51
|
Qian Y, Han Y, Zhang X, Yang G, Zhang G, Jiang HL. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat Commun 2023; 14:3083. [PMID: 37248231 DOI: 10.1038/s41467-023-38884-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The strong excitonic effects widely exist in polymer-semiconductors and the large exciton binding energy (Eb) seriously limits their photocatalysis. Herein, density functional theory (DFT) calculations are conducted to assess band alignment and charge transfer feature of potential donor-acceptor (D-A) covalent organic frameworks (COFs), using 1,3,5-tris(4-aminophenyl)triazine (TAPT) or 1,3,5-tris(4-aminophenyl)benzene (TAPB) as acceptors and tereph-thaldehydes functionalized diverse groups as donors. Given the discernable D-A interaction strengths in the D-A pairs, their Eb can be systematically regulated with minimum Eb in TAPT-OMe. Guided by these results, the corresponding D-A COFs are synthesized, where TAPT-OMe-COF possesses the best activity in photocatalytic H2 production and the activity trend of other COFs is associated with that of calculated Eb for the D-A pairs. In addition, further alkyne cycloaddition for the imine linkage in the COFs greatly improves the stability and the resulting TAPT-OMe-alkyne-COF with a substantially smaller Eb exhibits ~20 times higher activity than the parent COF.
Collapse
Affiliation(s)
- Yunyang Qian
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yulan Han
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiyuan Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ge Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Guozhen Zhang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
| |
Collapse
|
52
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023; 483:215097. [DOI: doi.org/10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
53
|
Wu Y, Xie Y, Liu X, Li Y, Wang J, Chen Z, Yang H, Hu B, Shen C, Tang Z, Huang Q, Wang X. Functional nanomaterials for selective uranium recovery from seawater: Material design, extraction properties and mechanisms. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
54
|
Liu H, Zheng X, Xu J, Jia X, Chao M, Wang D, Zhao Y. Structural Regulation of Thiophene-Based Two-Dimensional Covalent Organic Frameworks toward Highly Efficient Photocatalytic Hydrogen Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16794-16800. [PMID: 36946700 DOI: 10.1021/acsami.3c01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two imine-based 2D covalent organic frameworks (COFs) with slight differences in their core structures are presented. The COF containing benzotrithiophene moieties with better planarity and π-conjugation (BTTh-TZ-COF) shows much better photocatalytic activity than the COF with trithienylbenzene cores (TThB-TZ-COF). Further photoelectrochemical study reveals the catalytic mechanism in more detail. Since other factors such as crystallinity, porosity, and optical bandgaps are equal, the different structures of the cores in the two similar COFs are the major contributors to the significantly different photocatalytic performance. The better electron delocalization of the planar trithiophene-based core and the enhanced D-A interactions between the triazine and trithiophene units in BTTh-TZ-COF create efficient charge separation and transfer, thus leading to superior photocatalytic hydrogen evolution activity. A new strategy for preparing high-performance organic photocatalysts for solar-energy conversion is revealed by this study.
Collapse
Affiliation(s)
- Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xuhan Zheng
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jie Xu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xu Jia
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Menghuan Chao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
55
|
Yang L, Yan W, Yang N, Wang G, Bi Y, Tian C, Liu H, Zhu X. Regulating π-Conjugation in sp 2 -Carbon-Linked Covalent Organic Frameworks for Efficient Metal-Free CO 2 Photoreduction with H 2 O. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208118. [PMID: 36965021 DOI: 10.1002/smll.202208118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1 h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenkai Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Na Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| | - Guofeng Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| |
Collapse
|
56
|
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang SW, Liu X. Three-Component Donor-π-Acceptor Covalent-Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 36917067 DOI: 10.1021/jacs.2c11893] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Two-dimensional covalent-organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor-π-acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g-1 h-1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420-780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.
Collapse
Affiliation(s)
- Ziping Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Si Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P. R. China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
57
|
Jeon JP, Kim YJ, Joo SH, Noh HJ, Kwak SK, Baek JB. Benzotrithiophene-based Covalent Organic Framework Photocatalysts with Controlled Conjugation of Building Blocks for Charge Stabilization. Angew Chem Int Ed Engl 2023; 62:e202217416. [PMID: 36545845 DOI: 10.1002/anie.202217416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Covalent organic frameworks have recently shown high potential for photocatalytic hydrogen production. However, their structure-property-activity relationship has not been sufficiently explored to identify a research direction for structural design. Herein, we report the design and synthesis of four benzotrithiophene (BTT)-based covalent organic frameworks (COFs) with different conjugations of building units, and their photocatalytic activity for hydrogen production. All four BTT-COFs had slipped parallel stacking patterns with high crystallinity and specific surface areas. The change in the degree of conjugation was found to rationally tune the rate of photocatalytic hydrogen evolution. Based on the experimental and calculation results, the tunable photocatalytic performance could be mainly attributed to the electron affinity and charge trapping of the electron accepting units. This study provides important insights for designing covalent organic frameworks for efficient photocatalysts.
Collapse
Affiliation(s)
- Jong-Pil Jeon
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Yu Jin Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Se Hun Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| | - Sang Kyu Kwak
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering/Center for Dimension-Controllable Organic Frameworks, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST, Ulsan, 44919, South Korea
| |
Collapse
|
58
|
Sarkar M, Patra A. N, N'-octyl biphenothiazine and dibenzothiophene dioxide-based soluble porous organic polymer for biphasic photocatalytic hydrogen evolution. Chem Commun (Camb) 2023; 59:2584-2587. [PMID: 36692376 DOI: 10.1039/d2cc06321b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A donor-acceptor-based soluble porous organic polymer (PzDBS) was fabricated using a flexible core composed of N,N'-octyl biphenothiazine and a rigid building unit involving dibenzothiophene dioxide. The soluble porous organic polymer was explored for aqueous-organic biphasic photocatalytic hydrogen evolution, introducing a promising avenue in the domain of porous polymer photocatalysts.
