51
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Horbowicz M, Górecki RJ, Railean V, Pomastowski P, Buszewski B. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat ( Triticum aestivum L.) Seedling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1627. [PMID: 37111851 PMCID: PMC10145852 DOI: 10.3390/plants12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cyclitols, such as myo-inositol and its isomers and methyl derivatives (i.e., d-chiro-inositol and d-pinitol (3-O-methyl-chiro-inositol)), are classified as osmolytes and osmoprotectants and are significantly involved in plant responses to abiotic stresses, such as drought, salinity and cold. Moreover, d-pinitol demonstrates a synergistic effect with glutathione (GSH), increasing its antioxidant properties. However, the role of cyclitols in plant protection against stresses caused by metal nanoparticles is not yet known. Therefore, the present study examined the effects of myo-inositol, d-chiro-inositol and d-pinitol on wheat germination, seedling growth and changes in the profile of soluble carbohydrates in response to biologically synthesized silver nanoparticles ((Bio)Ag NPs). It was found that cyclitols were absorbed by germinating grains and transported within the growing seedlings but this process was disrupted by (Bio)Ag NPs. Cyclitols applied alone induced sucrose and 1-kestose accumulation in seedlings slightly, while (Bio)Ag NP doubled the concentrations of both sugars. This coincided with a decrease in monosaccharides; i.e., fructose and glucose. Cyclitols and (Bio)Ag NPs present in the endosperm resulted in reductions in monosaccharides, maltose and maltotriose, with no effect on sucrose and 1-kestose. Similar changes occurred in seedlings developing from primed grains. Cyclitols that accumulated in grain and seedlings during grain priming with d-pinitol and glutathione did not prevent the phytotoxic effects of (Bio)Ag NPs.
Collapse
Affiliation(s)
- Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| |
Collapse
|
52
|
Dyrda-Terniuk T, Pryshchepa O, Rafińska K, Kolankowski M, Gołębiowski A, Gloc M, Dobrucka R, Kurzydłowski K, Pomastowski P. Immobilization Of Silver Ions Onto Casein. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
53
|
Peralta LCF, Almeida NLM, Pontes FML, Rinaldo D, Carneiro CA, Neppelenbroek KH, Lara VS, Porto VC. Silver nanoparticles in denture adhesive: An antimicrobial approach against Candida albicans. J Dent 2023; 131:104445. [PMID: 36773742 DOI: 10.1016/j.jdent.2023.104445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE To evaluate the antimicrobial potential of silver nanoparticles (Ag NPs) synthesized using three different routes (ultraviolet light, Turkevich, and green chemistry method using Glycine max extract) associated with COREGA® denture powder adhesive. METHODS Heat-cured acrylic resin specimens were treated with different Ag NPs associated with the adhesive (AD + Ag UV, AD + Ag Turk, and AD + Ag Gm groups). As controls, the specimens were treated with a combination of adhesive and nystatin (AD + Nyst group), only adhesive (AD group), or submerged on the surface of the specimens (PBS group). After the treatments, biofilms of C. albicans developed for 3, 6, and 12 h on the specimen surfaces. The biofilm was quantified using colony-forming units per milliliter, colorimetric assay, and confocal laser scanning microscopy. RESULTS Regardless of the period, we observed an inhibition of fungal load and a reduction in metabolic activity and biofilm mass in the resin specimens treated with the combinations AD/Ag NPs, compared to AD and PBS. The antimicrobial action of the AD + Turk and AD + Ag Gm groups was similar than that for the AD + Nyst group in all periods and viability tests, except for the biofilm mass (12 h). CONCLUSIONS The COREGA® adhesive with Ag NPs, mainly those synthesized using the Turkevich and Glycine max methods, showed excellent antimicrobial activity against C. albicans biofilms, maintained for up to 12 h. CLINICAL SIGNIFICANCE The association of Ag NPs to the adhesive can add preventive or therapeutic effects against denture stomatitis, to this prosthetic material.
Collapse
Affiliation(s)
- Laura Catalí Ferreira Peralta
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Nara Ligia Martins Almeida
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | | | - Daniel Rinaldo
- Department of Chemistry, São Paulo State University (UNESP), Bauru, Brazil
| | - Camila Alves Carneiro
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Karin Hermana Neppelenbroek
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Vanessa Soares Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901
| | - Vinicius Carvalho Porto
- Department of Prosthodontics and Periodontics, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil, 17012-901.
| |
Collapse
|
54
|
Nie P, Zhao Y, Xu H. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114636. [PMID: 36806822 DOI: 10.1016/j.ecoenv.2023.114636] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) have become one of the most popular objects of study for the past few decades. The ability to design AgNPs through different synthetic methods according to the application area and desired features is their advantage in many applications. Green synthesis of silver nanoparticles has become one of the most potential synthesis methods. Because of their strong antibacterial activity, AgNPs have been used in a wide range of applications, such as food packaging and medical products and devices. With the increasing application of AgNPs, it is becoming necessary for a better understanding of the toxicity of AgNPs and their potential mechanism of toxicity. In the review, we first describe the synthetic methods of AgNPs. The application of AgNPs in the field is then briefly described. The toxicity of AgNPs and their potential toxicity mechanisms are discussed.
Collapse
Affiliation(s)
- Penghui Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yu Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
55
|
Rawashdeh RY, Qabaja G, Albiss BA. Antibacterial activity of multi-metallic (Ag-Cu-Li) nanorods with different metallic combination ratios against Staphylococcus aureus. BMC Res Notes 2023; 16:23. [PMID: 36855182 PMCID: PMC9976529 DOI: 10.1186/s13104-023-06284-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
OBJECTIVE Because of the need to extensively study the synergistic activity of metallic nanoparticles, this study aimed to evaluate the antibacterial activity of mixed metallic nanoparticles, made by differing the weight mixing ratio. We prepared multi-metallic nanorods (NRs) by chemical reduction method, with different ratio combinations of silver Ag and copper Cu, two main batches of nanorods were produced: bimetallic mix made only of Ag-Cu, and trimetallic mix made of Ag-Cu and lithium Li, AgCu NRs and AgCuLi NRs respectively. NaOH was used in the synthesis for the co-reduction of salt precursors. Ag percentage was varied from 10 to 90% in bimetallic NRs but in the trimetallic NRs, which has a fixed ratio of Li (10%), the percentage of silver precursor was from 10 to 80%. The presence of metals was confirmed by energy dispersive X-rays (EDX) analysis. Ion release was detected using inductively coupled plasma spectrometer (ICP) and the values showed that NRs are effective source for ion supply for up to 24 h. The antibacterial activity of metallic NRs was tested against Staphylococcus aureus using Bauer Kirby method. RESULTS The bi-synergistic mix of Ag and Cu generates more ions than the tri-synergistic mix of Ag, Cu, and Li. Nevertheless, the later was more efficient and showed higher antibacterial activity at lower concentrations. This effect is less likely to be attributed to modality of ion release. Indeed, the results of our work suggest that besides ion release, alloyed nanorods themselves are toxic and the trimetallic mix exhibited more biocidal activity, specifically at Ag salt concentrations of 30%, 50% and 70%.
Collapse
Affiliation(s)
- Rabeah Y. Rawashdeh
- grid.14440.350000 0004 0622 5497Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - Ghassan Qabaja
- grid.266860.c0000 0001 0671 255XCenter for Research Excellence in Nanobiosciences, University of North Carolina at Greensboro, Greensboro, NC 27412 USA
| | - Borhan Aldeen Albiss
- grid.37553.370000 0001 0097 5797Institute of Nanotechnology, Jordan University of Science and Technology, Irbid, 22110 Jordan
| |
Collapse
|
56
|
Aranaz I, Navarro-García F, Morri M, Acosta N, Casettari L, Heras A. Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity. Int J Biol Macromol 2023; 235:123849. [PMID: 36858087 DOI: 10.1016/j.ijbiomac.2023.123849] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/12/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
In this study, water-soluble chitosan salts (chitosan amine sulfopropyl salts) were prepared from chitosan samples with different molecular weights and deacetylation degrees. These soluble-in-water polymer salts allowed us to produce, in an eco-friendly and facile method, silver nanoparticles (AgNPs) with better control on size and polydispersity, even at large silver concentrations than their corresponding chitosan sample. Chitosan salt-based materials (films and scaffolds) were analyzed in terms of antibacterial properties against Staphylococcus aureus ATCC23915 or Pseudomonas aeruginosa ATCC 27853. 3D scaffolds enhanced the effect of the chitosan-AgNPs combination compared to the equivalent films.
Collapse
Affiliation(s)
- I Aranaz
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain.
| | - F Navarro-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - M Morri
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - N Acosta
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| | - L Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - A Heras
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, num. 1, E-28040 Madrid, Spain
| |
Collapse
|
57
|
Zhang Y, Wang H, Liu Y, Niu B, Li W. Preparation of conductive polyaniline hydrogels co‐doped with hydrochloric acid/phytic acid and their application in Ag
NPs
@
PA
/
GCE
biosensor for
H
2
O
2
detection. J Appl Polym Sci 2023. [DOI: 10.1002/app.53686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yanwei Zhang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Hong Wang
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Yaru Liu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Baolong Niu
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| | - Wenfeng Li
- College of Materials Science and Engineering Taiyuan University of Technology Taiyuan China
- Key Laboratory of Interface Science and Engineering in Advanced Materials Taiyuan University of Technology, Ministry of Education Taiyuan China
| |
Collapse
|
58
|
Attri P, Garg S, Ratan JK, Giri AS. Silver nanoparticles from Tabernaemontana divaricate leaf extract: mechanism of action and bio-application for photo degradation of 4-aminopyridine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24856-24875. [PMID: 35013966 DOI: 10.1007/s11356-021-18269-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (Ag NPs) were synthesised by the reduction of Ag+ to Ag0 in the presence of enol form of flavonoids present in plant extract of Tabernaemontana divaricate (T. divaricate). Prepared Ag NPs were characterised using UV-Vis, XRD, HR-TEM with EDX and XPS techniques. XPS spectra exhibited peaks at 366 eV and 373 eV, which specified spin orbits for Ag 3d3/2, and Ag 3d5/2 that confirmed the formation of Ag NPs. Ag NPs were spherical in shape with an average size of 30 nm as revealed by HR-TEM and FE-SEM techniques. EDX studies verified the high purity of Ag NPs with silver 46.96%, carbon 16.35%, oxygen 16.22%, nitrogen 20.25% and sulphur 0.21%. LC-MS analysis of plant extract confirmed the qualitative presence of alkaloids, tannins, flavonoids, phenols, and carbohydrates. Prepared Ag NPs showed good photocatalytic activity towards degradation of 4-Amniopyridine with 61% degradation efficiency at optimum conditions in 2 h of reaction time under visible light. The ten intermediates were found within the mass number of 0-450. Ag NPs synthesised using bio-extract have also shown good inactivation against Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) bacteria due to the availability of free radicals.
