51
|
Zhu Y, Zhao M, Li T, Wang L, Liao C, Liu D, Zhang H, Zhao Y, Liu L, Ge X, Li B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2023; 14:1174281. [PMID: 37152175 PMCID: PMC10161258 DOI: 10.3389/fpls.2023.1174281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023]
Abstract
Cotton is widely grown in many countries around the world due to the huge economic value of the total natural fiber. Verticillium wilt, caused by the soil-borne pathogen Verticillium dahliae, is the most devastating disease that led to extensive yield losses and fiber quality reduction in cotton crops. Developing resistant cotton varieties through genetic engineering is an effective, economical, and durable strategy to control Verticillium wilt. However, there are few resistance gene resources in the currently planted cotton varieties, which has brought great challenges and difficulties for breeding through genetic engineering. Further revealing the molecular mechanism between V. dahliae and cotton interaction is crucial to discovering genes related to disease resistance. In this review, we elaborated on the pathogenic mechanism of V. dahliae and the resistance mechanism of cotton to Verticillium wilt. V. dahliae has evolved complex mechanisms to achieve pathogenicity in cotton, mainly including five aspects: (1) germination and growth of microsclerotia; (2) infection and successful colonization; (3) adaptation to the nutrient-deficient environment and competition of nutrients; (4) suppression and manipulation of cotton immune responses; (5) rapid reproduction and secretion of toxins. Cotton has evolved multiple physiological and biochemical responses to cope with V. dahliae infection, including modification of tissue structures, accumulation of antifungal substances, homeostasis of reactive oxygen species (ROS), induction of Ca2+ signaling, the mitogen-activated protein kinase (MAPK) cascades, hormone signaling, and PAMPs/effectors-triggered immune response (PTI/ETI). This review will provide an important reference for the breeding of new cotton germplasm resistant to Verticillium wilt through genetic engineering.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| | - Mei Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Taotao Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Lianzhe Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Chunli Liao
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Dongxiao Liu
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Huamin Zhang
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Yanpeng Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lisen Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
- *Correspondence: Yutao Zhu, ; Bingbing Li,
| |
Collapse
|
52
|
Penno C, Tremblay J, O'Connell Motherway M, Daburon V, El Amrani A. Analysis of Small Non-coding RNAs as Signaling Intermediates of Environmentally Integrated Responses to Abiotic Stress. Methods Mol Biol 2023; 2642:403-427. [PMID: 36944891 DOI: 10.1007/978-1-0716-3044-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Research to date on abiotic stress responses in plants has been largely focused on the plant itself, but current knowledge indicates that microorganisms can interact with and help plants during periods of abiotic stress. In our research, we aim to investigate the interkingdom communication between the plant root and the rhizo-microbiota. Our investigation showed that miRNA plays a pivotal role in this interkingdom communication. Here, we describe a protocol for the analysis of miRNA secreted by the plant root, which includes all of the steps from the isolation of the miRNA to the bioinformatics analysis. Because of their short nucleotide length, Next Generation Sequencing (NGS) library preparation from miRNAs can be challenging due to the presence of dimer adapter contaminants. Therefore, we highlight some strategies we adopt to inhibit the generation of dimer adapters during library preparation. Current screens of miRNA targets mostly focus on the identification of targets present in the same organism expressing the miRNA. Our bioinformatics analysis challenges the barrier of evolutionary divergent organisms to identify candidate sequences of the microbiota targeted by the miRNA of plant roots. This protocol should be of interest to researchers investigating interkingdom RNA-based communication between plants and their associated microorganisms, particularly in the context of holobiont responses to abiotic stresses.
Collapse
Affiliation(s)
- Christophe Penno
- ECOBIO, CNRS UMR 6553, Université de Rennes, Campus Beaulieu, Rennes, France
| | - Julien Tremblay
- Energy, Mining and Environment, National Research Council Canada, Montréal, QC, Canada
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | - Virginie Daburon
- ECOBIO, CNRS UMR 6553, Université de Rennes, Campus Beaulieu, Rennes, France
| | - Abdelhak El Amrani
- ECOBIO, CNRS UMR 6553, Université de Rennes, Campus Beaulieu, Rennes, France.
| |
Collapse
|
53
|
Fan Y, Zhao Q, Duan H, Bi S, Hao X, Xu R, Bai R, Yu R, Lu W, Bao T, Wuriyanghan H. Large-scale mRNA transfer between Haloxylon ammodendron (Chenopodiaceae) and herbaceous root holoparasite Cistanche deserticola (Orobanchaceae). iScience 2022; 26:105880. [PMID: 36686392 PMCID: PMC9852350 DOI: 10.1016/j.isci.2022.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/27/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.
Collapse
Affiliation(s)
- Yanyan Fan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuxin Bi
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiaomin Hao
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Rui Xu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Runyao Bai
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenting Lu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Tiejun Bao
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China,Corresponding author
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China,Corresponding author
| |
Collapse
|
54
|
Mapuranga J, Chang J, Zhang L, Zhang N, Yang W. Fungal Secondary Metabolites and Small RNAs Enhance Pathogenicity during Plant-Fungal Pathogen Interactions. J Fungi (Basel) 2022; 9:4. [PMID: 36675825 PMCID: PMC9862911 DOI: 10.3390/jof9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal plant pathogens use proteinaceous effectors as well as newly identified secondary metabolites (SMs) and small non-coding RNA (sRNA) effectors to manipulate the host plant's defense system via diverse plant cell compartments, distinct organelles, and many host genes. However, most molecular studies of plant-fungal interactions have focused on secreted effector proteins without exploring the possibly equivalent functions performed by fungal (SMs) and sRNAs, which are collectively known as "non-proteinaceous effectors". Fungal SMs have been shown to be generated throughout the plant colonization process, particularly in the early biotrophic stages of infection. The fungal repertoire of non-proteinaceous effectors has been broadened by the discovery of fungal sRNAs that specifically target plant genes involved in resistance and defense responses. Many RNAs, particularly sRNAs involved in gene silencing, have been shown to transmit bidirectionally between fungal pathogens and their hosts. However, there are no clear functional approaches to study the role of these SM and sRNA effectors. Undoubtedly, fungal SM and sRNA effectors are now a treasured land to seek. Therefore, understanding the role of fungal SM and sRNA effectors may provide insights into the infection process and identification of the interacting host genes that are targeted by these effectors. This review discusses the role of fungal SMs and sRNAs during plant-fungal interactions. It will also focus on the translocation of sRNA effectors across kingdoms, the application of cross-kingdom RNA interference in managing plant diseases and the tools that can be used to predict and study these non-proteinaceous effectors.
Collapse
Affiliation(s)
| | | | | | | | - Wenxiang Yang
- College of Plant Protection, Technological Innovation Center for Biological Control of Plant Diseases and Insect Pests of Hebei Province, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
55
|
Li X, Zeng S, Wisniewski M, Droby S, Yu L, An F, Leng Y, Wang C, Li X, He M, Liao Q, Liu J, Wang Y, Sui Y. Current and future trends in the biocontrol of postharvest diseases. Crit Rev Food Sci Nutr 2022; 64:5672-5684. [PMID: 36530065 DOI: 10.1080/10408398.2022.2156977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Postharvest diseases of fruits and vegetables cause significant economic losses to producers and marketing firms. Many of these diseases are caused by necrotrophic fungal pathogens that require wounded or injured tissues to establish an infection. Biocontrol of postharvest diseases is an evolving science that has moved from the traditional paradigm of one organism controlling another organism to viewing biocontrol as a system involving the biocontrol agent, the pathogen, the host, the physical environment, and most recently the resident microflora. Thus, the paradigm has shifted from one of simplicity to complexity. The present review provides an overview of how the field of postharvest biocontrol has evolved over the past 40 years, a brief review of the biology of necrotrophic pathogens, the discovery of BCAs, their commercialization, and mechanisms of action. Most importantly, current research on the use of marker-assisted-selection, the fruit microbiome and its relationship to the pathobiome, and the use of double-stranded RNA as a biocontrol strategy is discussed. These latter subjects represent evolving trends in postharvest biocontrol research and suggestions for future research are presented.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Shixian Zeng
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Rishon LeZion, Israel
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Fuquan An
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Xiaojun Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Min He
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yong Wang
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
56
|
Drozda A, Kurpisz B, Guan Y, Arasimowicz-Jelonek M, Plich J, Jagodzik P, Kuźnicki D, Floryszak-Wieczorek J. Insights into the expression of DNA (de)methylation genes responsive to nitric oxide signaling in potato resistance to late blight disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1033699. [PMID: 36618647 PMCID: PMC9815718 DOI: 10.3389/fpls.2022.1033699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Our previous study concerning the pathogen-induced biphasic pattern of nitric oxide (NO) burst revealed that the decline phase and a low level of NO, due to S-nitrosoglutathione reductase (GSNOR) activity, might be decisive in the upregulation of stress-sensitive genes via histone H3/H4 methylation in potato leaves inoculated with avr P. infestans. The present study refers to the NO-related impact on genes regulating DNA (de)methylation, being in dialog with histone methylation. The excessive amounts of NO after the pathogen or GSNO treatment forced the transient upregulation of histone SUVH4 methylation and DNA hypermethylation. Then the diminished NO bioavailability reduced the SUVH4-mediated suppressive H3K9me2 mark on the R3a gene promoter and enhanced its transcription. However, we found that the R3a gene is likely to be controlled by the RdDM methylation pathway. The data revealed the time-dependent downregulation of the DCL3, AGO4, and miR482e genes, exerting upregulation of the targeted R3a gene correlated with ROS1 overexpression. Based on these results, we postulate that the biphasic waves of NO burst in response to the pathogen appear crucial in establishing potato resistance to late blight through the RdDM pathway controlling R gene expression.
