51
|
Carobbi A, Di Nepi S, Fridman CM, Dar Y, Ben‐Yaakov R, Barash I, Salomon D, Sessa G. An antibacterial T6SS in Pantoea agglomerans pv. betae delivers a lysozyme-like effector to antagonize competitors. Environ Microbiol 2022; 24:4787-4802. [PMID: 35706135 PMCID: PMC9796082 DOI: 10.1111/1462-2920.16100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/10/2022] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) is deployed by numerous Gram-negative bacteria to deliver toxic effectors into neighbouring cells. The genome of Pantoea agglomerans pv. betae (Pab) phytopathogenic bacteria contains a gene cluster (T6SS1) predicted to encode a complete T6SS. Using secretion and competition assays, we found that T6SS1 in Pab is a functional antibacterial system that allows this pathogen to outcompete rival plant-associated bacteria found in its natural environment. Computational analysis of the T6SS1 gene cluster revealed that antibacterial effector and immunity proteins are encoded within three genomic islands that also harbour arrays of orphan immunity genes or toxin and immunity cassettes. Functional analyses indicated that VgrG, a specialized antibacterial effector, contains a C-terminal catalytically active glucosaminidase domain that is used to degrade prey peptidoglycan. Moreover, we confirmed that a bicistronic unit at the end of the T6SS1 cluster encodes a novel antibacterial T6SS effector and immunity pair. Together, these results demonstrate that Pab T6SS1 is an antibacterial system delivering a lysozyme-like effector to eliminate competitors, and indicate that this bacterium contains additional novel T6SS effectors.
Collapse
Affiliation(s)
- Andrea Carobbi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Simone Di Nepi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Chaya M. Fridman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Yasmin Dar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Rotem Ben‐Yaakov
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Isaac Barash
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| |
Collapse
|
52
|
Fei N, Ji W, Yang L, Yu C, Qiao P, Yan J, Guan W, Yang Y, Zhao T. Hcp of the Type VI Secretion System (T6SS) in Acidovorax citrulli Group II Strain Aac5 Has a Dual Role as a Core Structural Protein and an Effector Protein in Colonization, Growth Ability, Competition, Biofilm Formation, and Ferric Iron Absorption. Int J Mol Sci 2022; 23:9632. [PMID: 36077040 PMCID: PMC9456162 DOI: 10.3390/ijms23179632] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/06/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
A type VI secretion system (T6SS) gene cluster has been reported in Acidovorax citrulli. Research on the activation conditions, functions, and the interactions between key elements in A. citrulli T6SS is lacking. Hcp (Hemolysin co-regulated protein) is both a structural protein and a secretion protein of T6SS, which makes it a special element. The aims of this study were to determine the role of Hcp and its activated conditions to reveal the functions of T6SS. In virulence and colonization assays of hcp deletion mutant strain Δhcp, tssm (type VI secretion system membrane subunit) deletion mutant strain Δtssm and double mutant ΔhcpΔtssm, population growth was affected but not virulence after injection of cotyledons and seed-to-seedling transmission on watermelon. The population growth of Δhcp and Δtssm were lower than A. citrulli wild type strain Aac5 of A. citrulli group II at early stage but higher at a later stage. Deletion of hcp also affected growth ability in different culture media, and the decline stage of Δhcp was delayed in KB medium. Biofilm formation ability of Δhcp, Δtssm and ΔhcpΔtssm was lower than Aac5 with competition by prey bacteria but higher in KB and M9-Fe3+ medium. Deletion of hcp reduced the competition and survival ability of Aac5. Based on the results of Western blotting and qRT-PCR analyses, Hcp is activated by cell density, competition, ferric irons, and the host plant. The expression levels of genes related to bacterial secretion systems, protein export, and several other pathways, were significantly changed in the Δhcp mutant compared to Aac5 when T6SS was activated at high cell density. Based on transcriptome data, we found that a few candidate effectors need further identification. The phenotypes, activated conditions and transcriptome data all supported the conclusion that although there is only one T6SS gene cluster present in the A. citrulli group II strain Aac5, it related to multiple biological processes, including colonization, growth ability, competition and biofilm formation.
Collapse
Affiliation(s)
- Nuoya Fei
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiqin Ji
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Yang
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunyan Yu
- Department of Plant Pathology, Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pei Qiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianpei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
53
|
Cote J, Welch C, Kimble M, Archambault D, Ross JC, Orellana H, Amero K, Bourett C, Daigle A, Hutchison KW, Molloy SD. Characterization of the cluster MabR prophages of Mycobacterium abscessus and Mycobacterium chelonae. G3 GENES|GENOMES|GENETICS 2022; 12:6650627. [PMID: 35894699 PMCID: PMC9434293 DOI: 10.1093/g3journal/jkac188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/30/2022] [Indexed: 11/15/2022]
Abstract
Mycobacterium abscessus is an emerging pathogen of concern in cystic fibrosis and immunocompromised patients and is considered one of the most drug-resistant mycobacteria. The majority of clinical Mycobacterium abscessus isolates carry 1 or more prophages that are hypothesized to contribute to virulence and bacterial fitness. The prophage McProf was identified in the genome of the Bergey strain of Mycobacterium chelonae and is distinct from previously described prophages of Mycobacterium abscessus. The McProf genome increases intrinsic antibiotic resistance of Mycobacterium chelonae and drives expression of the intrinsic antibiotic resistance gene, whiB7, when superinfected by a second phage. The prevalence of McProf-like genomes was determined in sequenced mycobacterial genomes. Related prophage genomes were identified in the genomes of 25 clinical isolates of Mycobacterium abscessus and assigned to the novel cluster, MabR. They share less than 10% gene content with previously described prophages; however, they share features typical of prophages, including polymorphic toxin–immunity systems.
Collapse
Affiliation(s)
- Jacob Cote
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
| | - Colin Welch
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| | - Madeline Kimble
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| | - Dakota Archambault
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| | - John Curtis Ross
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
| | - Hector Orellana
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
| | - Katelyn Amero
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| | - Claire Bourett
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| | - Andre Daigle
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
| | - Keith W Hutchison
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| | - Sally D Molloy
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, ME 04469, USA
- The Honors College, University of Maine , Orono, ME 04469, USA
| |
Collapse
|
54
|
Li Y, Yan X, Tao Z. Two Type VI Secretion DNase Effectors are Utilized for Interbacterial Competition in the Fish Pathogen Pseudomonas plecoglossicida. Front Microbiol 2022; 13:869278. [PMID: 35464968 PMCID: PMC9020831 DOI: 10.3389/fmicb.2022.869278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas plecoglossicida is a facultative fish pathogen that possesses three distinct type VI secretion systems (named T6SS-1, T6SS-2, and T6SS-3). Our previous work indicated that only T6SS-2 of P. plecoglossicida mediates interbacterial competition. However, the antibacterial T6SS effectors and their functions are unclear. Here, we reported two T6SS effectors that mediate antibacterial activity. We first identified four putative antibacterial effectors (denoted as Txe1, Txe2, Txe3, and Txe4) and their cognate immunity proteins encoded in P. plecoglossicida strain XSDHY-P by analyzing the regions downstream of three vgrG genes. We showed that the growth of Escherichia coli cells expressing Txe1, Txe2, and Txe4 was inhibited, and these three effectors exhibited nuclease activity in vivo. The interbacterial competition assays with single- or multi-effector deletion mutants as attackers revealed that Txe1 was the predominant T6SS toxin of P. plecoglossicida strain XSDHY-P mediating the interbacterial killing. This work contributes to our understanding of bacterial effectors involved in the interbacterial competition.
Collapse
Affiliation(s)
- Yanyan Li
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Xiaojun Yan
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| | - Zhen Tao
- School of Fisheries, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
55
|
A Putative Lipoprotein Mediates Cell-Cell Contact for Type VI Secretion System-Dependent Killing of Specific Competitors. mBio 2022; 13:e0308521. [PMID: 35404117 PMCID: PMC9040878 DOI: 10.1128/mbio.03085-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interbacterial competition is prevalent in host-associated microbiota, where it can shape community structure and function, impacting host health in both positive and negative ways. However, the factors that permit bacteria to discriminate among their various neighbors for targeted elimination of competitors remain elusive. We identified a putative lipoprotein (TasL) in Vibrio species that mediates cell-cell attachment with a subset of target strains, allowing inhibitors to target specific competitors for elimination. Here, we describe this putative lipoprotein, which is associated with the broadly distributed type VI secretion system (T6SS), by studying symbiotic Vibrio fischeri, which uses the T6SS to compete for colonization sites in their squid host. We demonstrate that TasL allows V. fischeri cells to restrict T6SS-dependent killing to certain genotypes by selectively integrating competitor cells into aggregates while excluding other cell types. TasL is also required for T6SS-dependent competition within juvenile squid, indicating that the adhesion factor is active in the host. Because TasL homologs are found in other host-associated bacterial species, this newly described cell-cell attachment mechanism has the potential to impact microbiome structure within diverse hosts. IMPORTANCE T6SSs are broadly distributed interbacterial weapons that share an evolutionary history with bacteriophage. Because the T6SS can be used to kill neighboring cells, it can impact the spatial distribution and biological function of both free-living and host-associated microbial communities. Like their phage relatives, T6SS+ cells must sufficiently bind competitor cells to deliver their toxic effector proteins through the syringe-like apparatus. Although phage use receptor-binding proteins (RBPs) and tail fibers to selectively bind prey cells, the biophysical properties that mediate this cell-cell contact for T6SS-mediated killing remain unknown. Here, we identified a large, predicted lipoprotein that is coordinately expressed with T6SS proteins and facilitates the contact that is necessary for the T6SS-dependent elimination of competitors in a natural host. Similar to phage RBPs and tail fibers, this lipoprotein is required for T6SS+ cells to discriminate between prey and nonprey cell types, revealing new insight into prey selection during T6SS-mediated competition.