Collapse
Affiliation(s)
- Pratibha Attri
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Sangeeta Garg
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India.
| | - Jatinder Kumar Ratan
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India
| | - Ardhendu Sekhar Giri
- Department of Chemical Engineering, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
59
|
Moreno-Vargas JM, Echeverry-Cardona LM, Moreno-Montoya LE, Restrepo-Parra E. Evaluation of Antifungal Activity of Ag Nanoparticles Synthetized by Green Chemistry against Fusarium solani and Rhizopus stolonifera. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:548. [PMID: 36770509 PMCID: PMC9919702 DOI: 10.3390/nano13030548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Silver nanoparticles (AgNPs) have aroused great interest for applications as fungicides in agriculture. This study reports the synthesis of AgNPs by green chemistry using silver nitrate (AgNO3) as the precursor agent and a coriander leaf extract as the reducing agent and surfactant. The evaluation of their antifungal properties was carried out when placed in contact with Fusarium solani and Rhizopus stolonifer phytopathogens. The extract and AgNP characterizations were performed using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), dynamic light scattering (DLS) and scanning electron microscopy (SEM). The evaluation of antifungal properties was carried out by exposing the phytopathogens to different concentrations of AgNPs in PDA (Potato Dextrose Agar). It was found that it was possible to identify the presence of flavones and flavonoids in the extract, compounds that were also involved in the synthesis process of AgNPs. In addition, the UV-Vis analysis of the obtained AgNPs by green chemistry showed resonance peaks at around 428 nm. Furthermore, a high distribution of AgNP sizes, with high concentrations of below 100 nm, was identified, according to DLS measurements. Using SEM images, the information provided by DLS was confirmed, and a crystallite size of 29.24 nm was determined with the help of XRD measurements. Finally, when exposing the phytopathogens to the action of AgNPs, it was concluded that, at a concentration of 1 mg/mL AgNPs, their growth was totally inhibited.
Collapse
|
60
|
Marin MM, Albu Kaya M, Kaya DA, Constantinescu R, Trica B, Gifu IC, Alexandrescu E, Nistor CL, Alexa RL, Ianchis R. Novel Nanocomposite Hydrogels Based on Crosslinked Microbial Polysaccharide as Potential Bioactive Wound Dressings. MATERIALS (BASEL, SWITZERLAND) 2023; 16:982. [PMID: 36769988 PMCID: PMC9920030 DOI: 10.3390/ma16030982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 05/31/2023]
Abstract
A multitude of dressings have been developed to promote wound repair, such as membranes, foams, hydrocolloids and hydrogels. In this study, a crosslinked polysaccharide hydrogel was mixed with a bioactive ingredient to synthesize a novel nanocomposite material to be used in wound healing. Variation of the ratio between hydrogel components was followed and its effect was analyzed in regard to swelling, degradation rate and thermo-mechanical behavior. The resulting crosslinked structures were characterized by FTIR and microscopy analyses. The antimicrobial activity of the crosslinked hydrogels loaded with bioactive agent was evaluated using two bacterial strains (Gram-positive Staphylococcus aureus and Gram-negative bacteria Escherichia Coli). All the results showed that the new synthesized biopolymer nanocomposites have adequate properties to be used as antibacterial wound dressings.
Collapse
Affiliation(s)
- Maria Minodora Marin
- National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, Department of Collagen, 93 Ion Minulescu Str., 031215 Bucharest, Romania
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania
| | - Madalina Albu Kaya
- National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, Department of Collagen, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Durmus Alpaslan Kaya
- National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, Department of Collagen, 93 Ion Minulescu Str., 031215 Bucharest, Romania
- Faculty of Agriculture, Hatay Mustafa Kemal University, Hatay 31060, Turkey
| | - Roxana Constantinescu
- National Research and Development Institute for Textile and Leather, Division Leather and Footwear Research Institute, Department of Collagen, 93 Ion Minulescu Str., 031215 Bucharest, Romania
| | - Bogdan Trica
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Rebeca Leu Alexa
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania
| | - Raluca Ianchis
- National Research and Development Institute for Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
61
|
Preparation of ultrafine and highly loaded silver nanoparticle composites and their highly efficient applications as reductive catalysts and antibacterial agents. J Colloid Interface Sci 2023; 629:766-777. [DOI: 10.1016/j.jcis.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
|
62
|
Li S, Mu B, Zhang H, Kang Y, Wang A. Incorporation of silver nanoparticles/curcumin/clay minerals into chitosan film for enhancing mechanical properties, antioxidant and antibacterial activity. Int J Biol Macromol 2022; 223:779-789. [PMID: 36370856 DOI: 10.1016/j.ijbiomac.2022.11.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
It is popular that natural organics are served as green reducing and end-capping reagent for synthesis of functional nanoparticles. In this study, curcumin, a natural pigment, was employed to prepare silver nanoparticles (AgNPs) as a coloring, reducing and end-capping agent by an eco-friendly, economic and facile approach in the presence of different clay minerals, including palygorskite, montmorillonite and mixed-dimensional palygorskite clay. It was found that the phenolic hydroxyl groups or carbonyl groups of curcumin played a crucial role to reduce silver ions into AgNPs with the ginger color. Meanwhile, incorporation of clay minerals could induce the in-situ heterogeneous nucleation of AgNPs on the surface or/and interlayer of the involved clay minerals. It effectively prevented from the aggregations and resulted in uniform dispersion of AgNPs with a diameter of 30-40 nm. Furthermore, the as-prepared nanocomposites exhibited a higher antioxidant (>90%) and antibacterial activity. Due to the synergistic effect of each component among the nanocompositions, the nanocomposites derived from different clay minerals were employed as multifunctional nanofillers to design functional chitosan composite films. By contrast, the chitosan composite films containing curcumin-capped AgNPs/mixed-dimensional palygorskite clay nanocomposites exhibited the best mechanical properties, antioxidant and antibacterial activities. Compared with the chitosan films, the tensile strength and elongation at break of composite films increased by 15.90 MPa and 27.27%, respectively. The inactivation rate of the composite films against Escherichia coli and Staphylococcus aureus had reached 100%. Therefore, the obtained composite film with the ginger color exhibited excellent mechanical, water resistance, antioxidant and antibacterial properties, and it was expected to develop a great potential functional packaging materials.
Collapse
Affiliation(s)
- Shue Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Hong Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
63
|
Binding of silver ions to alpha-lactalbumin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
64
|
Wei Z, Li K, Wang S, Wen L, Xu L, Wang Y, Chen Z, Li W, Qiu H, Li X, Chen J. Controllable AgNPs encapsulation to construct biocompatible and antibacterial titanium implant. Front Bioeng Biotechnol 2022; 10:1056419. [PMID: 36532588 PMCID: PMC9747934 DOI: 10.3389/fbioe.2022.1056419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 08/29/2023] Open
Abstract
Silver nanoparticles (AgNPs) are progressively becoming an in-demand material for both medical and life use due to their effective antimicrobial properties. The high surface area-to-volume ratio endows AgNPs with enhanced antibacterial capacity accompanied by inevitable cytotoxicity. Surface coating technique could precisely regulate the particle shape, aggregation, and Ag+ release pattern of AgNPs, by which the cytotoxicity could be significantly reduced. Various coating methods have been explored to shell AgNPs, but it remains a great challenge to precisely control the aggregation state of AgNPs and their shell thickness. Herein, we proposed a simple method to prepare a tunable polydopamine (pDA) coating shell on AgNPs just by tuning the reaction pH and temperature, yet we obtained high antibacterial property and excellent biocompatibility. SEM and TEM revealed that pDA coated AgNPs can form core-shell structures with different aggregation states and shell thickness. Both in vitro and in vivo antibacterial tests show that acid condition and heat-treatment lead to appropriate AgNPs cores and pDA shell structures, which endow Ti with sustained antibacterial properties and preferable cell compatibility. One month of implantation in an infected animal model demonstrated that the obtained surface could promote osteogenesis and inhibit inflammation due to its strong antibacterial properties. Therefore, this study provides a promising approach to fabricate biocompatible antibacterial surface.