Collapse
Affiliation(s)
- Madhurima Sarkar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
59
|
Li Y, Liu L, Meng T, Wang L, Xie Z. Structural Engineering of Ionic MOF@COF Heterointerface for Exciton-Boosting Sunlight-Driven Photocatalytic Filter. ACS NANO 2023; 17:2932-2942. [PMID: 36722852 DOI: 10.1021/acsnano.2c11339] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sunlight-driven photocatalytic filters against pathogenic bioaerosols have attracted a lot of interest. However, developing an efficient interception system that shows enhanced visible-light harvesting, controllable charge dynamic, and boosted ROS generation remains a grand challenge. Here, we designed an ionic ZIF-8@iCOF nanocomposite as a sunlight-driven photocatalytic filter through elaborate structural engineering of the heterointerface between ZIF-8 and cationic iCOF layers. The photoactive experiments reveal significant improvements in the visible light absorption and sunlight-driven exciton-enhanced intersystem crossing to boost the generation of singlet oxygen (220%) and also obtain antibacterial efficiency of 99.99999% after 15 min irradiation. After combining with commercial polymer, resultant ZIF-8@iCOF/polyacrylonitrile (PAN) fibrous membranes exhibited high interception efficiency for both PM10 and PM2.5 (98%), being close to the commercial N95. This fibrous membrane also possesses good biocompatibility and strong elimination of bacteria under sunlight conditions, satisfying for the long-lasting contact usage. This finding not only showcases the promise of the porous materials-based fibrous membranes for efficient photocatalytic filter against pathogenic bioaerosols but also highlights the importance of accurate structural engineering for the advancement of sunlight-driven photocatalytic systems in environment and energy-related fields.
Collapse
Affiliation(s)
- Yite Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Liqian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tian Meng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
60
|
Wu D, Zhang Q, Wang X, Zhang B. Interface-confined synthesis of a nonplanar redox-active covalent organic framework film for synaptic memristors. NANOSCALE 2023; 15:2726-2733. [PMID: 36655780 DOI: 10.1039/d2nr06904k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of novel synthetic methodologies and unprecedented structures of covalent organic framework (COF) films is of great importance for exploring their potential applications in optoelectronic devices, sensors, and membrane separation. From the point of view of monomer selection, rigid building blocks are always the first choice for synthesizing crystalline COF films. However, the preparation of COF films with flexible building units remains challenging. Herein, by introducing flexible triphenylamine-based building units, a nonplanar COF film (TFPA-TAPA film) is fabricated via liquid-liquid interface-confined synthesis at room temperature and atmospheric pressure. The growth mechanism of the flexible building units at the liquid-liquid interface is related to the transformation of strip-type slices into free-standing COF films by dynamic covalent chemistry. As a proof-of-concept, the as-fabricated Al/TFPA-TAPA/ITO device shows excellent multilevel storage and history-dependent memristive switching behavior. The synaptic potentiation/depression, human learning and memorization functions, as well as the transition from short-term synaptic plasticity to long-term plasticity, are successfully emulated by using this synaptic memristor.
Collapse
Affiliation(s)
- Dongchuang Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.
| | - Qiongshan Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.
| | - Xiaoyang Wang
- Guangxi Key Laboratory of Information Material, Engineering Research Center of Electronic Information Materials and Devices, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, China.
| |
Collapse
|
61
|
Dai L, Dong A, Meng X, Liu H, Li Y, Li P, Wang B. Enhancement of Visible-Light-Driven Hydrogen Evolution Activity of 2D π-Conjugated Bipyridine-Based Covalent Organic Frameworks via Post-Protonation. Angew Chem Int Ed Engl 2023; 62:e202300224. [PMID: 36757154 DOI: 10.1002/anie.202300224] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
Photocatalytic hydrogen (H2 ) evolution represents a promising and sustainable technology. Covalent organic frameworks (COFs)-based photocatalysts have received growing attention. A 2D fully conjugated ethylene-linked COF (BTT-BPy-COF) was fabricated with a dedicated designed active site. The introduced bipyridine sites enable a facile post-protonation strategy to fine-tune the actives sites, which results in a largely improved charge-separation efficiency and increased hydrophilicity in the pore channels synergically. After modulating the degree of protonation, the optimal BTT-BPy-PCOF exhibits a remarkable H2 evolution rate of 15.8 mmol g-1 h-1 under visible light, which surpasses the biphenyl-based COF 6 times. By using different types of acids, the post-protonation is proved to be a potential universal strategy for promoting photocatalytic H2 evolution. This strategy would provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Lu Dai
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Anwang Dong
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Xiangjian Meng
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Huanyu Liu
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Yueting Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Pengfei Li
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China
| | - Bo Wang
- Frontiers Science Center for High Energy Material, Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, P. R. China.,Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan, 250300, P. R. China
| |
Collapse
|
62
|
Ding J, Guan X, Lv J, Chen X, Zhang Y, Li H, Zhang D, Qiu S, Jiang HL, Fang Q. Three-Dimensional Covalent Organic Frameworks with Ultra-Large Pores for Highly Efficient Photocatalysis. J Am Chem Soc 2023; 145:3248-3254. [PMID: 36718987 DOI: 10.1021/jacs.2c13817] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Benefiting from their unique structural merits, three-dimensional (3D) large-pore COF materials demonstrate high surface areas and interconnected large channels, which makes these materials promising in practical applications. Unfortunately, functionalization strategies and application research are still absent in these structures. To this end, a series of functional 3D stp-topologized COFs are designed based on porphyrin or metalloporphyrin moieties, named JUC-640-M (M = Co, Ni, or H). Interestingly, JUC-640-H exhibits a record-breaking low crystal density (0.106 cm3 g-1) among all crystalline materials, along with the largest interconnected pore size (4.6 nm) in 3D COFs, high surface area (2204 m2 g-1), and abundant exposed porphyrin moieties (0.845 mmol g-1). Inspired by the unique structural characteristics and photoelectrical performance, JUC-640-Co is utilized for the photoreduction of CO2 to CO and demonstrates a high CO production rate (15.1 mmol g-1 h-1), selectivity (94.4%), and stability. It should be noted that the CO production rate of JUC-640-Co has exceeded those of all reported COF-based materials. This work not only produces a series of novel 3D COFs with large channels but also provides a new guidance for the functionalization and applications of COFs.