Collapse
|
56
|
Boak EN, Kirolos S, Pan H, Pierson LS, Pierson EA. The Type VI Secretion Systems in Plant-Beneficial Bacteria Modulate Prokaryotic and Eukaryotic Interactions in the Rhizosphere. Front Microbiol 2022; 13:843092. [PMID: 35464916 PMCID: PMC9022076 DOI: 10.3389/fmicb.2022.843092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 01/15/2023] Open
Abstract
Rhizosphere colonizing plant growth promoting bacteria (PGPB) increase their competitiveness by producing diffusible toxic secondary metabolites, which inhibit competitors and deter predators. Many PGPB also have one or more Type VI Secretion System (T6SS), for the delivery of weapons directly into prokaryotic and eukaryotic cells. Studied predominantly in human and plant pathogens as a virulence mechanism for the delivery of effector proteins, the function of T6SS for PGPB in the rhizosphere niche is poorly understood. We utilized a collection of Pseudomonas chlororaphis 30-84 mutants deficient in one or both of its two T6SS and/or secondary metabolite production to examine the relative importance of each T6SS in rhizosphere competence, bacterial competition, and protection from bacterivores. A mutant deficient in both T6SS was less persistent than wild type in the rhizosphere. Both T6SS contributed to competitiveness against other PGPB or plant pathogenic strains not affected by secondary metabolite production, but only T6SS-2 was effective against strains lacking their own T6SS. Having at least one T6SS was also essential for protection from predation by several eukaryotic bacterivores. In contrast to diffusible weapons that may not be produced at low cell density, T6SS afford rhizobacteria an additional, more immediate line of defense against competitors and predators.
Collapse
Affiliation(s)
- Emily N. Boak
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Sara Kirolos
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Huiqiao Pan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, United States
| | - Leland S. Pierson
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| | - Elizabeth A. Pierson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
57
|
Liyanapathiranage P, Jones JB, Potnis N. Mutation of a Single Core Gene, tssM, of Type VI Secretion System of Xanthomonas perforans Influences Virulence, Epiphytic Survival, and Transmission During Pathogenesis on Tomato. PHYTOPATHOLOGY 2022; 112:752-764. [PMID: 34543058 DOI: 10.1094/phyto-02-21-0069-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xanthomonas perforans is a seedborne hemibiotrophic pathogen that successfully establishes infection in the phyllosphere of tomato. While most studies investigating mechanistic basis of pathogenesis have focused on successful apoplastic growth, factors important during asymptomatic colonization in the early stages of disease development are not well understood. In this study, we show that tssM gene of the type VI secretion system cluster i3* (T6SS-i3*) plays a significant role during initial asymptomatic epiphytic colonization at different stages during the life cycle of the pathogen. Mutation in a core gene, tssM of T6SS-i3*, imparted higher aggressiveness to the pathogen, as indicated by higher overall disease severity, higher in planta growth, and shorter latent infection period compared with the wild-type upon dip inoculation of 4- to 5-week-old tomato plants. Contribution of tssM toward aggressiveness was evident during vertical transmission from seed to seedling, with wild-type showing reduced disease severity as well as lower in planta populations on seedlings compared with the mutant. Presence of functional TssM offered higher epiphytic fitness as well as higher dissemination potential to the pathogen when tested in an experimental setup mimicking transplant house high-humidity conditions. We showed higher osmotolerance being one mechanism by which TssM offers higher epiphytic fitness. Taken together, these data reveal that functional TssM plays a larger role in offering ecological advantage to the pathogen. TssM prolongs the association of hemibiotrophic pathogen with the host, minimizing overall disease severity yet facilitating successful dissemination.
Collapse
Affiliation(s)
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| |
Collapse
|
58
|
Pei T, Kan Y, Wang Z, Tang M, Li H, Yan S, Cui Y, Zheng H, Luo H, Liang X, Dong T. Delivery of an Rhs-family nuclease effector reveals direct penetration of the gram-positive cell envelope by a type VI secretion system in Acidovorax citrulli. MLIFE 2022; 1:66-78. [PMID: 38818323 PMCID: PMC10989746 DOI: 10.1002/mlf2.12007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/16/2021] [Indexed: 06/01/2024]
Abstract
The type VI secretion system (T6SS) is a double-tubular nanomachine widely found in gram-negative bacteria. Its spear-like Hcp tube is capable of penetrating a neighboring cell for cytosol-to-cytosol protein delivery. However, gram-positive bacteria have been considered impenetrable to such T6SS action. Here we report that the T6SS of a plant pathogen, Acidovorax citrulli (AC), could deliver an Rhs-family nuclease effector RhsB to kill not only gram-negative but also gram-positive bacteria. Using bioinformatic, biochemical, and genetic assays, we systematically identified T6SS-secreted effectors and determined that RhsB is a crucial antibacterial effector. RhsB contains an N-terminal PAAR domain, a middle Rhs domain, and an unknown C-terminal domain. RhsB is subject to self-cleavage at both its N- and C-terminal domains and its secretion requires the upstream-encoded chaperone EagT2 and VgrG3. The toxic C-terminus of RhsB exhibits DNase activities and such toxicity is neutralized by either of the two downstream immunity proteins, RimB1 and RimB2. Deletion of rhsB significantly impairs the ability of killing Bacillus subtilis while ectopic expression of immunity proteins RimB1 or RimB2 confers protection. We demonstrate that the AC T6SS not only can effectively outcompete Escherichia coli and B. subtilis in planta but also is highly potent in killing other bacterial and fungal species. Collectively, these findings highlight the greatly expanded capabilities of T6SS in modulating microbiome compositions in complex environments.
Collapse
Affiliation(s)
- Tong‐Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yumin Kan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Zeng‐Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ming‐Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Shuangquan Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Yang Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Hao‐Yu Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- Department of Immunology and MicrobiologySchool of Life Sciences, Southern University of Science and TechnologyGuangdongChina
| |
Collapse
|
59
|
Chou L, Lin YC, Haryono M, Santos MNM, Cho ST, Weisberg AJ, Wu CF, Chang JH, Lai EM, Kuo CH. Modular evolution of secretion systems and virulence plasmids in a bacterial species complex. BMC Biol 2022; 20:16. [PMID: 35022048 PMCID: PMC8756689 DOI: 10.1186/s12915-021-01221-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many named species as defined in current bacterial taxonomy correspond to species complexes. Uncertainties regarding the organization of their genetic diversity challenge research efforts. We utilized the Agrobacterium tumefaciens species complex (a.k.a. Agrobacterium biovar 1), a taxon known for its phytopathogenicity and applications in transformation, as a study system and devised strategies for investigating genome diversity and evolution of species complexes. RESULTS We utilized 35 genome assemblies, including 14 newly generated ones, to achieve a phylogenetically balanced sampling of A. tumefaciens. Our genomic analysis suggested that the 10 genomospecies described previously are distinct biological species and supported a quantitative guideline for species delineation. Furthermore, our inference of gene content and core-genome phylogeny allowed for investigations of genes critical in fitness and ecology. For the type VI secretion system (T6SS) involved in interbacterial competition and thought to be conserved, we detected multiple losses and one horizontal gene transfer. For the tumor-inducing plasmids (pTi) and pTi-encoded type IV secretion system (T4SS) that are essential for agrobacterial phytopathogenicity, we uncovered novel diversity and hypothesized their involvement in shaping this species complex. Intriguingly, for both T6SS and T4SS, genes encoding structural components are highly conserved, whereas extensive diversity exists for genes encoding effectors and other proteins. CONCLUSIONS We demonstrate that the combination of a phylogeny-guided sampling scheme and an emphasis on high-quality assemblies provides a cost-effective approach for robust analysis in evolutionary genomics. We show that the T6SS VgrG proteins involved in specific effector binding and delivery can be classified into distinct types based on domain organization. The co-occurrence patterns of VgrG-associated domains and the neighboring genes that encode different chaperones/effectors can be used to infer possible interacting partners. Similarly, the associations between plant host preference and the pTi type among these strains can be used to infer phenotype-genotype correspondence. Our strategies for multi-level investigations at scales that range from whole genomes to intragenic domains and phylogenetic depths from between- to within-species are applicable to other bacteria. Furthermore, modularity observed in the molecular evolution of genes and domains is useful for inferring functional constraints and informing experimental works.
Collapse
Affiliation(s)
- Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mindia Haryono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Mary Nia M Santos
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Ting Cho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Chih-Feng Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan. .,Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan. .,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
60
|
Liu X, Cai J, Li X, Yu F, Wu D. Can bacterial type III effectors mediate pathogen-plant-microbiota ternary interactions? PLANT, CELL & ENVIRONMENT 2022; 45:5-11. [PMID: 34533222 DOI: 10.1111/pce.14185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Xiaoli Liu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Xiaoxu Li
- Tobacco Research Institute, Technology Center, China Tobacco Hunan Industrial Co., Ltd, Changsha, China
| | - Feng Yu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
61
|
Li H, Tan Y, Zhang D. Genomic discovery and structural dissection of a novel type of polymorphic toxin system in gram-positive bacteria. Comput Struct Biotechnol J 2022; 20:4517-4531. [PMID: 36051883 PMCID: PMC9424270 DOI: 10.1016/j.csbj.2022.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
Bacteria have developed several molecular conflict systems to facilitate kin recognition and non-kin competition to gain advantages in the acquisition of growth niches and of limited resources. One such example is a large class of so-called polymorphic toxin systems (PTSs), which comprise a variety of the toxin proteins secreted via T2SS, T5SS, T6SS, T7SS and many others. These systems are highly divergent in terms of sequence/structure, domain architecture, toxin-immunity association, and organization of the toxin loci, which makes it difficult to identify and characterize novel systems using traditional experimental and bioinformatic strategies. In recent years, we have been developing and utilizing unique genome-mining strategies and pipelines, based on the organizational principles of both domain architectures and genomic loci of PTSs, for an effective and comprehensive discovery of novel PTSs, dissection of their components, and prediction of their structures and functions. In this study, we present our systematic discovery of a new type of PTS (S8-PTS) in several gram-positive bacteria. We show that the S8-PTS contains three components: a peptidase of the S8 family (subtilases), a polymorphic toxin, and an immunity protein. We delineated the typical organization of these polymorphic toxins, in which a N-terminal signal peptide is followed by a potential receptor binding domain, BetaH, and one of 16 toxin domains. We classified each toxin domain by the distinct superfamily to which it belongs, identifying nine BECR ribonucleases, one Restriction Endonuclease, one HNH nuclease, two novel toxin domains homologous to the VOC enzymes, one toxin domain with the Frataxin-like fold, and several other unique toxin families such as Ntox33 and HicA. Accordingly, we identified 20 immunity families and classified them into different classes of folds. Further, we show that the S8-PTS-associated peptidases are analogous to many other processing peptidases found in T5SS, T7SS, T9SS, and many proprotein-processing peptidases, indicating that they function to release the toxin domains during secretion. The S8-PTSs are mostly found in animal and plant-associated bacteria, including many pathogens. We propose S8-PTSs will facilitate the competition of these bacteria with other microbes or contribute to the pathogen-host interactions.