Collapse
Affiliation(s)
- Zhangao Wei
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Kexin Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Shuang Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Lan Wen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linghan Xu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Yankai Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Zirui Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Wei Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Hua Qiu
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Xiangyang Li
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| | - Jialong Chen
- Key Laboratory of Oral Diseases Research of Anhui Province, Stomatologic Hospital and College, Anhui Medical University, Hefei, China
| |
Collapse
|
65
|
Ivanišević I, Kovačić M, Zubak M, Ressler A, Krivačić S, Katančić Z, Gudan Pavlović I, Kassal P. Amphiphilic Silver Nanoparticles for Inkjet-Printable Conductive Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234252. [PMID: 36500875 PMCID: PMC9739383 DOI: 10.3390/nano12234252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/14/2023]
Abstract
The large-scale manufacturing of flexible electronics is nowadays based on inkjet printing technology using specially formulated conductive inks, but achieving adequate wetting of different surfaces remains a challenge. In this work, the development of a silver nanoparticle-based functional ink for printing on flexible paper and plastic substrates is demonstrated. Amphiphilic silver nanoparticles with narrow particle size distribution and good dispersibility were prepared via a two-step wet chemical synthesis procedure. First, silver nanoparticles capped with poly(acrylic acid) were prepared, followed by an amidation reaction with 3-morpholynopropylamine (MPA) to increase their lipophilicity. Density functional theory (DFT) calculations were performed to study the interactions between the particles and the dispersion medium in detail. The amphiphilic nanoparticles were dispersed in solvents of different polarity and their physicochemical and rheological properties were determined. A stable ink containing 10 wt% amphiphilic silver nanoparticles was formulated and inkjet-printed on different surfaces, followed by intense pulsed light (IPL) sintering. Low sheet resistances of 3.85 Ω sq-1, 0.57 Ω sq-1 and 19.7 Ω sq-1 were obtained for the paper, coated poly(ethylene terephthalate) (PET) and uncoated polyimide (PI) flexible substrates, respectively. Application of the nanoparticle ink for printed electronics was demonstrated via a simple flexible LED circuit.
Collapse
Affiliation(s)
- Irena Ivanišević
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marin Kovačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Marko Zubak
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 6, P.O. Box 589, 33014 Tampere, Finland
| | - Sara Krivačić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Zvonimir Katančić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Iva Gudan Pavlović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
66
|
Di Filippo MF, Di Matteo V, Dolci LS, Albertini B, Ballarin B, Cassani MC, Passerini N, Gentilomi GA, Bonvicini F, Panzavolta S. Effectiveness of Snail Slime in the Green Synthesis of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193447. [PMID: 36234575 PMCID: PMC9565232 DOI: 10.3390/nano12193447] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/01/2023]
Abstract
The development of green, low cost and sustainable synthetic routes to produce metal nanoparticles is of outmost importance, as these materials fulfill large scale applications in a number of different areas. Herein, snail slime extracted from Helix Aspersa snails was successfully employed both as bio-reducing agent of silver nitrate and as bio-stabilizer of the obtained nanoparticles. Several trials were carried out by varying temperature, the volume of snail slime and the silver nitrate concentration to find the best biogenic pathway to produce silver nanoparticles. The best results were obtained when the synthesis was performed at room temperature and neutral pH. UV-Visible Spectroscopy, SEM-TEM and FTIR were used for a detailed characterization of the nanoparticles. The obtained nanoparticles are spherical, with mean diameters measured from TEM images ranging from 15 to 30 nm and stable over time. The role of proteins and glycoproteins in the biogenic production of silver nanoparticles was elucidated. Infrared spectra clearly showed the presence of proteins all around the silver core. The macromolecular shell is also responsible of the effectiveness of the synthesized AgNPs to inhibit Gram positive and Gram negative bacterial growth.
Collapse
Affiliation(s)
| | - Valentina Di Matteo
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, 40136 Bologna, Italy
| | - Luisa Stella Dolci
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Barbara Ballarin
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, 40136 Bologna, Italy
- Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology CIRI MAM, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
- Center for Industrial Research-Fonti Rinnovabili, Ambiente, Mare e Energia CIRI FRAME, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy
| | - Maria Cristina Cassani
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Via Risorgimento 4, 40136 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST- ICIR) Alma Mater Studiorum—University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Panzavolta
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health Sciences and Technologies—Interdepartmental Center for Industrial Research (HST- ICIR) Alma Mater Studiorum—University of Bologna, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
67
|
Khan SA, Jain M, Pandey A, Pant KK, Ziora ZM, Blaskovich MAT, Shetti NP, Aminabhavi TM. Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115675. [PMID: 35834856 DOI: 10.1016/j.jenvman.2022.115675] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Increasing demand of pure and accessible water and improper disposal of waste into the existing water resources are the major challenges for sustainable development. Nanoscale technology is an effective approach that is increasingly being applied to water remediation. Compared to conventional water treatment processes, silver nanotechnology has been demonstrated to have advantages due to its anti-microbial and oligodynamic (biocidal) properties. This review is focused on environmentally friendly green syntheses of silver nanoparticles (AgNPs) and their applications for the disinfection and microbial control of wastewater. A bibliometric keyword analysis is conducted to unveil important keywords and topics in the utilisation of AgNPs for water treatment applications. The effectiveness of AgNPs, as both free nanoparticles (NPs) or as supported NPs (nanocomposites), to deal with noxious pollutants like complex dyes, heavy metals as well as emerging pollutants of concern is also discussed. This knowledge dataset will be helpful for researchers to identify and utilise the distinctive features of AgNPs and will hopefully stimulate the development of novel solutions to improve wastewater treatment. This review will also help researchers to prepare effective water management strategies using nano silver-based systems manufactured using green chemistry.
Collapse
Affiliation(s)
- Sadaf Aiman Khan
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Marut Jain
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ashish Pandey
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India
| | - Kamal Kishore Pant
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, New Delhi, India.
| | - Zyta Maria Ziora
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland - Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| |
Collapse
|
68
|
Hagarová I, Nemček L, Šebesta M, Zvěřina O, Kasak P, Urík M. Preconcentration and Separation of Gold Nanoparticles from Environmental Waters Using Extraction Techniques Followed by Spectrometric Quantification. Int J Mol Sci 2022; 23:ijms231911465. [PMID: 36232767 PMCID: PMC9570491 DOI: 10.3390/ijms231911465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The quantification of gold nanoparticles (AuNP) in environmental samples at ultratrace concentrations can be accurately performed by sophisticated and pricey analytical methods. This paper aims to challenge the analytical potential and advantages of cheaper and equally reliable alternatives that couple the well-established extraction procedures with common spectrometric methods. We discuss several combinations of techniques that are suitable for separation/preconcentration and quantification of AuNP in complex and challenging aqueous matrices, such as tap, river, lake, brook, mineral, and sea waters, as well as wastewaters. Cloud point extraction (CPE) has been successfully combined with electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICP-MS), chemiluminescence (CL), and total reflection X-ray fluorescence spectrometry (TXRF). The major advantage of this approach is the ability to quantify AuNP of different sizes and coatings in a sample with a volume in the order of milliliters. Small volumes of sample (5 mL), dispersive solvent (50 µL), and extraction agent (70 µL) were reported also for surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) coupled with electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). The limits of detection (LOD) achieved using different combinations of methods as well as enrichment factors (EF) varied greatly, being 0.004–200 ng L−1 and 8–250, respectively.
Collapse
Affiliation(s)
- Ingrid Hagarová
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Lucia Nemček
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Martin Šebesta
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
| | - Ondřej Zvěřina
- Department of Public Health, Faculty of Medicine, Masaryk University in Brno, Kamenice 5, 625 00 Brno, Czech Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Martin Urík
- Faculty of Natural Sciences, Institute of Laboratory Research on Geomaterials, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 845 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9392
| |
Collapse
|
69
|
da Silva FG, Formo EV, Camargo PHC. Achieving enhanced peroxidase-like activity in multimetallic nanorattles. Dalton Trans 2022; 51:15133-15141. [PMID: 36129247 DOI: 10.1039/d2dt02389j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (Au NPs) have been extensively used as artificial enzymes, but their performance is still limited. We address this challenge by focusing on multimetallic nanorattles comprising an Au core inside a bimetallic AgAu shell, separated by a void (Au@AgAu NRs). They were prepared by a galvanic replacement approach and contained an ultrathin and porous shell comprising an AgAu alloy. By investigating the peroxide-like activity using TMB oxidation as a model transformation, we have found an increase of 152 fold in activities for the NRs relative to conventional Au NPs. Based on the kinetics results, the NRs also showed the lowest Km, indicating better interaction with the substrate and faster product formation. We also observed a linear relationship between the concentration of the product and oxTMB as a function of H2O2 concentration, which could be further applied for H2O2 sensing applications (colorimetric detection). These data suggest that the NRs enable the combined effect of an increased surface area relative to solid counterparts, the possibility of exposing highly active surface sites, and the exploitation of nanoconfinement effects due to the void regions between the core and shell components. These results provide important insights into the optimization of peroxidase-like performances beyond what can be achieved in conventional NPs and may inspire the development of better-performing artificial enzymes.
Collapse
Affiliation(s)
- Flavia G da Silva
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland.
| | - Eric V Formo
- University of Georgia, Georgia Electron Microscopy, Athens, Georgia 30602, USA
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland.
| |
Collapse
|
70
|
Extremophilic Microorganisms for the Green Synthesis of Antibacterial Nanoparticles. Microorganisms 2022; 10:microorganisms10101885. [PMID: 36296161 PMCID: PMC9612390 DOI: 10.3390/microorganisms10101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
The biogenic synthesis of nanomaterials, i.e., synthesis carried out by means of living organisms, is an emerging technique in nanotechnology since it represents a greener and more eco-friendly method for the production of nanomaterials. In this line, in order to find new biological entities capable of biogenic synthesis, we tested the ability of some extremophilic microorganisms to carry out the biogenic production of AgNPs and SeNPs. Silver NPs were produced extracellularly by means of the thermophilic Thermus thermophilus strain SAMU; the haloalkaliphilic Halomonas campaniensis strain 5AG was instead found to be useful for the synthesis of SeNPs. The structural characterization of the biogenic nanoparticles showed that both the Ag and Se NPs possessed a protein coating on their surface and that they were organized in aggregates. Moreover, both types of NPs were found be able to exert an interesting antibacterial effect against either Gram-positive or Gram-negative species. This study confirmed that extremophilic microorganisms can be considered valuable producers of biologically active nanoparticles; nevertheless, further experiments must be performed to improve the synthesis protocols in addition to the downstream processes.