Collapse
Affiliation(s)
- Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyu Guan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jia Lv
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Xiaohong Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hai-Long Jiang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
63
|
Yu G, Liu Y, Yang X, Li Y, Li Y, Zhang Y, He C. A robust sp2 carbon-conjugated COF for efficient iodine uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
64
|
Kong L, Guo X, Wei Z, Xu J, Zhang X, Shi S, Wang Q, Zhou B, Li L. Mechanical Pressure-Induced π-Electron Delocalization of Carbon Nitride for Boosting Photocatalytic Water Splitting. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
65
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
66
|
Linkage-Affected Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Hydrogen Production. Processes (Basel) 2023. [DOI: 10.3390/pr11020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The depletion of traditional fossil energy and the resulting environmental pollution forces people to explore new energy sources. Direct use of solar energy is now a viable solution for solving these problems. Covalent organic frameworks (COFs) are a porous crystalline material; their well-defined two-dimensional or three-dimensional frameworks can ensure the orderly arrangement of photoelectric active units, giving them potential photoelectric conversion applications. The tunable structural features endow COFs many advantages in photocatalytic hydrogen production under visible light. This review comprehensively summarizes the research progress on photoelectronic donor–acceptor (D-A) COFs with tunable structure for photocatalytic hydrogen evolution and will provide a feasible guiding strategy for applying this type of COFs in photocatalytic hydrogen production.
Collapse
|
67
|
Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water. Nat Commun 2023; 14:329. [PMID: 36658157 PMCID: PMC9852592 DOI: 10.1038/s41467-023-35999-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Attempts to develop photocatalysts for hydrogen production from water usually result in low efficiency. Here we report the finding of photocatalysts by integrated interfacial design of stable covalent organic frameworks. We predesigned and constructed different molecular interfaces by fabricating ordered or amorphous π skeletons, installing ligating or non-ligating walls and engineering hydrophobic or hydrophilic pores. This systematic interfacial control over electron transfer, active site immobilisation and water transport enables to identify their distinct roles in the photocatalytic process. The frameworks, combined ordered π skeletons, ligating walls and hydrophilic channels, work under 300-1000 nm with non-noble metal co-catalyst and achieve a hydrogen evolution rate over 11 mmol g-1 h-1, a quantum yield of 3.6% at 600 nm and a three-order-of-magnitude-increased turnover frequency of 18.8 h-1 compared to those obtained with hydrophobic networks. This integrated interfacial design approach is a step towards designing solar-to-chemical energy conversion systems.
Collapse
|
68
|
Nath S, Puthukkudi A, Mohapatra J, Bommakanti S, Chandrasekhar N, Biswal BP. Carbon-Carbon Linked Organic Frameworks: An Explicit Summary and Analysis. Macromol Rapid Commun 2023; 44:e2200950. [PMID: 36625406 DOI: 10.1002/marc.202200950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/11/2023]
Abstract
Organic frameworks with carbon-carbon (CC) linkage are an important class of materials owing to their outstanding chemical stability and extended π-electron delocalization resulting in unique optoelectronic properties. In the first part of this review article, the design principles for the bottom-up synthesis of 2D and 3D sp/sp2 CC linked organic frameworks are summarized. Representative reaction methodologies, such as Knoevenagel condensation, Aldol condensation, Horner-Wadsworth-Emmons reaction, Wittig reaction, and coupling reactions (Ullmann, Suzuki, Heck, Yamamoto, etc.) are included. This is discussed in the context of their reaction mechanism, reaction dynamics, and whether and why resulting in an amorphous or crystalline product. This is followed by a discussion of different state-of-the art bottom-up synthesis methodologies, like solvothermal, interfacial, and solid-state synthesis. In the second part, the structure-property relationships in CC linked organic frameworks with representative examples of organocatalysis, photo(electro)catalysis, energy storage and conversion, magnetism, and molecular storage and separation are analyzed. The importance of linkage type, building blocks, topology, and crystallinity of the framework material in connection with the structure-property relationship is highlighted. Finally, brief concluding remarks are presented based on the key development of bottom-up synthetic methods and provide perspectives for future development in this field.
Collapse
Affiliation(s)
- Satyapriya Nath
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Adithyan Puthukkudi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Jeebanjyoti Mohapatra
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Suresh Bommakanti
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Naisa Chandrasekhar
- Centre for Advancing Electronics Dresden (cfaed), Department of Chemistry and Food Chemistry, Dresden University of Technology, Momenstrasse 4, 01069, Dresden, Germany
| | - Bishnu P Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Jatni, Khurda, Odisha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
69
|
Li S, Ma R, Xu S, Zheng T, Wang H, Fu G, Yang H, Hou Y, Liao Z, Wu B, Feng X, Wu LZ, Li XB, Zhang T. Two-Dimensional Benzobisthiazole-Vinylene-Linked Covalent Organic Frameworks Outperform One-Dimensional Counterparts in Photocatalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Tianyue Zheng
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huaping Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Guangen Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Maria-Reiche-Strasse 2, Dresden 01109, Germany
| | - Bozhen Wu
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Xu-Bing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190 P. R. China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
70
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
71
|
Huang W, Hu Y, Qin Z, Ji Y, Zhao X, Wu Y, He Q, Li Y, Zhang C, Lu J, Li Y. Highly crystalline and water-wettable benzobisthiazole-based covalent organic frameworks for enhanced photocatalytic hydrogen production. Natl Sci Rev 2023; 10:nwac171. [PMID: 36684521 PMCID: PMC9843129 DOI: 10.1093/nsr/nwac171] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/20/2022] [Accepted: 08/10/2022] [Indexed: 01/25/2023] Open
Abstract
Two-dimensional covalent organic frameworks are promising for photocatalysis by virtue of their structural and functional diversity, but generally suffer from low activities relative to their inorganic competitors. To fulfill their full potential requires a rational tailoring of their structures at different scales as well as their surface properties. Herein, we demonstrate benzobisthiazole-based covalent organic frameworks as a superior photocatalyst for hydrogen production. The product features high crystallinity with ordered 2.5-nm-wide cylindrical mesopores and great water wettability. These structural advantages afford our polymeric photocatalyst with fast charge carrier dynamics as evidenced by a range of spectroscopic characterizations and excellent catalytic performances when suspended in solution or supported on melamine foams. Under visible-light irradiation, it enables efficient and stable hydrogen evolution with a production rate of 487 μmol h-1 (or a mass-specific rate of 48.7 mmol g-1 h-1)-far superior to the previous state of the art. We also demonstrate that hydrogen production can be stoichiometrically coupled with the oxidation conversion of biomass as exemplified by the conversion of furfuryl alcohol to 2-furaldehyde.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yongpan Hu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Zhengyuan Qin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Xuan Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Yunling Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Qing He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China.,Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macau, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yanguang Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.,Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China.,Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Macau, China
| |
Collapse
|
72
|
Zhang CR, Cui WR, Yi SM, Niu CP, Liang RP, Qi JX, Chen XJ, Jiang W, Liu X, Luo QX, Qiu JD. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO 4- or 99TcO 4. Nat Commun 2022; 13:7621. [PMID: 36494388 PMCID: PMC9734744 DOI: 10.1038/s41467-022-35435-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The synthesis of ionic olefin linked three-dimensional covalent organic frameworks (3D COFs) is greatly challenging given the hardness of the formation of stable carbon-carbon double bonds (-C = C-). Herein, we report a general strategy for designing porous positively charged sp2 carbon-linked 3D COFs through the Aldol condensation promoted by quaternization. The obtained 3D COFs, namely TFPM-PZI and TAPM-PZI, showed impressive chemical stability. Furthermore, the positively charged frameworks with regular porosity endow 3D ionic COFs with selective capture radioactive ReO4-/TcO4- and great removal efficiency in simulated Hanford waste. This research not only broadens the category of 3D COFs but also promotes the application of COFs as efficient functional materials.