Collapse
Affiliation(s)
- Huan Li
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Yongjun Tan
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dapeng Zhang
- Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA
- Program of Bioinformatics and Computational Biology, College of Arts & Sciences, Saint Louis University, MO 63103, USA
- Corresponding author at: Department of Biology, College of Arts & Sciences, Saint Louis University, Saint Louis, MO 63103, USA.
| |
Collapse
|
62
|
Czolkoss S, Safronov X, Rexroth S, Knoke LR, Aktas M, Narberhaus F. Agrobacterium tumefaciens Type IV and Type VI Secretion Systems Reside in Detergent-Resistant Membranes. Front Microbiol 2021; 12:754486. [PMID: 34899640 PMCID: PMC8656257 DOI: 10.3389/fmicb.2021.754486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Cell membranes are not homogenous but compartmentalized into lateral microdomains, which are considered as biochemical reaction centers for various physiological processes in eukaryotes and prokaryotes. Due to their special lipid and protein composition, some of these microdomains are resistant to treatment with non-ionic detergents and can be purified as detergent-resistant membranes (DRMs). Here we report the proteome of DRMs from the Gram-negative phytopathogen Agrobacterium tumefaciens. Using label-free liquid chromatography-tandem mass spectrometry, we identified proteins enriched in DRMs isolated under normal and virulence-mimicking growth conditions. Prominent microdomain marker proteins such as the SPFH (stomatin/prohibitin/flotillin/HflKC) proteins HflK, HflC and Atu3772, along with the protease FtsH were highly enriched in DRMs isolated under any given condition. Moreover, proteins involved in cell envelope biogenesis, transport and secretion, as well as motility- and chemotaxis-associated proteins were overrepresented in DRMs. Most strikingly, we found virulence-associated proteins such as the VirA/VirG two-component system, and the membrane-spanning type IV and type VI secretion systems enriched in DRMs. Fluorescence microscopy of the cellular localization of both secretion systems and of marker proteins was in agreement with the results from the proteomics approach. These findings suggest that virulence traits are micro-compartmentalized into functional microdomains in A. tumefaciens.
Collapse
Affiliation(s)
- Simon Czolkoss
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Xenia Safronov
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Sascha Rexroth
- Department of Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Lisa R Knoke
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Department of Microbial Biology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
63
|
Vogel CM, Potthoff DB, Schäfer M, Barandun N, Vorholt JA. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen. Nat Microbiol 2021; 6:1537-1548. [PMID: 34819644 PMCID: PMC7612696 DOI: 10.1038/s41564-021-00997-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/15/2021] [Indexed: 11/08/2022]
Abstract
The aerial parts of plants are host to taxonomically structured bacterial communities. Members of the core phyllosphere microbiota can protect Arabidopsis thaliana against foliar pathogens. However, whether plant protection is widespread and to what extent the modes of protection differ among phyllosphere microorganisms are not clear. Here, we present a systematic analysis of plant protection capabilities of the At-LSPHERE, which is a collection of >200 bacterial isolates from A. thaliana, against the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. In total, 224 bacterial leaf isolates were individually assessed for plant protection in a gnotobiotic system. Protection against the pathogen varied, with ~10% of leaf microbiota strains providing full protection, ~10% showing intermediate levels of protection and the remaining ~80% not markedly reducing disease phenotypes upon infection. The most protective strains were distributed across different taxonomic groups. Synthetic community experiments revealed additive effects of strains but also that a single strain can confer full protection in a community context. We also identify different mechanisms that contribute to plant protection. Although pattern-triggered immunity coreceptor signalling is involved in protection by a subset of strains, other strains protected in the absence of functional plant immunity receptors BAK1 and BKK1. Using a comparative genomics approach combined with mutagenesis, we reveal that direct bacteria-pathogen interactions contribute to plant protection by Rhizobium Leaf202. This shows that a computational approach based on the data provided can be used to identify genes of the microbiota that are important for plant protection.
Collapse
Affiliation(s)
| | | | - Martin Schäfer
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
64
|
Gallegos-Monterrosa R, Coulthurst SJ. The ecological impact of a bacterial weapon: microbial interactions and the Type VI secretion system. FEMS Microbiol Rev 2021; 45:fuab033. [PMID: 34156081 PMCID: PMC8632748 DOI: 10.1093/femsre/fuab033] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/20/2021] [Indexed: 12/13/2022] Open
Abstract
Bacteria inhabit all known ecological niches and establish interactions with organisms from all kingdoms of life. These interactions are mediated by a wide variety of mechanisms and very often involve the secretion of diverse molecules from the bacterial cells. The Type VI secretion system (T6SS) is a bacterial protein secretion system that uses a bacteriophage-like machinery to secrete a diverse array of effectors, usually translocating them directly into neighbouring cells. These effectors display toxic activity in the recipient cell, making the T6SS an effective weapon during inter-bacterial competition and interactions with eukaryotic cells. Over the last two decades, microbiology research has experienced a shift towards using systems-based approaches to study the interactions between diverse organisms and their communities in an ecological context. Here, we focus on this aspect of the T6SS. We consider how our perspective of the T6SS has developed and examine what is currently known about the impact that bacteria deploying the T6SS can have in diverse environments, including niches associated with plants, insects and mammals. We consider how T6SS-mediated interactions can affect host organisms by shaping their microbiota, as well as the diverse interactions that can be established between different microorganisms through the deployment of this versatile secretion system.
Collapse
Affiliation(s)
| | - Sarah J Coulthurst
- School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
65
|
Lin J, Xu L, Yang J, Wang Z, Shen X. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. STRESS BIOLOGY 2021; 1:11. [PMID: 37676535 PMCID: PMC10441901 DOI: 10.1007/s44154-021-00008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 09/08/2023]
Abstract
Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
66
|
Wu CF, Weisberg AJ, Davis EW, Chou L, Khan S, Lai EM, Kuo CH, Chang JH. Diversification of the Type VI Secretion System in Agrobacteria. mBio 2021; 12:e0192721. [PMID: 34517758 PMCID: PMC8546570 DOI: 10.1128/mbio.01927-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
The type VI secretion system (T6SS) is used by many Gram-negative bacteria to deploy toxic effectors for interbacterial competition. This system provides a competitive advantage in planta to agrobacteria, a diverse group with phytopathogenic members capable of genetically transforming plants. To inform on the ecology and evolution of agrobacteria, we revealed processes that diversify their effector gene collections. From genome sequences of diverse strains, we identified T6SS loci, functionally validated associated effector genes for toxicity, and predicted genes homologous to those that encode proteins known to interact with effectors. The gene loci were analyzed in a phylogenetic framework, and results show that strains of some species-level groups have different patterns of T6SS expression and are enriched in specific sets of T6SS loci. Findings also demonstrate that the modularity of T6SS loci and their associated genes engenders dynamicity, promoting reshuffling of entire loci, fragments therein, and domains to swap toxic effector genes across species. However, diversification is constrained by the need to maintain specific combinations of gene subtypes, congruent with observations that certain genes function together to regulate T6SS loading and activation. Data are consistent with a scenario where species can acquire unique T6SS loci that are then reshuffled across the genus in a restricted manner to generate new combinations of effector genes. IMPORTANCE The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside. We uncovered the diversity of T6SS loci across a genus of plant-associated bacteria and show that diversification is driven by the acquisition of new loci and reshuffling among species. However, linkages between specific subtypes of genes need to be maintained to ensure that proteins whose interactions are necessary to activate the T6SS remain together. Results reveal how organization of gene loci and domain structure of genes provides flexibility to diversify under the constraints imposed by the system. Findings inform on the evolution of a mechanism that influences bacterial communities.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Surtaz Khan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
67
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
68
|
Niehus R, Oliveira NM, Li A, Fletcher AG, Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife 2021; 10:69756. [PMID: 34488940 PMCID: PMC8423443 DOI: 10.7554/elife.69756] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022] Open
Abstract
Bacteria inhibit and kill one another with a diverse array of compounds, including bacteriocins and antibiotics. These attacks are highly regulated, but we lack a clear understanding of the evolutionary logic underlying this regulation. Here, we combine a detailed dynamic model of bacterial competition with evolutionary game theory to study the rules of bacterial warfare. We model a large range of possible combat strategies based upon the molecular biology of bacterial regulatory networks. Our model predicts that regulated strategies, which use quorum sensing or stress responses to regulate toxin production, will readily evolve as they outcompete constitutive toxin production. Amongst regulated strategies, we show that a particularly successful strategy is to upregulate toxin production in response to an incoming competitor’s toxin, which can be achieved via stress responses that detect cell damage (competition sensing). Mirroring classical game theory, our work suggests a fundamental advantage to reciprocation. However, in contrast to classical results, we argue that reciprocation in bacteria serves not to promote peaceful outcomes but to enable efficient and effective attacks.