Collapse
Affiliation(s)
- Andżelika Drozda
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Kurpisz
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
| | - Yufeng Guan
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Jarosław Plich
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów, Poland
| | - Przemysław Jagodzik
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Daniel Kuźnicki
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Faculty of Agronomy, Horticulture and Bioengineering, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
57
|
Maksimov IV, Shein MY, Burkhanova GF. RNA Interference in Plant Protection from Fungal and Oomycete Infection. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
58
|
Li L, Zhang H, Yang Z, Wang C, Li S, Cao C, Yao T, Wei Z, Li Y, Chen J, Sun Z. Independently evolved viral effectors convergently suppress DELLA protein SLR1-mediated broad-spectrum antiviral immunity in rice. Nat Commun 2022; 13:6920. [PMID: 36376330 PMCID: PMC9663503 DOI: 10.1038/s41467-022-34649-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Plant viruses adopt diverse virulence strategies to inhibit host antiviral defense. However, general antiviral defense directly targeted by different types of plant viruses have rarely been studied. Here, we show that the single rice DELLA protein, SLENDER RICE 1 (SLR1), a master negative regulator in Gibberellin (GA) signaling pathway, is targeted by several different viral effectors for facilitating viral infection. Viral proteins encoded by different types of rice viruses all directly trigger the rapid degradation of SLR1 by promoting association with the GA receptor OsGID1. SLR1-mediated broad-spectrum resistance was subverted by these independently evolved viral proteins, which all interrupted the functional crosstalk between SLR1 and jasmonic acid (JA) signaling. This decline of JA antiviral further created the advantage of viral infection. Our study reveals a common viral counter-defense strategy in which different types of viruses convergently target SLR1-mediated broad-spectrum resistance to benefit viral infection in the monocotyledonous crop rice.
Collapse
Affiliation(s)
- Lulu Li
- grid.27871.3b0000 0000 9750 7019College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China ,grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Hehong Zhang
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Zihang Yang
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Chen Wang
- grid.27871.3b0000 0000 9750 7019College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China ,grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Shanshan Li
- grid.27871.3b0000 0000 9750 7019College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China ,grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Chen Cao
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Tongsong Yao
- grid.27871.3b0000 0000 9750 7019College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China ,grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Zhongyan Wei
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Yanjun Li
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Jianping Chen
- grid.27871.3b0000 0000 9750 7019College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 China ,grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| | - Zongtao Sun
- grid.203507.30000 0000 8950 5267State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211 China
| |
Collapse
|
59
|
Wang S, Zhang J, Nzabanita C, Zhang M, Nie J, Guo L. Fungal Virus, FgHV1-Encoded p20 Suppresses RNA Silencing through Single-Strand Small RNA Binding. J Fungi (Basel) 2022; 8:1171. [PMID: 36354938 PMCID: PMC9693516 DOI: 10.3390/jof8111171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 10/14/2023] Open
Abstract
Fungal viruses are widespread in fungi infecting plants, insects and animals. High-throughput sequencing has rapidly led to the discovery of fungal viruses. However, the interactive exploration between fungi and viruses is relatively limited. RNA silencing is the fundamental antivirus pathway in fungi. Fusarium graminearum small RNA (sRNA) pattern was regulated by Fusarium graminearum hypovirus 1 (FgHV1) infection, indicating the activation of RNA silencing in virus defense. In this study, we focused on the function of an uncharacterized protein sized at 20 kD (p20) encoded by FgHV1. In the agro-infiltration assay, p20 was identified as a novel fungal RNA silencing suppressor. p20 can block systemic RNA silencing signals besides local RNA silencing suppression. We further elucidated the RNA silencing suppression mechanism of p20. The single-strand sRNA, instead of double-strand sRNA, can be incorporated by p20 in electrophoretic mobility shift assay. p20 binds sRNA originating from virus and non-virus sources in a non-sequence-specific manner. In addition, The F. graminearum 22 and 23-nt sRNA abundance and pathways related to RNA processing and redox regulation were regulated by p20. Our study revealed the first fungal virus-encoded RNA silencing suppressor with sRNA binding capability.
Collapse
Affiliation(s)
- Shuangchao Wang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingze Zhang
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Clement Nzabanita
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingming Zhang
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Jianhua Nie
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lihua Guo
- State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
60
|
Niño-Sánchez J, Sambasivam PT, Sawyer A, Hamby R, Chen A, Czislowski E, Li P, Manzie N, Gardiner DM, Ford R, Xu ZP, Mitter N, Jin H. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2187-2198. [PMID: 36040241 PMCID: PMC10464624 DOI: 10.1111/jipb.13353] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
One of the most promising tools for the control of fungal plant diseases is spray-induced gene silencing (SIGS). In SIGS, small interfering RNA (siRNA) or double-stranded RNA (dsRNA) targeting essential or virulence-related pathogen genes are exogenously applied to plants and postharvest products to trigger RNA interference (RNAi) of the targeted genes, inhibiting fungal growth and disease. However, SIGS is limited by the unstable nature of RNA under environmental conditions. The use of layered double hydroxide or clay particles as carriers to deliver biologically active dsRNA, a formulation termed BioClay™, can enhance RNA durability on plants, prolonging its activity against pathogens. Here, we demonstrate that dsRNA delivered as BioClay can prolong protection against Botrytis cinerea, a major plant fungal pathogen, on tomato leaves and fruit and on mature chickpea plants. BioClay increased the protection window from 1 to 3 weeks on tomato leaves and from 5 to 10 days on tomato fruits, when compared with naked dsRNA. In flowering chickpea plants, BioClay provided prolonged protection for up to 4 weeks, covering the critical period of poding, whereas naked dsRNA provided limited protection. This research represents a major step forward for the adoption of SIGS as an eco-friendly alternative to traditional fungicides.
