51
|
Rankine-Wilson LI, Shapira T, Sao Emani C, Av-Gay Y. From infection niche to therapeutic target: the intracellular lifestyle of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001041. [PMID: 33826491 PMCID: PMC8289223 DOI: 10.1099/mic.0.001041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is an obligate human pathogen killing millions of people annually. Treatment for tuberculosis is lengthy and complicated, involving multiple drugs and often resulting in serious side effects and non-compliance. Mtb has developed numerous complex mechanisms enabling it to not only survive but replicate inside professional phagocytes. These mechanisms include, among others, overcoming the phagosome maturation process, inhibiting the acidification of the phagosome and inhibiting apoptosis. Within the past decade, technologies have been developed that enable a more accurate understanding of Mtb physiology within its intracellular niche, paving the way for more clinically relevant drug-development programmes. Here we review the molecular biology of Mtb pathogenesis offering a unique perspective on the use and development of therapies that target Mtb during its intracellular life stage.
Collapse
Affiliation(s)
| | - Tirosh Shapira
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Carine Sao Emani
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
52
|
Amaral EP, Vinhaes CL, Oliveira-de-Souza D, Nogueira B, Akrami KM, Andrade BB. The Interplay Between Systemic Inflammation, Oxidative Stress, and Tissue Remodeling in Tuberculosis. Antioxid Redox Signal 2021; 34:471-485. [PMID: 32559410 PMCID: PMC8020551 DOI: 10.1089/ars.2020.8124] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Significance: Excessive and prolonged proinflammatory responses are associated with oxidative stress, which is commonly observed during chronic tuberculosis (TB). Such condition favors tissue destruction and consequently bacterial spread. A tissue remodeling program is also triggered in chronically inflamed sites, facilitating a wide spectrum of clinical manifestations. Recent Advances: Since persistent and exacerbated oxidative stress responses have been associated with severe pathology, a number of studies have suggested that the inhibition of this augmented stress response by improving host antioxidant status may represent a reasonable strategy to ameliorate tissue damage in TB. Critical Issues: This review summarizes the interplay between oxidative stress, systemic inflammation and tissue remodeling, and its consequences in promoting TB disease. We emphasize the most important mechanisms associated with stress responses that contribute to the progression of TB. We also point out important host immune components that may influence the exacerbation of cellular stress and the subsequent tissue injury. Future Directions: Further research should reveal valuable targets for host-directed therapy of TB, preventing development of severe immunopathology and disease progression. Antioxid. Redox Signal. 34, 471-485.
Collapse
Affiliation(s)
- Eduardo P Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caian L Vinhaes
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Deivide Oliveira-de-Souza
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil
| | - Betania Nogueira
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Kevan M Akrami
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Division of Infectious Diseases and Pulmonary Critical Care and Sleep Medicine, Department of Medicine, University of California, San Diego, California, USA
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (FTC), Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
53
|
Nasreen M, Fletcher A, Hosmer J, Zhong Q, Essilfie AT, McEwan AG, Kappler U. The Alternative Sigma Factor RpoE2 Is Involved in the Stress Response to Hypochlorite and in vivo Survival of Haemophilus influenzae. Front Microbiol 2021; 12:637213. [PMID: 33643271 PMCID: PMC7907618 DOI: 10.3389/fmicb.2021.637213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
Extracytoplasmic function (ECF) sigma factors underpin the ability of bacteria to adapt to changing environmental conditions, a process that is particularly relevant in human pathogens that inhabit niches where human immune cells contribute to high levels of extracellular stress. Here, we have characterized the previously unstudied RpoE2 ECF sigma factor from the human respiratory pathogen H. influenzae (Hi) and its role in hypochlorite-induced stress. Exposure of H. influenzae to oxidative stress (HOCl, H2O2) increased rpoE2 gene expression, and the activity of RpoE2 was controlled by a cytoplasmic 67-aa anti-sigma factor, HrsE. RpoE2 regulated the expression of the periplasmic MsrAB peptide methionine sulfoxide reductase that, in H. influenzae, is required for HOCl resistance, thus linking RpoE2 to HOCl stress. Interestingly, a HiΔrpoE2 strain had wild-type levels of resistance to oxidative stress in vitro, but HiΔrpoE2 survival was reduced 26-fold in a mouse model of lung infection, demonstrating the relevance of this sigma factor for H. influenzae pathogenesis. The HiRpoE2 system has some similarity to the ECF sigma factors described in Streptomyces and Neisseria sp. that also control the expression of msr genes. However, HiRpoE2 regulation extended to genes encoding other periplasmic damage repair proteins, an operon containing a DoxX-like protein, and also included selected OxyR-controlled genes. Based on our results, we propose that the highly conserved HiRpoE2 sigma factor is a key regulator of H. influenzae responses to oxidative damage in the cell envelope region that controls a variety of target genes required for survival in the host.
Collapse
Affiliation(s)
- Marufa Nasreen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Aidan Fletcher
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Jennifer Hosmer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | | | - Alastair G McEwan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
54
|
Abstract
The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. The mycomembrane layer of the mycobacterial cell envelope is a barrier to environmental, immune, and antibiotic insults. There is considerable evidence of mycomembrane plasticity during infection and in response to host-mimicking stresses. Since mycobacteria are resource and energy limited under these conditions, it is likely that remodeling has distinct requirements from those of the well-characterized biosynthetic program that operates during unrestricted growth. Unexpectedly, we found that mycomembrane remodeling in nutrient-starved, nonreplicating mycobacteria includes synthesis in addition to turnover. Mycomembrane synthesis under these conditions occurs along the cell periphery, in contrast to the polar assembly of actively growing cells, and both liberates and relies on the nonmammalian disaccharide trehalose. In the absence of trehalose recycling, de novo trehalose synthesis fuels mycomembrane remodeling. However, mycobacteria experience ATP depletion, enhanced respiration, and redox stress, hallmarks of futile cycling and the collateral dysfunction elicited by some bactericidal antibiotics. Inefficient energy metabolism compromises the survival of trehalose recycling mutants in macrophages. Our data suggest that trehalose recycling alleviates the energetic burden of mycomembrane remodeling under stress. Cell envelope recycling pathways are emerging targets for sensitizing resource-limited bacterial pathogens to host and antibiotic pressure.
Collapse
|
55
|
Székely R, Rengifo-Gonzalez M, Singh V, Riabova O, Benjak A, Piton J, Cimino M, Kornobis E, Mizrahi V, Johnsson K, Manina G, Makarov V, Cole ST. 6,11-Dioxobenzo[ f]pyrido[1,2- a]indoles Kill Mycobacterium tuberculosis by Targeting Iron-Sulfur Protein Rv0338c (IspQ), A Putative Redox Sensor. ACS Infect Dis 2020; 6:3015-3025. [PMID: 32930569 DOI: 10.1021/acsinfecdis.0c00531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Screening of a diversity-oriented compound library led to the identification of two 6,11-dioxobenzo[f]pyrido[1,2-a]indoles (DBPI) that displayed low micromolar bactericidal activity against the Erdman strain of Mycobacterium tuberculosis in vitro. The activity of these hit compounds was limited to tubercle bacilli, including the nonreplicating form, and to Mycobacterium marinum. On hit expansion and investigation of the structure activity relationship, selected modifications to the dioxo moiety of the DBPI scaffold were either neutral or led to reduction or abolition of antimycobacterial activity. To find the target, DBPI-resistant mutants of M. tuberculosis Erdman were raised and characterized first microbiologically and then by whole genome sequencing. Four different mutations, all affecting highly conserved residues, were uncovered in the essential gene rv0338c (ispQ) that encodes a membrane-bound protein, named IspQ, with 2Fe-2S and 4Fe-4S centers and putative iron-sulfur-binding reductase activity. With the help of a structural model, two of the mutations were localized close to the 2Fe-2S domain in IspQ and another in transmembrane segment 3. The mutant genes were recessive to the wild type in complementation experiments and further confirmation of the hit-target relationship was obtained using a conditional knockdown mutant of rv0338c in M. tuberculosis H37Rv. More mechanistic insight was obtained from transcriptome analysis, following exposure of M. tuberculosis to two different DBPI; this revealed strong upregulation of the redox-sensitive SigK regulon and genes induced by oxidative and thiol-stress. The findings of this investigation pharmacologically validate a novel target in tubercle bacilli and open a new vista for tuberculosis drug discovery.
