchronic schizophrenia based on phencyclidine (PCP) delivery in animals lacking or overexpressing P2X7R, and to identify the underlying mechanisms involved. Methods: The psychotomimetic effects of acute i.p. PCP administration in C57Bl/6J wild-type, P2X7R knockout (P2rx7−/−) and overexpressing (P2X7-EGFP) young adult mice were quantified. The medial prefrontal cortex (mPFC) of P2rx7−/− and heterozygous P2X7-EGFP acutely treated animals was characterized through immunohistochemical staining. The prefrontal cortices of young adult P2rx7−/− and P2rx7tg/+ mice were examined with tritiated dopamine release experiments and the functional properties of the mPFC pyramidal neurons in layer V from P2rx7−/− mice were assessed by patch-clamp recordings. P2rx7−/− animals were subjected to a 7 days subchronic systemic PCP treatment. The animals working memory performance and PFC cytokine levels were assessed. Results: Our data strengthen the hypothesis that P2X7R modulates schizophrenia-like positive and cognitive symptoms in NMDA receptor antagonist models in a receptor expression level-dependent manner. P2X7R expression leads to higher medial PFC susceptibility to PCP-induced circuit hyperactivity. The mPFC of P2X7R knockout animals displayed distinct alterations in the neuronal activation pattern, microglial organization, specifically around hyperactive neurons, and were associated with lower intrinsic excitability of mPFC neurons. Conclusions: P2X7R expression exacerbated PCP-related effects in C57Bl/6J mice. Our findings suggest a pleiotropic role of P2X7R in the mPFC, consistent with the observed behavioral phenotype, regulating basal dopamine concentration, layer-specific neuronal activation, intrinsic excitability of neurons in the mPFC, and the interaction of microglia with hyperactive neurons. Direct measurements of P2X7R activity concerning microglial ramifications and dynamics could help to further elucidate the molecular mechanisms involved.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary.,János Szentágothai Doctoral School, Semmelweis University, Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - András Iring
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Susana Mato
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Biocruces Bizkaia, Barakaldo, Spain
| | - E Sylvester Vizi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| | - Jan Tønnesen
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beata Sperlagh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
62
|
Phosphoinositide-3-Kinase γ Is Not a Predominant Regulator of ATP-Dependent Directed Microglial Process Motility or Experience-Dependent Ocular Dominance Plasticity. eNeuro 2020; 7:ENEURO.0311-20.2020. [PMID: 33067365 PMCID: PMC7769883 DOI: 10.1523/eneuro.0311-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia are dynamic cells whose extensive interactions with neurons and glia during development allow them to regulate neuronal development and function. The microglial P2Y12 receptor is crucial for microglial responsiveness to extracellular ATP and mediates numerous microglial functions, including ATP-dependent directional motility, microglia-neuron interactions, and experience-dependent synaptic plasticity. However, little is known about the downstream signaling effectors that mediate these diverse actions of P2Y12. Phosphoinositide-3-kinase γ (PI3Kγ), a lipid kinase activated downstream of Gi-protein-coupled receptors such as P2Y12, could translate localized extracellular ATP signals into directed microglial action and serve as a broad effector of P2Y12-dependent signaling. Here, we used pharmacological and genetic methods to manipulate P2Y12 and PI3Kγ signaling to determine whether inhibiting PI3Kγ phenocopied the loss of P2Y12 signaling in mouse microglia. While pan-inhibition of all PI3K activity substantially affected P2Y12-dependent microglial responses, our results suggest that PI3Kγ specifically is only a minor part of the P2Y12 signaling pathway. PI3Kγ was not required to maintain homeostatic microglial morphology or their dynamic surveillance in vivo Further, PI3Kγ was not strictly required for P2Y12-dependent microglial responses ex vivo or in vivo, although we did observe subtle deficits in the recruitment of microglial process toward sources of ATP. Finally, PI3Kγ was not required for ocular dominance plasticity, a P2Y12-dependent form of experience-dependent synaptic plasticity that occurs in the developing visual cortex. Overall, our results demonstrate that PI3Kγ is not the major mediator of P2Y12 function in microglia, but may have a role in amplifying or fine-tuning the chemotactic response.