Collapse
Affiliation(s)
- Cheng-Rong Zhang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei-Rong Cui
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Shun-Mo Yi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Cheng-Peng Niu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Ru-Ping Liang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jia-Xin Qi
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xiao-Juan Chen
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Wei Jiang
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Xin Liu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Qiu-Xia Luo
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China
| | - Jian-Ding Qiu
- College of Chemistry and Chemical Engineering, Nanchang University, 330031, Nanchang, China.
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, 330013, Nanchang, China.
| |
Collapse
|
73
|
McQueen E, Bai Y, Sprick RS. Impact of Interfaces, and Nanostructure on the Performance of Conjugated Polymer Photocatalysts for Hydrogen Production from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4299. [PMID: 36500922 PMCID: PMC9739915 DOI: 10.3390/nano12234299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The direct conversion of sunlight into hydrogen through water splitting, and by converting carbon dioxide into useful chemical building blocks and fuels, has been an active area of research since early reports in the 1970s. Most of the semiconductors that drive these photocatalytic processes have been inorganic semiconductors, but since the first report of carbon nitride organic semiconductors have also been considered. Conjugated materials have been relatively extensively studied as photocatalysts for solar fuels generation over the last 5 years due to the synthetic control over composition and properties. The understanding of materials' properties, its impact on performance and underlying factors is still in its infancy. Here, we focus on the impact of interfaces, and nanostructure on fundamental processes which significantly contribute to performance in these organic photocatalysts. In particular, we focus on presenting explicit examples in understanding the interface of polymer photocatalysts with water and how it affects performance. Wetting has been shown to be a clear factor and we present strategies for increased wettability in conjugated polymer photocatalysts through modifications of the material. Furthermore, the limited exciton diffusion length in organic polymers has also been identified to affect the performance of these materials. Addressing this, we also discuss how increased internal and external surface areas increase the activity of organic polymer photocatalysts for hydrogen production from water.
Collapse
Affiliation(s)
- Ewan McQueen
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Yang Bai
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, #08-03, 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
74
|
Suleiman B, Abdullah CAC, Tahir MIM, Bahbouh L, Rahman MBA. Covalent organic frameworks: Recent advances in synthesis, characterization and their application in the environmental and agricultural sectors. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
75
|
Saad MA, Sakr MAS, Saroka VA, Abdelsalam H. Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study. CHEMOSPHERE 2022; 308:136581. [PMID: 36162514 DOI: 10.1016/j.chemosphere.2022.136581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Pure water is a key element for a sustainable and healthy environment of human inhabitation. Since major sources of water contamination are industrially generated heavy metal cations there is great demand for efficient methods of their treatment. Here, using density functional theory, we investigate the covalent organic framework's electronic and optical properties and their interaction with the most dangerous heavy metal pollutants, namely Hg+2, Pb+2, and Cd+2. We consider biphenyl boroxine covalent organic frameworks before and after chemical modification with CN, COOH, NH2, and NO2 groups. In addition to the molecular geometries, such parameters as the dipole moment, chemical potential, electronegativity, chemical hardness, and binding energy are calculated. It is found that CN, COOH, and NO2 functional groups are favorable for intermolecular bonding with harmful transition metals. The functionalization with the mentioned groups reduces the band gap of the pristine covalent organic frameworks and increases their reactivity. As a result, strong complexes with Cd+2, Hg+2, and Pb+2 can form, which, as follows from our calculations, can be detected by the red shift in their optical absorption spectra.
Collapse
Affiliation(s)
- Mohamed A Saad
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Mahmoud A S Sakr
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Vasil A Saroka
- TBpack Ltd., 27 Old Gloucester Street, London, WC1N 3AX, United Kingdom; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, 220030, Minsk, Belarus
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China; Theoretical Physics Department, National Research Centre, El-Buhouth Str., 12622, Dokki, Giza, Egypt
| |
Collapse
|
76
|
Lv M, Ren X, Cao R, Chang Z, Chang X, Bai F, Li Y. Zn (II) Porphyrin Built-in D-A Covalent Organic Framework for Efficient Photocatalytic H 2 Evolution. Polymers (Basel) 2022; 14:polym14224893. [PMID: 36433020 PMCID: PMC9696642 DOI: 10.3390/polym14224893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Covalent organic frameworks (COFs) with donor-acceptor (D-A) units are credible photocatalysts for their per-designed structure, inherent porosity, large surface area, splendid stability and so forth. Developing COFs with an excellent photocatalytic efficiency for hydrogen evolution is of a great significance in alleviating the energy crisis. Herein, a D-A type imine-linked crystalline Zn-Por-TT COF was fabricated successfully via the co-polymerization of electron-deficient Zinc (II) 5,10,15,20-tetrakis(para-aminophenyl) porphyrin (Zn-TAPP), and electron-rich thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT). Profiting from the D-A complex structure, the obtained Zn-Por-TT COF showcases an excellent photocatalytic activity with a hydrogen evolution rate of 8200 μmol/g/h, while the Zn-TAPP monomer presents practically no capacity for the generation of hydrogen under identical conditions. In addition, the counterparts Por-TT COF and COF-366-Zn were employed to illustrate the enhancement of the photocatalytic performance by metal catalytic sites and D-A structures. In addition, the counterparts Por-TT COF and COF-366-Zn were employed to illustrate the enhancement of metal catalytic sites and D-A structures for the photocatalytic performance.