Collapse
Affiliation(s)
- Jonatan Niño-Sánchez
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, RiversideCalifornia, 92521, USA
- Department of Plant Production and Forest Resources, University of Valladolid, Palencia 34004, Spain
- iuFOR- Sustainable Forest Management Research Institute, University of Valladolid–INIA, Palencia 34004, Spain
| | - Prabhakaran T. Sambasivam
- Centre for Planetary Health and Food Security, Griffith University, Nathan, Queensland, 4111, Australia
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Rachael Hamby
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, RiversideCalifornia, 92521, USA
| | - Angela Chen
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, RiversideCalifornia, 92521, USA
| | - Elizabeth Czislowski
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Peng Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Narelle Manzie
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Donald M. Gardiner
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Rebecca Ford
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, RiversideCalifornia, 92521, USA
| |
Collapse
|
61
|
Regmi R, Penton CR, Anderson J, Gupta VVSR. Do small RNAs unlock the below ground microbiome-plant interaction mystery? Front Mol Biosci 2022; 9:1017392. [PMID: 36406267 PMCID: PMC9670543 DOI: 10.3389/fmolb.2022.1017392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2023] Open
Abstract
Over the past few decades, regulatory RNAs, such as small RNAs (sRNAs), have received increasing attention in the context of host-microbe interactions due to their diverse roles in controlling various biological processes in eukaryotes. In addition, studies have identified an increasing number of sRNAs with novel functions across a wide range of bacteria. What is not well understood is why cells regulate gene expression through post-transcriptional mechanisms rather than at the initiation of transcription. The finding of a multitude of sRNAs and their identified associated targets has allowed further investigation into the role of sRNAs in mediating gene regulation. These foundational data allow for further development of hypotheses concerning how a precise control of gene activity is accomplished through the combination of transcriptional and post-transcriptional regulation. Recently, sRNAs have been reported to participate in interkingdom communication and signalling where sRNAs originating from one kingdom are able to target or control gene expression in another kingdom. For example, small RNAs of fungal pathogens that silence plant genes and vice-versa plant sRNAs that mediate bacterial gene expression. However, there is currently a lack of evidence regarding sRNA-based inter-kingdom signalling across more than two interacting organisms. A habitat that provides an excellent opportunity to investigate interconnectivity is the plant rhizosphere, a multifaceted ecosystem where plants and associated soil microbes are known to interact. In this paper, we discuss how the interconnectivity of bacteria, fungi, and plants within the rhizosphere may be mediated by bacterial sRNAs with a particular focus on disease suppressive and non-suppressive soils. We discuss the potential roles sRNAs may play in the below-ground world and identify potential areas of future research, particularly in reference to the regulation of plant immunity genes by bacterial and fungal communities in disease-suppressive and non-disease-suppressive soils.
Collapse
Affiliation(s)
- Roshan Regmi
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| | - C. Ryan Penton
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jonathan Anderson
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Canberra, SA, Australia
| | - Vadakattu V. S. R. Gupta
- CSIRO Microbiomes for One Systems Health, Waite Campus, Canberra, SA, Australia
- CSIRO Agriculture and Food, Waite Campus, Canberra, SA, Australia
| |
Collapse
|
62
|
Molesini B, Pennisi F, Cressoni C, Vitulo N, Dusi V, Speghini A, Pandolfini T. Nanovector-mediated exogenous delivery of dsRNA induces silencing of target genes in very young tomato flower buds. NANOSCALE ADVANCES 2022; 4:4542-4553. [PMID: 36341284 PMCID: PMC9595187 DOI: 10.1039/d2na00478j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is a post-translational regulatory mechanism that controls gene expression in plants. This process can be artificially induced by double-stranded RNA (dsRNA) molecules with sequence homology to target mRNAs. Exogenously applied dsRNA on leaves has been shown to silence virulence genes of fungi and viruses, conferring protection to plants. Coupling dsRNA to nanoparticles has been demonstrated to prolong the silencing effect. The ability of exogenous dsRNA to silence endogenous genes in plants is currently under debate, mainly due to the difficulty in delivering dsRNA into plant tissues and organs. Our study aims to develop a method based on the exogenous application of dsRNA on tomato flowers for silencing endogenous genes controlling ovary growth. Two methods of dsRNA delivery into tomato flower buds (i.e., pedicel soaking and injection) were compared to test their efficacy in silencing the tomato Aux/IAA9 (SlIAA9) gene, which encodes for a known repressor of ovary growth. We examined the silencing effect of dsRNA alone and coupled to layered double hydroxide (LDHs) nanoparticles. We found that injection into the pedicel led to the silencing of SlIAA9 and the efficacy of the method was confirmed by choosing a different ovary growth repressor gene (SlAGAMOUS-like 6; SlAGL6). The coupling of dsRNA to LDHs increased the silencing effect in the case of SlIAA9. Silencing of the two repressors caused an increase in ovary size only when flower buds were treated with dsRNA coupled to LDHs. RNA-Seq of small RNAs showed that induction of RNAi was caused by the processing of injected dsRNA. In this work, we demonstrate for the first time that exogenous dsRNA coupled to LDHs can induce post-transcriptional gene silencing in the young tomato ovary by injection into the flower pedicel. This method represents a silencing tool for the study of the molecular changes occurring during the early stages of ovary/fruit growth as a consequence of downregulation of target genes, without the need to produce transgenic plants stably expressing RNAi constructs.
Collapse
Affiliation(s)
- B Molesini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - F Pennisi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - C Cressoni
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - N Vitulo
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - V Dusi
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - A Speghini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| | - T Pandolfini
- Department of Biotechnology, University of Verona Strada Le Grazie, 15 37134 Verona Italy
| |
Collapse
|
63
|
Mansour A, Mannaa M, Hewedy O, Ali MG, Jung H, Seo YS. Versatile Roles of Microbes and Small RNAs in Rice and Planthopper Interactions. THE PLANT PATHOLOGY JOURNAL 2022; 38:432-448. [PMID: 36221916 PMCID: PMC9561162 DOI: 10.5423/ppj.rw.07.2022.0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/16/2023]
Abstract
Planthopper infestation in rice causes direct and indirect damage through feeding and viral transmission. Host microbes and small RNAs (sRNAs) play essential roles in regulating biological processes, such as metabolism, development, immunity, and stress responses in eukaryotic organisms, including plants and insects. Recently, advanced metagenomic approaches have facilitated investigations on microbial diversity and its function in insects and plants, highlighting the significance of microbiota in sustaining host life and regulating their interactions with the environment. Recent research has also suggested significant roles for sRNA-regulated genes during rice-planthopper interactions. The response and behavior of the rice plant to planthopper feeding are determined by changes in the host transcriptome, which might be regulated by sRNAs. In addition, the roles of microbial symbionts and sRNAs in the host response to viral infection are complex and involve defense-related changes in the host transcriptomic profile. This review reviews the structure and potential functions of microbes and sRNAs in rice and the associated planthopper species. In addition, the involvement of the microbiota and sRNAs in the rice-planthopper-virus interactions during planthopper infestation and viral infection are discussed.
Collapse
Affiliation(s)
- Abdelaziz Mansour
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613,
Egypt
| | - Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
- Department of Plant Pathology, Cairo University, Giza 12613,
Egypt
| | - Omar Hewedy
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1,
Canada
- Department of Genetics, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514,
Egypt
| | - Mostafa G. Ali
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha 13518,
Egypt
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
64
|
Pradhan M, Requena N. Distinguishing friends from foes: Can smRNAs modulate plant interactions with beneficial and pathogenic organisms? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102259. [PMID: 35841651 DOI: 10.1016/j.pbi.2022.102259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In their agro-ecological habitats, plants are constantly challenged by fungal interactions that might be pathogenic or beneficial in nature, and thus, plants need to exhibit appropriate responses to discriminate between them. Such interactions involve sophisticated molecular mechanism of signal exchange, signal transduction and regulation of gene expression. Small RNAs (smRNAs), including the microRNAs (miRNAs), form an essential layer of regulation in plant developmental processes as well as in plant adaptation to environmental stresses, being key for the outcome during plant-microbial interactions. Further, smRNAs are mobile signals that can go across kingdoms from one interacting partner to the other and hence can be used as communication as well as regulatory tools not only by the host plant but also by the colonising fungus. Here, largely with a focus on plant-fungal interactions and miRNAs, we will discuss the role of smRNAs, and how they might help plants to discriminate between friends and foes.
Collapse
Affiliation(s)
- Maitree Pradhan
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 4, D-76131, Karlsruhe, Germany.
| |
Collapse
|
65
|
Samarfard S, Ghorbani A, Karbanowicz TP, Lim ZX, Saedi M, Fariborzi N, McTaggart AR, Izadpanah K. Regulatory non-coding RNA: The core defense mechanism against plant pathogens. J Biotechnol 2022; 359:82-94. [PMID: 36174794 DOI: 10.1016/j.jbiotec.2022.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022]
Abstract
Plant pathogens damage crops and threaten global food security. Plants have evolved complex defense networks against pathogens, using crosstalk among various signaling pathways. Key regulators conferring plant immunity through signaling pathways include protein-coding genes and non-coding RNAs (ncRNAs). The discovery of ncRNAs in plant transcriptomes was first considered "transcriptional noise". Recent reviews have highlighted the importance of non-coding RNAs. However, understanding interactions among different types of noncoding RNAs requires additional research. This review attempts to consider how long-ncRNAs, small-ncRNAs and circular RNAs interact in response to pathogenic diseases within different plant species. Developments within genomics and bioinformatics could lead to the further discovery of plant ncRNAs, knowledge of their biological roles, as well as an understanding of their importance in exploiting the recent molecular-based technologies for crop protection.