Collapse
|
63
|
Das R, Chinnathambi S. Actin-mediated Microglial Chemotaxis via G-Protein Coupled Purinergic Receptor in Alzheimer's Disease. Neuroscience 2020; 448:325-336. [PMID: 32941933 DOI: 10.1016/j.neuroscience.2020.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease mainly associated with aging, oxidative stress and genetic mutations. There are two pathological proteins involved in AD; Amyloid-β peptide and microtubule-associated protein Tau (MAPT). The β- and γ-secretase enzyme cleaves the Amyloid precursor protein, which results in the formation of extracellular plaques in brain. While, Tau undergoes hyperphosphorylation and other post-translational modifications (PTMs), which eventually generates Tau oligomers, and intracellular neurofibrillary tangles (NFTs) in neurons. Moreover, the brain-resident glia and infiltrated macrophages elevate the level of CNS inflammation, which trigger the oxidative damage of neuronal circuits by reactive oxygen species (ROS) and Nitric oxide (NO). Microglia is the primary immune cell in the CNS, which is continuously surveilling the neuronal synapses and pathogen invasion. Microglia in the resting state is called 'Ramified', which possess long surveilling extensions with a small cell body. But, upon activation, microglia retracts the cellular extensions and transform into round migratory cells, called as 'Amoeboid' state. Activated microglia undergoes actin remodeling by forming lamellipodia and filopodia, which directs the migratory axis while podosomes formed are involved in extracellular matrix degradation for invasion. Protein-aggregates in malfunctioning synapses and in CNS milieu can be detected by microglia, which results in its activation and migration. Subsequently, the phagocytosis of synapses leads to the inflammatory burst and memory loss. The extracellular nucleotides released from damaged neurons and the cytokine-chemokine gradients allow the neighboring microglia and macrophages to migrate-infiltrate at the site of neuronal-damage. The ionotropic (P2XR) and metabotropic (P2YR) purinergic receptor recognize extracellular ATP/ADP, which propagates through the intracellular calcium signaling, chemotaxis, phagocytosis and inflammation. The P2Y receptors give 'find me' or 'eat me' signals to microglia to either migrate or phagocytose cellular debris. Further, the actin cytoskeleton helps microglia to mediate directed chemotaxis and neuronal repair during neurodegeneration. Hence, we aim to emphasize the connection between purinergic signaling and actin-driven mechanical movements of microglia for migration and inflammation in AD.
Collapse
Affiliation(s)
- Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, 411008 Pune, India; Academy of Scientific and Innovative Research (AcSIR), 411008 Pune, India.
| |
Collapse
|
64
|
Microglial mTOR is Neuronal Protective and Antiepileptogenic in the Pilocarpine Model of Temporal Lobe Epilepsy. J Neurosci 2020; 40:7593-7608. [PMID: 32868461 DOI: 10.1523/jneurosci.2754-19.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Excessive activation of mammalian target of rapamycin (mTOR) signaling is epileptogenic in genetic epilepsy. However, the exact role of microglial mTOR in acquired epilepsy remains to be clarified. In the present study, we found that mTOR is strongly activated in microglia following excitatory injury elicited by status epilepticus. To determine the role of microglial mTOR signaling in excitatory injury and epileptogenesis, we generated mice with restrictive deletion of mTOR in microglia. Both male and female mice were used in the present study. We found that mTOR-deficient microglia lost their typical proliferative and inflammatory responses to excitatory injury, whereas the proliferation of astrocytes was preserved. In addition, mTOR-deficient microglia did not effectively engulf injured/dying neurons. More importantly, microglial mTOR-deficient mice displayed increased neuronal loss and developed more severe spontaneous seizures. These findings suggest that microglial mTOR plays a protective role in mitigating neuronal loss and attenuating epileptogenesis in the excitatory injury model of epilepsy.SIGNIFICANCE STATEMENT The mammalian target of rapamycin (mTOR) pathway is strongly implicated in epilepsy. However, the effect of mTOR inhibitors in preclinical models of acquired epilepsy is inconsistent. The broad presence of mTOR signaling in various brain cells could prevent mTOR inhibitors from achieving a net therapeutic effect. This conundrum has spurred further investigation of the cell type-specific effects of mTOR signaling in the CNS. We found that activation of microglial mTOR is antiepileptogenic. Thus, microglial mTOR activation represents a novel antiepileptogenic route that appears to parallel the proepileptogenic route of neuronal mTOR activation. This may explain why the net effect of mTOR inhibitors is paradoxical in the acquired models of epilepsy. Our findings could better guide the use of mTOR inhibitors in preventing acquired epilepsy.