Collapse
Affiliation(s)
- Rene Niehus
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Harvard University, Boston, United States
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China.,Institue for Artificial Intelligence, Peking University, Beijing, China
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
69
|
Cassan FD, Coniglio A, Amavizca E, Maroniche G, Cascales E, Bashan Y, de-Bashan LE. The Azospirillum brasilense type VI secretion system promotes cell aggregation, biocontrol protection against phytopathogens and attachment to the microalgae Chlorella sorokiniana. Environ Microbiol 2021; 23:6257-6274. [PMID: 34472164 DOI: 10.1111/1462-2920.15749] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/26/2023]
Abstract
The plant-growth-promoting bacterium Azospirillum brasilense is able to associate with the microalgae Chlorella sorokiniana. Attachment of A. brasilense increases the metabolic performances of the microalgae. Recent genome analyses have revealed that the A. brasilense Az39 genome contains two complete sets of genes encoding type VI secretion systems (T6SS), including the T6SS1 that is induced by the indole-3-acetic acid (IAA) phytohormone. The T6SS is a multiprotein machine, widespread in Gram-negative bacteria, that delivers protein effectors in both prokaryotic and eukaryotic cells. Here we show that the A. brasilense T6SS is required for Chlorella-Azospirillum synthetic mutualism. Our data demonstrate that the T6SS is an important determinant to promote production of lipids, carbohydrates and photosynthetic pigments by the microalgae. We further show that this is likely due to the role of the T6SS during the attachment stage and for the production of IAA phytohormones. Finally, we demonstrate that the A. brasilense T6SS provides antagonistic activities against a number of plant pathogens such as Agrobacterium, Pectobacterium, Dickeya and Ralstonia species in vitro, suggesting that, in addition to promoting growth, A. brasilense might confer T6SS-dependent bio-control protection to microalgae and plants against bacterial pathogens.
Collapse
Affiliation(s)
- Fabricio D Cassan
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Anahí Coniglio
- Laboratorio de Fisiología Vegetal y de la interacción Planta-Microorganismo, Instituto de Investigaciones Agrobiotecnológicas (INIAB), Universidad Nacional de Río Cuarto, Córdoba, Argentina
| | - Edgar Amavizca
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico
| | - Guillermo Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Buenos Aires, Argentina
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie, Bioénergies et Biotechnologie, Aix-Marseille Université - CNRS UMR7255, Marseille, France
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA
| | - Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), La Paz, Mexico.,The Bashan Institute of Science, Auburn, AL, USA.,Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn University, Auburn, AL, USA
| |
Collapse
|
70
|
Basile LA, Lepek VC. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol 2021; 14:1897-1917. [PMID: 34318611 PMCID: PMC8449669 DOI: 10.1111/1751-7915.13906] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.
Collapse
Affiliation(s)
- Laura A. Basile
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| |
Collapse
|
71
|
Formylglycine-generating enzyme-like proteins constitute a novel family of widespread type VI secretion system immunity proteins. J Bacteriol 2021; 203:e0028121. [PMID: 34398661 DOI: 10.1128/jb.00281-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which prevent effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of the antibacterial effector of unknown function Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data shows that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against non-kin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be co-opted as a scaffold in multiple proteins to carry out diverse functions. Importance Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.
Collapse
|
72
|
Abstract
Genetic editing has revolutionized biotechnology, but delivery of endonuclease genes as DNA can lead to aberrant integration or overexpression, leading to off-target effects. Here, we develop a mechanism to deliver Cre recombinase as a protein by engineering the bacterial type six secretion system (T6SS). Using multiple T6SS fusion proteins, Aeromonas dhakensis or attenuated Vibrio cholerae donor strains, and a gain-of-function cassette for detecting Cre recombination, we demonstrate successful delivery of active Cre directly into recipient cells. The most efficient transfer was achieved using a truncated version of PAAR2 from V. cholerae, resulting in a relatively small (118-amino-acid) delivery tag. We further demonstrate the versatility of this system by delivering an exogenous effector, TseC, enabling V. cholerae to kill Pseudomonas aeruginosa. This implies that P. aeruginosa is naturally resistant to all native effectors of V. cholerae and that the TseC chaperone protein is not required for its activity. Moreover, it demonstrates that the engineered system can improve T6SS efficacy against specific pathogens, proposing future application in microbiome manipulation or as a next-generation antimicrobial. Inexpensive and easy to produce, this protein delivery system has many potential applications, ranging from studying T6SS effectors to genetic editing.
Collapse
|
73
|
Custodio R, Ford RM, Ellison CJ, Liu G, Mickute G, Tang CM, Exley RM. Type VI secretion system killing by commensal Neisseria is influenced by expression of type four pili. eLife 2021; 10:63755. [PMID: 34232858 PMCID: PMC8263058 DOI: 10.7554/elife.63755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
Type VI Secretion Systems (T6SSs) are widespread in bacteria and can dictate the development and organisation of polymicrobial ecosystems by mediating contact dependent killing. In Neisseria species, including Neisseria cinerea a commensal of the human respiratory tract, interbacterial contacts are mediated by Type four pili (Tfp) which promote formation of aggregates and govern the spatial dynamics of growing Neisseria microcolonies. Here, we show that N. cinerea expresses a plasmid-encoded T6SS that is active and can limit growth of related pathogens. We explored the impact of Tfp on N. cinerea T6SS-dependent killing within a colony and show that pilus expression by a prey strain enhances susceptibility to T6SS compared to a non-piliated prey, by preventing segregation from a T6SS-wielding attacker. Our findings have important implications for understanding how spatial constraints during contact-dependent antagonism can shape the evolution of microbial communities.
Collapse
Affiliation(s)
- Rafael Custodio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rhian M Ford
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Cara J Ellison
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Gerda Mickute
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rachel M Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
74
|
Robinson L, Liaw J, Omole Z, Xia D, van Vliet AHM, Corcionivoschi N, Hachani A, Gundogdu O. Bioinformatic Analysis of the Campylobacter jejuni Type VI Secretion System and Effector Prediction. Front Microbiol 2021; 12:694824. [PMID: 34276628 PMCID: PMC8285248 DOI: 10.3389/fmicb.2021.694824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022] Open
Abstract
The Type VI Secretion System (T6SS) has important roles relating to bacterial antagonism, subversion of host cells, and niche colonisation. Campylobacter jejuni is one of the leading bacterial causes of human gastroenteritis worldwide and is a commensal coloniser of birds. Although recently discovered, the T6SS biological functions and identities of its effectors are still poorly defined in C. jejuni. Here, we perform a comprehensive bioinformatic analysis of the C. jejuni T6SS by investigating the prevalence and genetic architecture of the T6SS in 513 publicly available genomes using C. jejuni 488 strain as reference. A unique and conserved T6SS cluster associated with the Campylobacter jejuni Integrated Element 3 (CJIE3) was identified in the genomes of 117 strains. Analyses of the T6SS-positive 488 strain against the T6SS-negative C. jejuni RM1221 strain and the T6SS-positive plasmid pCJDM202 carried by C. jejuni WP2-202 strain defined the “T6SS-containing CJIE3” as a pathogenicity island, thus renamed as Campylobacter jejuni Pathogenicity Island-1 (CJPI-1). Analysis of CJPI-1 revealed two canonical VgrG homologues, CJ488_0978 and CJ488_0998, harbouring distinct C-termini in a genetically variable region downstream of the T6SS operon. CJPI-1 was also found to carry a putative DinJ-YafQ Type II toxin-antitoxin (TA) module, conserved across pCJDM202 and the genomic island CJIE3, as well as several open reading frames functionally predicted to encode for nucleases, lipases, and peptidoglycan hydrolases. This comprehensive in silico study provides a framework for experimental characterisation of T6SS-related effectors and TA modules in C. jejuni.
Collapse
Affiliation(s)
- Luca Robinson
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Janie Liaw
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Zahra Omole
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Dong Xia
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Bioengineering of Animal Science Resources, Banat University of Agricultural Sciences and Veterinary Medicine - King Michael the I of Romania, Timisoara, Romania
| | - Abderrahman Hachani
- The Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, VIC, Australia
| | - Ozan Gundogdu
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
75
|
Qian Y, Kong W, Lu T. Precise and reliable control of gene expression in Agrobacterium tumefaciens. Biotechnol Bioeng 2021; 118:3962-3972. [PMID: 34180537 DOI: 10.1002/bit.27872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
Agrobacterium tumefaciens is a soil-borne bacterium that is known for its DNA delivery ability and widely exploited for plant transformation. Despite continued interest in improving the utility of the organism, the lack of well-characterized engineering tools limits the realization of its full potential. Here, we present a synthetic biology toolkit that enables precise and effective control of gene expression in A. tumefaciens. We constructed and characterized six inducible expression systems. Then, we optimized the one regulated by cumic acid through amplifier introduction and promoter engineering and evaluated its 15 cognate promoters. To establish fine-tunability, we constructed a series of spacers and a promoter library to systematically modulate both translational and transcriptional rates. We finally demonstrated the application of the tools by co-expressing genes with altered expression levels using a single signal. This study provides precise expression tools for A. tumefaciens, facilitating rational engineering of the bacterium for advanced plant biotechnological applications.
Collapse
Affiliation(s)
- Yuanchao Qian
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
76
|
Cushman J, Freeman E, McCallister S, Schumann A, Hutchison KW, Molloy SD. Increased whiB7 expression and antibiotic resistance in Mycobacterium chelonae carrying two prophages. BMC Microbiol 2021; 21:176. [PMID: 34107872 PMCID: PMC8191103 DOI: 10.1186/s12866-021-02224-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/05/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The global rise in the incidence of non-tuberculosis mycobacterial infections is of increasing concern due their high levels of intrinsic antibiotic resistance. Although integrated viral genomes, called prophage, are linked to increased antibiotic resistance in some bacterial species, we know little of their role in mycobacterial drug resistance. RESULTS We present here for the first time, evidence of increased antibiotic resistance and expression of intrinsic antibiotic resistance genes in a strain of Mycobacterium chelonae carrying prophage. Strains carrying the prophage McProf demonstrated increased resistance to amikacin. Resistance in these strains was further enhanced by exposure to sub-inhibitory concentrations of the antibiotic, acivicin, or by the presence of a second prophage, BPs. Increased expression of the virulence gene, whiB7, was observed in strains carrying both prophages, BPs and McProf, relative to strains carrying a single prophage or no prophages. CONCLUSIONS This study provides evidence that prophage alter expression of important mycobacterial intrinsic antibiotic resistance genes and additionally offers insight into the role prophage may play in mycobacterial adaptation to stress.