Collapse
Affiliation(s)
- Rita Székely
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Monica Rengifo-Gonzalez
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Olga Riabova
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Andrej Benjak
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérémie Piton
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Mena Cimino
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Etienne Kornobis
- Biomics, C2RT, Institut Pasteur, 75015 Paris, France
- Hub Bioinformatique et Biostatistique, USR 3756 CNRS, Institut Pasteur, 75015 Paris, France
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, Cape Town 7701, South Africa
| | - Kai Johnsson
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Giulia Manina
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| | - Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, 119071 Moscow, Russian Federation
| | - Stewart T. Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Microbial Individuality and Infection, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
56
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
57
|
Ethanol in Combination with Oxidative Stress Significantly Impacts Mycobacterial Physiology. J Bacteriol 2020; 202:JB.00222-20. [PMID: 32928928 DOI: 10.1128/jb.00222-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 11/20/2022] Open
Abstract
Here, we investigate the mycobacterial response to the combined stress of an organic oxidant (cumene hydroperoxide [CHP]) and a solvent (ethanol). To understand the interaction between the two stressors, we treated Mycobacterium smegmatis cells to a range of ethanol concentrations (2.5% to 10% [vol/vol]) in combination with a subinhibitory concentration of 1 mM CHP. It was observed that the presence of CHP increases the efficacy of ethanol in inducing rapid cell death. The data further suggest that ethanol reacts with the alkoxy radicals to produce ethanol-derived peroxides. These radicals induce significant membrane damage and lead to cell lysis. The ethanol-derived radicals were primarily recognized by the cells as organic radicals, as was evident by the differential upregulation of the ohr-ohrR genes that function in cells treated with the combination of ethanol and CHP. The role of organic peroxide reductase, Ohr, was further confirmed by the significantly higher sensitivity of the deletion mutant to CHP and the combined stress treatment of CHP and ethanol. Moreover, we also observed the sigma factor σB to be important for the cells treated with ethanol alone as well as the aforementioned combination. A ΔsigB mutant strain had significantly higher susceptibility to the stress conditions. This finding was correlated with the σB-dependent transcriptional regulation of ohr and ohrR In summary, our data indicate that the combination of low levels of ethanol and organic peroxides induce ethanol-derived organic radicals that lead to significant oxidative stress on the cells in a concentration-dependent manner.IMPORTANCE Bacterial response to a combination of stresses can be unexpected and very different compared with that of an individual stress treatment. This study explores the physiological and transcriptional response of mycobacteria in response to the combinatorial treatment of an oxidant with the commonly used solvent ethanol. The presence of a subinhibitory concentration of organic peroxide increases the effectiveness of ethanol by inducing reactive peroxides that destroy the membrane integrity of cells in a significantly short time span. Our work elucidates a mechanism of targeting the complex mycobacterial membrane, which is its primary source of intrinsic resistance. Furthermore, it also demonstrates the importance of exploring the effect of various stress conditions on inducing bacterial clearance.
Collapse
|
58
|
Harnagel A, Lopez Quezada L, Park SW, Baranowski C, Kieser K, Jiang X, Roberts J, Vaubourgeix J, Yang A, Nelson B, Fay A, Rubin E, Ehrt S, Nathan C, Lupoli TJ. Nonredundant functions of Mycobacterium tuberculosis chaperones promote survival under stress. Mol Microbiol 2020; 115:272-289. [PMID: 32996193 DOI: 10.1111/mmi.14615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Bacterial chaperones ClpB and DnaK, homologs of the respective eukaryotic heat shock proteins Hsp104 and Hsp70, are essential in the reactivation of toxic protein aggregates that occur during translation or periods of stress. In the pathogen Mycobacterium tuberculosis (Mtb), the protective effect of chaperones extends to survival in the presence of host stresses, such as protein-damaging oxidants. However, we lack a full understanding of the interplay of Hsps and other stress response genes in mycobacteria. Here, we employ genome-wide transposon mutagenesis to identify the genes that support clpB function in Mtb. In addition to validating the role of ClpB in Mtb's response to oxidants, we show that HtpG, a homolog of Hsp90, plays a distinct role from ClpB in the proteotoxic stress response. While loss of neither clpB nor htpG is lethal to the cell, loss of both through genetic depletion or small molecule inhibition impairs recovery after exposure to host-like stresses, especially reactive nitrogen species. Moreover, defects in cells lacking clpB can be complemented by overexpression of other chaperones, demonstrating that Mtb's stress response network depends upon finely tuned chaperone expression levels. These results suggest that inhibition of multiple chaperones could work in concert with host immunity to disable Mtb.
Collapse
Affiliation(s)
- Alexa Harnagel
- Department of Chemistry, New York University, New York, NY, USA
| | - Landys Lopez Quezada
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Baranowski
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Karen Kieser
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiuju Jiang
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julia Roberts
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Yang
- Department of Chemistry, New York University, New York, NY, USA
| | - Brock Nelson
- Department of Chemistry, New York University, New York, NY, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric Rubin
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY, USA.,Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
59
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
60
|
Kanao T, Sharmin S, Tokuhisa M, Otsuki M, Kamimura K. Identification of a gene encoding a novel thiosulfate:quinone oxidoreductase in marine Acidithiobacillus sp. strain SH. Res Microbiol 2020; 171:281-286. [PMID: 33031917 DOI: 10.1016/j.resmic.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
Sulfur-oxidizing bacteria that are halophilic and acidophilic have gained interest because of their potential use in bioleaching operations in salt-containing environments. Acidithiobacillus sp. strain SH, which was previously identified as Acidithiobacillus thiooxidans based on its 16S rRNA gene sequence, is a chemolithoautotrophic marine bacterium exhibiting sodium chloride-stimulated thiosulfate-oxidizing activities. A novel thiosulfate:quinone oxidoreductase from strain SH (SH-TQO) has been purified from its solubilized membrane fraction. The gene for SH-TQO was determined from the draft genome sequence of the strain SH. Amino acid sequences of peptides generated by the in-gel trypsin digestion of SH-TQO were found in a protein encoded by locus tag B1757_09800 of the genome of the strain SH. The gene encoded 444 amino acids with a signal peptide of 29 amino acids and was annotated to encode a porin. The gene was located in a unique genomic region, not found in A. thiooxidans strains, suggesting that the strain SH acquired this region through a horizontal gene transfer. A protein-protein basic local alignment search revealed that sulfur-oxidizing bacteria, such as Acidithiobacillus species have proteins homologous to SH-TQO, though the degree of homologies was relatively low. The protein, DoxXA, which is homologous to TQO from Acidianus amvibalens, was also found in the genomic region.
Collapse
Affiliation(s)
- Tadayoshi Kanao
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Sultana Sharmin
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Mirai Tokuhisa
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Maho Otsuki
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Kazuo Kamimura
- Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
61
|
Bancroft PJ, Turapov O, Jagatia H, Arnvig KB, Mukamolova GV, Green J. Coupling of Peptidoglycan Synthesis to Central Metabolism in Mycobacteria: Post-transcriptional Control of CwlM by Aconitase. Cell Rep 2020; 32:108209. [PMID: 32997986 PMCID: PMC7527780 DOI: 10.1016/j.celrep.2020.108209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/18/2020] [Accepted: 09/09/2020] [Indexed: 10/25/2022] Open
Abstract
Mycobacterium tuberculosis causes human tuberculosis, and a better understanding of its biology is required to identify vulnerabilities that might be exploited in developing new therapeutics. The iron-sulfur cluster of the essential M. tuberculosis central metabolic enzyme, aconitase (AcnA), disassembles when exposed to oxidative/nitrosative stress or iron chelators. The catalytically inactive apo-AcnA interacts with a sequence resembling an iron-responsive element (IRE) located within the transcript of another essential protein, CwlM, a regulator of peptidoglycan synthesis. A Mycobacterium smegmatis cwlM conditional mutant complemented with M. tuberculosis cwlM with a disrupted IRE is unable to recover from combinations of oxidative, nitrosative, and iron starvation stresses. An equivalent M. tuberculosis cwlM conditional mutant complemented with the cwlM gene lacking a functional IRE exhibits a growth defect in THP-1 macrophages. It appears that AcnA acts to couple peptidoglycan synthesis and central metabolism, and disruption of this coupling potentially leaves mycobacteria vulnerable to attack by macrophages.
Collapse
Affiliation(s)
- Peter J Bancroft
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Heena Jagatia
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK
| | - Kristine B Arnvig
- Institute for Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Maurice Shock Medical Sciences Building, University Road, Leicester, LE1 9HN, UK.
| | - Jeffrey Green
- Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
62
|
Mishra R, Kohli S, Malhotra N, Bandyopadhyay P, Mehta M, Munshi M, Adiga V, Ahuja VK, Shandil RK, Rajmani RS, Seshasayee ASN, Singh A. Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. Sci Transl Med 2020; 11:11/518/eaaw6635. [PMID: 31723039 DOI: 10.1126/scitranslmed.aaw6635] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/26/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022]
Abstract
The capacity of Mycobacterium tuberculosis (Mtb) to tolerate multiple antibiotics represents a major problem in tuberculosis (TB) management. Heterogeneity in Mtb populations is one of the factors that drives antibiotic tolerance during infection. However, the mechanisms underpinning this variation in bacterial population remain poorly understood. Here, we show that phagosomal acidification alters the redox physiology of Mtb to generate a population of replicating bacteria that display drug tolerance during infection. RNA sequencing of this redox-altered population revealed the involvement of iron-sulfur (Fe-S) cluster biogenesis, hydrogen sulfide (H2S) gas, and drug efflux pumps in antibiotic tolerance. The fraction of the pH- and redox-dependent tolerant population increased when Mtb infected macrophages with actively replicating HIV-1, suggesting that redox heterogeneity could contribute to high rates of TB therapy failure during HIV-TB coinfection. Pharmacological inhibition of phagosomal acidification by the antimalarial drug chloroquine (CQ) eradicated drug-tolerant Mtb, ameliorated lung pathology, and reduced postchemotherapeutic relapse in in vivo models. The pharmacological profile of CQ (C max and AUClast) exhibited no major drug-drug interaction when coadministered with first line anti-TB drugs in mice. Our data establish a link between phagosomal pH, redox metabolism, and drug tolerance in replicating Mtb and suggest repositioning of CQ to shorten TB therapy and achieve a relapse-free cure.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Sakshi Kohli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Nitish Malhotra
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Mansi Mehta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - MohamedHusen Munshi
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Vasista Adiga
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | | | - Radha K Shandil
- Foundation for Neglected Disease Research, Bangalore 560065, India
| | - Raju S Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Aswin Sai Narain Seshasayee
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bangalore 560065, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
63
|
Ganguli G, Pattanaik KP, Jagadeb M, Sonawane A. Mycobacterium tuberculosis Rv3034c regulates mTORC1 and PPAR-γ dependant pexophagy mechanism to control redox levels in macrophages. Cell Microbiol 2020; 22:e13214. [PMID: 32388919 DOI: 10.1111/cmi.13214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis-1 and DLP-1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down-regulating the expression of pexophagy associated proteins (p-AMPKα, p-ULK-1, Atg5, Atg7, Beclin-1, LC3-II, TFEB and Keap-1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor-γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | | | - Manaswini Jagadeb
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India.,Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
64
|
Moseler A, Selles B, Rouhier N, Couturier J. Novel insights into the diversity of the sulfurtransferase family in photosynthetic organisms with emphasis on oak. THE NEW PHYTOLOGIST 2020; 226:967-977. [PMID: 31032955 DOI: 10.1111/nph.15870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 05/21/2023]
Abstract
Sulfurtransferases (STRs) constitute a large and complex protein family characterized by the presence of a rhodanese domain and implicated in diverse molecular and signaling processes as sulfur carriers. Although sulfurtransferases are present in the three domains of life and share evolutionary relationships, a high variability exists at different levels including the protein length and active site sequence, the presence of an indispensable catalytic cysteine residue, the domain arrangement and the subcellular localization. Because only Arabidopsis thaliana sequences have been inventoried so far, this paper aims at providing a detailed classification and inventory of evolutionary features of this family in photosynthetic organisms using comparative genomics, focusing on the oak genome. Based on the expansion of STRs in higher photosynthetic organisms, we classified the STR family in nine clusters depending on their primary sequence and domain arrangement. We found that oak possesses at least one isoform in all defined clusters and that clusters IV, V and VI contain plant-specific isoforms that are located mostly in chloroplasts. The novel classification proposed here provides the basis for functional genomics approaches in order to dissect the biochemical characteristics and physiological functions of individual STR representatives.