Collapse
|
65
|
Neganova ME, Aleksandrova YR, Nebogatikov VO, Klochkov SG, Ustyugov AA. Promising Molecular Targets for Pharmacological Therapy of Neurodegenerative Pathologies. Acta Naturae 2020; 12:60-80. [PMID: 33173597 PMCID: PMC7604899 DOI: 10.32607/actanaturae.10925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Drug development for the treatment of neurodegenerative diseases has to confront numerous problems occurring, in particular, because of attempts to address only one of the causes of the pathogenesis of neurological disorders. Recent advances in multitarget therapy research are gaining momentum by utilizing pharmacophores that simultaneously affect different pathological pathways in the neurodegeneration process. The application of such a therapeutic strategy not only involves the treatment of symptoms, but also mainly addresses prevention of the fundamental pathological processes of neurodegenerative diseases and the reduction of cognitive abilities. Neuroinflammation and oxidative stress, mitochondrial dysfunction, dysregulation of the expression of histone deacetylases, and aggregation of pathogenic forms of proteins are among the most common and significant pathological features of neurodegenerative diseases. In this review, we focus on the molecular mechanisms and highlight the main aspects, including reactive oxygen species, the cell endogenous antioxidant system, neuroinflammation triggers, metalloproteinases, α-synuclein, tau proteins, neuromelanin, histone deacetylases, presenilins, etc. The processes and molecular targets discussed in this review could serve as a starting point for screening leader compounds that could help prevent or slow down the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- M. E. Neganova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - Yu. R. Aleksandrova
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - V. O. Nebogatikov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - S. G. Klochkov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| | - A. A. Ustyugov
- Institute of Physiologically Active Compounds of the Russian Academy of Sciences, Moscow region, Chernogolovka, 142432 Russia
| |
Collapse
|
66
|
Cranial irradiation acutely and persistently impairs injury-induced microglial proliferation. Brain Behav Immun Health 2020; 4:100057. [PMID: 34589843 PMCID: PMC8474291 DOI: 10.1016/j.bbih.2020.100057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play multiple roles in maintaining CNS homeostasis and mediating tissue repair, including proliferating in response to brain injury and disease. Cranial irradiation (CI), used for the treatment of brain tumors, has a long-lasting anti-proliferative effect on a number of cell types in the brain, including oligodendrocyte progenitor and neural progenitor cells; however, the effect of CI on CNS-resident microglial proliferation is not well characterized. Using a sterile cortical needle stab injury model in mice, we found that the ability of CNS-resident microglia to proliferate in response to injury was impaired by prior CI, in a dose-dependent manner, and was nearly abolished by a 20 Gy dose. Similarly, in a metastatic tumor model, prior CI (20 Gy) reduced microglial proliferation in response to tumor growth. The effect of irradiation was long-lasting; 20 Gy CI 6 months prior to stab injury significantly impaired microglial proliferation. We also investigated how stab and/or irradiation impacted levels of P2Y12R, CD68, CSF1, IL-34 and CSF1R, factors involved in the brain’s normal response to injury. P2Y12R, CD68, CSF1, and IL-34 expression were altered by stab similarly in irradiated mice and controls; however, CSF1R was differentially affected. qRT-PCR and flow cytometry analyses demonstrated that CI reduced overall Csf1r mRNA levels and microglial specific CSF1R protein expression, respectively. Interestingly, Csf1r mRNA levels increased after injury in unirradiated controls; however, Csf1r levels were persistently decreased in irradiated mice, and did not increase in response to stab. Together, our data demonstrate that CI leads to a significant and lasting impairment of microglial proliferation, possibly through a CSF1R-mediated mechanism. Irradiation leads to a long-term deficit in injury-induced microglial proliferation. Irradiation reduces microglial proliferation associated with tumor growth. Irradiation decreases microglial CSF1R and prevents its upregulation after injury.
Collapse
|
67
|
Vainchtein ID, Molofsky AV. Astrocytes and Microglia: In Sickness and in Health. Trends Neurosci 2020; 43:144-154. [PMID: 32044129 DOI: 10.1016/j.tins.2020.01.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/28/2019] [Accepted: 01/11/2020] [Indexed: 01/05/2023]
Abstract
Healthy central nervous system (CNS) development and function require an intricate and balanced bidirectional communication between neurons and glia cells. In this review, we discuss the complementary roles of astrocytes and microglia in building the brain, including in the formation and refinement of synapses. We discuss recent evidence demonstrating how these interactions are coordinated in the transition from healthy physiology towards disease and discuss known and potential molecular mechanisms that mediate this cellular crosstalk.