Collapse
|
71
|
Guselnikova O, Nugraha AS, Na J, Postnikov P, Kim HJ, Plotnikov E, Yamauchi Y. Surface Filtration in Mesoporous Au Films Decorated by Ag Nanoparticles for Solving SERS Sensing Small Molecules in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41629-41639. [PMID: 36043945 DOI: 10.1021/acsami.2c12804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For surface-enhanced Raman spectroscopy (SERS) sensing of small molecules in the presence of living cells, biofouling and blocking of plasmonic centers are key challenges. Here, we have developed a mesoporous Au (AuM) film coated with a Ag nanoparticles (NPs) as a plasmonic sensor (AuM@Ag) to analyze aromatic thiols, which is an example of a small molecule, in the presence of a living cell strain (e.g., MDA-MB-231) as a model living system. The resulting AuM@Ag provides 0.1 nM sensitivity and high reproducibility for thiols sensing. Simultaneously, the AuM@Ag film filters large biomolecules, preventing Raman signals from overlapping produced by large biomolecules. After analysis, the AuM@Ag film undergoes recycling by the full dissolution of the Ag-thiol layer and removal of thiols from AuM. Furthermore, fresh AgNPs are formed for further SERS analysis, which circumvents the Ag oxidation issue. The ease of the AgNPs deposition allows up to 12 cycles of on-demand recycling and sensing even after utilization as a sensor in multicomponent media without enhancement and sensitivity loss. The reported mesoporous film with surface filtering ability and prominent recycling procedure promises to offer a new strategy for the detection of various small molecules in the presence of living cells.
Collapse
Affiliation(s)
- Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Asep Sugih Nugraha
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo 58656, Republic of Korea
- Materials Architecturing Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon 21999, Republic of Korea
| | - Evgenii Plotnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 6340034, Russian Federation
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
72
|
Ali G, Khan A, Shahzad A, Alhodaib A, Qasim M, Naz I, Rehman A. Phytogenic-mediated silver nanoparticles using Persicaria hydropiper extracts and its catalytic activity against multidrug resistant bacteria. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
73
|
Huang L, Yu L, Yin X, Lin Y, Xu Y, Niu Y. Silver nanoparticles with vanadium oxide nanowires loaded into electrospun dressings for efficient healing of bacterium-infected wounds. J Colloid Interface Sci 2022; 622:117-125. [DOI: 10.1016/j.jcis.2022.04.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/21/2022]
|
74
|
Kemala P, Idroes R, Khairan K, Ramli M, Jalil Z, Idroes GM, Tallei TE, Helwani Z, Safitri E, Iqhrammullah M, Nasution R. Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia. Molecules 2022; 27:5310. [PMID: 36014547 PMCID: PMC9415655 DOI: 10.3390/molecules27165310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
Herein, we report our success synthesizing silver nanoparticles (AgNPs) using aqueous extracts from the leaves and flowers of Calotropis gigantea growing in the geothermal manifestation Ie Seu-Um, Aceh Besar, Indonesia. C. gigantea aqueous extract can be used as a bio-reductant for Ag+→Ag0 conversion, obtained by 48h incubation of Ag+, and the extract mixture in a dark condition. UV-Vis characterization showed that the surface plasmon resonance (SPR) peaks of AgNPs-leaf C. gigantea (AgNPs-LCg) and AgNPs-flower C. gigantea (AgNPs-FCg) appeared in the wavelength range of 410-460 nm. Scanning electron microscopy energy-dispersive X-ray spectrometry (SEM-EDS) revealed the agglomeration and spherical shapes of AgNPs-LCg and AgNPs-FCg with diameters ranging from 87.85 to 256.7 nm. Zeta potentials were observed in the range of -41.8 to -25.1 mV. The Kirby-Bauer disc diffusion assay revealed AgNPs-FCg as the most potent antimicrobial agent with inhibition zones of 12.05 ± 0.58, 11.29 ± 0.45, and 9.02 ± 0.10 mm for Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. In conclusion, aqueous extract from the leaves or flowers of Calotropis gigantea may be used in the green synthesis of AgNPs with broad-spectrum antimicrobial activities.
Collapse
Affiliation(s)
- Pati Kemala
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Rinaldi Idroes
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Herbal Medicine Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Khairan Khairan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
- Herbal Medicine Research Center, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Muliadi Ramli
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Zulkarnain Jalil
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Ghazi Mauer Idroes
- Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Zuchra Helwani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru 28293, Indonesia
| | - Eka Safitri
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| | - Muhammad Iqhrammullah
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Rosnani Nasution
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
| |
Collapse
|
75
|
Yao Y, Zhang T, Tang M. A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119270. [PMID: 35398402 DOI: 10.1016/j.envpol.2022.119270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
76
|
Meng Q, Ding J, Peng B, Zhang B, Qian S, Su B, Zhang C. Terahertz modulation characteristics of three nanosols under external field control based on microfluidic chip. iScience 2022; 25:104898. [PMID: 36043051 PMCID: PMC9420507 DOI: 10.1016/j.isci.2022.104898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Recently, with the widespread application of metamaterials in the terahertz (THz) modulation field, solid-state THz modulators have made breakthrough progress; however, there are still challenges in preparing flexible THz modulators with wide modulation bandwidths. In this study, a THz microfluidic chip was fabricated using cycloolefin copolymers with high transmission (90%) of THz waves. The THz modulation characteristics of TiO2, Ag, and Fe3O4 nanosols under the control of an optical field, electric field, and magnetic field, respectively, were investigated. Under the action of photogenerated carrier migration, colloidal electrophoresis, and magneto-optical effect, all three nanosols exhibit broadband modulation performance in the frequency range of 0.3–2.4 THz, and the maximum modulation depth is 24%, 33%, and 54%, respectively. Contrary to previous studies based on traditional solid-state materials, this study innovatively explores the possibility of modulating THz waves with liquid materials, laying the foundation for the application of flexible liquid-film THz modulators. THz broadband amplitude modulation of liquid nanosols under external fields Using a microfluidic chip to reduce the absorption of THz waves by hydrogen bonds The experimental results lay a foundation for liquid-film THz modulators
Collapse
|
77
|
Saengsonachai A, Seekaew Y, Traiwatcharanon P, Wongchoosuk C. Dual functions of alternating current electroluminescent device for light emission and humidity detection. NANOTECHNOLOGY 2022; 33:405202. [PMID: 35767930 DOI: 10.1088/1361-6528/ac7cf5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Alternating current electroluminescent (AC-EL) device can be considered as a potential candidate for next generation of multifunctional light-emitting sources. In this work, we present a new design of AC-EL device with inclusion of a silver oxide humidity-sensing layer instead of an insulating buffer layer for humidity detection. The ZnS:Cu, Cl and ZnS:Ag+(Zn,Cd)S:Ag phosphors were used as an emissive layer prepared by screen printing method. The silver oxide (AgO/Ag2O) nanoparticles synthesized via a green method were employed as a humidity sensing layer. The developed AC-EL devices exhibited high response, good productivity, high stability, high repeatability and linear relationship with humidity in range of 10%-90% RH as well as no significant effects with several VOCs/gases such as NH3, CO2, acetone, methanol, toluene and propan at room temperature. The effects of parameters such as excitation frequency, applied voltage, and waveforms on the luminance intensity are discussed. The development of the present AC-EL device offers a simplified architecture to enable sensing functions of the AC-EL device via monitoring of light emission changing.
Collapse
Affiliation(s)
- Alisa Saengsonachai
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Yotsarayuth Seekaew
- Department of Physics, Faculty of Science, Ramkhamhaeng University, Bang Kapi, Bangkok 10240, Thailand
| | | | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
78
|
Mo F, Zhou Q, He Y. Nano-Ag: Environmental applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154644. [PMID: 35307428 DOI: 10.1016/j.scitotenv.2022.154644] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles (AgNPs) are promising bactericidal agents and plasmonic NPs for environmental applications, owing to their various favorable properties. For example, AgNPs enables reactive oxygen species (ROS) generation, surface plasmon resonance (SPR), and specific reaction selectivities. In fact, AgNPs-based materials and their antimicrobial, optical, and electrical effects are at the forefront of nanotechnology, having applications in environmental disinfection, elimination of environmental pollutants, environmental detection, and energy conversions. This review aims to comprehensively summarize the advanced applications and fundamental mechanisms to provide the guidelines for future work in the field of AgNPs implanted functional materials. The state-of-art terms including (photo)(electro)catalytic reactions, heterojunction formation, the generation and attacking of ROS, genetic damage, hot electron generation and transfer, localized surface plasmon resonance (LSPR), plasmon resonance energy transfer (PERT), near field electromagnetic enhancement, structure-function relationship, and reaction selectivities have been covered in this review. It is expected that this review may provide insights into the rational development in the next generation of AgNPs-based nanomaterials with excellent performances.
Collapse
Affiliation(s)
- Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yuqing He
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
79
|
Pryshchepa O, Pomastowski P, Rafińska K, Gołębiowski A, Rogowska A, Monedeiro-Milanowski M, Sagandykova G, Michalke B, Schmitt-Kopplin P, Gloc M, Dobrucka R, Kurzydłowski K, Buszewski B. Synthesis, Physicochemical Characterization, and Antibacterial Performance of Silver—Lactoferrin Complexes. Int J Mol Sci 2022; 23:ijms23137112. [PMID: 35806114 PMCID: PMC9266553 DOI: 10.3390/ijms23137112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Antibiotic-resistant bacteria pose one of the major threats to human health worldwide. The issue is fundamental in the case of chronic wound treatment. One of the latest trends to overcome the problem is the search for new antibacterial agents based on silver. Thus, the aim of this research was to synthesize the silver-lactoferrin complex as a new generation of substances for the treatment of infected wounds. Moreover, one of the tasks was to investigate the formation mechanisms of the respective complexes and the influence of different synthesis conditions on the features of final product. The batch-sorption study was performed by applying the Langmuir and Freundlich isotherm models for the process description. Characterization of the complexes was carried out by spectroscopy, spectrometry, and separation techniques, as well as with electron microscopy. Additionally, the biological properties of the complex were evaluated, i.e., the antibacterial activity against selected bacteria and the impact on L929 cell-line viability. The results indicate the formation of a heterogeneous silver–lactoferrin complex that comprises silver nanoparticles. The complex has higher antibacterial strength than both native bovine lactoferrin and Ag+, while being comparable to silver toxicity.