Collapse
Affiliation(s)
- Anna Moseler
- Université de Lorraine, Inra, IAM, F-54000, Nancy, France
| | | | | | | |
Collapse
|
65
|
Bhargavi G, Hassan S, Balaji S, Tripathy SP, Palaniyandi K. Protein-protein interaction of Rv0148 with Htdy and its predicted role towards drug resistance in Mycobacterium tuberculosis. BMC Microbiol 2020; 20:93. [PMID: 32295519 PMCID: PMC7161113 DOI: 10.1186/s12866-020-01763-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis resides inside host macrophages during infection and adapts to resilient stresses generated by the host immune system. As a response, M. tuberculosis codes for short-chain dehydrogenases/reductases (SDRs). These SDRs are nicotinamide adenine dinucleotide-reliant oxidoreductases involved in cell homeostasis. The precise function of oxidoreductases in bacteria especially M. tuberculosis were not fully explored. This study aimed to know the detail functional role of one of the oxidoreductase Rv0148 in M. tuberculosis. RESULTS In silico analysis revealed that Rv0148 interacts with Htdy (Rv3389) and the protein interactions were confirmed using far western blot. Gene knockout mutant of Rv0148 in M. tuberculosis was constructed by specialized transduction. Macrophage cell line infection with this knockout mutant showed increased expression of pro-inflammatory cytokines. This knockout mutant is sensitive to oxidative, nitrogen, redox and electron transport inhibitor stress agents. Drug susceptibility testing of the deletion mutant showed resistance to first-line drugs such as streptomycin and ethambutol and second-line aminoglycosides such as amikacin and kanamycin. Based on interactorme analysis for Rv0148 using STRING database, we identified 220 most probable interacting partners for Htdy protein. In the Rv0148 knockout mutants, high expression of htdy was observed and we hypothesize that this would have perturbed the interactome thus resulting in drug resistance. Finally, we propose that Rv0148 and Htdy are functionally interconnected and involved in drug resistance and cell homeostasis of M. tuberculosis. CONCLUSIONS Our study suggests that Rv0148 plays a significant role in various functional aspects such as intermediatory metabolism, stress, homeostasis and also in drug resistance.
Collapse
Affiliation(s)
- Gunapati Bhargavi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Sameer Hassan
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Subramanyam Balaji
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Srikanth Prasad Tripathy
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India
| | - Kannan Palaniyandi
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, #1, Mayor Sathyamoorthy Road, Chetpet, Chennai, 600031, India.
| |
Collapse
|
66
|
Tucci P, Portela M, Chetto CR, González-Sapienza G, Marín M. Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate. PLoS One 2020; 15:e0221837. [PMID: 32126063 PMCID: PMC7053730 DOI: 10.1371/journal.pone.0221837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Despite being the subject of intensive research, tuberculosis, caused by Mycobacterium tuberculosis, remains at present the leading cause of death from an infectious agent. Secreted and cell wall proteins interact with the host and play important roles in pathogenicity. These proteins are explored as candidate diagnostic markers, potential drug targets or vaccine antigens, and more recently special attention is being given to the role of their post-translational modifications. With the purpose of contributing to the proteomic and glycoproteomic characterization of this important pathogen, we performed a shotgun analysis of culture filtrate proteins of M. tuberculosis based on a liquid nano-HPLC tandem mass spectrometry and a label-free spectral counting normalization approach for protein quantification. We identified 1314 M. tuberculosis proteins in culture filtrate and found that the most abundant proteins belong to the extracellular region or cell wall compartment, and that the functional categories with higher protein abundance factor were virulence, detoxification and adaptation, and cell wall and cell processes. We could identify a group of proteins consistently detected in previous studies, most of which were highly abundant proteins. In culture filtrate, 140 proteins were predicted to contain one of the three types of bacterial N-terminal signal peptides. Besides, various proteins belonging to the ESX secretion systems, and to the PE and PPE families, secreted by the type VII secretion system using nonclassical secretion signals, were also identified. O-glycosylation was identified in 46 proteins, many of them lipoproteins and cell wall associated proteins. Finally, we provide proteomic evidence for 33 novel O-glycosylated proteins, aiding to the glycoproteomic characterization of relevant antigenic membrane and exported proteins. These findings are expected to collaborate with the research on pathogen derived biomarkers, virulence factors and vaccine candidates, and to provide clues to the understanding of the pathogenesis and survival strategies adopted by M. tuberculosis.
Collapse
Affiliation(s)
- Paula Tucci
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Madelón Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Rivas Chetto
- Departamento de Laboratorio, Comisión Honoraria para la Lucha Antituberculosa y Enfermedades Prevalentes, Centro de Referencia Nacional para Micobacterias, Ministerio de Salud Pública, Montevideo, Uruguay
| | - Gualberto González-Sapienza
- Cátedra de Inmunología, DEPBIO, Facultad de Química, Universidad de la Republica Uruguay, Montevideo, Uruguay
| | - Mónica Marín
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
67
|
TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nat Commun 2020; 11:684. [PMID: 32019932 PMCID: PMC7000671 DOI: 10.1038/s41467-020-14508-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) strains are classified into different phylogenetic lineages (L), three of which (L2/L3/L4) emerged from a common progenitor after the loss of the MmpS6/MmpL6-encoding Mtb-specific deletion 1 region (TbD1). These TbD1-deleted “modern” lineages are responsible for globally-spread tuberculosis epidemics, whereas TbD1-intact “ancestral” lineages tend to be restricted to specific geographical areas, such as South India and South East Asia (L1) or East Africa (L7). By constructing and characterizing a panel of recombinant TbD1-knock-in and knock-out strains and comparison with clinical isolates, here we show that deletion of TbD1 confers to Mtb a significant increase in resistance to oxidative stress and hypoxia, which correlates with enhanced virulence in selected cellular, guinea pig and C3HeB/FeJ mouse infection models, the latter two mirroring in part the development of hypoxic granulomas in human disease progression. Our results suggest that loss of TbD1 at the origin of the L2/L3/L4 Mtb lineages was a key driver for their global epidemic spread and outstanding evolutionary success. Mycobacterium tuberculosis (Mtb) modern strains emerged from a common progenitor after the loss of Mtb-specific deletion 1 region (TbD1). Here, the authors show that deletion of TbD1 correlates with enhanced Mtb virulence in animal models, mirroring the development of hypoxic granulomas in human disease progression.
Collapse
|
68
|
Yuan P, He L, Chen D, Sun Y, Ge Z, Shen D, Lu Y. Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin. J Proteomics 2020; 212:103576. [DOI: 10.1016/j.jprot.2019.103576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/13/2019] [Accepted: 10/27/2019] [Indexed: 12/11/2022]
|
69
|
Forrellad MA, Vázquez CL, Blanco FC, Klepp LI, García EA, Rocha RV, Luciana V, Bigi MM, Gutierrez MG, Bigi F. Rv2617c and P36 are virulence factors of pathogenic mycobacteria involved in resistance to oxidative stress. Virulence 2019; 10:1026-1033. [PMID: 31782338 PMCID: PMC6930017 DOI: 10.1080/21505594.2019.1693714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we characterized the role of Rv2617c in the virulence of Mycobacterium tuberculosis. Rv2617c is a protein of unknown function unique to M. tuberculosis complex (MTC) and Mycobacterium leprae. In vitro, this protein interacts with the virulence factor P36 (also named Erp) and KdpF, a protein linked to nitrosative stress. Here, we showed that knockout of the Rv2617c gene in M. tuberculosis CDC1551 reduced the replication of the pathogen in a mouse model of infection and favored the trafficking of mycobacteria to phagolysosomes. We also demonstrated that Rv2617c and P36 are required for resistance to in vitro hydrogen peroxide treatment in M. tuberculosis and Mycobacterium bovis, respectively. These findings indicate Rv2617c and P36 act in concert to prevent bacterial damage upon oxidative stress.