Collapse
Affiliation(s)
- Ilia D Vainchtein
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Department of Psychiatry/Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
68
|
Lee CR, Najafizadeh L, Margolis DJ. Investigating learning-related neural circuitry with chronic in vivo optical imaging. Brain Struct Funct 2020; 225:467-480. [PMID: 32006147 DOI: 10.1007/s00429-019-02001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Fundamental aspects of brain function, including development, plasticity, learning, and memory, can take place over time scales of days to years. Chronic in vivo imaging of neural activity with cellular resolution is a powerful method for tracking the long-term activity of neural circuits. We review recent advances in our understanding of neural circuit function from diverse brain regions that have been enabled by chronic in vivo cellular imaging. Insight into the neural basis of learning and decision-making, in particular, benefit from the ability to acquire longitudinal data from genetically identified neuronal populations, deep brain areas, and subcellular structures. We propose that combining chronic imaging with further experimental and computational innovations will advance our understanding of the neural circuit mechanisms of brain function.
Collapse
Affiliation(s)
- Christian R Lee
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Laleh Najafizadeh
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - David J Margolis
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
69
|
Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Proc Natl Acad Sci U S A 2019; 116:25293-25303. [PMID: 31772018 DOI: 10.1073/pnas.1913541116] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microglia are essential for maintenance of normal brain function, with dysregulation contributing to numerous neurological diseases. Protocols have been developed to derive microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, primary microglia display major differences in morphology and gene expression when grown in culture, including down-regulation of signature microglial genes. Thus, in vitro differentiated microglia may not accurately represent resting primary microglia. To address this issue, we transplanted microglial precursors derived in vitro from hiPSCs into neonatal mouse brains and found that the cells acquired characteristic microglial morphology and gene expression signatures that closely resembled primary human microglia. Single-cell RNA-sequencing analysis of transplanted microglia showed similar cellular heterogeneity as primary human cells. Thus, hiPSCs-derived microglia transplanted into the neonatal mouse brain assume a phenotype and gene expression signature resembling that of resting microglia residing in the human brain, making chimeras a superior tool to study microglia in human disease.
Collapse
|
70
|
Neuronal network activity controls microglial process surveillance in awake mice via norepinephrine signaling. Nat Neurosci 2019; 22:1771-1781. [PMID: 31636449 PMCID: PMC6858573 DOI: 10.1038/s41593-019-0511-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/11/2019] [Indexed: 01/23/2023]
Abstract
Microglia dynamically survey the brain parenchyma. Microglial processes interact with neuronal elements; however, what role neuronal network activity plays in regulating microglial dynamics is not entirely clear. Most studies of microglial dynamics use either slice preparations or in vivo imaging in anesthetized mice. Here we demonstrate that microglia in awake mice have a relatively reduced process area and surveillance territory and that reduced neuronal activity under general anesthesia increases microglial process velocity, extension and territory surveillance. Similarly, reductions in local neuronal activity through sensory deprivation or optogenetic inhibition increase microglial process surveillance. Using pharmacological and chemogenetic approaches, we demonstrate that reduced norepinephrine signaling is necessary for these increases in microglial process surveillance. These findings indicate that under basal physiological conditions, noradrenergic tone in awake mice suppresses microglial process surveillance. Our results emphasize the importance of awake imaging for studying microglia-neuron interactions and demonstrate how neuronal activity influences microglial process dynamics.
Collapse
|
71
|
Bollinger J, Wohleb E. The formative role of microglia in stress-induced synaptic deficits and associated behavioral consequences. Neurosci Lett 2019; 711:134369. [PMID: 31422099 PMCID: PMC9875737 DOI: 10.1016/j.neulet.2019.134369] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 01/27/2023]
Abstract
Psychological stress can precipitate depression, and emerging preclinical data suggest a link between stress-induced alterations in microglia function and development of depressive-like behaviors. Microglia are highly dynamic, and play an integral role in maintaining neuronal homeostasis and synaptic plasticity. In this capacity, microglial dysfunction represents a compelling avenue through which stress might disrupt neuronal integrity and induce psychopathology. This review examines preclinical and clinical postmortem findings that indicate microglia-neuron interactions contribute to stress-induced synaptic deficits and associated behavioral and cognitive consequences. We focus on pathways that are implicated in microglia-mediated neuronal remodeling, including CSF1-CSF1R, CX3CL1-CX3CR1, and CD11b (CR3)-C3, as well as purinergic signaling via P2RX7 and P2RY12. We also highlight sex differences in stress effects on microglia, and the potential for microglia in the development of sex-specific treatments for depressive disorders.