Collapse
Affiliation(s)
- Jaycee Cushman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Emma Freeman
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
- The Honors College, University of Maine, Orono, ME, United States
| | - Sarah McCallister
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Anna Schumann
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
| | - Keith W Hutchison
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States
- The Honors College, University of Maine, Orono, ME, United States
| | - Sally D Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, United States.
- The Honors College, University of Maine, Orono, ME, United States.
| |
Collapse
|
77
|
Manera K, Kamal F, Burkinshaw B, Dong TG. Essential functions of chaperones and adaptors of protein secretion systems in Gram-negative bacteria. FEBS J 2021; 289:4704-4717. [PMID: 34092034 DOI: 10.1111/febs.16056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023]
Abstract
Equipped with a plethora of secreted toxic effectors, protein secretion systems are essential for bacteria to interact with and manipulate their neighboring environment to survive in host microbiota and other highly competitive communities. While effectors have received spotlight attention in secretion system studies, many require accessory chaperone and adaptor proteins for proper folding/unfolding and stability throughout the secretion process. Here, we review the functions of chaperones and adaptors of three protein secretions systems, type 3 secretion system (T3SS), type 4 secretion system (T4SS), and type 6 secretion system (T6SS), which are employed by many Gram-negative bacterial pathogens to deliver toxins to bacterial, plant, and mammalian host cells through direct contact. Since chaperone and adaptor functions of the T3SS and the T4SS are relatively well studied, we discuss in detail the methods of chaperone-facilitated effector secretion by the T6SS and highlight commonalities between the effector chaperone/adaptor proteins of these diverse secretion systems. While the chaperones and adaptors are generally referred to as accessory proteins as they are not directly involved in toxicities to target cells, they are nonetheless vital for the biological functions of the secretion systems. Future research on biochemical and structural properties of these chaperones will not only elucidate the mechanisms of chaperone-effector binding and release process but also facilitate custom design of cargo effectors to be translocated by these widespread secretion systems for biotechnological applications.
Collapse
Affiliation(s)
- Kevin Manera
- Department of Ecosystem and Public Health, University of Calgary, Canada
| | - Fatima Kamal
- Department of Ecosystem and Public Health, University of Calgary, Canada
| | | | - Tao G Dong
- Department of Ecosystem and Public Health, University of Calgary, Canada.,State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| |
Collapse
|
78
|
Differential Cellular Response to Translocated Toxic Effectors and Physical Penetration by the Type VI Secretion System. Cell Rep 2021; 31:107766. [PMID: 32553162 DOI: 10.1016/j.celrep.2020.107766] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/28/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
The type VI secretion system (T6SS) is a lethal microbial weapon that injects a large needle-like structure carrying toxic effectors into recipient cells through physical penetration. How recipients respond to physical force and effectors remains elusive. Here, we use a series of effector mutants of Vibrio cholerae to determine how T6SS elicits response in Pseudomonas aeruginosa and Escherichia coli. We show that TseL, but no other effectors or physical puncture, triggers the tit-for-tat response of P. aeruginosa H1-T6SS. Although E. coli is sensitive to all periplasmically expressed effectors, P. aeruginosa is most sensitive to TseL alone. We identify a number of stress response pathways that confer protection against TseL. Physical puncture of T6SS has a moderate inhibitory effect only on envelope-impaired tolB and rseA mutants. Our data reveal that recipient cells primarily respond to effector toxicity but not to physical contact, and they rely on the stress response for immunity-independent protection.
Collapse
|
79
|
Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection. Curr Microbiol 2021; 78:2708-2719. [PMID: 34023916 PMCID: PMC8213605 DOI: 10.1007/s00284-021-02526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1− and agp2− knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.
Collapse
|
80
|
Orevi T, Kashtan N. Life in a Droplet: Microbial Ecology in Microscopic Surface Wetness. Front Microbiol 2021; 12:655459. [PMID: 33927707 PMCID: PMC8076497 DOI: 10.3389/fmicb.2021.655459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
While many natural and artificial surfaces may appear dry, they are in fact covered by thin liquid films and microdroplets invisible to the naked eye known as microscopic surface wetness (MSW). Central to the formation and the retention of MSW are the deliquescent properties of hygroscopic salts that prevent complete drying of wet surfaces or that drive the absorption of water until dissolution when the relative humidity is above a salt-specific level. As salts are ubiquitous, MSW occurs in many microbial habitats, such as soil, rocks, plant leaf, and root surfaces, the built environment, and human and animal skin. While key properties of MSW, including very high salinity and segregation into droplets, greatly affect microbial life therein, it has been scarcely studied, and systematic studies are only in their beginnings. Based on recent findings, we propose that the harsh micro-environment that MSW imposes, which is very different from bulk liquid, affects key aspects of bacterial ecology including survival traits, antibiotic response, competition, motility, communication, and exchange of genetic material. Further research is required to uncover the fundamental principles that govern microbial life and ecology in MSW. Such research will require multidisciplinary science cutting across biology, physics, and chemistry, while incorporating approaches from microbiology, genomics, microscopy, and computational modeling. The results of such research will be critical to understand microbial ecology in vast terrestrial habitats, affecting global biogeochemical cycles, as well as plant, animal, and human health.
Collapse
Affiliation(s)
- Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and Environment, Institute of Environmental Sciences, Hebrew University, Rehovot, Israel
| |
Collapse
|
81
|
Li J, Xie L, Qian S, Tang Y, Shen M, Li S, Wang J, Xiong L, Lu J, Zhong W. A Type VI Secretion System Facilitates Fitness, Homeostasis, and Competitive Advantages for Environmental Adaptability and Efficient Nicotine Biodegradation. Appl Environ Microbiol 2021; 87:e03113-20. [PMID: 33608299 PMCID: PMC8091027 DOI: 10.1128/aem.03113-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria employ secretion systems to translocate proteinaceous effectors from the cytoplasm to the extracellular milieu, thus interacting with the surrounding environment or microniche. It is known that bacteria can benefit from the type VI secretion system (T6SS) by transporting ions to combat reactive oxygen species (ROS). Here, we report that T6SS activities conferred tolerance to nicotine-induced oxidative stress in Pseudomonas sp. strain JY-Q, a highly active nicotine degradation strain isolated from tobacco waste extract. AA098_13375 was identified to encode a dual-functional effector with antimicrobial and anti-ROS activities. Wild-type strain JY-Q grew better than the AA098_13375 deletion mutant in nicotine-containing medium by antagonizing increased intracellular ROS levels. It was, therefore, tentatively designated TseN (type VI secretion system effector for nicotine tolerance), homologs of which were observed to be broadly ubiquitous in Pseudomonas species. TseN was identified as a Tse6-like bacteriostatic toxin via monitoring intracellular NAD+ TseN presented potential antagonism against ROS to fine tune the heavy traffic of nicotine metabolism in strain JY-Q. It is feasible that the dynamic tuning of NAD+ driven by TseN could satisfy demands from nicotine degradation with less cytotoxicity. In this scenario, T6SS involves a fascinating accommodation cascade that prompts constitutive biotransformation of N-heterocyclic aromatics by improving bacterial robustness/growth. In summary, the T6SS in JY-Q mediated resistance to oxidative stress and promoted bacterial fitness via a contact-independent growth competitive advantage, in addition to the well-studied T6SS-dependent antimicrobial activities.IMPORTANCE Mixtures of various pollutants and the coexistence of numerous species of organisms are usually found in adverse environments. Concerning biodegradation of nitrogen-heterocyclic contaminants, the scientific community has commonly focused on screening functional enzymes that transform pollutants into intermediates of attenuated toxicity or for primary metabolism. Here, we identified dual roles of the T6SS effector TseN in Pseudomonas sp. strain JY-Q, which is capable of degrading nicotine. The T6SS in strain JY-Q is able to deliver TseN to kill competitors and provide a growth advantage by a contact-independent pattern. TseN could monitor the intracellular NAD+ level by its hydrolase activity, causing cytotoxicity in competitive rivals but metabolic homeostasis on JY-Q. Moreover, JY-Q could be protected from TseN toxicity by the immunity protein TsiN. In conclusion, we found that TseN with cytotoxicity to bacterial competitors facilitated the nicotine tolerance of JY-Q. We therefore reveal a working model between T6SS and nicotine metabolism. This finding indicates that multiple diversified weapons have been evolved by bacteria for their growth and robustness.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Linlin Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shulan Qian
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuhang Tang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mingjie Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shanshan Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lie Xiong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jie Lu
- Department of Infectious Diseases, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
82
|
Wang T, Du X, Ji L, Han Y, Dang J, Wen J, Wang Y, Pu Q, Wu M, Liang H. Pseudomonas aeruginosa T6SS-mediated molybdate transport contributes to bacterial competition during anaerobiosis. Cell Rep 2021; 35:108957. [PMID: 33852869 DOI: 10.1016/j.celrep.2021.108957] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 12/20/2022] Open
Abstract
Type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria and functions as a versatile protein export machinery that translocates effectors into eukaryotic or prokaryotic target cells. Growing evidence indicates that T6SS can deliver several effectors to promote bacterial survival in harmful environments through metal ion acquisition. Here, we report that the Pseudomonas aeruginosa H2-T6SS mediates molybdate (MoO42-) acquisition by secretion of a molybdate-binding protein, ModA. The expression of H2-T6SS genes is activated by the master regulator Anr and anaerobiosis. We also identified a ModA-binding protein, IcmP, an insulin-cleaving metalloproteinase outer membrane protein. The T6SS-ModA-IcmP system provides P. aeruginosa with a growth advantage in bacterial competition under anaerobic conditions and plays an important role in bacterial virulence. Overall, this study clarifies the role of T6SS in secretion of an anion-binding protein, emphasizing the fundamental importance of this bacterium using T6SS-mediated molybdate uptake to adapt to complex environmental conditions.