Collapse
Affiliation(s)
- Mingbo Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xitong Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Ronghui Cao
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Zhiming Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiao Chang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Correspondence: (F.B.); (Y.L.)
| | - Yusen Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Correspondence: (F.B.); (Y.L.)
| |
Collapse
|
77
|
Wang Z, Zhu Q, Wang J, Jin F, Zhang P, Yan D, Cheng P, Chen Y, Zhang Z. Industry-compatible covalent organic frameworks for green chemical engineering. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
78
|
Xia QQ, Wang XH, Yu JL, Xue ZY, Chai J, Liu X, Wu MX. Tale of COF-on-MOF Composites with Structural Regulation and Stepwise Luminescence Enhancement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45669-45678. [PMID: 36174061 DOI: 10.1021/acsami.2c12606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integrating metal-organic framework (MOF)-covalent organic framework (COF) allows versatile engineering of hybrid materials with properties superior to pristine components, especially COFs suffered from aggregation-caused quenching (ACQ), unlocking more possibilities to improve the luminescence of COFs. In this work, we prepared various MOF@COF composites with different COF layer thicknesses, in which stable UiO-66-NH2 served as the inner substrate and 1,3,5-benzenetricarboxaldehyde (BT), and 3,3'-dihydroxybenzidine (DH) were used to construct a COF layer. In addition to the conventional preparation method, we increased the ratio of BT and DH to be 1:2.5, and impressively, the morphologies of acquired UC (1:2.5) materials were quite different from the previous reticular structure and gradually extended from the spherical structure to the prickly structure with the increase of COF monomers. Remarkably, all of the UC materials possessed better luminescence properties than individual COF due to the limited COF layers. Meanwhile, UC-1 materials with an optimal COF layer displayed the strongest emission. In comparison with a single COF, the quantum yields of UC-1 and UC-1 (1:2.5) were increased nearly 7 times and 5 times, respectively. Moreover, the fluorescence of UC-1 materials was progressively enhanced via selective F- sensing. This work is expected to shed light on the potential hybridization of MOF-COF with structural adjustment, morphological design, and luminescence enhancement.
Collapse
Affiliation(s)
- Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jia-Lin Yu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhi-Yuan Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
79
|
Han W, Liu Y, Yan X, Jiang Y, Zhang J, Gu Z. Integrating Light‐Harvesting Ruthenium(II)‐based Units into Three‐Dimensional Metal Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202208791. [DOI: 10.1002/anie.202208791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wang‐Kang Han
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| | - Yuqin Jiang
- Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jiangwei Zhang
- Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhi‐Guo Gu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 China
| |
Collapse
|
80
|
Luo QX, Cai YJ, Mao XL, Li YJ, Zhang CR, Liu X, Chen XR, Liang RP, Qiu JD. Tuned-Potential Covalent organic framework Electrochemiluminescence platform for lutetium analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
Zhao Z, Chen X, Li B, Zhao S, Niu L, Zhang Z, Chen Y. Spatial Regulation of Acceptor Units in Olefin-Linked COFs toward Highly Efficient Photocatalytic H 2 Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203832. [PMID: 35981892 PMCID: PMC9561862 DOI: 10.1002/advs.202203832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Indexed: 05/19/2023]
Abstract
Covalent organic frameworks (COFs)-based photocatalysts have received growing attention for photocatalytic hydrogen (H2 ) production. One of the big challenges in the field is to find ways to promote energy/electron transfer and exciton dissociation. Addressing this challenge, herein, a series of olefin-linked 2D COFs is fabricated with high crystallinity, porosity, and robustness using a melt polymerization method without adding volatile organic solvents. It is found that regulation of the spatial distances between the acceptor units (triazine and 2, 2'-bipyridine) of COFs to match the charge carrier diffusion length can dramatically promote the exciton dissociation, hence leading to outstanding photocatalytic H2 evolution performance. The COF with the appropriate acceptor distance achieves exceptional photocatalytic H2 evolution with an apparent quantum yield of 56.2% at 475 nm, the second highest value among all COF photocatalysts and 70 times higher than the well-studied polymer carbon nitride. Various experimental and computation studies are then conducted to in-depth unveil the mechanism behind the enhanced performance. This study will provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Zhengfeng Zhao
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Xuepeng Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - BaoYing Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Shu Zhao
- Institute of Advanced Battery Materials and DevicesFaculty of Materials and ManufacturingBeijing University of TechnologyBeijing100124P. R. China
| | - Liwei Niu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| |
Collapse
|
82
|
Yang C, Wan S, Zhu B, Yu J, Cao S. Calcination‐regulated Microstructures of Donor‐Acceptor Polymers towards Enhanced and Stable Photocatalytic H
2
O
2
Production in Pure Water. Angew Chem Int Ed Engl 2022; 61:e202208438. [DOI: 10.1002/anie.202208438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chao Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Sijie Wan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Bicheng Zhu
- Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- Laboratory of Solar Fuel Faculty of Materials Science and Chemistry China University of Geosciences 388 Lumo Road Wuhan 430074 P. R. China
| | - Shaowen Cao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| |
Collapse
|
83
|
Karak S, Stepanenko V, Addicoat MA, Keßler P, Moser S, Beuerle F, Würthner F. A Covalent Organic Framework for Cooperative Water Oxidation. J Am Chem Soc 2022; 144:17661-17670. [PMID: 36168797 PMCID: PMC9523720 DOI: 10.1021/jacs.2c07282] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The future of water-derived hydrogen as the “sustainable
energy source” straightaway bets on the success of the sluggish
oxygen-generating half-reaction. The endeavor to emulate the natural
photosystem II for efficient water oxidation has been extended across
the spectrum of organic and inorganic combinations. However, the achievement
has so far been restricted to homogeneous catalysts rather than their
pristine heterogeneous forms. The poor structural understanding and
control over the mechanistic pathway often impede the overall development.
Herein, we have synthesized a highly crystalline covalent organic
framework (COF) for chemical and photochemical water oxidation. The
interpenetrated structure assures the catalyst stability, as the catalyst’s
performance remains unaltered after several cycles. This COF exhibits
the highest ever accomplished catalytic activity for such an organometallic
crystalline solid-state material where the rate of oxygen evolution
is as high as ∼26,000 μmol L–1 s–1 (second-order rate constant k ≈
1650 μmol L s–1 g–2). The
catalyst also proves its exceptional activity (k ≈
1600 μmol L s–1 g–2) during
light-driven water oxidation under very dilute conditions. The cooperative
interaction between metal centers in the crystalline network offers
20–30-fold superior activity during chemical as well as photocatalytic
water oxidation as compared to its amorphous polymeric counterpart.