Collapse
Affiliation(s)
| | - E.S. Wohleb
- Corresponding author at: Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 2120 East Galbraith Road, Cincinnati, OH, 45237, USA. (E.S. Wohleb)
| |
Collapse
|
72
|
Microglial P2Y12 Receptor Regulates Seizure-Induced Neurogenesis and Immature Neuronal Projections. J Neurosci 2019; 39:9453-9464. [PMID: 31597724 DOI: 10.1523/jneurosci.0487-19.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 11/21/2022] Open
Abstract
Seizures are common in humans with various etiologies ranging from congenital aberrations to acute injuries that alter the normal balance of brain excitation and inhibition. A notable consequence of seizures is the induction of aberrant neurogenesis and increased immature neuronal projections. However, regulatory mechanisms governing these features during epilepsy development are not fully understood. Recent studies show that microglia, the brain's resident immune cell, contribute to normal neurogenesis and regulate seizure phenotypes. However, the role of microglia in aberrant neurogenic seizure contexts has not been adequately investigated. To address this question, we coupled the intracerebroventricular kainic acid model with current pharmacogenetic approaches to eliminate microglia in male mice. We show that microglia promote seizure-induced neurogenesis and subsequent seizure-induced immature neuronal projections above and below the pyramidal neurons between the DG and the CA3 regions. Furthermore, we identify microglial P2Y12 receptors (P2Y12R) as a participant in this neurogenic process. Together, our results implicate microglial P2Y12R signaling in epileptogenesis and provide further evidence for targeting microglia in general and microglial P2Y12R in specific to ameliorate proepileptogenic processes.SIGNIFICANCE STATEMENT Epileptogenesis is a process by which the brain develops epilepsy. Several processes have been identified that confer the brain with such epileptic characteristics, including aberrant neurogenesis and increased immature neuronal projections. Understanding the mechanisms that promote such changes is critical in developing therapies to adequately restrain epileptogenesis. We investigated the role of purinergic P2Y12 receptors selectively expressed by microglia, the resident brain immune cells. We report, for the first time, that microglia in general and microglial P2Y12 receptors in specific promote both aberrant neurogenesis and increased immature neuronal projections. These results indicate that microglia enhance epileptogenesis by promoting these processes and suggest that targeting this immune axis could be a novel therapeutic strategy in the clinic.
Collapse
|
73
|
Stratoulias V, Venero JL, Tremblay MÈ, Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J 2019. [PMID: 31373067 DOI: 10.15252/embj.2019a101997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain.,Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Marie-Ève Tremblay
- Department of Molecular Medicine, Université Laval, Quebec, QC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
74
|
Stratoulias V, Venero JL, Tremblay M, Joseph B. Microglial subtypes: diversity within the microglial community. EMBO J 2019; 38:e101997. [PMID: 31373067 PMCID: PMC6717890 DOI: 10.15252/embj.2019101997] [Citation(s) in RCA: 340] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/03/2022] Open
Abstract
Microglia are brain-resident macrophages forming the first active immune barrier in the central nervous system. They fulfill multiple functions across development and adulthood and under disease conditions. Current understanding revolves around microglia acquiring distinct phenotypes upon exposure to extrinsic cues in their environment. However, emerging evidence suggests that microglia display differences in their functions that are not exclusively driven by their milieu, rather by the unique properties these cells possess. This microglial intrinsic heterogeneity has been largely overlooked, favoring the prevailing view that microglia are a single-cell type endowed with spectacular plasticity, allowing them to acquire multiple phenotypes and thereby fulfill their numerous functions in health and disease. Here, we review the evidence that microglia might form a community of cells in which each member (or "subtype") displays intrinsic properties and performs unique functions. Distinctive features and functional implications of several microglial subtypes are considered, across contexts of health and disease. Finally, we suggest that microglial subtype categorization shall be based on function and we propose ways for studying them. Hence, we advocate that plasticity (reaction states) and diversity (subtypes) should both be considered when studying the multitasking microglia.