Collapse
Affiliation(s)
- Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Xiao Du
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Linxuan Ji
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Yuying Han
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jing Dang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jing Wen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Yarong Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China
| | - Qinqin Pu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, ND 58203, USA
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi 710069, China.
| |
Collapse
|
83
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
84
|
Durán D, Bernal P, Vazquez-Arias D, Blanco-Romero E, Garrido-Sanz D, Redondo-Nieto M, Rivilla R, Martín M. Pseudomonas fluorescens F113 type VI secretion systems mediate bacterial killing and adaption to the rhizosphere microbiome. Sci Rep 2021; 11:5772. [PMID: 33707614 PMCID: PMC7970981 DOI: 10.1038/s41598-021-85218-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
The genome of Pseudomonas fluorescens F113, a model rhizobacterium and a plant growth-promoting agent, encodes three putative type VI secretion systems (T6SSs); F1-, F2- and F3-T6SS. Bioinformatic analysis of the F113 T6SSs has revealed that they belong to group 3, group 1.1, and group 4a, respectively, similar to those previously described in Pseudomonas aeruginosa. In addition, in silico analyses allowed us to identify genes encoding a total of five orphan VgrG proteins and eight putative effectors (Tfe), some with their cognate immunity protein (Tfi) pairs. Genes encoding Tfe and Tfi are found in the proximity of P. fluorescens F113 vgrG, hcp, eagR and tap genes. RNA-Seq analyses in liquid culture and rhizosphere have revealed that F1- and F3-T6SS are expressed under all conditions, indicating that they are active systems, while F2-T6SS did not show any relevant expression under the tested conditions. The analysis of structural mutants in the three T6SSs has shown that the active F1- and F3-T6SSs are involved in interbacterial killing while F2 is not active in these conditions and its role is still unknown.. A rhizosphere colonization analysis of the double mutant affected in the F1- and F3-T6SS clusters showed that the double mutant was severely impaired in persistence in the rhizosphere microbiome, revealing the importance of these two systems for rhizosphere adaption.
Collapse
Affiliation(s)
- David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Patricia Bernal
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.,Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida de la Reina Mercedes, 6, 41012, Sevilla, Spain
| | - David Vazquez-Arias
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin, 2, 28049, Madrid, Spain.
| |
Collapse
|
85
|
Song L, Pan J, Yang Y, Zhang Z, Cui R, Jia S, Wang Z, Yang C, Xu L, Dong TG, Wang Y, Shen X. Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nat Commun 2021; 12:423. [PMID: 33462232 PMCID: PMC7813860 DOI: 10.1038/s41467-020-20726-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
Bacterial type VI secretion systems (T6SSs) inject toxic effectors into adjacent eukaryotic and prokaryotic cells. It is generally thought that this process requires physical contact between the two cells. Here, we provide evidence of contact-independent killing by a T6SS-secreted effector. We show that the pathogen Yersinia pseudotuberculosis uses a T6SS (T6SS-3) to secrete a nuclease effector that kills other bacteria in vitro and facilitates gut colonization in mice. The effector (Tce1) is a small protein that acts as a Ca2+- and Mg2+-dependent DNase, and its toxicity is inhibited by a cognate immunity protein, Tci1. As expected, T6SS-3 mediates canonical, contact-dependent killing by directly injecting Tce1 into adjacent cells. In addition, T6SS-3 also mediates killing of neighboring cells in the absence of cell-to-cell contact, by secreting Tce1 into the extracellular milieu. Efficient contact-independent entry of Tce1 into target cells requires proteins OmpF and BtuB in the outer membrane of target cells. The discovery of a contact-independent, long-range T6SS toxin delivery provides a new perspective for understanding the physiological roles of T6SS in competition. However, the mechanisms mediating contact-independent uptake of Tce1 by target cells remain unclear. Bacteria can use type VI secretion systems (T6SSs) to inject toxic effector proteins into adjacent cells, in a contact-dependent manner. Here, the authors provide evidence of contact-independent killing by a T6SS effector that is secreted into the extracellular milieu and then taken up by other bacterial cells.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Junfeng Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Zhenxing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Rui Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Shuangkai Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Changxing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Tao G Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Department of Ecosystem and Public Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
86
|
de Moraes MH, Hsu F, Huang D, Bosch DE, Zeng J, Radey MC, Simon N, Ledvina HE, Frick JP, Wiggins PA, Peterson SB, Mougous JD. An interbacterial DNA deaminase toxin directly mutagenizes surviving target populations. eLife 2021; 10:62967. [PMID: 33448264 PMCID: PMC7901873 DOI: 10.7554/elife.62967] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
When bacterial cells come in contact, antagonism mediated by the delivery of toxins frequently ensues. The potential for such encounters to have long-term beneficial consequences in recipient cells has not been investigated. Here, we examined the effects of intoxication by DddA, a cytosine deaminase delivered via the type VI secretion system (T6SS) of Burkholderia cenocepacia. Despite its killing potential, we observed that several bacterial species resist DddA and instead accumulate mutations. These mutations can lead to the acquisition of antibiotic resistance, indicating that even in the absence of killing, interbacterial antagonism can have profound consequences on target populations. Investigation of additional toxins from the deaminase superfamily revealed that mutagenic activity is a common feature of these proteins, including a representative we show targets single-stranded DNA and displays a markedly divergent structure. Our findings suggest that a surprising consequence of antagonistic interactions between bacteria could be the promotion of adaptation via the action of directly mutagenic toxins.
Collapse
Affiliation(s)
- Marcos H de Moraes
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - FoSheng Hsu
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Dean Huang
- Department of Physics, University of Washington, Seattle, United States
| | - Dustin E Bosch
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, United States
| | - Jun Zeng
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Matthew C Radey
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Noah Simon
- Department of Biostatistics, University of Washington School of Public Health, Seattle, United States
| | - Hannah E Ledvina
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Jacob P Frick
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Paul A Wiggins
- Department of Physics, University of Washington, Seattle, United States
| | - S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, United States.,Department of Biochemistry, University of Washington School of Medicine, Seattle, United States.,Howard Hughes Medical Institute, University of Washington, Seattle, United States
| |
Collapse
|
87
|
Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. J Bacteriol 2021; 203:JB.00490-20. [PMID: 33168638 PMCID: PMC7811202 DOI: 10.1128/jb.00490-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread antibacterial weapon capable of secreting multiple effectors for inhibition of competitor cells. Most of the effectors in the system share the same purpose of target intoxication, but the rationale for maintaining various types of effectors in a species is not well studied. In this study, we showed that a peptidoglycan amidase effector in Agrobacterium tumefaciens, Tae, cleaves d-Ala-meso-diaminopimelic acid (mDAP) and d-Glu bonds in peptidoglycan and is able to suppress the growth of Escherichia coli recipient cells. The growth suppression was effective only under the condition in which E. coli cells are actively growing. In contrast, the Tde DNase effectors in the strain possessed a dominant killing effect under carbon starvation. Microscopic analysis showed that Tde triggers cell elongation and DNA degradation, while Tae causes cell enlargement without DNA damage in E. coli recipient cells. In a rich medium, A. tumefaciens harboring only functional Tae was able to maintain competitiveness among E. coli and its own sibling cells. Growth suppression and the competitive advantage of A. tumefaciens were abrogated when recipient cells produced the Tae-specific immunity protein Tai. Given that Tae is highly conserved among A. tumefaciens strains, the combination of Tae and Tde effectors could allow A. tumefaciens to better compete with various competitors by increasing its survival during changing environmental conditions.IMPORTANCE The T6SS encodes multiple effectors with diverse functions, but little is known about the biological significance of harboring such a repertoire of effectors. We reported that the T6SS antibacterial activity of the plant pathogen Agrobacterium tumefaciens can be enhanced under carbon starvation or when recipient cell wall peptidoglycan is disturbed. This led to a newly discovered role for the T6SS peptidoglycan amidase Tae effector in providing a growth advantage dependent on the growth status of the target cell. This is in contrast to the Tde DNase effectors that are dominant during carbon starvation. Our study suggests that combining Tae and other effectors could allow A. tumefaciens to increase its competitiveness among changing environmental conditions.
Collapse
|
88
|
Montenegro Benavides NA, Alvarez B A, Arrieta-Ortiz ML, Rodriguez-R LM, Botero D, Tabima JF, Castiblanco L, Trujillo C, Restrepo S, Bernal A. The type VI secretion system of Xanthomonas phaseoli pv. manihotis is involved in virulence and in vitro motility. BMC Microbiol 2021; 21:14. [PMID: 33407123 PMCID: PMC7788950 DOI: 10.1186/s12866-020-02066-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background The type VI protein secretion system (T6SS) is important in diverse cellular processes in Gram-negative bacteria, including interactions with other bacteria and with eukaryotic hosts. In this study we analyze the evolution of the T6SS in the genus Xanthomonas and evaluate its importance of the T6SS for virulence and in vitro motility in Xanthomonas phaseoli pv. manihotis (Xpm), the causal agent of bacterial blight in cassava (Manihot esculenta). We delineate the organization of the T6SS gene clusters in Xanthomonas and then characterize proteins of this secretion system in Xpm strain CIO151. Results We describe the presence of three different clusters in the genus Xanthomonas that vary in their organization and degree of synteny between species. Using a gene knockout strategy, we also found that vgrG and hcp are required for maximal aggressiveness of Xpm on cassava plants while clpV is important for both motility and maximal aggressiveness. Conclusion We characterized the T6SS in 15 different strains in Xanthomonas and our phylogenetic analyses suggest that the T6SS might have been acquired by a very ancient event of horizontal gene transfer and maintained through evolution, hinting at their importance for the adaptation of Xanthomonas to their hosts. Finally, we demonstrated that the T6SS of Xpm is functional, and significantly contributes to virulence and motility. This is the first experimental study that demonstrates the role of the T6SS in the Xpm-cassava interaction and the T6SS organization in the genus Xanthomonas. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02066-1.