Collapse
Affiliation(s)
- Oleksandra Pryshchepa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Correspondence:
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Adrian Gołębiowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Maciej Monedeiro-Milanowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
| | - Gulyaim Sagandykova
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany; (B.M.); (P.S.-K.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum Muenchen, 85764 Neuherberg, Germany; (B.M.); (P.S.-K.)
- Chair of Analytical Food Chemistry, Technische Universität München, 85354 Freising, Germany
| | - Michał Gloc
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.G.); (R.D.)
| | - Renata Dobrucka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland; (M.G.); (R.D.)
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, 61-875 Poznań, Poland
| | - Krzysztof Kurzydłowski
- Faculty of Mechanical Engineering, Białystok University of Technology, 15-351 Białystok, Poland;
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (P.P.); (A.G.); (A.R.); (M.M.-M.); (G.S.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| |
Collapse
|
80
|
Morozova OV, Manuvera VA, Grishchechkin AE, Barinov NA, Shevlyagina NV, Zhukhovitsky VG, Lazarev VN, Klinov DV. Targeting of Silver Cations, Silver-Cystine Complexes, Ag Nanoclusters, and Nanoparticles towards SARS-CoV-2 RNA and Recombinant Virion Proteins. Viruses 2022; 14:v14050902. [PMID: 35632644 PMCID: PMC9144282 DOI: 10.3390/v14050902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Nanosilver possesses antiviral, antibacterial, anti-inflammatory, anti-angiogenesis, antiplatelet, and anticancer properties. The development of disinfectants, inactivated vaccines, and combined etiotropic and immunomodulation therapy against respiratory viral infections, including COVID-19, remains urgent. Aim: Our goal was to determine the SARS-CoV-2 molecular targets (genomic RNA and the structural virion proteins S and N) for silver-containing nanomaterials. Methods: SARS-CoV-2 gene cloning, purification of S2 and N recombinant proteins, viral RNA isolation from patients’ blood samples, reverse transcription with quantitative real-time PCR ((RT)2-PCR), ELISA, and multiplex immunofluorescent analysis with magnetic beads (xMAP) for detection of 17 inflammation markers. Results: Fluorescent Ag nanoclusters (NCs) less than 2 nm with a few recovered silver atoms, citrate coated Ag nanoparticles (NPs) with diameters of 20–120 nm, and nanoconjugates of 50–150 nm consisting of Ag NPs with different protein envelopes were constructed from AgNO3 and analyzed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible light absorption, and fluorescent spectroscopy. SARS-CoV-2 RNA isolated from COVID-19 patients’ blood samples was completely cleaved with the artificial RNase complex compound Li+[Ag+2Cys2−(OH−)2(NH3)2] (Ag-2S), whereas other Ag-containing materials provided partial RNA degradation only. Treatment of the SARS-CoV-2 S2 and N recombinant antigens with AgNO3 and Ag NPs inhibited their binding with specific polyclonal antibodies, as shown by ELISA. Fluorescent Ag NCs with albumin or immunoglobulins, Ag-2S complex, and nanoconjugates of Ag NPs with protein shells had no effect on the interaction between coronavirus recombinant antigens and antibodies. Reduced production of a majority of the 17 inflammation biomarkers after treatment of three human cell lines with nanosilver was demonstrated by xMAP. Conclusion: The antiviral properties of the silver nanomaterials against SARS-CoV-2 coronavirus differed. The small-molecular-weight artificial RNase Ag-2S provided exhaustive RNA destruction but could not bind with the SARS-CoV-2 recombinant antigens. On the contrary, Ag+ ions and Ag NPs interacted with the SARS-CoV-2 recombinant antigens N and S but were less efficient at performing viral RNA cleavage. One should note that SARS-CoV-2 RNA was more stable than MS2 phage RNA. The isolated RNA of both the MS2 phage and SARS-CoV-2 were more degradable than the MS2 phage and coronavirus particles in patients’ blood, due to the protection with structural proteins. To reduce the risk of the virus resistance, a combined treatment with Ag-2S and Ag NPs could be used. To prevent cytokine storm during the early stages of respiratory infections with RNA-containing viruses, nanoconjugates of Ag NPs with surface proteins could be recommended.
Collapse
Affiliation(s)
- Olga V. Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (V.A.M.); (N.A.B.); (V.N.L.); (D.V.K.)
- D.I. Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya St., 123098 Moscow, Russia; (A.E.G.); (N.V.S.); (V.G.Z.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354349 Sochi, Russia
- Correspondence:
| | - Valentin A. Manuvera
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (V.A.M.); (N.A.B.); (V.N.L.); (D.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Russia
| | - Alexander E. Grishchechkin
- D.I. Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya St., 123098 Moscow, Russia; (A.E.G.); (N.V.S.); (V.G.Z.)
| | - Nikolay A. Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (V.A.M.); (N.A.B.); (V.N.L.); (D.V.K.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354349 Sochi, Russia
| | - Nataliya V. Shevlyagina
- D.I. Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya St., 123098 Moscow, Russia; (A.E.G.); (N.V.S.); (V.G.Z.)
| | - Vladimir G. Zhukhovitsky
- D.I. Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, 16 Gamaleya St., 123098 Moscow, Russia; (A.E.G.); (N.V.S.); (V.G.Z.)
| | - Vassili N. Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (V.A.M.); (N.A.B.); (V.N.L.); (D.V.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 1A Malaya Pirogovskaya St., 119435 Moscow, Russia; (V.A.M.); (N.A.B.); (V.N.L.); (D.V.K.)
- Sirius University of Science and Technology, 1 Olympic Ave., 354349 Sochi, Russia
- Moscow Institute of Physics and Technology, 9 Institutsky Per., 141700 Dolgoprudny, Russia
| |
Collapse
|
81
|
Adamczyk Z, Morga M, Nattich-Rak M, Sadowska M. Nanoparticle and bioparticle deposition kinetics. Adv Colloid Interface Sci 2022; 302:102630. [PMID: 35313169 DOI: 10.1016/j.cis.2022.102630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
Mechanisms and kinetic of particle deposition at solid surfaces leading to the formation of self-assembled layers of controlled structure and density were reviewed. In the first part theoretical aspects were briefly discussed, comprising limiting analytical solutions for the linear transport under flow and diffusion. Methods of the deposition kinetics analysis for non-linear regimes affected by surface blocking were also considered. Characteristic monolayer formation times under diffusion and flow for the nanoparticle size range were calculated. In the second part illustrative experimental results obtained for micro- and nanoparticles were discussed. Deposition at planar substrates was analyzed with emphasis focused on the stability of layers and the release kinetics of silver particles. Applicability of the quartz microbalance measurements (QCM) for quantitative studies of nanoparticle deposition kinetic was also discussed. Except for noble metal and polymer particles, representative results for virus deposition at abiotic surfaces were analyzed. Final part of the review was devoted to nanoparticle corona formation at polymer carrier particles investigated by combination of the concentration depletion, AFM, SEM and the in situ electrokinetic method. It is argued that the results obtained for colloid particles can be used as reliable reference systems for interpretation of protein and other bioparticle deposition, confirming the thesis that simple is universal.
Collapse
Affiliation(s)
- Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Maria Morga
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland.
| | - Małgorzata Nattich-Rak
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Marta Sadowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
82
|
Ruffo M, Parisi OI, Dattilo M, Patitucci F, Malivindi R, Pezzi V, Tzanov T, Puoci F. Synthesis and evaluation of wound healing properties of hydro-diab hydrogel loaded with green-synthetized AGNPS: in vitro and in ex vivo studies. Drug Deliv Transl Res 2022; 12:1881-1894. [PMID: 35359261 PMCID: PMC9242975 DOI: 10.1007/s13346-022-01121-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
In diabetic patients, the presence of neuropathy, peripheral vascular diseases and ischemia, leads to the formation of foot ulcerations with a higher risk of infection because the normal response to bacterial infection is missing. In the aim to control and treat diabetic foot ulcerations (DFUs), wound dressings that are able to absorb exudate, to prevent infections, and to promote wound healing are needed. For this reason, the aim of the present research was to synthetize a biocompatible hydrogel (called HyDrO-DiAb) composed of carboxymethylcellulose loaded with silver nanoparticles (AgNPs) for the treatment of diabetic foot ulcers. In this study, AgNPs were obtained by a green synthesis and, then, were dissolved in a CMC hydrogel that, after a freeze drying process, becomes a flexible and porous structure. The in vitro and in ex vivo wound healing activity of the obtained HyDrO-DiAb hydrogel was evaluated.