Collapse
Affiliation(s)
- Vassilis Stratoulias
- Toxicology UnitInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Jose Luis Venero
- Departamento de Bioquímica y Biología MolecularFacultad de FarmaciaUniversidad de SevillaSevillaSpain
- Instituto de Biomedicina de Sevilla‐Hospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaSevillaSpain
| | - Marie‐Ève Tremblay
- Department of Molecular MedicineUniversité LavalQuebecQCCanada
- Axe NeurosciencesCentre de Recherche du CHU de Québec‐Université LavalQuebecQCCanada
| | - Bertrand Joseph
- Toxicology UnitInstitute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
75
|
Peng J, Liu Y, Umpierre AD, Xie M, Tian DS, Richardson JR, Wu LJ. Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol Brain 2019; 12:71. [PMID: 31426845 PMCID: PMC6700820 DOI: 10.1186/s13041-019-0492-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
The P2Y12 receptor (P2Y12R) is a purinoceptor that is selectively expressed in microglia in the central nervous system. As a signature receptor, microglial P2Y12R mediates process chemotaxis towards ADP/ATP gradients and is engaged in several neurological diseases including chronic pain, stroke and seizures. However, the role of microglial P2Y12R in regulating neuronal excitability and innate behaviors is not fully understood. Here, we generated P2Y12-floxed mice to delete microglial P2Y12R beginning in development (CX3CR1Cre/+:P2Y12f/f; "constitutive knockout"), or after normal development in adult mice (CX3CR1CreER/+:P2Y12f/f; "induced knockout"). Using a battery of behavioral tests, we found that both constitutive and induced P2Y12R knockout mice exhibited innate fear but not learned fear behaviors. After mice were exposed to the elevated plus maze, the c-fos expression in ventral hippocampus CA1 neurons was robustly increased in P2Y12R knockout mice compared with wild-type mice. Consistently, using whole cell patch clamp recording, we found the excitability of ventral hippocampus CA1 neurons was increased in the P2Y12R knockout mice. The results suggest that microglial P2Y12R regulates neuronal excitability and innate fear behaviors in developing and adult mice.
Collapse
Affiliation(s)
- Jiyun Peng
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.,Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Yong Liu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Anthony D Umpierre
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jason R Richardson
- Departments of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA. .,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA. .,Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
76
|
Eyo UB, Wu LJ. Microglia: Lifelong patrolling immune cells of the brain. Prog Neurobiol 2019; 179:101614. [PMID: 31075285 PMCID: PMC6599472 DOI: 10.1016/j.pneurobio.2019.04.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 02/02/2023]
Abstract
Microglial cells are the predominant parenchymal immune cell of the brain. Recent evidence suggests that like peripheral immune cells, microglia patrol the brain in health and disease. Reviewing these data, we first examine the evidence that microglia invade the brain mesenchyme early in embryonic development, establish residence therein, proliferate and subsequently maintain their numbers throughout life. We, then, summarize established and novel evidence for microglial process surveillance in the healthy and injured brain. Finally, we discuss emerging evidence for microglial cell body dynamics that challenge existing assumptions of their sessile nature. We conclude that microglia are long-lived immune cells that patrol the brain through both cell body and process movements. This recognition has significant implications for neuroimmune interactions throughout the animal lifespan.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
77
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
78
|
McQuade A, Blurton-Jones M. Microglia in Alzheimer's Disease: Exploring How Genetics and Phenotype Influence Risk. J Mol Biol 2019; 431:1805-1817. [PMID: 30738892 PMCID: PMC6475606 DOI: 10.1016/j.jmb.2019.01.045] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/25/2023]
Abstract
Research into the function of microglia has dramatically accelerated during the last few years, largely due to recent genetic findings implicating microglia in virtually every neurodegenerative disorder. In Alzheimer's disease (AD), a majority of risk loci discovered through genome-wide association studies were found in or near genes expressed most highly in microglia leading to the hypothesis that microglia play a much larger role in disease progression than previously thought. From this body of work produced in the last several years, we find that almost every function of microglia has been proposed to influence the progression of AD from altered phagocytosis and synaptic pruning to cytokine secretion and changes in trophic support. By studying key Alzheimer's risk genes such as TREM2, CD33, ABCA7, and MS4A6A, we will be able to distinguish true disease-modulatory pathways from the full range of microglial-related functions. To successfully carry out these experiments, more advanced microglial models are needed. Microglia are quite sensitive to their local environment, suggesting the need to more fully recapitulate an in vivo environment to study this highly plastic cell type. Likely only by combining the above approaches will the field fully elucidate the molecular pathways that regulate microglia and influence neurodegeneration, in turn uncovering potential new targets for future therapeutic development.