Collapse
Affiliation(s)
- Samira Samarfard
- Department of Primary Industries and Regional Development, DPIRD Diagnostic Laboratory Services, South Perth, WA, Australia
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, the Islamic Republic of Iran.
| | | | - Zhi Xian Lim
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Mahshid Saedi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, the Islamic Republic of Iran
| | - Niloofar Fariborzi
- Department of Medical Entomology and Vector Control, School of Health, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Keramatollah Izadpanah
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, the Islamic Republic of Iran
| |
Collapse
|
66
|
Host-induced gene silencing of PcCesA3 and PcOSBP1 confers resistance to Phytophthora capsici in Nicotiana benthamiana through NbDCL3 and NbDCL4 processed small interfering RNAs. Int J Biol Macromol 2022; 222:1665-1675. [PMID: 36167102 DOI: 10.1016/j.ijbiomac.2022.09.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
Host-induced gene silencing (HIGS) is a RNA-based system depend on the biological macromolecules generated in plants to control diseases. However, the effector proteins active in the HIGS are uncertain, which impedes its further application, especially for oomycete that lack efficient HIGS targets. Phytophthora capsici is an important oomycete causes blight in over 70 crops. Here, we comprehensively screened efficient HIGS vectors targeting PcCesA3 or PcOSBP1 in P. capsici to better control it and explore the characteristics of efficient HIGS vectors. Among the 26 vectors with different lengths and structures, we found that hairpin vectors with a 70 nt loop and ~ 500 bp stem showed the highest control efficacy, with the expressing of the screened vectors, the infection and fertility of P. capsici were greatly inhibited in transgenic Nicotiana benthamiana. Based on these efficient vectors, we demonstrated that the amount of HIGS vector generated small interfering RNAs (siRNAs) was positively related to gene silencing efficiency and resistance, and that NbDCL3 and NbDCL4 were the key effectors producing siRNAs. This work discovers the principles for efficient HIGS vectors design, and elucidates the molecular mechanism of HIGS, which could benefit the control of many other plant diseases based on HIGS.
Collapse
|
67
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
68
|
Yu D, McKinley L, Nien Y, Prall W, Zvarick A. RNA biology takes root in plant systems. PLANT DIRECT 2022; 6:e445. [PMID: 36091875 PMCID: PMC9448652 DOI: 10.1002/pld3.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Advances in RNA biology such as RNAi, CRISPR, and the first mRNA vaccine represent the enormous potential of RNA research to address current problems. Additionally, plants are a diverse and undeniably essential resource for life threatened by climate change, loss of arable land, and pollution. Different aspects of RNA such as its processing, modification and structure are intertwined with plant development, physiology and stress response. This report details the findings of researchers around the world during the 23rd Penn State Symposium in Plant Biology with a focus in RNA biology.
Collapse
Affiliation(s)
- David Yu
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Lauren McKinley
- Department of ChemistryThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Yachi Nien
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| | - Wil Prall
- Department of BiologyThe University of PennsylvaniaPhiladelphiaPAUSA
| | - Allison Zvarick
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
69
|
Ciofini A, Negrini F, Baroncelli R, Baraldi E. Management of Post-Harvest Anthracnose: Current Approaches and Future Perspectives. PLANTS 2022; 11:plants11141856. [PMID: 35890490 PMCID: PMC9319655 DOI: 10.3390/plants11141856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
Abstract
Anthracnose is a severe disease caused by Colletotrichum spp. on several crop species. Fungal infections can occur both in the field and at the post-harvest stage causing severe lesions on fruits and economic losses. Physical treatments and synthetic fungicides have traditionally been the preferred means to control anthracnose adverse effects; however, the urgent need to decrease the use of toxic chemicals led to the investigation of innovative and sustainable protection techniques. Evidence for the efficacy of biological agents and vegetal derivates has been reported; however, their introduction into actual crop protection strategies requires the solutions of several critical issues. Biotechnology-based approaches have also been explored, revealing the opportunity to develop innovative and safe methods for anthracnose management through genome editing and RNA interference technologies. Nevertheless, besides the number of advantages related to their use, e.g., the putative absence of adverse effects due to their high specificity, a number of aspects remain to be clarified to enable their introduction into Integrated Pest Management (IPM) protocols against Colletotrichum spp. disease.
Collapse
|
70
|
Pink H, Talbot A, Graceson A, Graham J, Higgins G, Taylor A, Jackson AC, Truco M, Michelmore R, Yao C, Gawthrop F, Pink D, Hand P, Clarkson JP, Denby K. Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2481-2500. [PMID: 35674778 PMCID: PMC9271113 DOI: 10.1007/s00122-022-04129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
KEY MESSAGE We demonstrate genetic variation for quantitative resistance against important fungal pathogens in lettuce and its wild relatives, map loci conferring resistance and predict key molecular mechanisms using transcriptome profiling. Lactuca sativa L. (lettuce) is an important leafy vegetable crop grown and consumed globally. Chemicals are routinely used to control major pathogens, including the causal agents of grey mould (Botrytis cinerea) and lettuce drop (Sclerotinia sclerotiorum). With increasing prevalence of pathogen resistance to fungicides and environmental concerns, there is an urgent need to identify sources of genetic resistance to B. cinerea and S. sclerotiorum in lettuce. We demonstrated genetic variation for quantitative resistance to B. cinerea and S. sclerotiorum in a set of 97 diverse lettuce and wild relative accessions, and between the parents of lettuce mapping populations. Transcriptome profiling across multiple lettuce accessions enabled us to identify genes with expression correlated with resistance, predicting the importance of post-transcriptional gene regulation in the lettuce defence response. We identified five genetic loci influencing quantitative resistance in a F6 mapping population derived from a Lactuca serriola (wild relative) × lettuce cross, which each explained 5-10% of the variation. Differential gene expression analysis between the parent lines, and integration of data on correlation of gene expression and resistance in the diversity set, highlighted potential causal genes underlying the quantitative trait loci.
Collapse
Affiliation(s)
- Harry Pink
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Adam Talbot
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Abi Graceson
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Juliane Graham
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Gill Higgins
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Andrew Taylor
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Alison C Jackson
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Maria Truco
- Genome Center, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Chenyi Yao
- A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH, UK
| | - Frances Gawthrop
- A. L. Tozer Ltd., Pyports, Downside Road, Cobham, Surrey, KT11 3EH, UK
| | - David Pink
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Paul Hand
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - John P Clarkson
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Warwick, CV35 9EF, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK.
| |
Collapse
|
71
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
72
|
Comparative Small RNA and Degradome Sequencing Provides Insights into Antagonistic Interactions in the Biocontrol Fungus Clonostachys rosea. Appl Environ Microbiol 2022; 88:e0064322. [PMID: 35695572 PMCID: PMC9275246 DOI: 10.1128/aem.00643-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Necrotrophic mycoparasitism is an intricate process involving recognition, physical mycelial contact, and killing of host fungi (mycohosts). During such interactions, mycoparasites undergo a complex developmental process involving massive regulatory changes of gene expression to produce a range of chemical compounds and proteins that contribute to the parasitism of the mycohosts. Small RNAs (sRNAs) are vital components of posttranscriptional gene regulation, although their role in gene expression regulation during mycoparasitisms remain understudied. Here, we investigated the role of sRNA-mediated gene regulation in mycoparasitism by performing sRNA and degradome tag sequencing of the mycoparasitic fungus Clonostachys rosea interacting with the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum at two time points. The majority of differentially expressed sRNAs were downregulated during the interactions with the mycohosts compared to a C. rosea self-interaction control, thus allowing desuppression (upregulation) of mycohost-responsive genes. Degradome analysis showed a positive correlation between high degradome counts and antisense sRNA mapping and led to the identification of 201 sRNA-mediated potential gene targets for 282 differentially expressed sRNAs. Analysis of sRNA potential gene targets revealed that the regulation of genes coding for membrane proteins was a common response against both mycohosts. The regulation of genes involved in oxidative stress tolerance and cellular metabolic and biosynthetic processes was exclusive against F. graminearum, highlighting common and mycohost-specific gene regulation of C. rosea. By combining these results with transcriptome data collected during a previous study, we expand the understanding of the role of sRNA in regulating interspecific fungal interactions and mycoparasitism. IMPORTANCE Small RNAs (sRNAs) are emerging as key players in pathogenic and mutualistic fungus-plant interactions; however, their role in fungus-fungus interactions remains elusive. In this study, we employed the necrotrophic mycoparasite Clonostachys rosea and the plant-pathogenic mycohosts Botrytis cinerea and Fusarium graminearum and investigated the sRNA-mediated gene regulation in mycoparasitic interactions. The combined approach of sRNA and degradome tag sequencing identified 201 sRNA-mediated putative gene targets for 282 differentially expressed sRNAs, highlighting the role of sRNA-mediated regulation of mycoparasitism in C. rosea. We also identified 36 known and 13 novel microRNAs (miRNAs) and their potential gene targets at the endogenous level and at a cross-species level in B. cinerea and F. graminearum, indicating a role of cross-species RNA interference (RNAi) in mycoparasitism, representing a novel mechanism in biocontrol interactions. Furthermore, we showed that C. rosea adapts its transcriptional response, and thereby its interaction mechanisms, based on the interaction stages and identity of the mycohost.