Collapse
Affiliation(s)
- Mariarosa Ruffo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy.,Macrofarm S.R.L, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy.,Macrofarm S.R.L, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy.,Macrofarm S.R.L, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy.,Macrofarm S.R.L, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy.,Macrofarm S.R.L, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Tzanko Tzanov
- Molecular and Industrial Biotechnology Group, Department of Chemical Engineering, Polytechnic University of Catalonia, Terrassa, Spain
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, CS, Italy. .,Macrofarm S.R.L, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
83
|
Li S, Zhang Y, Ma X, Qiu S, Chen J, Lu G, Jia Z, Zhu J, Yang Q, Chen J, Wei Y. Antimicrobial Lignin-Based Polyurethane/Ag Composite Foams for Improving Wound Healing. Biomacromolecules 2022; 23:1622-1632. [PMID: 35104104 DOI: 10.1021/acs.biomac.1c01465] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial materials are an urgent need for modern wound care in the clinic. Although traditional polyurethane foams have proven to be clinically valuable for wound treatment, their petroleum-originated preparation and bioinert nature have restricted their efficacy in biomedical applications. Here, we propose a simple one-step foaming method to prepare lignin-based polyurethane foams (LPUFs) in which fully biobased polyether polyols partially replace traditional petroleum-based raw materials. The trace amount of phenolic hydroxyl groups (about 4 mmol) in liquefied lignin acts as a direct reducing agent and capping agent to silver ions (less than 0.3 mmol), in situ forming silver nanoparticles (Ag NPs) within the LPUF skeleton. This newly proposed lignin polyurethane/Ag composite foam (named as Ag NP-LPUF) shows improved mechanical, thermal, and antibacterial properties. It is worth mentioning that the Ag NP-LPUF exhibits more than 99% antibacterial rate against Escherichia coli within 1 h and Staphylococcus aureus within 4 h. Evaluations in mice indicate that the antimicrobial composite foams can effectively promote wound healing of full-thickness skin defects. As a proof of concept, this antibacterial and biodegradable foam exhibits significant potential for clinical translation in wound care dressings.
Collapse
Affiliation(s)
- Shuqi Li
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Yansheng Zhang
- University of Chinese Academy of Sciences, Beijing, Beijing 100039, China.,Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Xiaozhen Ma
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.,University of Chinese Academy of Sciences, Beijing, Beijing 100039, China
| | - Shihui Qiu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jing Chen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315300, China
| | - Guangming Lu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Zhen Jia
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Qiu Yang
- Ningbo New Material Testing and Evaluation Center Co., Ltd., Ningbo 315201, China
| | - Jing Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
84
|
Calderón-Jiménez B, Montoro Bustos AR, Pereira Reyes R, Paniagua SA, Vega-Baudrit JR. Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media. Sci Rep 2022; 12:882. [PMID: 35042912 PMCID: PMC8766478 DOI: 10.1038/s41598-022-04921-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/03/2022] [Indexed: 01/13/2023] Open
Abstract
The present study shows the development of a novel sonochemical synthesis pathway of sub-15 nm silver nanoparticles (AgNPs) with quasi-spherical shape and high stability in aqueous suspension. Different analytical techniques such as on-line UV-Vis spectroscopy, Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) were complementarily used to characterize the evolution of the properties of AgNPs synthesized with this new route. Furthermore, different centrifugation conditions were studied to establish a practical, simple and straightforward purification method. Particle size was determined by TEM employing two different deposition methods, showing that purified AgNPs have a size of 8.1 nm ± 2.4 nm with a narrow dispersion of the size distribution (95% coverage interval from 3.4 to 13 nm). Critical information of the shape and crystalline structure of these sub-15 nm AgNPs, provided by shape descriptors (circularity and roundness) using TEM and high resolution (HR)-TEM measurements, confirmed the generation of AgNPs with quasi-spherical shapes with certain twin-fault particles promoted by the high energy of the ultrasonic treatment. Elemental analysis by TEM-EDS confirmed the high purity of the sub-15 nm AgNPs, consisting solely of Ag. At the optical level, these AgNPs showed a bandgap energy of (2.795 ± 0.002) eV. Finally, the evaluation of the effects of ultraviolet radiation (UVC: 254 nm and UVA: 365 nm) and storage temperature on the spectral stability revealed high stability of the optical properties and subsequently dimensional properties of sub-15 nm AgNPs in the short-term (600 min) and long-term (24 weeks).
Collapse
Affiliation(s)
- Bryan Calderón-Jiménez
- Chemical Metrology Division, National Metrology Laboratory of Costa Rica (LCM), San José, 11501-2060, Costa Rica.
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica.
- Ph.D Program in Natural Science for Development (DOCINADE), Technological Institute of Costa Rica, National University, State Distance University, San José, 159-7050, Costa Rica.
| | - Antonio R Montoro Bustos
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Reinaldo Pereira Reyes
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica
| | - Sergio A Paniagua
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica
| | - José R Vega-Baudrit
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica
| |
Collapse
|
85
|
Wang Z, Liao X, Wang X, Bai Y, Huang H, Shen K, Sun L, Liu B, Fan Z. Converting Complex Sewage Containing Oil, Silt, and Bacteria into Clean Water by a 3D Printed Multiscale and Multifunctional Filter. ACS APPLIED BIO MATERIALS 2021; 4:8509-8521. [PMID: 35005937 DOI: 10.1021/acsabm.1c01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The exacerbating water pollution and water resource shortage pose a great danger to human health and make it imperative to recycle and treat the sewage. In this study, a direct-writing three-dimensional (3D) printing technology was adopted to prepare a 3D sodium alginate (SA)/graphene oxide (GO)/Ag nanoparticle (AgNP) aerogel (SGA), aiming to turn the complex sewage containing oil, silt, and bacteria into clean water depending only on gravity separation. The physicochemical properties and surface structure of the synthesized SGA were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The swelling rate, mechanical properties, antibacterial properties, oil and water separation effect, and durable stability of the filter membrane were also investigated to verify the versatility of the SGA filter. The results showed that GO helped improve the mechanical properties of the printed filter to withstand water impact during the filtration process. The printed filter had a well-designed and multiscale gradient pore structure, which can effectively intercept particles with different sizes to separate the silt from water, and the turbidity of the filtered water can be reduced from 60 to 1 nephelometric turbidity unit (NTU). The presence of SA endowed the printed filter with hydrophilic and oleophobic behaviors, which can effectively separate various kinds of oils from water. The uniform distribution of AgNPs in the filter produced via a facile and green reduction of SA facilitated the efficient bactericidal ability of the printed filter during the filtration process; meanwhile, the lower release concentration of Ag ions ensured drinking safety. What is more, the filter can be easily produced on a large scale and used for different sewage treatment situations with a durable stability of over 30 days. Taken together, the printed SGA filter has a broad application prospect in complex sewage treatment, providing a special solution for sewage treatment in poverty areas.
Collapse
Affiliation(s)
- Zhilong Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xiaozhu Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Yan Bai
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Haofei Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Kuangyu Shen
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Gansu Province School of Stomatology, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
86
|
Ahmad T, Mahbood F, Sarwar R, Iqbal A, Khan M, Muhammad S, Al-Riyami K, Hussain N, Uddin J, Khan A, Al-Harrasi A. Synthesis of gemifloxacin conjugated silver nanoparticles, their amplified bacterial efficacy against human pathogen and their morphological study via TEM analysis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:661-671. [PMID: 34818127 DOI: 10.1080/21691401.2021.2003805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Drug-loaded nanoparticles (NPs) allow specific accumulation and controlled release of drugs to infected tissues with minimal cytotoxicity. In this study, gemifloxacin conjugated silver nanoparticles (Gemi-AgNPs) were synthesized, and the amplification of their antibacterial potential against the human pathogen as well as their stability was monitored under physiological conditions. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the interaction between -NH2 and -OH functional moiety and the metal surface. The morphological analyses via transmission electron microscopy revealed that Gemi-AgNPs has a round oval shape and average particle size of 22.23 ± 2 nm. The antibacterial and antibiofilm activities of these NPS showed that Gemi-AgNPs exhibit excellent antimicrobial and biofilm inhibition activity against human pathogens, namely, Proteus mirabilis (P. mirabilis) and methicillin-resistant Staphylococcus aureus (MRSA). A significant increase in the antibiofilm activity of Gemi-AgNPs was confirmed by crystal violet, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining, and microscopic analysis. Gemi-AgNPs exhibited the ability to inhibit urease with an IC50 value of 57.4 ± 0.72 µg/mL. The changes in the bacterial cell morphology were analyzed via TEM, which revealed that cell membranes disrupted and completely destroyed the cell morphology by the treatment of Gemi-AgNPs.
Collapse
Affiliation(s)
- Touqeer Ahmad
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Fazal Mahbood
- Institute of Chemical Sciences, University of Swat, KP, Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad Campus, Abbottabad, Pakistan
| | - Ayesha Iqbal
- Division of Pharmacy Practice and Policy, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Sayyar Muhammad
- Department of Chemistry, Islamia College, Peshawar, Pakistan
| | - Khamis Al-Riyami
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Nusrat Hussain
- Department of Chemistry, University of Baltistan Skardu, Skardu, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
87
|
Golubeva OY, Ulyanova NY, Vladimirova EV, Shamova OV. Comparison of the Antimicrobial and Hemolytic Activities of Various Forms of Silver (Ions, Nanoparticles, Bioconjugates) Stabilized in a Zeolite Matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12356-12364. [PMID: 34643405 DOI: 10.1021/acs.langmuir.1c01899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A quantitative and qualitative comparison of the antimicrobial and hemolytic activities of silver in various states, in the form of ions, nanoparticles, and bioconjugates with the antimicrobial protein lysozyme stabilized in an inert zeolite matrix, has been carried out. A synthetic zeolite with a β structure was chosen as a zeolite matrix. Using the ion-exchange method, the method of chemical reduction, and treating the matrix with a silver hydrosol with specified characteristics, samples of zeolites with the same silver content in various forms (Ag+, Ag° - Ag°/Lyz) in the amounts of 0.8 and 5 wt % have been synthesized. The samples obtained were studied by a complex of physicochemical research methods: X-ray diffraction, UV absorption spectroscopy, low-temperature nitrogen adsorption, electron microscopy, and atomic absorption. Antimicrobial activity was assessed against antibiotic-resistant Gram-negative microbe (e.g., Escherichia coli ML-35, Pseudomonas aeruginosa 522/17 MDR, Klebsiella pneumoniae ESBL 344) and Gram-positive microbe (e.g., Staphylococcus aureus 1399/17). The hemolytic activity in relation to human erythrocytes was estimated. The results obtained showed significant antimicrobial activity with a simultaneously high hemolytic activity of ionic silver. Silver nanoparticles have a lower level of antimicrobial activity and toxicity. Bioconjugates of silver nanoparticles and lysozyme showed an optimal combination of antimicrobial properties and lack of hemolytic activity.