Collapse
Affiliation(s)
- Suvendu Karak
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Matthew A. Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Philipp Keßler
- Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg D-97074, Germany
| | - Simon Moser
- Physikalisches Institut and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg D-97074, Germany
| | - Florian Beuerle
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| |
Collapse
|
84
|
Ma S, Deng T, Li Z, Zhang Z, Jia J, Wu G, Xia H, Yang S, Liu X. Photocatalytic Hydrogen Production on a sp
2
‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022; 61:e202208919. [DOI: 10.1002/anie.202208919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 01/26/2023]
Affiliation(s)
- Si Ma
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Tianqi Deng
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P.R. China
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering Zhejiang University Hangzhou 310027 P.R. China
| | - Ziping Li
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Zhenwei Zhang
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Ji Jia
- College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Gang Wu
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Technology Jilin University Changchun 130012 P.R. China
| | - Shuo‐Wang Yang
- Institute of High Performance Computing Agency for Science, Technology and Research 1 Fusionopolis Way, #16-16 Connexis Singapore 138632
| | - Xiaoming Liu
- College of Chemistry Jilin University Changchun 130012 P.R. China
| |
Collapse
|
85
|
Ran L, Li Z, Ran B, Cao J, Zhao Y, Shao T, Song Y, Leung MKH, Sun L, Hou J. Engineering Single-Atom Active Sites on Covalent Organic Frameworks for Boosting CO 2 Photoreduction. J Am Chem Soc 2022; 144:17097-17109. [PMID: 36066387 DOI: 10.1021/jacs.2c06920] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solar carbon dioxide (CO2) conversion is an emerging solution to meet the challenges of sustainable energy systems and environmental/climate concerns. However, the construction of isolated active sites not only influences catalytic activity but also limits the understanding of the structure-catalyst relationship of CO2 reduction. Herein, we develop a universal synthetic protocol to fabricate different single-atom metal sites (e.g., Fe, Co, Ni, Zn, Cu, Mn, and Ru) anchored on the triazine-based covalent organic framework (SAS/Tr-COF) backbone with the bridging structure of metal-nitrogen-chlorine for high-performance catalytic CO2 reduction. Remarkably, the as-synthesized Fe SAS/Tr-COF as a representative catalyst achieved an impressive CO generation rate as high as 980.3 μmol g-1 h-1 and a selectivity of 96.4%, over approximately 26 times higher than that of the pristine Tr-COF under visible light irradiation. From X-ray absorption fine structure analysis and density functional theory calculations, the superior photocatalytic performance is attributed to the synergic effect of atomically dispersed metal sites and Tr-COF host, decreasing the reaction energy barriers for the formation of *COOH intermediates and promoting CO2 adsorption and activation as well as CO desorption. This work not only affords rational design of state-of-the-art catalysts at the molecular level but also provides in-depth insights for efficient CO2 conversion.
Collapse
Affiliation(s)
- Lei Ran
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.,Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R. China
| | - Zhuwei Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu 610064, P. R. China
| | - Jiaqi Cao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Teng Shao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yurou Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Michael K H Leung
- Ability R&D Energy Research Centre, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong 999077, P. R. China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, P. R. China.,Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044 Stockholm, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
86
|
Photocatalytic Hydrogen Production on a sp2‐Carbon‐Linked Covalent Organic Framework. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
87
|
Yu H, Wang D. Suppressing the Excitonic Effect in Covalent Organic Frameworks for Metal-Free Hydrogen Generation. JACS AU 2022; 2:1848-1856. [PMID: 36032531 PMCID: PMC9400042 DOI: 10.1021/jacsau.2c00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic hydrogen generation is a promising solution for renewable energy production and plays a role in achieving carbon neutrality. Covalent organic frameworks (COFs) with highly designable backbones and inherent pores have emerged as novel photocatalysts, yet the strong excitonic effect in COFs can impede the promotion of energy conversion efficiency. Here, we propose a facile approach to suppress the excitonic effect in COFs, which is by narrowing the band gap and increasing the dielectric screening via a rational backbone design and chemical modifications. Based on the GW-BSE method, we uncover a linear relationship between the electronic dielectric constant and the inverse square of the optical band gap of COFs of the Lieb lattice. We further demonstrate that both reduced exciton binding energy and enhanced sunlight absorption can be simultaneously realized in COFs with a narrow band gap. Specifically, we show that one of our designed COFs whose exciton binding energy is nearly half that of g-C3N4 is capable of metal-free hydrogen production under near-infrared light irradiation. Our results showcase an effective method to suppress the excitonic effect in COFs and also pave the way for their applications in photocatalytic, photovoltaic, and other related solar energy conversions.
Collapse
|
88
|
Guo J, Ma D, Sun F, Zhuang G, Wang Q, Al-Enizi AM, Nafady A, Ma S. Substituent engineering in g-C3N4/COF heterojunctions for rapid charge separation and high photo-redox activity. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1350-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
89
|
Dong S, Tan Z, Chen Q, Huang G, Wu L, Bi J. Cobalt quantum dots as electron collectors in ultra-narrow bandgap dioxin linked covalent organic frameworks for boosting photocatalytic solar-to-fuel conversion. J Colloid Interface Sci 2022; 628:573-582. [PMID: 36007422 DOI: 10.1016/j.jcis.2022.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 12/17/2022]
Abstract
Photocatalysis offers a sustainable paradigm for solar-to-fuel conversion because it conflates the merits of renewable solar energy and reusable catalysts. However, the seek for robust photocatalysts that can utilize the full visible light spectrum remains challenging. Herein, cobalt quantum dots (Co QDs) were integrated into ultra-narrow bandgap dioxin linked covalent organic frameworks (COF-318) for photocatalytic solar-to-fuel conversion under full spectrum of visible light irradiation. The optimal Co10-COF exhibited superior photocatalytic CO2 reduction performance, affording a CO yield of 4232 µmol∙g-1∙h-1 and H2 evolution of 6611 µmol∙g-1∙h-1. Specifically, Co QDs played a crucial role in boosting the photocatalytic performance, which acted as electron collectors to capture the photoinduced electrons and then conveyed them to CO2 molecules. Moreover, the Co QDs modification significantly improved the CO2 adsorption and activation capacity, as well as prolonging the lifetime of photogenerated carriers. This work reveals an operable pathway for fabricating promising photocatalyst for visible-light-driven solar-to-fuel generation and provides insight into the impact of the integration of Co QDs on COF-based photocatalysts.