Collapse
|
73
|
Twayana M, Girija AM, Mohan V, Shah J. Phloem: At the center of action in plant defense against aphids. JOURNAL OF PLANT PHYSIOLOGY 2022; 273:153695. [PMID: 35468314 DOI: 10.1016/j.jplph.2022.153695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The location of the phloem deep inside the plant, the high hydrostatic pressure in the phloem, and the composition of phloem sap, which is rich in sugar with a high C:N ratio, allows phloem sap feeding insects to occupy a unique ecological niche. The anatomy and physiology of aphids, a large group of phytophagous insects that use their mouthparts, which are modified into stylets, to consume large amounts of phloem sap, has allowed aphids to successfully exploit this niche, however, to the detriment of agriculture and horticulture. The ability to reproduce asexually, a short generation time, the development of resistance to commonly used insecticides, and their ability to vector viral diseases makes aphids among the most damaging pests of plants. Here we review how plants utilize their ability to occlude sieve elements and accumulate antibiotic and antinutritive factors in the phloem sap to limit aphid infestation. In addition, we summarize progress on understanding how plants perceive aphids to activate defenses in the phloem.
Collapse
Affiliation(s)
- Moon Twayana
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Anil M Girija
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Vijee Mohan
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| | - Jyoti Shah
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76210, USA.
| |
Collapse
|
74
|
Understanding the Dynamics of Blast Resistance in Rice-Magnaporthe oryzae Interactions. J Fungi (Basel) 2022; 8:jof8060584. [PMID: 35736067 PMCID: PMC9224618 DOI: 10.3390/jof8060584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Rice is a global food grain crop for more than one-third of the human population and a source for food and nutritional security. Rice production is subjected to various stresses; blast disease caused by Magnaporthe oryzae is one of the major biotic stresses that has the potential to destroy total crop under severe conditions. In the present review, we discuss the importance of rice and blast disease in the present and future global context, genomics and molecular biology of blast pathogen and rice, and the molecular interplay between rice–M. oryzae interaction governed by different gene interaction models. We also elaborated in detail on M. oryzae effector and Avr genes, and the role of noncoding RNAs in disease development. Further, rice blast resistance QTLs; resistance (R) genes; and alleles identified, cloned, and characterized are discussed. We also discuss the utilization of QTLs and R genes for blast resistance through conventional breeding and transgenic approaches. Finally, we review the demonstrated examples and potential applications of the latest genome-editing tools in understanding and managing blast disease in rice.
Collapse
|
75
|
Halder K, Chaudhuri A, Abdin MZ, Majee M, Datta A. RNA Interference for Improving Disease Resistance in Plants and Its Relevance in This Clustered Regularly Interspaced Short Palindromic Repeats-Dominated Era in Terms of dsRNA-Based Biopesticides. FRONTIERS IN PLANT SCIENCE 2022; 13:885128. [PMID: 35645997 PMCID: PMC9141053 DOI: 10.3389/fpls.2022.885128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
RNA interference (RNAi) has been exploited by scientists worldwide to make a significant contribution in the arena of sustainable agriculture and integrated pest management. These strategies are of an imperative need to guarantee food security for the teeming millions globally. The already established deleterious effects of chemical pesticides on human and livestock health have led researchers to exploit RNAi as a potential agri-biotechnology tool to solve the burning issue of agricultural wastage caused by pests and pathogens. On the other hand, CRISPR/Cas9, the latest genome-editing tool, also has a notable potential in this domain of biotic stress resistance, and a constant endeavor by various laboratories is in progress for making pathogen-resistant plants using this technique. Considerable outcry regarding the ill effects of genetically modified (GM) crops on the environment paved the way for the research of RNAi-induced double-stranded RNAs (dsRNA) and their application to biotic stresses. Here, we mainly focus on the application of RNAi technology to improve disease resistance in plants and its relevance in today's CRISPR-dominated world in terms of exogenous application of dsRNAs. We also focused on the ongoing research, public awareness, and subsequent commercialization of dsRNA-based biocontrol products.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, New Delhi, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, New Delhi, India
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manoj Majee
- National Institute of Plant Genome Research, New Delhi, India
| | - Asis Datta
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
76
|
Integrated analysis of microbe-host interactions in Crohn’s disease reveals potential mechanisms of microbial proteins on host gene expression. iScience 2022; 25:103963. [PMID: 35479407 PMCID: PMC9035720 DOI: 10.1016/j.isci.2022.103963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/11/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
|
77
|
Zand Karimi H, Baldrich P, Rutter BD, Borniego L, Zajt KK, Meyers BC, Innes RW. Arabidopsis apoplastic fluid contains sRNA- and circular RNA-protein complexes that are located outside extracellular vesicles. THE PLANT CELL 2022; 34:1863-1881. [PMID: 35171271 PMCID: PMC9048913 DOI: 10.1093/plcell/koac043] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/14/2021] [Indexed: 05/21/2023]
Abstract
Previously, we have shown that apoplastic wash fluid (AWF) purified from Arabidopsis leaves contains small RNAs (sRNAs). To investigate whether these sRNAs are encapsulated inside extracellular vesicles (EVs), we treated EVs isolated from Arabidopsis leaves with the protease trypsin and RNase A, which should degrade RNAs located outside EVs but not those located inside. These analyses revealed that apoplastic RNAs are mostly located outside and are associated with proteins. Further analyses of these extracellular RNAs (exRNAs) revealed that they include both sRNAs and long noncoding RNAs (lncRNAs), including circular RNAs (circRNAs). We also found that exRNAs are highly enriched in the posttranscriptional modification N6-methyladenine (m6A). Consistent with this, we identified a putative m6A-binding protein in AWF, GLYCINE-RICH RNA-BINDING PROTEIN 7 (GRP7), as well as the sRNA-binding protein ARGONAUTE2 (AGO2). These two proteins coimmunoprecipitated with lncRNAs, including circRNAs. Mutation of GRP7 or AGO2 caused changes in both the sRNA and lncRNA content of AWF, suggesting that these proteins contribute to the secretion and/or stabilization of exRNAs. We propose that exRNAs located outside of EVs mediate host-induced gene silencing, rather than RNA located inside EVs.
Collapse
Affiliation(s)
- Hana Zand Karimi
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | | | - Brian D Rutter
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | - Lucía Borniego
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | - Kamil K Zajt
- Department of Biology, Indiana University, Bloomington 47405, Indiana, USA
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St Louis 63132, Missouri, USA
- Division of Plant Sciences, University of Missouri-Columbia, Columbia 65211, Missouri, USA
| | | |
Collapse
|
78
|
Zhang BS, Li YC, Guo HS, Zhao JH. Verticillium dahliae Secretes Small RNA to Target Host MIR157d and Retard Plant Floral Transition During Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:847086. [PMID: 35519822 PMCID: PMC9062233 DOI: 10.3389/fpls.2022.847086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 05/24/2023]
Abstract
Bidirectional trans-kingdom RNA silencing [or RNA interference (RNAi)] plays a key role in plant-pathogen interactions. It has been shown that plant hosts export specific endogenous miRNAs into pathogens to inhibit their virulence, whereas pathogens deliver small RNAs (sRNAs) into plant cells to disturb host immunity. Here, we report a trans-kingdom fungal sRNA retarding host plant floral transition by targeting a miRNA precursor. From Arabidopsis plants infected with Verticillium dahliae, a soil-borne hemibiotrophic pathogenic fungus that causes wilt diseases in a wide range of plant hosts, we obtained a number of possible trans-kingdom V. dahliae sRNAs (VdsRNAs) by sequencing AGO1-immunoprecipitated sRNAs. Among these, a 24-nt VdsRNA derived from V. dahliae rRNA, VdrsR-1, was shown to be an actual trans-kingdom VdsRNA that targets the miR157d precursor MIR157d, resulting in increased rather than reduced miR157d accumulation in V. dahliae-infected plants. Consistent with the miR157 family in the regulation of vegetative and floral transitions by targeting SPL genes in several plant species, we detected two SPL genes, SPL13A/B, that were notably reduced in V. dahliae-infected and VdrsR-1-expressing plants compared with control plants. Furthermore, V. dahliae-infected and VdrsR-1-expressing plants also displayed delayed vegetative phase change and floral transition compared to control plants. Taken together, we disclosed a novel mode of action for a trans-kingdom fungal sRNA, VdrsR-1, which was secreted into host cells to modulate plant floral transition by employing the miR157d/SPL13A/B regulatory module, leading to prolonged host vegetative growth that would undoubtedly benefit fungal propagation.