Collapse
Affiliation(s)
- Marina A Forrellad
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - Cristina L Vázquez
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - Federico C Blanco
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - Laura I Klepp
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - Elizabeth A García
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - Rosana V Rocha
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - Villafañe Luciana
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| | - María M Bigi
- University of Buenos Aires, School of Agronomy (Universidad de Buenos Aires, Facultad de Agronomía), Autonomous City of Bueno Aires, Argentine
| | - Maximiliano G Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, London, UK
| | - Fabiana Bigi
- Institute of Biotechnology, National Institute of Agricultural Technology (INTA, Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) and IABIMO-National Scientific and Technical Research Council (CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas), Hurlingham, Buenos Aires, Argentine
| |
Collapse
|
70
|
Selles B, Moseler A, Rouhier N, Couturier J. Rhodanese domain-containing sulfurtransferases: multifaceted proteins involved in sulfur trafficking in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4139-4154. [PMID: 31055601 DOI: 10.1093/jxb/erz213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 05/25/2023]
Abstract
Sulfur is an essential element for the growth and development of plants, which synthesize cysteine and methionine from the reductive assimilation of sulfate. Besides its incorporation into proteins, cysteine is the building block for the biosynthesis of numerous sulfur-containing molecules and cofactors. The required sulfur atoms are extracted either directly from cysteine by cysteine desulfurases or indirectly after its catabolic transformation to 3-mercaptopyruvate, a substrate for sulfurtransferases (STRs). Both enzymes are transiently persulfidated in their reaction cycle, i.e. the abstracted sulfur atom is bound to a reactive cysteine residue in the form of a persulfide group. Trans-persulfidation reactions occur when sulfur atoms are transferred to nucleophilic acceptors such as glutathione, proteins, or small metabolites. STRs form a ubiquitous, multigenic protein family. They are characterized by the presence of at least one rhodanese homology domain (Rhd), which usually contains the catalytic, persulfidated cysteine. In this review, we focus on Arabidopsis STRs, presenting the sequence characteristics of all family members as well as their biochemical and structural features. The physiological functions of particular STRs in the biosynthesis of molybdenum cofactor, thio-modification of cytosolic tRNAs, arsenate tolerance, cysteine catabolism, and hydrogen sulfide formation are also discussed.
Collapse
Affiliation(s)
| | - Anna Moseler
- Université de Lorraine, Inra, IAM, Nancy, France
| | | | | |
Collapse
|
71
|
Srivastava S, Battu MB, Khan MZ, Nandicoori VK, Mukhopadhyay S. Mycobacterium tuberculosis PPE2 Protein Interacts with p67phox and Inhibits Reactive Oxygen Species Production. THE JOURNAL OF IMMUNOLOGY 2019; 203:1218-1229. [DOI: 10.4049/jimmunol.1801143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/04/2019] [Indexed: 01/09/2023]
|
72
|
Prasad D, Arora D, Nandicoori VK, Muniyappa K. Elucidating the functional role of Mycobacterium smegmatis recX in stress response. Sci Rep 2019; 9:10912. [PMID: 31358794 PMCID: PMC6662834 DOI: 10.1038/s41598-019-47312-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The RecX protein has attracted considerable interest because the recX mutants exhibit multiple phenotypes associated with RecA functions. To further our understanding of the functional relationship between recA and recX, the effect of different stress treatments on their expression profiles, cell yield and viability were investigated. A significant correlation was found between the expression of Mycobacterium smegmatis recA and recX genes at different stages of growth, and in response to different stress treatments albeit recX exhibiting lower transcript and protein abundance at the mid-log and stationary phases of the bacterial growth cycle. To ascertain their roles in vivo, a targeted deletion of the recX and recArecX was performed in M. smegmatis. The growth kinetics of these mutant strains and their sensitivity patterns to different stress treatments were assessed relative to the wild-type strain. The deletion of recA affected normal cell growth and survival, while recX deletion showed no significant effect. Interestingly, deletion of both recX and recA genes results in a phenotype that is intermediate between the phenotypes of the ΔrecA mutant and the wild-type strain. Collectively, these results reveal a previously unrecognized role for M. smegmatis recX and support the notion that it may regulate a subset of the yet unknown genes involved in normal cell growth and DNA-damage repair.
Collapse
Affiliation(s)
- Deepika Prasad
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Divya Arora
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
73
|
Cuevasanta E, Reyes AM, Zeida A, Mastrogiovanni M, De Armas MI, Radi R, Alvarez B, Trujillo M. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Mycobacterium tuberculosis. J Biol Chem 2019; 294:13593-13605. [PMID: 31311857 DOI: 10.1074/jbc.ra119.008883] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) participates in prokaryotic metabolism and is associated with several physiological functions in mammals. H2S reacts with oxidized thiol derivatives (i.e. disulfides and sulfenic acids) and thereby forms persulfides, which are plausible transducers of the H2S-mediated signaling effects. The one-cysteine peroxiredoxin alkyl hydroperoxide reductase E from Mycobacterium tuberculosis (MtAhpE-SH) reacts fast with hydroperoxides, forming a stable sulfenic acid (MtAhpE-SOH), which we chose here as a model to study the interactions between H2S and peroxiredoxins (Prx). MtAhpE-SOH reacted with H2S, forming a persulfide (MtAhpE-SSH) detectable by mass spectrometry. The rate constant for this reaction was (1.4 ± 0.2) × 103 m-1 s-1 (pH 7.4, 25 °C), six times higher than that reported for the reaction with the main low-molecular-weight thiol in M. tuberculosis, mycothiol. H2S was able to complete the catalytic cycle of MtAhpE and, according to kinetic considerations, it could represent an alternative substrate in M. tuberculosis. MtAhpE-SSH reacted 43 times faster than did MtAhpE-SH with the unspecific electrophile 4,4'-dithiodipyridine, a disulfide that exhibits no preferential reactivity with peroxidatic cysteines, but MtAhpE-SSH was less reactive toward specific Prx substrates such as hydrogen peroxide and peroxynitrite. According to molecular dynamics simulations, this loss of specific reactivity could be explained by alterations in the MtAhpE active site. MtAhpE-SSH could transfer its sulfane sulfur to a low-molecular-weight thiol, a process likely facilitated by the low pKa of the leaving thiol MtAhpE-SH, highlighting the possibility that Prx participates in transpersulfidation. The findings of our study contribute to the understanding of persulfide formation and reactivity.
Collapse
Affiliation(s)
- Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay .,Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Aníbal M Reyes
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay .,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mauricio Mastrogiovanni
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - María Inés De Armas
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.,Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
74
|
Vidhya R, Rathnakumar K, Balu V, Pugalendi KV. Oxidative stress, antioxidant status and lipid profile in pulmonary tuberculosis patients before and after anti-tubercular therapy. ACTA ACUST UNITED AC 2019; 66:375-381. [DOI: 10.1016/j.ijtb.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022]
|
75
|
Ganguli G, Mukherjee U, Sonawane A. Peroxisomes and Oxidative Stress: Their Implications in the Modulation of Cellular Immunity During Mycobacterial Infection. Front Microbiol 2019; 10:1121. [PMID: 31258517 PMCID: PMC6587667 DOI: 10.3389/fmicb.2019.01121] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Host redox dependent physiological responses play crucial roles in the determination of mycobacterial infection process. Mtb explores oxygen rich lung microenvironments to initiate infection process, however, later on the bacilli adapt to oxygen depleted conditions and become non-replicative and unresponsive toward anti-TB drugs to enter in the latency stage. Mtb is equipped with various sensory mechanisms and a battery of pro- and anti-oxidant enzymes to protect themselves from the host oxidative stress mechanisms. After host cell invasion, mycobacteria induces the expression of NADPH oxidase 2 (NOX2) to generate superoxide radicals (O 2 - ), which are then converted to more toxic hydrogen peroxide (H2O2) by superoxide dismutase (SOD) and subsequently reduced to water by catalase. However, the metabolic cascades and their key regulators associated with cellular redox homeostasis are poorly understood. Phagocytosed mycobacteria en route through different subcellular organelles, where the local environment generated during infection determines the outcome of disease. For a long time, mitochondria were considered as the key player in the redox regulation, however, accumulating evidences report vital role for peroxisomes in the maintenance of cellular redox equilibrium in eukaryotic cells. Deletion of peroxisome-associated peroxin genes impaired detoxification of reactive oxygen species and peroxisome turnover post-infection, thereby leading to altered synthesis of transcription factors, various cell-signaling cascades in favor of the bacilli. This review focuses on how mycobacteria would utilize host peroxisomes to alter redox balance and metabolic regulatory mechanisms to support infection process. Here, we discuss implications of peroxisome biogenesis in the modulation of host responses against mycobacterial infection.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Utsav Mukherjee
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (deemed to be University), Bhubaneswar, India
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| |
Collapse
|
76
|
Oren N, Raanan H, Kedem I, Turjeman A, Bronstein M, Kaplan A, Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: The role of light and temperature sensing. Mol Ecol 2019; 28:2305-2320. [DOI: 10.1111/mec.15074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Nadav Oren
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Hagai Raanan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences Rutgers University New Brunswick New Jersey
| | - Isaac Kedem
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Adi Turjeman
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Michal Bronstein
- The Center for Genomic Technologies The Hebrew University of Jerusalem Jerusalem Israel
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| | - Omer Murik
- Department of Plant and Environmental Sciences The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|
77
|
Pal R, Hameed S, Kumar P, Singh S, Fatima Z. Understanding lipidomic basis of iron limitation induced chemosensitization of drug-resistant Mycobacterium tuberculosis. 3 Biotech 2019; 9:122. [PMID: 30863701 PMCID: PMC6401079 DOI: 10.1007/s13205-019-1645-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Under limited micronutrients condition, Mycobacterium tuberculosis (MTB) has to struggle for acquisition of the limited micronutrients available in the host. One such crucial micronutrient that MTB requires for the growth and sustenance is iron. The present study aimed to sequester the iron supply of MTB to control drug resistance in MTB. We found that iron restriction renders hypersensitivity to multidrug-resistant MTB strains against first-line anti-TB drugs. To decipher the effect of iron restriction on possible mechanisms of chemosensitization and altered cellular circuitry governing drug resistance and virulence of MTB, we explored MTB cellular architecture. We could identify non-intact cell envelope, tampered MTB morphology and diminished mycolic acid under iron restricted MDR-MTB cells. Deeper exploration unraveled altered lipidome profile observed through conventional TLC and advanced mass spectrometry-based LC-ESI-MS techniques. Lipidome analysis not only depicted profound alterations of various lipid classes which are crucial for pathogenecity but also exposed leads such as indispensability of iron to sustain metabolic, genotoxic and oxidative stresses. Furthermore, iron deprivation led to inhibited biofilm formation and capacity of MTB to adhere buccal epithelial cells. Lastly, we demonstrated enhanced survival of Mycobacterium-infected Caenorhabditis elegans model under iron limitation. The present study offers evidence and proposes alteration of lipidome profile and affected virulence traits upon iron chelation. Taken together, iron deprivation could be a potential strategy to rescue MDR and enhance the effectiveness of existing anti-TB drugs.