Collapse
Affiliation(s)
- Olga Yu Golubeva
- Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | - Natalia Yu Ulyanova
- Institute of Silicate Chemistry, Russian Academy of Sciences, Adm. Makarova Emb., 2, St. Petersburg 199034, Russia
| | | | - Olga V Shamova
- Institute of Experimental Medicine, Academic Pavlov Str. 12, St. Petersburg 197376, Russia
| |
Collapse
|
88
|
Vodyanoy V. The Role of Endogenous Metal Nanoparticles in Biological Systems. Biomolecules 2021; 11:1574. [PMID: 34827572 PMCID: PMC8615972 DOI: 10.3390/biom11111574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The blood and tissues of vertebrate animals and mammals contain small endogenous metal nanoparticles. These nanoparticles were observed to be composed of individual atoms of iron, copper, zinc, silver, gold, platinum, and other metals. Metal nanoparticles can bind proteins and produce proteinaceous particles called proteons. A small fraction of the entire pool of nanoparticles is usually linked with proteins to form proteons. These endogenous metal nanoparticles, along with engineered zinc and copper nanoparticles at subnanomolar levels, were shown to be lethal to cultured cancer cells. These nanoparticles appear to be elemental crystalline metal nanoparticles. It was discovered that zinc nanoparticles produce no odor response but increase the odor reaction if mixed with an odorant. Some other metal nanoparticles, including copper, silver, gold, and platinum nanoparticles, do not affect the responses to odorants. The sources of metal nanoparticles in animal blood and tissues may include dietary plants and gut microorganisms. The solid physiological and biochemical properties of metal nanoparticles reflect their importance in cell homeostasis and disease.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
| |
Collapse
|
89
|
Green Synthesis of Silver Nanoparticles Using a Biosurfactant from Bacillus cereus UCP 1615 as Stabilizing Agent and Its Application as an Antifungal Agent. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Silver nanoparticles have great potential in a wide range of applications. Therefore, the purpose of this work was to synthesize, in a simple and green way, via the Tollens method, silver nanoparticles (AgNPs), using as a stabilizer the biosurfactant produced by Bacillus cereus UCP 1615 cultivated in a low-cost medium, with waste frying oil as a substrate. The obtained nanoparticles were identified and morphologically characterized using ultraviolet/visible (UV/vis) spectroscopy, scanning electron microscopy (SEM), and zeta potential. The maximum UV/vis absorption was observed at 400 nm for newly formed silver nanoparticles, while, for silver nanoparticles stored for 120 days, the peak was observed at 430 nm. SEM micrographs confirmed the formation of nanoparticles, with predominantly spherical structures. The average size of the formed nanoparticles was estimated to be 20 nm. The presence of the biosurfactant promoted stability, as a zeta potential of −23.4 mV was observed. The antimicrobial potential of AgNPs was evaluated at different concentrations against three pathogenic fungi (Aspergillus niger, Penicillium fellutanum, and Cladosporium cladosporioides). No less than 100% and 85% inhibitions of P. fellutanum and A. niger growth were observed, respectively, at the AgNP concentration of 16.50 µg/mL in potato dextrose agar medium. These results suggest the potential use of the biosurfactant as a stabilizer for silver nanoparticles and its application as an antimicrobial agent.
Collapse
|
90
|
Grzesiakowska A, Kasprowicz MJ, Kuchta-Gładysz M, Rymuza K, Szeleszczuk O. Genotoxicity of physical silver nanoparticles, produced by the HVAD method, for Chinchilla lanigera genome. Sci Rep 2021; 11:18473. [PMID: 34531461 PMCID: PMC8446028 DOI: 10.1038/s41598-021-97926-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Each year, growing demand for silver nanoparticles (AgNP) contributes to the search for alternative methods of their production. Stable AgNP with antibacterial properties, low toxicity to the environment and living organisms are especially valued. In the study presented here, an attempt was made to assess the toxicity of two AgNP solutions produced using the HVAD method to the Chinchilla lanigera genome. The AgNO3 solution was the indicator and reference for the harmfulness of AgNP. The study was carried out in vitro on bone marrow cells isolated from Chinchilla lanigera bones. The genotoxicity was assessed by comet assay, following the treatment of cells with three silver solutions: unstable and sodium citrate-stabilized silver nanoparticles, as well as silver nitrate at three concentrations (5, 10 and 20 µg/L), after 3, 6 and 24 h. Based on the percentage of the DNA content in the comet tail and the tail moment, an increase in cell DNA integrity disruption was demonstrated in all tested variants: of solution, exposure time and concentration, compared to the control sample. A statistically significant correlation was determined between the level of induced DNA breaks and the concentration of the active solutions and the duration of their activity. A solution of silver nanoparticles stabilized with sodium citrate was shown to have the most harmful effect on bone marrow cells. Silver nitrate demonstrated a level of toxicity similar to these particles. Further studies are necessary to directly compare the genotoxic properties of AgNP produced using the HVAD method and the chemical method under the same conditions.
Collapse
Affiliation(s)
- Anna Grzesiakowska
- Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059, Kraków, Poland.
| | - Marek Jan Kasprowicz
- Department of Soil Science and Agrophysics, University of Agriculture in Krakow, Mickiewicza Av. 21, 31-120, Kraków, Poland
| | - Marta Kuchta-Gładysz
- Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059, Kraków, Poland.
| | - Katarzyna Rymuza
- Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, ul. B. Prusa 14, 08-110, Siedlce, Poland
| | - Olga Szeleszczuk
- Department of Animals Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059, Kraków, Poland
| |
Collapse
|
91
|
Morozova OV. Silver Nanostructures: Limited Sensitivity of Detection, Toxicity and Anti-Inflammation Effects. Int J Mol Sci 2021; 22:ijms22189928. [PMID: 34576088 PMCID: PMC8464889 DOI: 10.3390/ijms22189928] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Nanosilver with sizes 1–100 nm at least in one dimension is widely used due to physicochemical, anti-inflammatory, anti-angiogenesis, antiplatelet, antifungal, anticancer, antibacterial, and antiviral properties. Three modes of the nanosilver action were suggested: “Trojan horse”, inductive, and quantum mechanical. The Ag+ cations have an affinity to thiol, amino, phosphate, and carboxyl groups. Multiple mechanisms of action towards proteins, DNA, and membranes reduce a risk of pathogen resistance but inevitably cause toxicity for cells and organisms. Silver nanoparticles (AgNP) are known to generate two reactive oxygen species (ROS)-superoxide (•O2−) and hydroxyl (•OH) radicals, which inhibit the cellular antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and cause mechanical damage of membranes. Ag+ release and replacement by electrolyte ions with potential formation of insoluble AgCl result in NP instability and interactions of heavy metals with nucleic acids and proteins. Protein shells protect AgNP core from oxidation, dissolution, and aggregation, and provide specific interactions with ligands. These nanoconjugates can be used for immunoassays and diagnostics, but the sensitivity is limited at 10 pg and specificity is restricted by binding with protective proteins (immunoglobulins, fibrinogen, albumin, and others). Thus, broad implementation of Ag nanostructures revealed limitations such as instability; binding with major blood proteins; damage of proteins, nucleic acids, and membranes; and immunosuppression of the majority of cytokines.
Collapse
Affiliation(s)
- Olga V. Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Malaya Pirogovskaya Street 1a, 119435 Moscow, Russia;
- Ivanovsky Institute of Virology, National Research Center of Epidemiology and Microbiology of N. F. Gamaleya, Russian Ministry of Health, Gamaleya Street 16, 123098 Moscow, Russia
| |
Collapse
|
92
|
Quaglia G, Ambrogi V, Pietrella D, Nocchetti M, Latterini L. Solid State Photoreduction of Silver on Mesoporous Silica to Enhance Antifungal Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2340. [PMID: 34578656 PMCID: PMC8465249 DOI: 10.3390/nano11092340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/28/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
A solid-state Ultraviolet-photoreduction process of silver cations to produce Ag0 nanostructures on a mesoporous silica is presented as an innovative method for the preparation of efficient environmental anti-fouling agents. Mesoporous silica powder, contacted with AgNO3, is irradiated at 366 nm, where silica surface defects absorb. The detailed characterization of the materials enables us to document the silica assisted photo-reduction. The appearance of a Visible (Vis) band centered at 470 nm in the extinction spectra, due to the surface plasmon resonance of Ag0 nanostructures, and the morphology changes observed in transmission electron microscopy (TEM) images, associated with the increase of Ag/O ratio in energy dispersive X-ray (EDX) analysis, indicate the photo-induced formation of Ag0. The data demonstrate that the photo-induced reduction of silver cation occurs in the solid state and takes place through the activation of silica defects. The activation of the materials after UV-processing is then tested, evaluating their antimicrobial activity using an environmental filamentous fungus, Aspergillus niger. The treatment doubled inhibitory capacity in terms of minimal inhibitory concentration (MIC) and biofilm growth. The antimicrobial properties of silver-silica nanocomposites are investigated when dispersed in a commercial sealant; the nanocomposites show excellent dispersion in the silicon and improve its anti-fouling capacity.