Collapse
Affiliation(s)
- Shaofeng Dong
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Zunkun Tan
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Ling Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, PR China.
| |
Collapse
|
90
|
Han WK, Liu Y, Yan X, Jiang Y, Zhang J, Gu ZG. Integrating Light‐Harvesting Ruthenium(II)‐based Units into Three‐Dimensional Metal Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wang-Kang Han
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Yong Liu
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Xiaodong Yan
- Jiangnan University School of Chemical and Material Engineering CHINA
| | - Yuqin Jiang
- Henan Normal University School of Chemical and Material Engineering CHINA
| | - Jiangwei Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratory for Clean Energy & State Key Laboratory of Catalysis CHINA
| | - Zhi-Guo Gu
- Jiangnan University School of Chemical and Material Engineering, 1800 Lihu Road 214122 Wuxi CHINA
| |
Collapse
|
91
|
Li Y, Song X, Zhang G, Wang L, Liu Y, Chen W, Chen L. 2D Covalent Organic Frameworks Toward Efficient Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2022; 15:e202200901. [PMID: 35652127 DOI: 10.1002/cssc.202200901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Efficiently producing clean energy is of great importance for sustainable development of the environment. Solar-driven water splitting for H2 evolution has an important role among the renewable energy technologies. Developing high-performance and cost-effective photocatalysts is still a critical task before practical application. 2D Covalent organic frameworks (COFs) as photocatalysts have recently attracted widespread interest thanks to their tunable optical bandgaps, tailor-made functionality, excellent crystallinity, high specific surface area, and good photo- and chemical stability. This Review focuses on the representative progress and remaining challenges in 2D COF-based photocatalysts for hydrogen evolution.
Collapse
Affiliation(s)
- Yang Li
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaoyu Song
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yi Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weihua Chen
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Henan, 450001, P. R. China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
92
|
Zhang B, Chen L, Zhang Z, Li Q, Khangale P, Hildebrandt D, Liu X, Feng Q, Qiao S. Modulating the Band Structure of Metal Coordinated Salen COFs and an In Situ Constructed Charge Transfer Heterostructure for Electrocatalysis Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105912. [PMID: 35657033 PMCID: PMC9353467 DOI: 10.1002/advs.202105912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Indexed: 05/22/2023]
Abstract
A series of crystalline, stable Metal (Metal = Zn, Cu, Ni, Co, Fe, and Mn)-Salen covalent organic framework (COF)EDA complex are prepared to continuously tune the band structure of Metal-Salen COFEDA , with the purpose of optimizing the free energy intermediate species during the hydrogen evolution reaction (HER) process. The conductive macromolecular poly(3,4-ethylenedioxythiophene) (PEDOT) is subsequently integrated into the one-dimensional (1D) channel arrays of Metal-Salen COFEDA to form heterostructure PEDOT@Metal-Salen COFEDA via the in situ solid-state polymerization method. Among the Metal-Salen COFEDA and PEDOT@Metal-Salen COFEDA complexes, the optimized PEDOT@Mn-Salen COFEDA displays prominent electrochemical activity with an overpotential of 150 mV and a Tafel slope of 43 mV dec-1 . The experimental results and density of states data show that the continuous energy band structure modulation in Metal-Salen COFEDA has the ability to make the metal d-orbital interact better with the s-orbital of H, which is conducive to electron transport in the HER process. Moreover, the calculated charge density difference indicates that the heterostructures composed of PEDOT and Metal-Salen COFEDA induce an intramolecular charge transfer and construct highly active interfacial sites.
Collapse
Affiliation(s)
- Boying Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Liling Chen
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Zhenni Zhang
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
| | - Qing Li
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
| | - Phathutshedzo Khangale
- Department of Chemical EngineeringFaculty of Engineering and the Built EnvironmentUniversity of JohannesburgDoornfontein2028South Africa
| | - Diane Hildebrandt
- African Energy Leadership CentreWITS Business School and Molecular Science InstituteSchool of ChemistryUniversity of WitwatersrandJohannesburg2050South Africa
| | - Xinying Liu
- Institute for Development of Energy for African SustainabilityUniversity of South AfricaFlorida1709South Africa
| | - Qingliang Feng
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Shanlin Qiao
- College of Chemistry and Pharmaceutical EngineeringHebei University of Science and TechnologyShijiazhuang050018P. R. China
- Hebei Electronic Organic Chemicals Technology Innovation CenterShijiazhuang050018P. R. China
| |
Collapse
|
93
|
Yang C, Wan S, Zhu B, Yu J, Cao S. Calcination‐regulated Microstructures of Donor‐Acceptor Polymers towards Enhanced and Stable Photocatalytic H2O2 Production in Pure Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chao Yang
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Sijie Wan
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Bicheng Zhu
- China University of Geosciences Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry CHINA
| | - Jiaguo Yu
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing CHINA
| | - Shaowen Cao
- Wuhan University of Technology State Key Laboratory of Advanced Technology for Materials Synthesis and Processing 122 Luoshi Road 430070 Wuhan CHINA
| |
Collapse
|
94
|
Liu F, He Y, Liu X, Wang Z, Liu HL, Zhu X, Hou CC, Weng Y, Zhang Q, Chen Y. Regulating Excitonic Effects in Covalent Organic Frameworks to Promote Free Charge Carrier Generation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanyan He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Xiaopeng Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Zhuan Wang
- Beijing National Laboratory for Condensed Matter Physics & CAS, Key Laboratory of Soft Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hong-Lai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Chun-Chao Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics & CAS, Key Laboratory of Soft Matter Physics Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
95
|
Zhuang Q, Chen H, Zhang C, Cheng S, Dong W, Xie A. Rapid chromium reduction by metal-free organic polymer photocatalysis via molecular engineering. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128938. [PMID: 35452994 DOI: 10.1016/j.jhazmat.2022.128938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The conversion of hexavalent chromium (Cr(VI)), a highly poisonous heavy metal found in natural environment, to less poisonous trivalent chromium (Cr(III)) has attracted a lot of interest. However, little interest has been paid to the development of metal-free catalysts. Here, we demonstrate for the first time a molecular engineering strategy to synthesize a range of donor-acceptor conjugated polymer photocatalysts, which can significantly increase the reduction efficiency of Cr(VI) by a factor of 5.2, corresponding to a significant change in the reduction reaction rate constant (from 0.0337 to 0.1740 min-1). In addition, the apparent quantum efficiency (AQE) of Cr(VI) removal was obtained, and the optimized photocatalyst (Py-SO1) could achieve the highest apparent quantum efficiency at wavelength of 420 nm in those samples. Despite the narrow light absorption of Py-SO1 polymer, its excellent exciton separation efficiency and efficient electron output enabled it to achieve excellent performance in photoreduction of Cr(VI), surpassing that of the reported metal-free photocatalysts. The results show that the present work provides a new perspective for designing suitable environmental remediation catalysts based on molecular engineering strategies.