Collapse
Affiliation(s)
| | - Alejandro Alvarez B
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | - Luis Miguel Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Tyrol, Austria
| | - David Botero
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Javier Felipe Tabima
- Botany and Plant Pathology Department, Oregon State University, Corvallis, OR, USA
| | - Luisa Castiblanco
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Cesar Trujillo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Adriana Bernal
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
89
|
Barua N, Herken AM, Stern KR, Reese S, Powers RL, Morrell-Falvey JL, Platt TG, Hansen RR. Simultaneous Discovery of Positive and Negative Interactions Among Rhizosphere Bacteria Using Microwell Recovery Arrays. Front Microbiol 2021; 11:601788. [PMID: 33469450 PMCID: PMC7813777 DOI: 10.3389/fmicb.2020.601788] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
Understanding microbe-microbe interactions is critical to predict microbiome function and to construct communities for desired outcomes. Investigation of these interactions poses a significant challenge due to the lack of suitable experimental tools available. Here we present the microwell recovery array (MRA), a new technology platform that screens interactions across a microbiome to uncover higher-order strain combinations that inhibit or promote the function of a focal species. One experimental trial generates 104 microbial communities that contain the focal species and a distinct random sample of uncharacterized cells from plant rhizosphere. Cells are sequentially recovered from individual wells that display highest or lowest levels of focal species growth using a high-resolution photopolymer extraction system. Interacting species are then identified and putative interactions are validated. Using this approach, we screen the poplar rhizosphere for strains affecting the growth of Pantoea sp. YR343, a plant growth promoting bacteria isolated from Populus deltoides rhizosphere. In one screen, we montiored 3,600 microwells within the array to uncover multiple antagonistic Stenotrophomonas strains and a set of Enterobacter strains that promoted YR343 growth. The later demonstrates the unique ability of the platform to discover multi-membered consortia that generate emergent outcomes, thereby expanding the range of phenotypes that can be characterized from microbiomes. This knowledge will aid in the development of consortia for Populus production, while the platform offers a new approach for screening and discovery of microbial interactions, applicable to any microbiome.
Collapse
Affiliation(s)
- Niloy Barua
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, United States
| | - Ashlee M. Herken
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Kyle R. Stern
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, United States
| | - Sean Reese
- Powers and Zahr, Augusta, KS, United States
| | | | | | - Thomas G. Platt
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Ryan R. Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
90
|
Hug S, Liu Y, Heiniger B, Bailly A, Ahrens CH, Eberl L, Pessi G. Differential Expression of Paraburkholderia phymatum Type VI Secretion Systems (T6SS) Suggests a Role of T6SS-b in Early Symbiotic Interaction. FRONTIERS IN PLANT SCIENCE 2021; 12:699590. [PMID: 34394152 PMCID: PMC8356804 DOI: 10.3389/fpls.2021.699590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 05/06/2023]
Abstract
Paraburkholderia phymatum STM815, a rhizobial strain of the Burkholderiaceae family, is able to nodulate a broad range of legumes including the agriculturally important Phaseolus vulgaris (common bean). P. phymatum harbors two type VI Secretion Systems (T6SS-b and T6SS-3) in its genome that contribute to its high interbacterial competitiveness in vitro and in infecting the roots of several legumes. In this study, we show that P. phymatum T6SS-b is found in the genomes of several soil-dwelling plant symbionts and that its expression is induced by the presence of citrate and is higher at 20/28°C compared to 37°C. Conversely, T6SS-3 shows homologies to T6SS clusters found in several pathogenic Burkholderia strains, is more prominently expressed with succinate during stationary phase and at 37°C. In addition, T6SS-b expression was activated in the presence of germinated seeds as well as in P. vulgaris and Mimosa pudica root nodules. Phenotypic analysis of selected deletion mutant strains suggested a role of T6SS-b in motility but not at later stages of the interaction with legumes. In contrast, the T6SS-3 mutant was not affected in any of the free-living and symbiotic phenotypes examined. Thus, P. phymatum T6SS-b is potentially important for the early infection step in the symbiosis with legumes.
Collapse
Affiliation(s)
- Sebastian Hug
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Yilei Liu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Benjamin Heiniger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics, Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gabriella Pessi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- *Correspondence: Gabriella Pessi,
| |
Collapse
|
91
|
Secrete or perish: The role of secretion systems in Xanthomonas biology. Comput Struct Biotechnol J 2020; 19:279-302. [PMID: 33425257 PMCID: PMC7777525 DOI: 10.1016/j.csbj.2020.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 12/22/2022] Open
Abstract
Bacteria of the Xanthomonas genus are mainly phytopathogens of a large variety of crops of economic importance worldwide. Xanthomonas spp. rely on an arsenal of protein effectors, toxins and adhesins to adapt to the environment, compete with other microorganisms and colonize plant hosts, often causing disease. These protein effectors are mainly delivered to their targets by the action of bacterial secretion systems, dedicated multiprotein complexes that translocate proteins to the extracellular environment or directly into eukaryotic and prokaryotic cells. Type I to type VI secretion systems have been identified in Xanthomonas genomes. Recent studies have unravelled the diverse roles played by the distinct types of secretion systems in adaptation and virulence in xanthomonads, unveiling new aspects of their biology. In addition, genome sequence information from a wide range of Xanthomonas species and pathovars have become available recently, uncovering a heterogeneous distribution of the distinct families of secretion systems within the genus. In this review, we describe the architecture and mode of action of bacterial type I to type VI secretion systems and the distribution and functions associated with these important nanoweapons within the Xanthomonas genus.
Collapse
|
92
|
The β-encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion. Proc Natl Acad Sci U S A 2020; 117:33540-33548. [PMID: 33323487 DOI: 10.1073/pnas.1919350117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria deploy rearrangement hotspot (Rhs) proteins as toxic effectors against both prokaryotic and eukaryotic target cells. Rhs proteins are characterized by YD-peptide repeats, which fold into a large β-cage structure that encapsulates the C-terminal toxin domain. Here, we show that Rhs effectors are essential for type VI secretion system (T6SS) activity in Enterobacter cloacae (ECL). ECL rhs - mutants do not kill Escherichia coli target bacteria and are defective for T6SS-dependent export of hemolysin-coregulated protein (Hcp). The RhsA and RhsB effectors of ECL both contain Pro-Ala-Ala-Arg (PAAR) repeat domains, which bind the β-spike of trimeric valine-glycine repeat protein G (VgrG) and are important for T6SS activity in other bacteria. Truncated RhsA that retains the PAAR domain is capable of forming higher-order, thermostable complexes with VgrG, yet these assemblies fail to restore secretion activity to ∆rhsA ∆rhsB mutants. Full T6SS-1 activity requires Rhs that contains N-terminal transmembrane helices, the PAAR domain, and an intact β-cage. Although ∆rhsA ∆rhsB mutants do not kill target bacteria, time-lapse microscopy reveals that they assemble and fire T6SS contractile sheaths at ∼6% of the frequency of rhs + cells. Therefore, Rhs proteins are not strictly required for T6SS assembly, although they greatly increase secretion efficiency. We propose that PAAR and the β-cage provide distinct structures that promote secretion. PAAR is clearly sufficient to stabilize trimeric VgrG, but efficient assembly of T6SS-1 also depends on an intact β-cage. Together, these domains enforce a quality control checkpoint to ensure that VgrG is loaded with toxic cargo before assembling the secretion apparatus.
Collapse
|
93
|
Tremblay O, Thow Z, Merrill AR. Several New Putative Bacterial ADP-Ribosyltransferase Toxins Are Revealed from In Silico Data Mining, Including the Novel Toxin Vorin, Encoded by the Fire Blight Pathogen Erwinia amylovora. Toxins (Basel) 2020; 12:E792. [PMID: 33322547 PMCID: PMC7764402 DOI: 10.3390/toxins12120792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022] Open
Abstract
Mono-ADP-ribosyltransferase (mART) toxins are secreted by several pathogenic bacteria that disrupt vital host cell processes in deadly diseases like cholera and whooping cough. In the last two decades, the discovery of mART toxins has helped uncover the mechanisms of disease employed by pathogens impacting agriculture, aquaculture, and human health. Due to the current abundance of mARTs in bacterial genomes, and an unprecedented availability of genomic sequence data, mART toxins are amenable to discovery using an in silico strategy involving a series of sequence pattern filters and structural predictions. In this work, a bioinformatics approach was used to discover six bacterial mART sequences, one of which was a functional mART toxin encoded by the plant pathogen, Erwinia amylovora, called Vorin. Using a yeast growth-deficiency assay, we show that wild-type Vorin inhibited yeast cell growth, while catalytic variants reversed the growth-defective phenotype. Quantitative mass spectrometry analysis revealed that Vorin may cause eukaryotic host cell death by suppressing the initiation of autophagic processes. The genomic neighbourhood of Vorin indicated that it is a Type-VI-secreted effector, and co-expression experiments showed that Vorin is neutralized by binding of a cognate immunity protein, VorinI. We demonstrate that Vorin may also act as an antibacterial effector, since bacterial expression of Vorin was not achieved in the absence of VorinI. Vorin is the newest member of the mART family; further characterization of the Vorin/VorinI complex may help refine inhibitor design for mART toxins from other deadly pathogens.
Collapse
Affiliation(s)
| | | | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; (O.T.); (Z.T.)
| |
Collapse
|
94
|
Jurėnas D, Journet L. Activity, delivery, and diversity of Type VI secretion effectors. Mol Microbiol 2020; 115:383-394. [PMID: 33217073 DOI: 10.1111/mmi.14648] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
The bacterial type VI secretion system (T6SS) system is a contractile secretion apparatus that delivers proteins to neighboring bacterial or eukaryotic cells. Antibacterial effectors are mostly toxins that inhibit the growth of other species and help to dominate the niche. A broad variety of these toxins cause cell lysis of the prey cell by disrupting the cell envelope. Other effectors are delivered into the cytoplasm where they affect DNA integrity, cell division or exhaust energy resources. The modular nature of T6SS machinery allows different means of recruitment of toxic effectors to secreted inner tube and spike components that act as carriers. Toxic effectors can be translationally fused to the secreted components or interact with them through specialized structural domains. These interactions can also be assisted by dedicated chaperone proteins. Moreover, conserved sequence motifs in effector-associated domains are subject to genetic rearrangements and therefore engage in the diversification of the arsenal of toxic effectors. This review discusses the diversity of T6SS secreted toxins and presents current knowledge about their loading on the T6SS machinery.