Collapse
Affiliation(s)
- Giulia Quaglia
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 06123 Perugia, Italy;
| | - Valeria Ambrogi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123 Perugia, Italy; (V.A.); (M.N.)
| | - Donatella Pietrella
- Dipartimento di Medicina, Università degli Studi di Perugia, Piazzale Gambuli, 06132 Perugia, Italy;
| | - Morena Nocchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo, 06123 Perugia, Italy; (V.A.); (M.N.)
| | - Loredana Latterini
- Nano4Light Lab, Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto, 06123 Perugia, Italy;
| |
Collapse
|
93
|
Wahab MA, Luming L, Matin MA, Karim MR, Aijaz MO, Alharbi HF, Abdala A, Haque R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers (Basel) 2021; 13:2870. [PMID: 34502910 PMCID: PMC8433914 DOI: 10.3390/polym13172870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Silver has become a potent agent that can be effectively applied in nanostructured nanomaterials with various shapes and sizes against antibacterial applications. Silver nanoparticle (Ag NP) based-antimicrobial agents play a major role in different applications, including biomedical applications, as surface treatment and coatings, in chemical and food industries, and for agricultural productivity. Due to advancements in nanoscience and nanotechnology, different methods have been used to prepare Ag NPs with sizes and shapes reducing toxicity for antibacterial applications. Studies have shown that Ag NPs are largely dependent on basic structural parameters, such as size, shape, and chemical composition, which play a significant role in preparing the appropriate formulation for the desired applications. Therefore, this review focuses on the important parameters that affect the surface interaction/state of Ag NPs and their influence on antimicrobial activities, which are essential for designing future applications. The mode of action of Ag NPs as antibacterial agents will also be discussed.
Collapse
Affiliation(s)
- Md Abdul Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| | - Li Luming
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Md Abdul Matin
- Department of Pharmacy, NUB School of Health Sciences, Northern University Bangladesh, Globe Center, 24 Mirpur Road, Dhaka 1205, Bangladesh;
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Mohammad Omer Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
| | - Hamad Fahad Alharbi
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha POB 23874, Qatar;
| | - Rezwanul Haque
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| |
Collapse
|
94
|
Chen A, Hernandez-Vargas J, Han R, Cortazar-Martínez O, Gonzalez N, Patel S, Keitz BK, Luna-Barcenas G, Contreras LM. Small RNAs as a New Platform for Tuning the Biosynthesis of Silver Nanoparticles for Enhanced Material and Functional Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36769-36783. [PMID: 34319072 DOI: 10.1021/acsami.1c07400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genetic engineering of nanoparticle biosynthesis in bacteria could help facilitate the production of nanoparticles with enhanced or desired properties. However, this process remains limited due to the lack of mechanistic knowledge regarding specific enzymes and other key biological factors. Herein, we report on the ability of small noncoding RNAs (sRNAs) to affect silver nanoparticle (AgNP) biosynthesis using the supernatant from the bacterium Deinococcus radiodurans. Deletion strains of 12 sRNAs potentially involved in the oxidative stress response were constructed, and the supernatants from these strains were screened for their effect on AgNP biosynthesis. We identified several sRNA deletions that drastically decreased AgNP yield compared to the wild-type (WT) strain, suggesting the importance of these sRNAs in AgNP biosynthesis. Furthermore, AgNPs biosynthesized using the supernatants from three of these sRNA deletion strains demonstrated significantly enhanced antimicrobial and catalytic activities against environmentally relevant dyes and bacteria relative to AgNPs biosynthesized using the WT strain. Characterization of these AgNPs using electron microscopy (EM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) revealed that the deletion of these small RNAs led to changes within the supernatant composition that altered AgNP properties such as the surface chemistry, surface potential, and overall composition. Taken together, our results demonstrate that modulating specific sRNA levels can affect the composition of supernatants used to biosynthesize AgNPs, resulting in AgNPs with unique material properties and improved functionality; as such, we introduce sRNAs as a new platform for genetically engineering the biosynthesis of metal nanoparticles using bacteria. Many of the sRNAs examined in this work have potential regulatory roles in oxidative stress responses; further studies into their targets could help provide insight into the specific molecular mechanisms underlying bacterial biosynthesis and metal reduction, enabling the production of nanoparticles with enhanced properties.
Collapse
Affiliation(s)
- Angela Chen
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Julia Hernandez-Vargas
- Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico
| | - Runhua Han
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Orlando Cortazar-Martínez
- Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico
| | - Natalia Gonzalez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sonia Patel
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Gabriel Luna-Barcenas
- Unidad Querétaro, Centro de Investigacion y de Estudios Avanzados Unidad Queretaro, Querétaro 76230, Mexico
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
95
|
Barabadi H, Mohammadzadeh A, Vahidi H, Rashedi M, Saravanan M, Talank N, Alizadeh A. Penicillium chrysogenum-Derived Silver Nanoparticles: Exploration of Their Antibacterial and Biofilm Inhibitory Activity Against the Standard and Pathogenic Acinetobacter baumannii Compared to Tetracycline. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02121-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
96
|
Silver Nanoparticles Grown on Cross-Linked Poly (Methacrylic Acid) Microspheres: Synthesis, Characterization, and Antifungal Activity Evaluation. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) exert profound physicochemical, biological, and antimicrobial properties, therefore, they have been extensively studied for a variety of applications such as food packaging and cultural heritage protection. However, restrictions in their stability, aggregation phenomena, and toxicity limit their extensive use. Hence, the use of functional substrates that promote the silver nanoparticles’ growth and allow the formation of uniform-sized, evenly distributed, as well as stable nanoparticles, has been suggested. This study reports on the fabrication and the characterization of hydrophilic polymer spheres including nanoparticles with intrinsic antifungal properties. Poly (methacrylic acid) microspheres were synthesized, employing the distillation precipitation method, to provide monodisperse spherical substrates for the growth of silver nanoparticles, utilizing the co-precipitation of silver nitrate in aqueous media. The growth and the aggregation potential of the silver nanoparticles were studied, whereas the antifungal activity of the produced nanostructures was evaluated against the black mold-causing fungus Aspergillus niger. The produced structures exhibit dose-dependent antifungal activity. Therefore, they could potentially be employed for the protection and preservation of cultural heritage artifacts and considered as new agents for food protection from fungal contamination during storage.
Collapse
|
97
|
Kumar S, Basumatary IB, Sudhani HP, Bajpai VK, Chen L, Shukla S, Mukherjee A. Plant extract mediated silver nanoparticles and their applications as antimicrobials and in sustainable food packaging: A state-of-the-art review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
98
|
Devanesan S, AlSalhi MS. Green Synthesis of Silver Nanoparticles Using the Flower Extract of Abelmoschus esculentus for Cytotoxicity and Antimicrobial Studies. Int J Nanomedicine 2021; 16:3343-3356. [PMID: 34017172 PMCID: PMC8131074 DOI: 10.2147/ijn.s307676] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Abelmoschus esculentus (L.) Moench, an economically important malvaceous vegetable crop popularly known as okra, is used in various culinary preparations and is rich in vitamins, minerals, and nutrients. The biological properties of okra flowers in relation to nanoparticle synthesis have not yet been reported. MATERIALS AND METHODS In the current study, silver nanoparticles (AgNPs) were synthesized using extracts of the flowers of A. esculentus. The characteristics of the AgNPs were studied using a UV-vis spectrometer, Fourier transmission infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDX). Antibacterial activity screening was performed using the agar well diffusion method, and cytotoxicity and cell viability studies were conducted using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS The synthesized AgNPs were spherical and ranged in size from 5.52 to 31.96 nm, with an average size of 16.19 nm, as determined by UV-vis spectroscopy, FTIR, XRD, TEM and EDX. A. esculentus flower extract-mediated silver nanoparticles (AME-AgNPs) exhibited excellent activities in vitro studies, particularly in vitro cytotoxic and antiproliferative studies against cancer cell lines, such as the TERT-4 and A-549 cell lines. The antibacterial effects on the Gram-positive pathogens Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes and the Gram-negative pathogens Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimurium and Shigella sonnei were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values varied with the bacterial strain. The IC50 values of the synthesized NPs for the tested cell lines were close to that of a standard drug. CONCLUSION Compared to other NPs the NPs synthesized in this study were smaller in size and exhibited a higher level of antibacterial activity, cytotoxicity and apoptosis at minimal concentrations, and this is the first study on okra flower-induced anticancer and antimicrobial activities.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| |
Collapse
|
99
|
Sabio L, Sosa A, Delgado-López JM, Dominguez-Vera JM. Two-Sided Antibacterial Cellulose Combining Probiotics and Silver Nanoparticles. Molecules 2021; 26:molecules26102848. [PMID: 34064907 PMCID: PMC8151946 DOI: 10.3390/molecules26102848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The constant increase of antibiotic-resistant bacteria demands the design of novel antibiotic-free materials. The combination of antibacterials in a biocompatible biomaterial is a very promising strategy to treat infections caused by a broader spectrum of resistant pathogens. Here, we combined two antibacterials, silver nanoparticles (AgNPs) and living probiotics (Lactobacillus fermentum, Lf), using bacterial cellulose (BC) as scaffold. By controlling the loading of each antibacterial at opposite BC sides, we obtained a two-sided biomaterial (AgNP-BC-Lf) with a high density of alive and metabolically active probiotics on one surface and AgNPs on the opposite one, being probiotics well preserved from the killer effect of AgNPs. The resulting two-sided biomaterial was characterized by Field-Emission Scanning Electron Microscopy (FESEM) and Confocal Laser Scanning Microscopy (CLSM). The antibacterial capacity against Pseudomonas aeruginosa (PA), an opportunistic pathogen responsible for a broad range of skin infections, was also assessed by agar diffusion tests in pathogen-favorable media. Results showed an enhanced activity against PA when both antibacterials were combined into BC (AgNP-BC-Lf) with respect to BC containing only one of the antibacterials, BC-Lf or AgNP-BC. Therefore, AgNP-BC-Lf is an antibiotic-free biomaterial that can be useful for the therapy of topical bacterial infections.
Collapse
|
100
|
Costa EL, Soares FB, Lourenço SA, Muniz EC, Cava CE. Design experiment (parameters) applied to PEDOT: PSS/AgNW composite doped with EG for transparent conductive films. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|