Collapse
Affiliation(s)
- Amanda McQuade
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
79
|
Feng L, Murugan M, Bosco DB, Liu Y, Peng J, Worrell GA, Wang HL, Ta LE, Richardson JR, Shen Y, Wu LJ. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 2019; 67:1434-1448. [PMID: 31179602 DOI: 10.1002/glia.23616] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Microglial activation has been recognized as a major contributor to inflammation of the epileptic brain. Seizures are commonly accompanied by remarkable microgliosis and loss of neurons. In this study, we utilize the CX3CR1GFP/+ CCR2RFP/+ genetic mouse model, in which CX3CR1+ resident microglia and CCR2+ monocytes are labeled with GFP and RFP, respectively. Using a combination of time-lapse two-photon imaging and whole-cell patch clamp recording, we determined the distinct morphological, dynamic, and electrophysiological characteristics of infiltrated monocytes and resident microglia, and the evolution of their behavior at different time points following kainic acid-induced seizures. Seizure activated microglia presented enlarged somas with less ramified processes, whereas, infiltrated monocytes were smaller, highly motile cells that lacked processes. Moreover, resident microglia, but not infiltrated monocytes, proliferate locally in the hippocampus after seizure. Microglial proliferation was dependent on the colony-stimulating factor 1 receptor (CSF-1R) pathway. Pharmacological inhibition of CSF-1R reduced seizure-induced microglial proliferation, which correlated with attenuation of neuronal death without altering acute seizure behaviors. Taken together, we demonstrated that proliferation of activated resident microglia contributes to neuronal death in the hippocampus via CSF-1R after status epilepticus, providing potential therapeutic targets for neuroprotection in epilepsy.
Collapse
Affiliation(s)
- Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.,Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Yong Liu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Jiyun Peng
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Hai-Long Wang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Lauren E Ta
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.,Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida.,Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
80
|
Smolders SMT, Kessels S, Vangansewinkel T, Rigo JM, Legendre P, Brône B. Microglia: Brain cells on the move. Prog Neurobiol 2019; 178:101612. [PMID: 30954517 DOI: 10.1016/j.pneurobio.2019.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 02/13/2019] [Accepted: 04/01/2019] [Indexed: 02/08/2023]
Abstract
In the last decade, tremendous progress has been made in understanding the biology of microglia - i.e. the fascinating immigrated resident immune cell population of the central nervous system (CNS). Recent literature reviews have largely dealt with the plentiful functions of microglia in CNS homeostasis, development and pathology, and the influences of sex and the microbiome. In this review, the intriguing aspect of their physical plasticity during CNS development will get specific attention. Microglia move around (mobility) and reshape their processes (motility). Microglial migration into and inside the CNS is most prominent throughout development and consequently most of the data described in this review concern mobility and motility in the changing environment of the developing brain. Here, we first define microglia based on their highly specialized age- and region-dependent gene expression signature and associated functional heterogeneity. Next, we describe their origin, the migration route of immature microglial cells towards the CNS, the mechanisms underlying their invasion of the CNS, and their spatiotemporal localization and surveying behaviour inside the developing CNS. These processes are dependent on microglial mobility and motility which are determined by the microenvironment of the CNS. Therefore, we further zoom in on the changing environment during CNS development. We elaborate on the extracellular matrix and the respective integrin receptors on microglia and we discuss the purinergic and molecular signalling in microglial mobility. In the last section, we discuss the physiological and pathological functions of microglia in which mobility and motility are involved to stress the importance of microglial 'movement'.
Collapse
Affiliation(s)
- Sophie Marie-Thérèse Smolders
- UHasselt, BIOMED, Diepenbeek, Belgium; INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | | | | | | - Pascal Legendre
- INSERM, UMR-S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France; Sorbonne Universités, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | | |
Collapse
|
81
|
Yang R, Wang H, Wen J, Ma K, Chen D, Chen Z, Huang C. Regulation of microglial process elongation, a featured characteristic of microglial plasticity. Pharmacol Res 2018; 139:286-297. [PMID: 30476531 DOI: 10.1016/j.phrs.2018.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/08/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Microglia, a type of glia within the brain characterized by a ramified morphology, are essential for removing neuronal debris and restricting the expansion of a lesion site. Upon moderate activation, they undergo a transformation in morphology inducing beneficial responses. However, upon strong stimulation, they mediate neuronal damage via production of pro-inflammatory cytokines. The inhibition of this cascade is considered an effective strategy for neuroinflammation-associated disorder therapy. During this pathological activation microglia also undergo a shortening of process length which contributes to the pathogenesis of such disorders. Thus, microglial plasticity should be considered to have two components: one is the production of inflammatory mediators, and the other is the dynamic changes in their processes. The former role has been well-documented in previous studies, while the latter one remains largely unknown. Recently, we and others have reported that the elongation of microglial process is associated with the transformation of microglia from a pro-inflammatory to an anti-inflammatory state, suggesting that the shortening of process length would make the microglia lose their ability to restrict pathological injury, while the elongation of microglial process would help attenuate neuroinflammation. Compared with the traditional anti-neuroinflammatory strategy, stimulating elongation of microglial process not only reduces the production of pro-inflammatory cytokines, but restores the ability of microglia to scan their surrounding environments, thus rendering their homeostasis regulation more effective. In this review, we provide a discussion of the factors that regulate microglial process elongation in vitro and in vivo, aiming to further drive the understanding of microglial process plasticity.