Collapse
Affiliation(s)
- Dukas Jurėnas
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, UMR 7255, Marseille, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université-CNRS, UMR 7255, Marseille, France
| |
Collapse
|
95
|
Liu Y, Zhang Z, Wang F, Li DD, Li YZ. Identification of type VI secretion system toxic effectors using adaptors as markers. Comput Struct Biotechnol J 2020; 18:3723-3733. [PMID: 33304467 PMCID: PMC7714669 DOI: 10.1016/j.csbj.2020.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Each class of adaptors can be used as an effective marker to identify T6SS effectors. The PRK06147 homolog may be a novel adaptor. 1356 putative toxic effectors related to adaptors from 92 families were identified.
Toxic effectors secreted by the type VI secretion system (T6SS) facilitate interbacterial warfare, as well as pathogenesis toward humans, animals and plants. However, systematically predicting T6SS effectors remains challenging due to their sequence and functional diversity. In this study, we systematically identified putative T6SS toxic effectors in prokaryotic genomes on the basis of the observation that genes encoding adaptor proteins and genes encoding cognate effector proteins are generally adjacent in the genome. Adaptor proteins are mediators that help to load their cognate effectors onto the T6SS spike complex. The contextual genes of the known adaptor proteins (DUF1795, DUF2169 or DUF4123) all exhibited a high proportion of encoding T6SS spike complex protein (VgrG or PAAR) and effector proteins. On the basis of the genomic context, we found that PRK06147 might be a novel adaptor protein. These four adaptors are widely distributed among the bacterial genomes. From neighbors of 5297 adaptor genes, we identified 1356 putative effector genes from 92 different families, and two-thirds were currently annotated as hypothetical proteins or as having unknown functions. Our results indicate that each class of adaptors can be used as an effective marker to identify T6SS toxic effectors, moreover, this approach can promote the discovery of new effectors.
Collapse
Affiliation(s)
- Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.,Suzhou Research Institute, Shandong University, Suzhou 215123, China
| | - Feng Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dan-Dan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
96
|
Lin HH, Filloux A, Lai EM. Role of Recipient Susceptibility Factors During Contact-Dependent Interbacterial Competition. Front Microbiol 2020; 11:603652. [PMID: 33281802 PMCID: PMC7690452 DOI: 10.3389/fmicb.2020.603652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
Bacteria evolved multiple strategies to survive and develop optimal fitness in their ecological niche. They deployed protein secretion systems for robust and efficient delivery of antibacterial toxins into their target cells, therefore inhibiting their growth or killing them. To maximize antagonism, recipient factors on target cells can be recognized or hijacked to enhance the entry or toxicity of these toxins. To date, knowledge regarding recipient susceptibility (RS) factors and their mode of action is mostly originating from studies on the type Vb secretion system that is also known as the contact-dependent inhibition (CDI) system. Yet, recent studies on the type VI secretion system (T6SS), and the CDI by glycine-zipper protein (Cdz) system, also reported the emerging roles of RS factors in interbacterial competition. Here, we review these RS factors and their mechanistic impact in increasing susceptibility of recipient cells in response to CDI, T6SS, and Cdz. Past and future strategies for identifying novel RS factors are also discussed, which will help in understanding the interplay between attacker and prey upon secretion system-dependent competition. Understanding these mechanisms would also provide insights for developing novel antibacterial strategies to antagonize aggressive bacteria-killing pathogens.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
97
|
Wang J, Shen D, Ge C, Du Y, Lin L, Liu J, Bai T, Jing M, Qian G, Dou D. Filamentous Phytophthora Pathogens Deploy Effectors to Interfere With Bacterial Growth and Motility. Front Microbiol 2020; 11:581511. [PMID: 33101256 PMCID: PMC7554372 DOI: 10.3389/fmicb.2020.581511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/07/2020] [Indexed: 11/25/2022] Open
Abstract
Phytophthora comprises a group of filamentous plant pathogens that cause serious crop diseases worldwide. It is widely known that a complex effector repertoire was secreted by Phytophthora pathogens to manipulate plant immunity and determine resistance and susceptibility. It is also recognized that Phytophthora pathogens may inhabit natural niches within complex environmental microbes, including bacteria. However, how Phytophthora pathogens interact with their cohabited microbes remains poorly understood. Here, we present such an intriguing case by using Phytophthora–bacteria interaction as a working system. We found that under co-culture laboratory conditions, several Phytophthora pathogens appeared to block the contact of an ecologically relevant bacterium, including Pseudomonas fluorescence and a model bacterium, Escherichia coli. We further observed that Phytophthora sojae utilizes a conserved Crinkler (CRN) effector protein, PsCRN63, to impair bacterial growth. Phytophthora capsici deploys another CRN effector, PcCRN173, to interfere with bacterial flagellum- and/or type IV pilus-mediated motility whereas a P. capsici-derived RxLR effector, PcAvh540, inhibits bacterial swimming motility, but not twitching motility and biofilm formation, suggesting functional diversification of effector-mediated Phytophthora–bacteria interactions. Thus, our studies provide a first case showing that the filamentous Phytophthora pathogens could deploy effectors to interfere with bacterial growth and motility, revealing an unprecedented effector-mediated inter-kingdom interaction between Phytophthora pathogens and bacterial species and thereby uncovering ecological significance of effector proteins in filamentous plant pathogens besides their canonical roles involving pathogen–plant interaction.
Collapse
Affiliation(s)
- Ji Wang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Chengcheng Ge
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yaxin Du
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Long Lin
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jin Liu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tian Bai
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guoliang Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
98
|
Rocchi I, Ericson CF, Malter KE, Zargar S, Eisenstein F, Pilhofer M, Beyhan S, Shikuma NJ. A Bacterial Phage Tail-like Structure Kills Eukaryotic Cells by Injecting a Nuclease Effector. Cell Rep 2020; 28:295-301.e4. [PMID: 31291567 DOI: 10.1016/j.celrep.2019.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 06/05/2019] [Indexed: 11/28/2022] Open
Abstract
Many bacteria interact with target organisms using syringe-like structures called contractile injection systems (CISs). CISs structurally resemble headless bacteriophages and share evolutionarily related proteins such as the tail tube, sheath, and baseplate complex. In many cases, CISs mediate trans-kingdom interactions between bacteria and eukaryotes by delivering effectors to target cells. However, the specific effectors and their modes of action are often unknown. Here, we establish an ex vivo model to study an extracellular CIS (eCIS) called metamorphosis-associated contractile structures (MACs) that target eukaryotic cells. MACs kill two eukaryotic cell lines, fall armyworm Sf9 cells and J774A.1 murine macrophage cells, by translocating an effector termed Pne1. Before the identification of Pne1, no CIS effector exhibiting nuclease activity against eukaryotic cells had been described. Our results define a new mechanism of CIS-mediated bacteria-eukaryote interaction and are a step toward developing CISs as novel delivery systems for eukaryotic hosts.
Collapse
Affiliation(s)
- Iara Rocchi
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Charles F Ericson
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Kyle E Malter
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Sahar Zargar
- Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Fabian Eisenstein
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Martin Pilhofer
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Sinem Beyhan
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| | - Nicholas J Shikuma
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA; Department of Infectious Diseases, J. Craig Venter Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
99
|
Ruhe ZC, Low DA, Hayes CS. Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery. Annu Rev Microbiol 2020; 74:497-520. [PMID: 32680451 DOI: 10.1146/annurev-micro-020518-115638] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All bacteria must compete for growth niches and other limited environmental resources. These existential battles are waged at several levels, but one common strategy entails the transfer of growth-inhibitory protein toxins between competing cells. These antibacterial effectors are invariably encoded with immunity proteins that protect cells from intoxication by neighboring siblings. Several effector classes have been described, each designed to breach the cell envelope of target bacteria. Although effector architectures and export pathways tend to be clade specific, phylogenetically distant species often deploy closely related toxin domains. Thus, diverse competition systems are linked through a common reservoir of toxin-immunity pairs that is shared via horizontal gene transfer. These toxin-immunity protein pairs are extraordinarily diverse in sequence, and this polymorphism underpins an important mechanism of self/nonself discrimination in bacteria. This review focuses on the structures, functions, and delivery mechanisms of polymorphic toxin effectors that mediate bacterial competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA; .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
100
|
Genotypic and phenotypic adaptation of pathogens: lesson from the genus Bordetella. Curr Opin Infect Dis 2020; 32:223-230. [PMID: 30921085 DOI: 10.1097/qco.0000000000000549] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW To relate genomic changes to phenotypic adaptation and evolution from environmental bacteria to obligate human pathogens, focusing on the examples within Bordetella species. RECENT FINDINGS Recent studies showed that animal-pathogenic and human-pathogenic Bordetella species evolved from environmental ancestors in soil. The animal-pathogenic Bordetella bronchiseptica can hijack the life cycle of the soil-living amoeba Dictyostelium discoideum, surviving inside single-celled trophozoites, translocating to the fruiting bodies and disseminating along with amoeba spores. The association with amoeba may have been a 'training ground' for bacteria during the evolution to pathogens. Adaptation to an animal-associated life style was characterized by decreasing metabolic versatility and genome size and by acquisition of 'virulence factors' mediating the interaction with the new animal hosts. Subsequent emergence of human-specific pathogens, such as Bordetella pertussis from zoonoses of broader host range progenitors, was accompanied by a dramatic reduction in genome size, marked by the loss of hundreds of genes. SUMMARY The evolution of Bordetella from environmental microbes to animal-adapted and obligate human pathogens was accompanied by significant genome reduction with large-scale gene loss during divergence.
Collapse
|