Collapse
Affiliation(s)
- Rahul Pal
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Saif Hameed
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| | - Parveen Kumar
- 0000 0004 1767 6103grid.413618.9Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Sarman Singh
- 0000 0004 1767 6103grid.413618.9Division of Clinical Microbiology and Molecular Medicine, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Zeeshan Fatima
- 0000 0004 1805 0217grid.444644.2Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, 122413 India
| |
Collapse
|
78
|
Nzungize L, Ali MK, Wang X, Huang X, Yang W, Duan X, Yan S, Li C, Abdalla AE, Jeyakkumar P, Xie J. Mycobacterium tuberculosis metC (Rv3340) derived hydrogen sulphide conferring bacteria stress survival. J Drug Target 2019; 27:1004-1016. [DOI: 10.1080/1061186x.2019.1579820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lambert Nzungize
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Md Kaisar Ali
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaoyu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xue Huang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenmin Yang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiangke Duan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Shuangquan Yan
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Abualgasim Elgaili Abdalla
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
- Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman, Islamic University, Omdurman, Sudan
| | - Ponmani Jeyakkumar
- Institute of Bioorganic and Medical Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
79
|
Tak U, Vlach J, Garza-Garcia A, William D, Danilchanka O, de Carvalho LPS, Saad JS, Niederweis M. The tuberculosis necrotizing toxin is an NAD + and NADP + glycohydrolase with distinct enzymatic properties. J Biol Chem 2019; 294:3024-3036. [PMID: 30593509 PMCID: PMC6398120 DOI: 10.1074/jbc.ra118.005832] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Upon host infection, Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD+ in the absence of any exogenous cofactor, thus classifying it as a β-NAD+ glycohydrolase. However, TNT lacks sequence similarity with other NAD+ hydrolyzing enzymes and lacks the essential motifs involved in NAD+ binding and hydrolysis by these enzymes. In this study, we used NMR to examine the enzymatic activity of TNT and found that TNT hydrolyzes NADP+ as fast as NAD+ but does not cleave the corresponding reduced dinucleotides. This activity of TNT was not inhibited by ADP-ribose or nicotinamide, indicating low affinity of TNT for these reaction products. A selection assay for nontoxic TNT variants in Escherichia coli identified four of six residues in the predicted NAD+-binding pocket and four glycine residues that form a cradle directly below the NAD+-binding site, a conserved feature in the TNT protein family. Site-directed mutagenesis of residues near the predicted NAD+-binding site revealed that Phe727, Arg757, and Arg780 are essential for NAD+ hydrolysis by TNT. These results identify the NAD+-binding site of TNT. Our findings also show that TNT is an NAD+ glycohydrolase with properties distinct from those of other bacterial glycohydrolases. Because many of these residues are conserved within the TNT family, our findings provide insights into understanding the function of the >300 TNT homologs.
Collapse
Affiliation(s)
- Uday Tak
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Jiri Vlach
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Doreen William
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Olga Danilchanka
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | | | - Jamil S Saad
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| | - Michael Niederweis
- From the Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205 and
| |
Collapse
|
80
|
Dlamini LM, Tata CM, Djuidje MCF, Ikhile MI, Nikolova GD, Karamalakova YD, Gadjeva VG, Zheleva AM, Njobeh PB, Ndinteh DT. Antioxidant and prooxidant effects of Piptadeniastrum africanum as the possible rationale behind its broad scale application in African ethnomedicine. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:429-437. [PMID: 30503766 DOI: 10.1016/j.jep.2018.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piptadeniastrum africanum is widely used in treating oxidative stress related diseases. Oxidative stress, defined as the disturbance in the balance between the production of free radicals and antioxidant defenses, is the root cause of many pathophysiological conditions. Based on the dual properties of prooxidants as toxic and beneficial compounds, both prooxidants and antioxidants may be effective in the treatment of these conditions when the right dose is given to the right subject at the right time for the right duration. AIM OF THE STUDY This study was aimed at investigating the in vitro and ex vivo anti- and pro-oxidative effects of P. africanum. MATERIALS AND METHODS Total phenolic and flavonoid contents of methanol and aqueous extracts of P. africanum stem back were quantified spectrophotometrically. The methanol extract, ascorbate radicals and reactive oxygen species in brain and liver homogenates of mice treated with the methanol stem bark extract were analyzed by electron paramagnetic resonance (EPR) spectroscopy. Free radical scavenging of DPPH was determined by spectrophotometric and EPR assays. RESULTS The methanol extract was richer in both phenolic and flavonoid contents compared to the aqueous extracts and also showed better DPPH radical scavenging capacity. The EPR spectroscopy in vitro analysis exhibited high DPPH scavenging capacity before and after UV irradiation (99.5% and 98.76%) at 40 μg/ml extract. The ex vivo EPR spectroscopy studies demonstrated increased levels of ascorbate radicals (•Asc) in liver and brain homogenates of healthy mice treated with P. africanum in comparison with those of the non treated controls (0.6141 ± 0.026 vs 0.1800 ± 0.0073 arb. units for liver homogenates and 0.9605 ± 0.0492 vs 0.3375 ± 0.0062 arb. units for brain homogenates, correspondingly). Considerably, higher levels of reactive oxygen species (ROS) were measured in mice liver and brain homogenates after treatment with P. africanum extract compared to the control group, as well (1.9402 ± 0.1200 vs 0.6699 ± 0.062 arb. units for liver homogenates and 1.7325 ± 01503 vs 0.3167 ± 0.0403 arb.units, respectively). CONCLUSION Therefore, P. africanum exhibited antioxidant and pro-oxidant properties which may explain its broad spectrum use in a wide variety of ailments.
Collapse
Affiliation(s)
- Lindiwe M Dlamini
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Charlotte M Tata
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Marthe Carine F Djuidje
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Monisola I Ikhile
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Galina D Nikolova
- Department Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yana D Karamalakova
- Department Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Veselina G Gadjeva
- Department Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Antoanetta M Zheleva
- Department Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Patrick B Njobeh
- Department of Biotechnology, Department of Food Technology, University of Johannesburg, South Africa
| | - Derek T Ndinteh
- Department of Applied Chemistry, Faculty of Science, University of Johannesburg, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa.
| |
Collapse
|
81
|
Mikheyeva IV, Thomas JM, Kolar SL, Corvaglia AR, Gaϊa N, Leo S, Francois P, Liu GY, Rawat M, Cheung AL. YpdA, a putative bacillithiol disulfide reductase, contributes to cellular redox homeostasis and virulence in Staphylococcus aureus. Mol Microbiol 2019; 111:1039-1056. [PMID: 30636083 DOI: 10.1111/mmi.14207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2018] [Indexed: 11/28/2022]
Abstract
The intracellular redox environment of Staphylococcus aureus is mainly buffered by bacillithiol (BSH), a low molecular weight thiol. The identity of enzymes responsible for the recycling of oxidized bacillithiol disulfide (BSSB) to the reduced form (BSH) remains elusive. We examined YpdA, a putative bacillithiol reductase, for its role in maintaining intracellular redox homeostasis. The ypdA mutant showed increased levels of BSSB and a lower bacillithiol redox ratio vs. the isogenic parent, indicating a higher level of oxidative stress within the bacterial cytosol. We showed that YpdA consumed NAD(P)H; and YpdA protein levels were augmented in response to stress. Wild type strains overexpressing YpdA showed increased tolerance to oxidants and electrophilic agents. Importantly, YpdA overexpression in the parental strain caused an increase in BSH levels accompanied by a decrease in BSSB concentration in the presence of stress, resulting in an increase in bacillithiol redox ratio vs. the vector control. Additionally, the ypdA mutant exhibited decreased survival in human neutrophils (PMNs) as compared with the parent, while YpdA overexpression protected the resulting strain from oxidative stress in vitro and from killing by human neutrophils ex vivo. Taken together, these data present a new role for YpdA in S. aureus physiology and virulence through the bacillithiol system.