Collapse
Affiliation(s)
- Rongrong Yang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, #20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China; Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, 08854, NJ, United States
| | - Jie Wen
- Beijing Allwegene Health, B-607 Wanlin Technology Mansion, 8 Malianwa North Road, Beijing 100094, China
| | - Kai Ma
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208, Australia
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, The Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China.
| |
Collapse
|
82
|
Kim YS, Jung HM, Yoon BE. Exploring glia to better understand Alzheimer's disease. Anim Cells Syst (Seoul) 2018; 22:213-218. [PMID: 30460100 PMCID: PMC6138241 DOI: 10.1080/19768354.2018.1508498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The amyloid-β (Aβ) hypothesis has been the leading explanation for the pathogenesis of Alzheimer’s disease (AD). The most common traits of AD are cognitive impairments and memory loss, which are associated with the accumulation of Aβ. Aβ aggregates activate glial cells, which in turn remove Aβ. Because microglia act as immune cells in the brain, most glia-related studies of AD have focused primarily on this cell type. However, astrocytes, another type of glial cell, also participate in the brain immune system, synaptic formation, brain homeostasis, and various other brain functions. Accordingly, many studies on the underlying mechanisms of AD have investigated not only neurons but also glial cells. Although these studies suggest that microglia and astrocytes are effective targets for AD therapeutics, other recent studies have raised questions regarding whether microglial cells and/or astrocytes serve a neuroprotective or neurotoxic function in AD. To gain a better understanding of the mechanisms of AD and identify novel targets for AD treatment, in this review, we consider the role of both microglia and astrocytes in AD.
Collapse
Affiliation(s)
- Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Hae Myeong Jung
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| |
Collapse
|
83
|
Kohno K, Kitano J, Kohro Y, Tozaki-Saitoh H, Inoue K, Tsuda M. Temporal Kinetics of Microgliosis in the Spinal Dorsal Horn after Peripheral Nerve Injury in Rodents. Biol Pharm Bull 2018; 41:1096-1102. [DOI: 10.1248/bpb.b18-00278] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keita Kohno
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Junko Kitano
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Yuta Kohro
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
84
|
Bosco DB, Zheng J, Xu Z, Peng J, Eyo UB, Tang K, Yan C, Huang J, Feng L, Wu G, Richardson JR, Wang H, Wu LJ. RNAseq analysis of hippocampal microglia after kainic acid-induced seizures. Mol Brain 2018; 11:34. [PMID: 29925434 PMCID: PMC6011524 DOI: 10.1186/s13041-018-0376-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Microglia have been shown to be of critical importance to the progression of temporal lobe epilepsy. However, the broad transcriptional changes that these cells undergo following seizure induction is not well understood. As such, we utilized RNAseq analysis upon microglia isolated from the hippocampus to determine expression pattern alterations following kainic acid induced seizure. We determined that microglia undergo dramatic changes to their expression patterns, particularly with regard to mitochondrial activity and metabolism. We also observed that microglia initiate immunological activity, specifically increasing interferon beta responsiveness. Our results provide novel insights into microglia transcriptional regulation following acute seizures and suggest potential therapeutic targets specifically in microglia for the treatment of seizures and epilepsy.
Collapse
Affiliation(s)
- Dale B. Bosco
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Zhiyan Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu China
| | - Jiyun Peng
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Ukpong B. Eyo
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Ke Tang
- Admera Health LLC, South Plainfield, NJ 07080 USA
| | - Cheng Yan
- Admera Health LLC, South Plainfield, NJ 07080 USA
| | - Jun Huang
- Admera Health LLC, South Plainfield, NJ 07080 USA
| | - Lijie Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032 Anhui China
| | - Gongxiong Wu
- One Harvard Street Institute of Health, Brookline, MA 02446 USA
| | - Jason R. Richardson
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu China
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854 USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| |
Collapse
|