Collapse
Affiliation(s)
- Bo-Sen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ying-Chao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
79
|
Xu J, Li Y, Jia J, Xiong W, Zhong C, Huang G, Gou X, Meng Y, Shan W. Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol 2022; 13:856106. [PMID: 35401482 PMCID: PMC8989244 DOI: 10.3389/fmicb.2022.856106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25–26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25–26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3, strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25–26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
80
|
Yang Z, Hui S, Lv Y, Zhang M, Chen D, Tian J, Zhang H, Liu H, Cao J, Xie W, Wu C, Wang S, Yuan M. miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. MOLECULAR PLANT 2022; 15:671-688. [PMID: 34968734 DOI: 10.1016/j.molp.2021.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/30/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance.
Collapse
Affiliation(s)
- Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Miaojing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitao Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbo Cao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenya Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
81
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
82
|
Plant-RNA in Extracellular Vesicles: The Secret of Cross-Kingdom Communication. MEMBRANES 2022; 12:membranes12040352. [PMID: 35448322 PMCID: PMC9028404 DOI: 10.3390/membranes12040352] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
The release of extracellular vesicles (EVs) is a common language, used by living organisms from different kingdoms as a means of communication between them. Extracellular vesicles are lipoproteic particles that contain many biomolecules, such as proteins, nucleic acids, and lipids. The primary role of EVs is to convey information to the recipient cells, affecting their function. Plant-derived extracellular vesicles (PDEVs) can be isolated from several plant species, and the study of their biological properties is becoming an essential starting point to study cross-kingdom communication, especially between plants and mammalians. Furthermore, the presence of microRNAs (miRNAs) in PDEVs represents an interesting aspect for understanding how PDEVs can target the mammalian genes involved in pathological conditions such as cancer, inflammation, and oxidative stress. In particular, this review focuses on the history of PDEVs, from their discovery, to purification from various matrices, and on the functional role of PDEV-RNAs in cross-kingdom interactions. It is worth noting that miRNAs packaged in PDEVs can be key modulators of human gene expression, representing potential therapeutic agents.
Collapse
|
83
|
A fungal effector suppresses the nuclear export of AGO1-miRNA complex to promote infection in plants. Proc Natl Acad Sci U S A 2022; 119:e2114583119. [PMID: 35290117 PMCID: PMC8944911 DOI: 10.1073/pnas.2114583119] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SignificanceIncreasing evidence demonstrates that small RNAs can serve as trafficking effectors to mediate bidirectional transkingdom RNA interference (RNAi) in interacting organisms, including plant-pathogenic fungi systems. Previous findings demonstrated that plants can send microRNAs (miRNAs) to fungal pathogen Verticillium dahliae to trigger antifungal RNAi. Here we report that V. dahliae is able to secret an effector to the plant nucleus to interfere with the nuclear export of AGO1-miRNA complexes, leading to an inhibition in antifungal RNAi and increased virulence in plants. Thus, we reveal an antagonistic mechanism that can be exploited by fungal pathogens to counteract antifungal RNAi immunity via manipulation of plant small RNA function.
Collapse
|
84
|
Susi H, Sallinen S, Laine A. Coinfection with a virus constrains within-host infection load but increases transmission potential of a highly virulent fungal plant pathogen. Ecol Evol 2022; 12:e8673. [PMID: 35342557 PMCID: PMC8928890 DOI: 10.1002/ece3.8673] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
The trade-off between within-host infection rate and transmission to new hosts is predicted to constrain pathogen evolution, and to maintain polymorphism in pathogen populations. Pathogen life-history stages and their correlations that underpin infection development may change under coinfection with other parasites as they compete for the same limited host resources. Cross-kingdom interactions are common among pathogens in both natural and cultivated systems, yet their impacts on disease ecology and evolution are rarely studied. The host plant Plantago lanceolata is naturally infected by both Phomopsis subordinaria, a seed killing fungus, as well as Plantago lanceolata latent virus (PlLV) in the Åland Islands, SW Finland. We performed an inoculation assay to test whether coinfection with PlLV affects performance of two P. subordinaria strains, and the correlation between within-host infection rate and transmission potential. The strains differed in the measured life-history traits and their correlations. Moreover, we found that under virus coinfection, within-host infection rate of P. subordinaria was smaller but transmission potential was higher compared to strains under single infection. The negative correlation between within-host infection rate and transmission potential detected under single infection became positive under coinfection with PlLV. To understand whether within-host and between-host dynamics are correlated in wild populations, we surveyed 260 natural populations of P. lanceolata for P. subordinaria infection occurrence. When infections were found, we estimated between-hosts dynamics by determining pathogen population size as the proportion of infected individuals, and within-host dynamics by counting the proportion of infected flower stalks in 10 infected plants. In wild populations, the proportion of infected flower stalks was positively associated with pathogen population size. Jointly, our results suggest that the trade-off between within-host infection load and transmission may be strain specific, and that the pathogen life-history that underpin epidemics may change depending on the diversity of infection, generating variation in disease dynamics.
Collapse
Affiliation(s)
- Hanna Susi
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Suvi Sallinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiHelsinkiFinland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| |
Collapse
|
85
|
Chen Y, Zhang Z, Tian S, Li B. Application of -omic technologies in postharvest pathology: Recent advances and perspectives. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
86
|
Xu M, Li G, Guo Y, Gao Y, Zhu L, Liu Z, Tian R, Gao C, Han P, Wang N, Guo F, Bao J, Jia C, Feng H, Huang L. A fungal microRNA-like RNA subverts host immunity and facilitates pathogen infection by silencing two host receptor-like kinase genes. THE NEW PHYTOLOGIST 2022; 233:2503-2519. [PMID: 34981514 DOI: 10.1111/nph.17945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Small RNAs (sRNAs) play important roles in various biological processes by silencing their corresponding target genes in most eukaryotes. However, cross-kingdom regulation mediated by fungal microRNA-like RNAs (milRNAs) in plant-pathogen interactions is still largely unknown. Using molecular, genetic, histological, and biochemical approaches, we found that the apple tree Valsa canker pathogen Valsa mali milRNA Vm-milR1 could suppress the host immunity by silencing two host receptor-like kinase genes, MdRLKT1 and MdRLKT2. Vm-milR1 was highly induced during V. mali infection. Deletion of Vm-milR1 precursor abolished the generation of Vm-milR1 and reduced the virulence of V. mali. Inoculation of Vm-milR1 deletion mutants induced the host defence responses, including reactive oxygen species (ROS) accumulation, callose deposition, and high expression of defence-related genes. Furthermore, Vm-milR1 was confirmed to be able to suppress the expression of MdRLKT1 and MdRLKT2 in a sequence-specific manner. Moreover, overexpression of either MdRLKT1 or MdRLKT2 enhanced apple resistance to V. mali by activating the host defence responses. Furthermore, knockdown of MdRLKT1 or MdRLKT2 compromised the host resistance to V. mali. Our study revealed that V. mali was equipped with Vm-milR1 as an sRNA effector to silence host receptor-like kinase genes, suppress the host defence responses, and facilitate pathogen infection.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guangyao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqi Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lihua Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaoyang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Runze Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Pengliang Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jiyuan Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Conghui Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
87
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
88
|
Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14042253] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The indiscriminate use of chemical fertilizers and pesticides has caused considerable environmental damage over the years. However, the growing demand for food in the coming years and decades requires the use of increasingly productive and efficient agriculture. Several studies carried out in recent years have shown how the application of plant growth-promoting microbes (PGPMs) can be a valid substitute for chemical industry products and represent a valid eco-friendly alternative. However, because of the complexity of interactions created with the numerous biotic and abiotic factors (i.e., environment, soil, interactions between microorganisms, etc.), the different formulates often show variable effects. In this review, we analyze the main factors that influence the effectiveness of PGPM applications and some of the applications that make them a useful tool for agroecological transition.