Collapse
Affiliation(s)
- Irina V Mikheyeva
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jason M Thomas
- Biology Department, California State University, Fresno, Fresno, CA 93740, USA
| | - Stacey L Kolar
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna-Rita Corvaglia
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Nadia Gaϊa
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Stefano Leo
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - Patrice Francois
- Genomic Research Laboratory, Service of Infectious Diseases, University Hospital of Geneva, 1205 Geneva 4, Switzerland
| | - George Y Liu
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Mamta Rawat
- Biology Department, California State University, Fresno, Fresno, CA 93740, USA
| | - Ambrose L Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
82
|
Matty MA, Knudsen DR, Walton EM, Beerman RW, Cronan MR, Pyle CJ, Hernandez RE, Tobin DM. Potentiation of P2RX7 as a host-directed strategy for control of mycobacterial infection. eLife 2019; 8:39123. [PMID: 30693866 PMCID: PMC6351102 DOI: 10.7554/elife.39123] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis is the leading worldwide cause of death due to a single infectious agent. Existing anti-tuberculous therapies require long treatments and are complicated by multi-drug-resistant strains. Host-directed therapies have been proposed as an orthogonal approach, but few have moved into clinical trials. Here, we use the zebrafish-Mycobacterium marinum infection model as a whole-animal screening platform to identify FDA-approved, host-directed compounds. We identify multiple compounds that modulate host immunity to limit mycobacterial disease, including the inexpensive, safe, and widely used drug clemastine. We find that clemastine alters macrophage calcium transients through potentiation of the purinergic receptor P2RX7. Host-directed drug activity in zebrafish larvae depends on both P2RX7 and inflammasome signaling. Thus, targeted activation of a P2RX7 axis provides a novel strategy for enhanced control of mycobacterial infections. Using a novel explant model, we find that clemastine is also effective within the complex granulomas that are the hallmark of mycobacterial infection.
Collapse
Affiliation(s)
- Molly A Matty
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Daphne R Knudsen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Eric M Walton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Rebecca W Beerman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Mark R Cronan
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Charlie J Pyle
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States
| | - Rafael E Hernandez
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, United States.,Department of Pediatrics, University of Washington, Seattle, United States
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, United States.,Department of Immunology, Duke University School of Medicine, Durham, United States
| |
Collapse
|
83
|
Sarkar K, Sil PC. Infectious Lung Diseases and Endogenous Oxidative Stress. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7122037 DOI: 10.1007/978-981-13-8413-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lower respiratory tract infections, according to the World Health Organization, account for nearly one third of all deaths from infectious diseases. They account for approximately 4 million deaths annually including children and adults and provide a greater disease burden than HIV and malaria. Among the common respiratory diseases, tuberculosis, influenza, and pneumonia are very common and can be life threatening if not treated properly. The causative agent of tuberculosis is the slow-growing bacilli Mycobacterium tuberculosis, while the causative agent of influenza is a segmented genome RNA virus. Pneumonia can be caused by a number of different microorganisms like bacteria, virus, and mycoplasma. In case of the entry of a pathogen in our body, the immune system gets activated, and the phagocytic cells try to eliminate it by generating reactive oxygen and nitrogen species (ROS and RNS) inside the phagosome. These reactive species or respiratory bursts are sufficient to eliminate most of the pathogens, except a few. M. tuberculosis is one such microorganism that has evolved mechanisms to escape this respiratory burst-mediated killing and thus survive and grow inside the macrophages. Infection with M. tuberculosis leads to the destruction of macrophages and release of cytokines, which lead to prolonged immune activation and oxidative stress. In some cases, the bacilli remain dormant inside macrophages for a long time. Flu viruses infect the epithelial cells present in respiratory tract, and the infection site is dependent on the hemagglutinin protein present on their capsid. Destruction of epithelial cells promotes secretion of mucus and activation of immune system leading to the oxidative damage. Community-acquired pneumonia is more serious and difficult to treat. In all these infections, ROS/RNS are developed as a defense mechanism against the pathogen. Persistence of the pathogen for a long time would lead to the uncontrolled production of ROS/RNS which will lead to oxidative stress and tissue damage to the host. Administration of antioxidants along with conventional treatments can be useful in the elimination of the reactive oxygen and nitrogen species.
Collapse
|
84
|
Galizia J, Martí MA. Reactive nitrogen and oxygen species: Friend or foe in the tuberculosis fight. Tuberculosis (Edinb) 2018; 113:175-176. [DOI: 10.1016/j.tube.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/27/2022]
|
85
|
Tung QN, Linzner N, Loi VV, Antelmann H. Application of genetically encoded redox biosensors to measure dynamic changes in the glutathione, bacillithiol and mycothiol redox potentials in pathogenic bacteria. Free Radic Biol Med 2018; 128:84-96. [PMID: 29454879 DOI: 10.1016/j.freeradbiomed.2018.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria utilize glutathione (GSH) as their major LMW thiol. However, most Gram-positive bacteria do not encode enzymes for GSH biosynthesis and produce instead alternative LMW thiols, such as bacillithiol (BSH) and mycothiol (MSH). BSH is utilized by Firmicutes and MSH is the major LMW thiol of Actinomycetes. LMW thiols are required to maintain the reduced state of the cytoplasm, but are also involved in virulence mechanisms in human pathogens, such as Staphylococcus aureus, Mycobacterium tuberculosis, Streptococcus pneumoniae, Salmonella enterica subsp. Typhimurium and Listeria monocytogenes. Infection conditions often cause perturbations of the intrabacterial redox balance in pathogens, which is further affected under antibiotics treatments. During the last years, novel glutaredoxin-fused roGFP2 biosensors have been engineered in many eukaryotic organisms, including parasites, yeast, plants and human cells for dynamic live-imaging of the GSH redox potential in different compartments. Likewise bacterial roGFP2-based biosensors are now available to measure the dynamic changes in the GSH, BSH and MSH redox potentials in model and pathogenic Gram-negative and Gram-positive bacteria. In this review, we present an overview of novel functions of the bacterial LMW thiols GSH, MSH and BSH in pathogenic bacteria in virulence regulation. Moreover, recent results about the application of genetically encoded redox biosensors are summarized to study the mechanisms of host-pathogen interactions, persistence and antibiotics resistance. In particularly, we highlight recent biosensor results on the redox changes in the intracellular food-borne pathogen Salmonella Typhimurium as well as in the Gram-positive pathogens S. aureus and M. tuberculosis during infection conditions and under antibiotics treatments. These studies established a link between ROS and antibiotics resistance with the intracellular LMW thiol-redox potential. Future applications should be directed to compare the redox potentials among different clinical isolates of these pathogens in relation to their antibiotics resistance and to screen for new ROS-producing drugs as promising strategy to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Nico Linzner
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany.
| |
Collapse
|
86
|
Role of Oxidative Stress in the Pathology and Management of Human Tuberculosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7695364. [PMID: 30405878 PMCID: PMC6201333 DOI: 10.1155/2018/7695364] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/23/2018] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, is the leading cause of mortality worldwide due to a single infectious agent. The pathogen spreads primarily via aerosols and especially infects the alveolar macrophages in the lungs. The lung has evolved various biological mechanisms, including oxidative stress (OS) responses, to counteract TB infection. M. tuberculosis infection triggers the generation of reactive oxygen species by host phagocytic cells (primarily macrophages). The development of resistance to commonly prescribed antibiotics poses a challenge to treat TB; this commonly manifests as multidrug resistant tuberculosis (MDR-TB). OS and antioxidant defense mechanisms play key roles during TB infection and treatment. For instance, several established first-/second-line antitubercle antibiotics are administered in an inactive form and subsequently transformed into their active form by components of the OS responses of both host (nitric oxide, S-oxidation) and pathogen (catalase/peroxidase enzyme, EthA). Additionally, M. tuberculosis has developed mechanisms to survive high OS burden in the host, including the increased bacterial NADH/NAD+ ratio and enhanced intracellular survival (Eis) protein, peroxiredoxin, superoxide dismutases, and catalases. Here, we review the interplay between lung OS and its effects on both activation of antitubercle antibiotics and the strategies employed by M. tuberculosis that are essential for survival of both drug-susceptible and drug-resistant bacterial subtypes. We then outline potential new therapies that are based on combining standard antitubercular antibiotics with adjuvant agents that could limit the ability of M. tuberculosis to counter the host's OS response.
Collapse
|
87
|
Olive AJ, Sassetti CM. Tolerating the Unwelcome Guest; How the Host Withstands Persistent Mycobacterium tuberculosis. Front Immunol 2018; 9:2094. [PMID: 30258448 PMCID: PMC6143787 DOI: 10.3389/fimmu.2018.02094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/24/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the host response to infections has historically focused on “resistance” mechanisms that directly control pathogen replication. However, both pathogen effectors and antimicrobial immune pathways have the capacity to damage host tissue, and the ability to tolerate these insults can also be critical for host survival. These “tolerance” mechanisms may be equally as important as resistance to prevent disease in the context of a persistent infection, such as tuberculosis, when resistance mechanisms are ineffective and the pathogen persists in the tissue for long periods. Host tolerance encompasses a wide range of strategies, many of which involve regulation of the inflammatory response. Here we will examine general strategies used by macrophages and T cells to promote tolerance in the context of tuberculosis, and focus on pathways, such as regulation of inflammasome activation, that are emerging as common mediators of tolerance.
Collapse
Affiliation(s)
- Andrew J Olive
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
88
|
Chawla M, Mishra S, Anand K, Parikh P, Mehta M, Vij M, Verma T, Singh P, Jakkala K, Verma HN, AjitKumar P, Ganguli M, Narain Seshasayee AS, Singh A. Redox-dependent condensation of the mycobacterial nucleoid by WhiB4. Redox Biol 2018; 19:116-133. [PMID: 30149290 PMCID: PMC6111044 DOI: 10.1016/j.redox.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress response in bacteria is mediated through coordination between the regulators of oxidant-remediation systems (e.g. OxyR, SoxR) and nucleoid condensation (e.g. Dps, Fis). However, these genetic factors are either absent or rendered non-functional in the human pathogen Mycobacterium tuberculosis (Mtb). Therefore, how Mtb organizes genome architecture and regulates gene expression to counterbalance oxidative imbalance is unknown. Here, we report that an intracellular redox-sensor, WhiB4, dynamically links genome condensation and oxidative stress response in Mtb. Disruption of WhiB4 affects the expression of genes involved in maintaining redox homeostasis, central metabolism, and respiration under oxidative stress. Notably, disulfide-linked oligomerization of WhiB4 in response to oxidative stress activates the protein’s ability to condense DNA. Further, overexpression of WhiB4 led to hypercondensation of nucleoids, redox imbalance and increased susceptibility to oxidative stress, whereas WhiB4 disruption reversed this effect. In accordance with the findings in vitro, ChIP-Seq data demonstrated non-specific binding of WhiB4 to GC-rich regions of the Mtb genome. Lastly, data indicate that WhiB4 deletion affected the expression of ~ 30% of genes preferentially bound by the protein, suggesting both direct and indirect effects on gene expression. We propose that WhiB4 structurally couples Mtb’s response to oxidative stress with genome organization and transcription. Genome condensation is involved in the management of oxidative stress in bacteria. A relation between the genome condensation and oxidative stress is unclear in Mtb. A redox sensor WhiB4 calibrates genome-condensation and antioxidants in Mtb. Over-expression of WhiB4 hyper-condensed genome and induced killing by oxidants. WhiB4 deficiency delayed genome condensation and promoted oxidative stress survival.