Collapse
Affiliation(s)
- Qiu Zhuang
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Hao Chen
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Chaofan Zhang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Siyao Cheng
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Dong
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Aming Xie
- School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
96
|
Di YM, Liu JY, Li MH, Zhang SQ, You MH, Lin MJ. Donor-Acceptor Hybrid Heterostructures: An Emerging Class of Photoactive Materials with Inorganic and Organic Semiconductive Components. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201159. [PMID: 35589558 DOI: 10.1002/smll.202201159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Just as the heterojunctions in physics, donor-acceptor (D-A) heterostructures are an emerging class of photoactive materials fabricated from two semiconductive components at the molecular level. Among them, D-A hybrid heterostructures from organic and inorganic semiconductive components have attracted extensive attention in the past decades due to their combined advantages of high stability for the inorganic semiconductors and modifiability for the organic semiconductors, which are particularly beneficial to efficiently achieve photoinduced charge separation and transfer upon irradiations. In this review, by analogy with the heterojunctions in physics, a definition of the D-A heterostructures and their general design and synthetic strategies are given. Meanwhile, the D-A hybrid heterostructures are focused on and their recent advances in potential applications of photochromism, photomodulated luminescence, and photocatalysis summarized.
Collapse
Affiliation(s)
- Yi-Ming Di
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jing-Yan Liu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Meng-Hua Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shu-Quan Zhang
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, China
| | - Ming-Hua You
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, China
| | - Mei-Jin Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
97
|
Xu Z, Zuo W, Mou Q, Cheng G, Zheng H, Zhao P. A yolk-shell structure construction for metal-organic frameworks toward an enhanced electrochemical water splitting catalysis. Dalton Trans 2022; 51:10298-10306. [PMID: 35749061 DOI: 10.1039/d2dt01111e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NiFe-based transition metal catalysts are widely used in electrocatalysis, especially in the field of water splitting, due to their excellent electrochemical performance. Herein, a simple method was designed to synthesize a Ni MOF based on nickel foam and it was modified with Fe. After the introduction of Fe, the resulting material exhibits an obvious yolk-shell structure, which greatly increases the specific surface area and facilitates the construction of active sites. At the same time, the synergy between Ni and Fe is conducive to optimizing the electronic structure and effectively improving the poor stability of the MOF. As a result, the synthesized Ni MOF-Fe-2 only needs an overpotential of 229 mV to achieve the OER at a current density of 10 mA cm-2, which is better than most reported transition metal-based electrocatalysts. To our surprise, it showed extraordinary stability under the voltage used for water splitting.
Collapse
Affiliation(s)
- Zhenhang Xu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei, 430072, P. R. China
| | - Wei Zuo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei, 430072, P. R. China
| | - Qiuxiang Mou
- Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan, Hubei, 430072, P. R. China
| | - Huaming Zheng
- School of Materials Science & Engineering, Wuhan Institute of Technology, Wuhan, 430073 Hubei, P.R. China.
| | - Pingping Zhao
- Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| |
Collapse
|
98
|
Ju JM, Lee CH, Park JH, Lee JH, Lee H, Shin JH, Kwak SY, Lee SU, Kim JH. Structural and Electronic Modulations of Imidazolium Covalent Organic Framework-Derived Electrocatalysts for Oxygen Redox Reactions in Rechargeable Zn-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24404-24414. [PMID: 35584866 DOI: 10.1021/acsami.2c04194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COFs) are promising candidates for the controllable design of electrocatalysts. However, bifunctional electrocatalytic activities for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remain challenging in COFs. In this study, imidazolium-rich COFs (IMCOFs) with well-defined active sites and characteristic three-dimensional assembly structures were readily prepared, and their electronic structures were tuned by Co incorporation to elicit bifunctional electrocatalytic activities for the ORR and OER. The Co nanoparticle-incorporated spherical IMCOF-derived electrocatalyst (CoNP-s-IMCOF) exhibited lower overpotentials for the ORR and OER compared with the atomic Co-incorporated planar IMCOF-derived electrocatalyst (Co-p-IMCOF). Computational simulations revealed that the imidazole carbon sites of CoNP-s-IMCOF rather than the triazine carbons were the active sites for the ORR and OER, and its p-band center downshifted via charge transfer, facilitating the chemisorption of oxygen intermediates during the reactions. A Zn-air battery with CoNP-s-IMCOF exhibited a small voltage gap of 1.3 V with excellent durability for 935 cycles. This approach for control over the three-dimensional assembly and electronic structures of IMCOFs can be extended to the development of diverse catalytic nanomaterials for applications of interest.
Collapse
Affiliation(s)
- Jong-Min Ju
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chi Ho Lee
- Artie McFerrin Department of Chemical Engineering and Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843, United States
| | - Jung Hyun Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Jun-Hyeong Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hajin Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jae-Hoon Shin
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Seon-Yeong Kwak
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea
| | - Sang Uck Lee
- Department of Applied Chemistry, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
99
|
Zhang H, Liu J, Jiang L. Photocatalytic hydrogen evolution based on carbon nitride and organic semiconductors. NANOTECHNOLOGY 2022; 33:322001. [PMID: 35447618 DOI: 10.1088/1361-6528/ac68f6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic hydrogen evolution (PHE) presents a promising way to solve the global energy crisis. Metal-free carbon nitride (CN) and organic semiconductors photocatalysts have drawn intense interests due to their fascinating properties such as tunable molecular structure, electronic states, strong visible-light absorption, low-cost etc. In this paper, the recent progresses of photocatalytic hydrogen production based on organic photocatalysts, including CN, linear polymers, conjugated porous polymers and small molecules, are reviewed, with emphasis on the various strategies to improve PHE efficiency. Finally, the possible future research trends in the organic photocatalysts are prospected.
Collapse
Affiliation(s)
- Hantang Zhang
- College of Chemistry and Material Science, Shandong Agriculture University, Taian 271000, People's Republic of China
| | - Jie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, People's Republic of China
| |
Collapse
|
100
|
Covalent Organic Frameworks with trans-Dimensionally Vinylene-linked π-Conjugated Motifs. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2010-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|