Collapse
|
89
|
Mahapatra S, Yadav R, Ramakrishna W. Bacillus subtilis Impact on Plant Growth, Soil Health and Environment: Dr. Jekyll and Mr. Hyde. J Appl Microbiol 2022; 132:3543-3562. [PMID: 35137494 DOI: 10.1111/jam.15480] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The increased dependence of farmers on chemical fertilizers poses a risk to soil fertility and ecosystem stability. Plant growth-promoting rhizobacteria (PGPR) are at the forefront of sustainable agriculture, providing multiple benefits for the enhancement of crop production and soil health. Bacillus subtilis is a common PGPR in soil that plays a key role in conferring biotic and abiotic stress tolerance to plants by induced systemic resistance (ISR), biofilm formation, and lipopeptide production. As a part of bioremediating technologies, Bacillus spp. can purify metal contaminated soil. It acts as a potent denitrifying agent in agroecosystems while improving the carbon sequestration process when applied in a regulated concentration. Although it harbors several antibiotic resistance genes (ARGs), it can reduce the horizontal transfer of ARGs during manure composting by modifying the genetic makeup of existing microbiota. In some instances, it affects the beneficial microbes of the rhizosphere. External inoculation of B. subtilis has both positive and negative impacts on the endophytic and semi-synthetic microbial community. Soil texture, type, pH, and bacterial concentration play a crucial role in the regulation of all these processes. Soil amendments and microbial consortia of Bacillus produced by microbial engineering could be used to lessen the negative effect on soil microbial diversity. The complex plant-microbe interactions could be decoded using transcriptomics, proteomics, metabolomics, and epigenomics strategies which would be beneficial for both crop productivity and the well-being of soil microbiota. Bacillus subtilis has more positive attributes similar to the character of Dr. Jekyll and some negative attributes on plant growth, soil health, and the environment akin to the character of Mr. Hyde.
Collapse
|
90
|
Fabro G. Oomycete intracellular effectors: specialised weapons targeting strategic plant processes. THE NEW PHYTOLOGIST 2022; 233:1074-1082. [PMID: 34705271 DOI: 10.1111/nph.17828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Oomycete phytopathogens have adapted to colonise plants using effectors as their molecular weapons. Intracellular effectors, mostly proteins but also small ribonucleic acids, are delivered by the pathogens into the host cell cytoplasm where they interfere with normal plant physiology. The diverse host processes emerging as 'victims' of these 'specialised bullets' include gene transcription and RNA-mediated silencing, cell death, protein stability, protein secretion and autophagy. Some effector targets are directly involved in defence execution, while others participate in fundamental metabolisms whose alteration collaterally affects defences. Other effector targets are susceptibility factors (SFs), that is host components that make plants vulnerable to pathogens. SFs are mostly negative regulators of immunity, but some seem necessary to sustain or promote pathogen colonisation.
Collapse
Affiliation(s)
- Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET and Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
91
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
92
|
Huang CY, Jin H. Coordinated Epigenetic Regulation in Plants: A Potent Managerial Tool to Conquer Biotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 12:795274. [PMID: 35046981 PMCID: PMC8762163 DOI: 10.3389/fpls.2021.795274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 05/10/2023]
Abstract
Plants have evolved variable phenotypic plasticity to counteract different pathogens and pests during immobile life. Microbial infection invokes multiple layers of host immune responses, and plant gene expression is swiftly and precisely reprogramed at both the transcriptional level and post-transcriptional level. Recently, the importance of epigenetic regulation in response to biotic stresses has been recognized. Changes in DNA methylation, histone modification, and chromatin structures have been observed after microbial infection. In addition, epigenetic modifications may be preserved as transgenerational memories to allow the progeny to better adapt to similar environments. Epigenetic regulation involves various regulatory components, including non-coding small RNAs, DNA methylation, histone modification, and chromatin remodelers. The crosstalk between these components allows precise fine-tuning of gene expression, giving plants the capability to fight infections and tolerant drastic environmental changes in nature. Fully unraveling epigenetic regulatory mechanisms could aid in the development of more efficient and eco-friendly strategies for crop protection in agricultural systems. In this review, we discuss the recent advances on the roles of epigenetic regulation in plant biotic stress responses.
Collapse
Affiliation(s)
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
93
|
Hu X, Persson Hodén K, Liao Z, Åsman A, Dixelius C. Phytophthora infestans Ago1-associated miRNA promotes potato late blight disease. THE NEW PHYTOLOGIST 2022; 233:443-457. [PMID: 34605025 DOI: 10.1111/nph.17758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Phytophthora spp. cause serious damage to plants by exploiting a large number of effector proteins and small RNAs (sRNAs). Several reports have described modulation of host RNA biogenesis and defence gene expression. Here, we analysed Phytophthora infestans Argonaute (Ago) 1 associated small RNAs during potato leaf infection. Small RNAs were co-immunoprecipitated, deep sequenced and analysed against the P. infestans and potato genomes, followed by transcript analyses and transgenic assays on a predicted target. Extensive targeting of potato and pathogen-derived sRNAs to a range of mRNAs was observed, including 638 sequences coding for resistance (R) proteins in the host genome. The single miRNA encoded by P. infestans (miR8788) was found to target a potato alpha/beta hydrolase-type encoding gene (StABH1), a protein localized to the plasma membrane. Analyses of stable transgenic potato lines harbouring overexpressed StABH1 or artificial miRNA gene constructs demonstrated the importance of StABH1 during infection by P. infestans. miR8788 knock-down strains showed reduced growth on potato, and elevated StABH1 expression levels were observed when plants were inoculated with the two knock-down strains compared to the wild-type strain 88069. The findings of our study suggest that sRNA encoded by P. infestans can affect potato mRNA, thereby expanding our knowledge of the multifaceted strategies this species uses to facilitate infection.
Collapse
Affiliation(s)
- Xinyi Hu
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Kristian Persson Hodén
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Zhen Liao
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| | - Anna Åsman
- Department of Molecular Sciences, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7015, S-75007, Uppsala, Sweden
| | - Christina Dixelius
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, PO Box 7080, S-75007, Uppsala, Sweden
| |
Collapse
|
94
|
Zhao S, Wu J. Rapid and Specific Purification of Argonaute-Small RNA Complexes from Rice for Slicer Activity. Methods Mol Biol 2022; 2400:139-147. [PMID: 34905198 DOI: 10.1007/978-1-0716-1835-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Argonaute (AGO) proteins associate with small RNAs (sRNAs) to form an RNA-induced silencing complex (RISC). The ribonuclease (slicer) activity of AGOs is required for the sRNA-complementary target cleavage, which is important for RISC-mediated RNA silencing, especially in plants. Sequencing small RNAs is an obvious choice to understand their expression and downstream effects. It also provides an opportunity to identify novel and polymorphic miRNAs. Recently, we have successfully reconstituted rice (Oryza sativa) AGO1a slicer assays in vitro that are able to recapitulate in vivo miRNA-guided cleavage activity. Here we provide a detailed protocol for the purification of OsAGO1a-sRNA complexes and further slicer assays, small RNA sequencing and bioinformatic analysis. This protocol can be readily adapted for the purification and subsequent analyses of the AGO complexes in other plants.
Collapse
Affiliation(s)
- Shanshan Zhao
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianguo Wu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
95
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
96
|
Reshetnyak G, Jacobs JM, Auguy F, Sciallano C, Claude L, Medina C, Perez-Quintero AL, Comte A, Thomas E, Bogdanove A, Koebnik R, Szurek B, Dievart A, Brugidou C, Lacombe S, Cunnac S. An atypical class of non-coding small RNAs is produced in rice leaves upon bacterial infection. Sci Rep 2021; 11:24141. [PMID: 34921170 PMCID: PMC8683429 DOI: 10.1038/s41598-021-03391-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/29/2021] [Indexed: 01/18/2023] Open
Abstract
Non-coding small RNAs (sRNA) act as mediators of gene silencing and regulate plant growth, development and stress responses. Early insights into plant sRNAs established a role in antiviral defense and they are now extensively studied across plant-microbe interactions. Here, sRNA sequencing discovered a class of sRNA in rice (Oryza sativa) specifically associated with foliar diseases caused by Xanthomonas oryzae bacteria. Xanthomonas-induced small RNAs (xisRNAs) loci were distinctively upregulated in response to diverse virulent strains at an early stage of infection producing a single duplex of 20-22 nt sRNAs. xisRNAs production was dependent on the Type III secretion system, a major bacterial virulence factor for host colonization. xisRNA loci overlap with annotated transcripts sequences, with about half of them encoding protein kinase domain proteins. A number of the corresponding rice cis-genes have documented functions in immune signaling and xisRNA loci predominantly coincide with the coding sequence of a conserved kinase motif. xisRNAs exhibit features of small interfering RNAs and their biosynthesis depend on canonical components OsDCL1 and OsHEN1. xisRNA induction possibly mediates post-transcriptional gene silencing but they do not broadly suppress cis-genes expression on the basis of mRNA-seq data. Overall, our results identify a group of unusual sRNAs with a potential role in plant-microbe interactions.