Collapse
Affiliation(s)
- Manbeena Chawla
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Saurabh Mishra
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Kushi Anand
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Pankti Parikh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Mansi Mehta
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Manika Vij
- Department of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | - Taru Verma
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India; Centre for BioSystems Science and Engineering (BSSE), Indian Institute of Science, Bangalore 560012, India
| | - Parul Singh
- National Centre for Biological Science, Bangalore 560065, India; SASTRA University, Thanjavur 613401, Tamil Nadu, India
| | - Kishor Jakkala
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - H N Verma
- Jaipur National University, Jagatpura, Jaipur 302017, India
| | - Parthasarathi AjitKumar
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India
| | - Munia Ganguli
- Department of Structural Biology, CSIR-Institute of Genomics and Integrative Biology, South Campus, Mathura Road, New Delhi 110020, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001, India
| | | | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
89
|
Abstract
The abundance of oxidants and reductants must be balanced for an organism to thrive. Bacteria have evolved methods to prevent redox imbalances and to mitigate their deleterious consequences through the expression of detoxification enzymes, antioxidants, and systems to repair or degrade damaged proteins and DNA. Regulating these processes in response to redox changes requires sophisticated surveillance strategies ranging from metal chelation to direct sensing of toxic reactive oxygen species. In the case of bacterial pathogens, stress that threatens to disrupt redox homeostasis can derive from endogenous sources (produced by the bacteria) or exogenous sources (produced by the host). This minireview summarizes the sources of redox stress encountered during infection, the mechanisms by which bacterial pathogens diminish the damaging effects of redox stress, and the clever ways some organisms have evolved to thrive in the face of redox challenges during infection.
Collapse
|
90
|
Feng Z, Ogasawara Y, Nomura S, Dairi T. Biosynthetic Gene Cluster of ad-Tryptophan-Containing Lasso Peptide, MS-271. Chembiochem 2018; 19:2045-2048. [DOI: 10.1002/cbic.201800315] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Zhi Feng
- Graduate School of Engineering; Hokkaido University; Sapporo Hokkaido 060-8628 Japan
| | - Yasushi Ogasawara
- Graduate School of Engineering; Hokkaido University; Sapporo Hokkaido 060-8628 Japan
| | - Satoshi Nomura
- Graduate School of Engineering; Hokkaido University; Sapporo Hokkaido 060-8628 Japan
| | - Tohru Dairi
- Graduate School of Engineering; Hokkaido University; Sapporo Hokkaido 060-8628 Japan
| |
Collapse
|
91
|
Roberts BS, Babilonia-Rosa MA, Broadwell LJ, Wu MJ, Neher SB. Lipase maturation factor 1 affects redox homeostasis in the endoplasmic reticulum. EMBO J 2018; 37:embj.201797379. [PMID: 30068531 DOI: 10.15252/embj.201797379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
Lipoprotein lipase (LPL) is a secreted lipase that clears triglycerides from the blood. Proper LPL folding and exit from the endoplasmic reticulum (ER) require lipase maturation factor 1 (LMF1), an ER-resident transmembrane protein, but the mechanism involved is unknown. We used proteomics to identify LMF1-binding partners necessary for LPL secretion in HEK293 cells and found these to include oxidoreductases and lectin chaperones, suggesting that LMF1 facilitates the formation of LPL's five disulfide bonds. In accordance with this role, we found that LPL aggregates in LMF1-deficient cells due to the formation of incorrect intermolecular disulfide bonds. Cells lacking LMF1 were hypersensitive to depletion of glutathione, but not DTT treatment, suggesting that LMF1 helps reduce the ER Accordingly, we found that loss of LMF1 results in a more oxidized ER Our data show that LMF1 has a broader role than simply folding lipases, and we identified fibronectin and the low-density lipoprotein receptor (LDLR) as novel LMF1 clients that contain multiple, non-sequential disulfide bonds. We conclude that LMF1 is needed for secretion of some ER client proteins that require reduction of non-native disulfides during their folding.
Collapse
Affiliation(s)
- Benjamin S Roberts
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Babilonia-Rosa
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsey J Broadwell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ming Jing Wu
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Saskia B Neher
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
92
|
Olive AJ, Smith CM, Kiritsy MC, Sassetti CM. The Phagocyte Oxidase Controls Tolerance to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:1705-1716. [PMID: 30061198 DOI: 10.4049/jimmunol.1800202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/11/2018] [Indexed: 01/16/2023]
Abstract
Protection from infectious disease relies on two distinct strategies: antimicrobial resistance directly inhibits pathogen growth, whereas infection tolerance protects from the negative impact of infection on host health. A single immune mediator can differentially contribute to these strategies in distinct contexts, confounding our understanding of protection to different pathogens. For example, the NADPH-dependent phagocyte oxidase (Phox) complex produces antimicrobial superoxide and protects from tuberculosis (TB) in humans. However, Phox-deficient mice display no sustained resistance defects to Mycobacterium tuberculosis, suggesting a more complicated role for NADPH Phox complex than strictly controlling bacterial growth. We examined the mechanisms by which Phox contributes to protection from TB and found that mice lacking the Cybb subunit of Phox suffered from a specific defect in tolerance, which was caused by unregulated Caspase-1 activation, IL-1β production, and neutrophil influx into the lung. These studies imply that a defect in tolerance alone is sufficient to compromise immunity to M. tuberculosis and highlight a central role for Phox and Caspase-1 in regulating TB disease progression.
Collapse
Affiliation(s)
- Andrew J Olive
- University of Massachusetts Medical School, Worcester, MA 01605
| | - Clare M Smith
- University of Massachusetts Medical School, Worcester, MA 01605
| | | | | |
Collapse
|
93
|
Sao Emani C, Williams MJ, Wiid IJ, Baker B. The functional interplay of low molecular weight thiols in Mycobacterium tuberculosis. J Biomed Sci 2018; 25:55. [PMID: 30001196 PMCID: PMC6042322 DOI: 10.1186/s12929-018-0458-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/05/2018] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Three low molecular weight thiols are synthesized by Mycobacterium tuberculosis (M.tb), namely ergothioneine (ERG), mycothiol (MSH) and gamma-glutamylcysteine (GGC). They are able to counteract reactive oxygen species (ROS) and/or reactive nitrogen species (RNS). In addition, the production of ERG is elevated in the MSH-deficient M.tb mutant, while the production of MSH is elevated in the ERG-deficient mutants. Furthermore, the production of GGC is elevated in the MSH-deficient mutant and the ERG-deficient mutants. The propensity of one thiol to be elevated in the absence of the other prompted further investigations into their interplay in M.tb. METHODS To achieve that, we generated two M.tb mutants that are unable to produce ERG nor MSH but are able to produce a moderate (ΔegtD-mshA) or significantly high (ΔegtB-mshA) amount of GGC relative to the wild-type strain. In addition, we generated an M.tb mutant that is unable to produce GGC nor MSH but is able to produce a significantly low level of ERG (ΔegtA-mshA) relative to the wild-type strain. The susceptibilities of these mutants to various in vitro and ex vivo stress conditions were investigated and compared. RESULTS The ΔegtA-mshA mutant was the most susceptible to cellular stress relative to its parent single mutant strains (ΔegtA and ∆mshA) and the other double mutants. In addition, it displayed a growth-defect in vitro, in mouse and human macrophages suggesting; that the complete inhibition of ERG, MSH and GGC biosynthesis is deleterious for the growth of M.tb. CONCLUSIONS This study indicates that ERG, MSH and GGC are able to compensate for each other to maximize the protection and ensure the fitness of M.tb. This study therefore suggests that the most effective strategy to target thiol biosynthesis for anti-tuberculosis drug development would be the simultaneous inhibition of the biosynthesis of ERG, MSH and GGC.
Collapse
Affiliation(s)
- C. Sao Emani
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| | - M. J. Williams
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| | - I. J. Wiid
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| | - B. Baker
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; SAMRC Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Stellenbosch University, PO Box 241, Francie van Zijl Drive, Tygerberg 8000, Cape Town, South Africa
| |
Collapse
|
94
|
Chhotaray C, Tan Y, Mugweru J, Islam MM, Adnan Hameed HM, Wang S, Lu Z, Wang C, Li X, Tan S, Liu J, Zhang T. Advances in the development of molecular genetic tools for Mycobacterium tuberculosis. J Genet Genomics 2018; 45:S1673-8527(18)30114-0. [PMID: 29941353 DOI: 10.1016/j.jgg.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis, a clinically relevant Gram-positive bacterium of great clinical relevance, is a lethal pathogen owing to its complex physiological characteristics and development of drug resistance. Several molecular genetic tools have been developed in the past few decades to study this microorganism. These tools have been instrumental in understanding how M. tuberculosis became a successful pathogen. Advanced molecular genetic tools have played a significant role in exploring the complex pathways involved in M. tuberculosis pathogenesis. Here, we review various molecular genetic tools used in the study of M. tuberculosis. Further, we discuss the applications of clustered regularly interspaced short palindromic repeat interference (CRISPRi), a novel technology recently applied in M. tuberculosis research to study target gene functions. Finally, prospective outcomes of the applications of molecular techniques in the field of M. tuberculosis genetic research are also discussed.