Collapse
Affiliation(s)
- Ganna Reshetnyak
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Jonathan M Jacobs
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43201, USA
- Infectious Disease Institute, The Ohio State University, Columbus, OH, 43201, USA
| | - Florence Auguy
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Coline Sciallano
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Lisa Claude
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Clemence Medina
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Alvaro L Perez-Quintero
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aurore Comte
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Emilie Thomas
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Adam Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Ralf Koebnik
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Boris Szurek
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Anne Dievart
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398, Montpellier, France
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
| | - Christophe Brugidou
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Severine Lacombe
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sebastien Cunnac
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
97
|
A human-blood-derived microRNA facilitates flavivirus infection in fed mosquitoes. Cell Rep 2021; 37:110091. [PMID: 34910910 DOI: 10.1016/j.celrep.2021.110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/28/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Hematophagous arthropods, such as mosquitoes, naturally carry and transmit hundreds of arboviruses to humans. Blood meal is a predominant physical interface that shapes cross-species communications among humans, bloodsuckers, and arboviruses. Here, we identify a human-blood-derived microRNA, hsa-miR-150-5p, that interferes with a mosquito antiviral system to facilitate flavivirus infection and transmission. hsa-miR-150-5p is acquired with a blood meal into the mosquito hemocoel and persists for a prolonged time there. The agomir of hsa-miR-150-5p enhances, whereas the antagomir represses flaviviral infection in mosquitoes and transmission from mice to mosquitoes. Mechanistic studies indicate that hsa-miR-150-5p hijacks the mosquito Argonaute-1-mediated RNA interference system to suppress the expression of some chymotrypsins with potent virucidal activity. Mosquito chymotrypsins are essential for resisting systemic flavivirus infection in hemocoel tissues. Chymotrypsin homologs potentially targeted by miR-150-5p are also found in other hematophagous arthropods, demonstrating a conserved miR-150-5p-mediated cross-species RNAi mechanism that might determine flaviviral transmissibility in nature.
Collapse
|
98
|
Kalyandurg PB, Sundararajan P, Dubey M, Ghadamgahi F, Zahid MA, Whisson SC, Vetukuri RR. Spray-Induced Gene Silencing as a Potential Tool to Control Potato Late Blight Disease. PHYTOPATHOLOGY 2021; 111:2168-2175. [PMID: 33973799 DOI: 10.1094/phyto-02-21-0054-sc] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Phytophthora infestans causes late blight disease on potato and tomato and is currently controlled by resistant cultivars or intensive fungicide spraying. Here, we investigated an alternative means for late blight control by spraying potato leaves with double-stranded RNAs (dsRNA) that target the P. infestans genes essential for infection. First, we showed that the sporangia of P. infestans expressing green fluorescent protein (GFP) can take up in vitro synthesized dsRNAs homologous to GFP directly from their surroundings, including leaves, which led to the reduced relative expression of GFP. We further demonstrate the potential of spray-induced gene silencing (SIGS) in controlling potato late blight disease by targeting developmentally important genes in P. infestans such as guanine-nucleotide binding protein β-subunit (PiGPB1), haustorial membrane protein (PiHmp1), cutinase (PiCut3), and endo-1,3(4)-β-glucanase (PiEndo3). Our results demonstrate that SIGS can potentially be used to mitigate potato late blight; however, the degree of disease control is dependent on the selection of the target genes.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Pruthvi B Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala 75651, Sweden
| | - Farideh Ghadamgahi
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
- Department of Crop Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, 9177948978 Mashhad-Iran, Iran
| | - Muhammad Awais Zahid
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma 234 22, Sweden
| |
Collapse
|
99
|
Huang Y, Wang S, Cai Q, Jin H. Effective methods for isolation and purification of extracellular vesicles from plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:2020-2030. [PMID: 34668639 PMCID: PMC8972076 DOI: 10.1111/jipb.13181] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/18/2021] [Indexed: 06/01/2023]
Abstract
Plant extracellular vesicles (EVs) play critical roles in the cross-kingdom trafficking of molecules from hosts to interacting microbes, most notably in plant defense responses. However, the isolation of pure, intact EVs from plants remains challenging. A variety of methods have been utilized to isolate plant EVs from apoplastic washing fluid (AWF). Here, we compare published plant EV isolation methods, and provide our recommended method for the isolation and purification of plant EVs. This method includes a detailed protocol for clean AWF collection from Arabidopsis thaliana leaves, followed by EV isolation via differential centrifugation. To further separate and purify specific subclasses of EVs from heterogeneous vesicle populations, density gradient ultracentrifugation and immunoaffinity capture are then utilized. We found that immunoaffinity capture is the most precise method for specific EV subclass isolation when suitable specific EV biomarkers and their corresponding antibodies are available. Overall, this study provides a guide for the selection and optimization of EV isolation methods for desired downstream applications.
Collapse
Affiliation(s)
- Yifan Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Shumei Wang
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430072, China
| | - Hailing Jin
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92507, USA
| |
Collapse
|
100
|
Salamon S, Żok J, Gromadzka K, Błaszczyk L. Expression Patterns of miR398, miR167, and miR159 in the Interaction between Bread Wheat ( Triticum aestivum L.) and Pathogenic Fusarium culmorum and Beneficial Trichoderma Fungi. Pathogens 2021; 10:1461. [PMID: 34832616 PMCID: PMC8624912 DOI: 10.3390/pathogens10111461] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Bread wheat (Triticum aestivum L.) is an agronomically significant cereal cultivated worldwide. Wheat breeding is limited by numerous abiotic and biotic stresses. One of the most deleterious factors is biotic stress provoked by the Fusarium culmorum fungus. This pathogen is a causative agent of Fusarium root rot and Fusarium head blight. Beneficial fungi Trichoderma atroviride and T. cremeum are strong antagonists of mycotoxigenic Fusarium spp. These fungi promote plant growth and enhance their tolerance of negative environmental conditions. The aim of the study was to determine and compare the spatial (in above- and underground organs) and temporal (early: 6 and 22 hpi; and late: 5 and 7 dpi reactions) expression profiles of three mature miRNAs (miR398, miR167, and miR159) in wheat plants inoculated with two strains of F. culmorum (KF846 and EW49). Moreover, the spatial expression patterns in wheat response between plants inoculated with beneficial T. atroviride (AN35) and T. cremeum (AN392) were assessed. Understanding the sophisticated role of miRNAs in wheat-fungal interactions may initiate a discussion concerning the use of this knowledge to protect wheat plants from the harmful effects of fungal pathogens. With the use of droplet digital PCR (ddPCR), the absolute quantification of the selected miRNAs in the tested material was carried out. The differential accumulation of miR398, miR167, and miR159 in the studied groups was observed. The abundance of all analyzed miRNAs in the roots demonstrated an increase in the early and reduction in late wheat response to F. culmorum inoculation, suggesting the role of these particles in the initial wheat reaction to the studied fungal pathogen. The diverse expression patterns of the studied miRNAs between Trichoderma-inoculated or F. culmorum-inoculated plants and control wheat, as well as between Trichoderma-inoculated and F. culmorum-inoculated plants, were noticed, indicating the need for further analysis.
Collapse
Affiliation(s)
- Sylwia Salamon
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Julia Żok
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| | - Karolina Gromadzka
- Department of Chemistry, Poznan University of Life Sciences, 60-625 Poznan, Poland;
| | - Lidia Błaszczyk
- Department of Plant Microbiomics, Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland; (S.S.); (J.Ż.)
| |
Collapse
|