Collapse
Affiliation(s)
- Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Julius Mugweru
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Biological Sciences, University of Embu, P.O Box 6 -60100, Embu, Kenya
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Department of Clinical Laboratory, Guangzhou Chest Hospital, Guangzhou 510095, China.
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
95
|
Pal VK, Bandyopadhyay P, Singh A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018; 70:393-410. [PMID: 29601123 PMCID: PMC6029659 DOI: 10.1002/iub.1740] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/14/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
An increasing number of studies have established hydrogen sulfide (H2S) gas as a major cytoprotectant and redox modulator. Following its discovery, H2S has been found to have pleiotropic effects on physiology and human health. H2S acts as a gasotransmitter and exerts its influence on gastrointestinal, neuronal, cardiovascular, respiratory, renal, and hepatic systems. Recent discoveries have clearly indicated the importance of H2S in regulating vasorelaxation, angiogenesis, apoptosis, ageing, and metabolism. Contrary to studies in higher organisms, the role of H2S in the pathophysiology of infectious agents such as bacteria and viruses has been less studied. Bacterial and viral infections are often accompanied by changes in the redox physiology of both the host and the pathogen. Emerging studies indicate that bacterial-derived H2S constitutes a defense system against antibiotics and oxidative stress. The H2S signaling pathway also seems to interfere with redox-based events affected on infection with viruses. This review aims to summarize recent advances on the emerging role of H2S gas in the bacterial physiology and viral infections. Such studies have opened up new research avenues exploiting H2S as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Virender Kumar Pal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Parijat Bandyopadhyay
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
96
|
Carey AF, Rock JM, Krieger IV, Chase MR, Fernandez-Suarez M, Gagneux S, Sacchettini JC, Ioerger TR, Fortune SM. TnSeq of Mycobacterium tuberculosis clinical isolates reveals strain-specific antibiotic liabilities. PLoS Pathog 2018; 14:e1006939. [PMID: 29505613 PMCID: PMC5854444 DOI: 10.1371/journal.ppat.1006939] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/15/2018] [Accepted: 02/13/2018] [Indexed: 01/25/2023] Open
Abstract
Once considered a phenotypically monomorphic bacterium, there is a growing body of work demonstrating heterogeneity among Mycobacterium tuberculosis (Mtb) strains in clinically relevant characteristics, including virulence and response to antibiotics. However, the genetic and molecular basis for most phenotypic differences among Mtb strains remains unknown. To investigate the basis of strain variation in Mtb, we performed genome-wide transposon mutagenesis coupled with next-generation sequencing (TnSeq) for a panel of Mtb clinical isolates and the reference strain H37Rv to compare genetic requirements for in vitro growth across these strains. We developed an analytic approach to identify quantitative differences in genetic requirements between these genetically diverse strains, which vary in genomic structure and gene content. Using this methodology, we found differences between strains in their requirements for genes involved in fundamental cellular processes, including redox homeostasis and central carbon metabolism. Among the genes with differential requirements were katG, which encodes the activator of the first-line antitubercular agent isoniazid, and glcB, which encodes malate synthase, the target of a novel small-molecule inhibitor. Differences among strains in their requirement for katG and glcB predicted differences in their response to these antimicrobial agents. Importantly, these strain-specific differences in antibiotic response could not be predicted by genetic variants identified through whole genome sequencing or by gene expression analysis. Our results provide novel insight into the basis of variation among Mtb strains and demonstrate that TnSeq is a scalable method to predict clinically important phenotypic differences among Mtb strains.
Collapse
Affiliation(s)
- Allison F. Carey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeremy M. Rock
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Inna V. Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michael R. Chase
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marta Fernandez-Suarez
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - James C. Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Thomas R. Ioerger
- Department of Computer Science, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (SMF); (TRI)
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (SMF); (TRI)
| |
Collapse
|
97
|
Reyes AM, Pedre B, De Armas MI, Tossounian MA, Radi R, Messens J, Trujillo M. Chemistry and Redox Biology of Mycothiol. Antioxid Redox Signal 2018; 28:487-504. [PMID: 28372502 DOI: 10.1089/ars.2017.7074] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Mycothiol (MSH, AcCys-GlcN-Ins) is the main low-molecular weight (LMW) thiol of most Actinomycetes, including the human pathogen Mycobacterium tuberculosis that affects millions of people worldwide. Strains with decreased MSH content show increased susceptibilities to hydroperoxides and electrophilic compounds. In M. tuberculosis, MSH modulates the response to several antituberculosis drugs. Enzymatic routes involving MSH could provide clues for specific drug design. Recent Advances: Physicochemical data argue against a rapid, nonenzymatic reaction of MSH with oxidants, disulfides, or electrophiles. Moreover, exposure of the bacteria to high concentrations of two-electron oxidants resulted in protein mycothiolation. The recently described glutaredoxin-like protein mycoredoxin-1 (Mrx-1) provides a route for catalytic reduction of mycothiolated proteins, protecting critical cysteines from irreversible oxidation. The description of MSH/Mrx-1-dependent activities of peroxidases helped to explain the higher susceptibility to oxidants observed in Actinomycetes lacking MSH. Moreover, the first mycothiol-S-transferase, member of the DinB superfamily of proteins, was described. In Corynebacterium, both the MSH/Mrx-1 and the thioredoxin pathways reduce methionine sulfoxide reductase A. A novel tool for in vivo imaging of the MSH/mycothiol disulfide (MSSM) status allows following changes in the mycothiol redox state during macrophage infection and its relationship with antibiotic sensitivity. CRITICAL ISSUES Redundancy of MSH with other LMW thiols is starting to be unraveled and could help to rationalize the differences in the reported importance of MSH synthesis observed in vitro versus in animal infection models. FUTURE DIRECTIONS Future work should be directed to establish the structural bases of the specificity of MSH-dependent enzymes, thus facilitating drug developments. Antioxid. Redox Signal. 28, 487-504.
Collapse
Affiliation(s)
- Aníbal M Reyes
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Brandán Pedre
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - María Inés De Armas
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Maria-Armineh Tossounian
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Rafael Radi
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| | - Joris Messens
- 3 Center for Structural Biology , VIB, Brussels, Belgium .,4 Brussels Center for Redox Biology , Brussels, Belgium .,5 Structural Biology Brussels, Vrije Universiteit Brussel , Brussels, Belgium
| | - Madia Trujillo
- 1 Departamento de Bioquímica, Facultad de Medicina, Universidad de la República , Montevideo, Uruguay .,2 Center for Free Radical and Biomedical Research , Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
98
|
Kumar A, Subramanian Manimekalai MS, Grüber G. Substrate-induced structural alterations of Mycobacterial mycothione reductase and critical residues involved. FEBS Lett 2018; 592:568-585. [PMID: 29377100 DOI: 10.1002/1873-3468.12984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Redox homeostasis is a prerequisite for survival of the pathogen Mycobacterium tuberculosis (Mtb) which employs the low molecular weight thiol mycothiol (MSH). The Mycobacterial NADPH-dependent mycothione reductase (MtMtr), composed of an NADPH-, FAD-, and a dimerization-domain connected by linkers, regulates the balance of oxidized-reduced MSH. Here, we demonstrate by small-angle X-ray scattering, that NADPH-binding alters the oligomeric state equilibrium of the protein with no significant overall structural change after MSH-binding. Mutation of critical residues in the linker regions of MtMtr eliminate partially or totally the NADPH-induced oligomerization effect with simultaneous effect on enzyme activity. The data provide insight into the MtMtr linker regions involved in the novel oligomerization equilibrium of the Mycobacterial enzyme.
Collapse
Affiliation(s)
- Arvind Kumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
99
|
Oxidation of dCTP contributes to antibiotic lethality in stationary-phase mycobacteria. Proc Natl Acad Sci U S A 2018; 115:2210-2215. [PMID: 29382762 DOI: 10.1073/pnas.1719627115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growing evidence shows that generation of reactive oxygen species (ROS) derived from antibiotic-induced metabolic perturbation contribute to antibiotic lethality. However, our knowledge of the mechanisms by which antibiotic-induced oxidative stress actually kills cells remains elusive. Here, we show that oxidation of dCTP underlies ROS-mediated antibiotic lethality via induction of DNA double-strand breaks (DSBs). Deletion of mazG-encoded 5-OH-dCTP-specific pyrophosphohydrolase potentiates antibiotic killing of stationary-phase mycobacteria, but did not affect antibiotic efficacy in exponentially growing cultures. Critically, the effect of mazG deletion on potentiating antibiotic killing is associated with antibiotic-induced ROS and accumulation of 5-OH-dCTP. Independent lines of evidence presented here indicate that the increased level of DSBs observed in the ΔmazG mutant is a dead-end event accounting for enhanced antibiotic killing. Moreover, we provided genetic evidence that 5-OH-dCTP is incorporated into genomic DNA via error-prone DNA polymerase DnaE2 and repair of 5-OH-dC lesions via the endonuclease Nth leads to the generation of lethal DSBs. This work provides a mechanistic view of ROS-mediated antibiotic lethality in stationary phase and may have broad implications not only with respect to antibiotic lethality but also to the mechanism of stress-induced mutagenesis in bacteria.
Collapse
|
100
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|