51
|
Yu B, Shen K, Li T, Li J, Meng M, Liu W, Tang Q, Zhu T, Wang X, Leung SWS, Shi Y. Glycolytic enzyme PFKFB3 regulates sphingosine 1-phosphate receptor 1 in proangiogenic glomerular endothelial cells under diabetic condition. Am J Physiol Cell Physiol 2023; 325:C1354-C1368. [PMID: 37781737 PMCID: PMC10861147 DOI: 10.1152/ajpcell.00261.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Glomerular angiogenesis is a characteristic feature of diabetic nephropathy (DN). Enhanced glycolysis plays a crucial role in angiogenesis. The present study was designed to investigate the role of glycolysis in glomerular endothelial cells (GECs) in a mouse model of DN. Mouse renal cortex and isolated glomerular cells were collected for single-cell and RNA sequencing. Cultured GECs were exposed to high glucose in the presence (proangiogenic) and absence of a vascular sprouting regimen. MicroRNA-590-3p was delivered by lipofectamine in vivo and in vitro. In the present study, a subgroup of GECs with proangiogenic features was identified in diabetic kidneys by using sequencing analyses. In cultured proangiogenic GECs, high glucose increased glycolysis and phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) protein expression, which were inhibited by overexpressing miRNA-590-3p. Mimics of miRNA-590-3p also increased receptor for sphingosine 1-phosphate (S1pR1) expression, an angiogenesis regulator, in proangiogenic GECs challenged with high glucose. Inhibition of PFKFB3 by pharmacological and genetic approaches upregulated S1pR1 protein in vitro. Mimics of miRNA-590-3p significantly reduced migration and angiogenic potential in proangiogenic GECs challenged with high glucose. Ten-week-old type 2 diabetic mice had elevated urinary albumin levels, reduced renal cortex miRNA-590-3p expression, and disarrangement of glomerular endothelial cell fenestration. Overexpressing miRNA-590-3p via perirenal adipose tissue injection restored endothelial cell fenestration and reduced urinary albumin levels in diabetic mice. Therefore, the present study identifies a subgroup of GECs with proangiogenic features in mice with DN. Local administration of miRNA-590-3p mimics reduces glycolytic rate and upregulates S1pR1 protein expression in proangiogenic GECs. The protective effects of miRNA-590-3p provide therapeutic potential in DN treatment.NEW & NOTEWORTHY Proangiogenetic glomerular endothelial cells (GECs) are activated in diabetic nephropathy. High glucose upregulates glycolytic enzyme phosphofructokinase/fructose bisphosphatase 3 (PFKFB3) in proangiogenetic cells. PFKFB3 protects the glomerular filtration barrier by targeting endothelial S1pR1. MiRNA-590-3p restores endothelial cell function and mitigates diabetic nephropathy.
Collapse
Affiliation(s)
- Baixue Yu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tingting Li
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawei Li
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mei Meng
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenjie Liu
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qunye Tang
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Tongyu Zhu
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Susan W S Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
52
|
Duan W, Xia S, Tang M, Lin M, Liu W, Wang Q. Targeting of endothelial cells in brain tumours. Clin Transl Med 2023; 13:e1433. [PMID: 37830128 PMCID: PMC10570772 DOI: 10.1002/ctm2.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aggressive brain tumours, whether primary gliomas or secondary metastases, are characterised by hypervascularisation and are fatal. Recent research has emphasised the crucial involvement of endothelial cells (ECs) in all brain tumour genesis and development events, with various patterns and underlying mechanisms identified. MAIN BODY Here, we highlight recent advances in knowledge about the contributions of ECs to brain tumour development, providing a comprehensive summary including descriptions of interactions between ECs and tumour cells, the heterogeneity of ECs and new models for research on ECs in brain malignancies. We also discuss prospects for EC targeting in novel therapeutic approaches. CONCLUSION Interventions targeting ECs, as an adjunct to other therapies (e.g. immunotherapies, molecular-targeted therapies), have shown promising clinical efficacy due to the high degree of vascularisation in brain tumours. Developing precise strategies to target tumour-associated vessels based on the heterogeneity of ECs is expected to improve anti-vascular efficacy.
Collapse
Affiliation(s)
- Wenzhe Duan
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Shengkai Xia
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Mengyi Tang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Manqing Lin
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
| | - Wenwen Liu
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| | - Qi Wang
- Department of Respiratory MedicineThe Second HospitalDalian Medical UniversityDalianChina
- Cancer Translational Medicine Research CenterThe Second HospitalDalian Medical UniversityDalianChina
| |
Collapse
|
53
|
Wu H, Li X, Zhang Z, Ye Y, Chen Y, Wang J, Yang Z, Zhou E. The release of zearalenone-induced heterophil extracellular traps in chickens is associated with autophagy, glycolysis, PAD enzyme, and P2X 1 receptor. Poult Sci 2023; 102:102946. [PMID: 37542939 PMCID: PMC10428124 DOI: 10.1016/j.psj.2023.102946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 08/07/2023] Open
Abstract
Zearalenone (ZEA) is produced mainly by fungi belonging to genus Fusarium in foods and feeds. Heterophil extracellular traps (HETs) are a novel defense mechanism of chicken innate immunity involving activated heterophils. However, the conditions and requirements for ZEA-triggered HET release remain unknown. In this study, immunostaining analysis demonstrated that ZEA-triggered extracellular fibers were composed of histone and elastase assembled on DNA skeleton, showing that ZEA can induce the formation of HETs. Further experiments indicated that ZEA-induced HET release was concentration-dependent (ranging from 20 to 80 μM ZEA) and time-dependent (ranging from 30 to 180 min). Moreover, in 80 μM ZEA-exposed chicken heterophils, reactive oxygen species (ROS) level, catalase (CAT), superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and glutathione (GSH) content were increased. Simultaneously, ZEA at 80 μM activated ERK and p38 MAPK signaling pathways by increasing the phosphorylation level of ERK and p38 proteins. Pharmacological inhibition assays revealed that blocking nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, ERK, and p38 mitogen-activated protein kinase (MAPK) reduced ZEA-induced ROS levels but had no impact on HET formation. Furthermore, immunostaining analysis indicated that the heterophil underwent the formation of autophagosome based on being stained with LC3B. The pharmacological inhibition assays demonstrated that rapamycin-, wortmannin-, and 3-methyladenine (3-MA)-treatments modulated ZEA-triggered HET formation, indicating that heterophil autophagy played a key role in ZEA-induced HET formation. Further studies on energy metabolism showed that inhibition of lactate/glucose transport, hexokinase-2 (HK-2), fructose-2,6-biphosphatase 3 (PFKFB3) in glycolysis abated ZEA-induced HETs, implying that glycolysis was one of the factors influencing the ZEA-induced HET formation. Besides, inhibition of the peptidylarginine deiminase (PAD) enzyme and P2X1 significantly reduced the ZEA-induced HET formation. In conclusion, we demonstrated that ZEA-triggered HET formation, which was associated with glycolysis, autophagy, PAD enzyme, and P2X1 receptor activation, providing valuable insight into the negative effect of ZEA on chicken innate immunity.
Collapse
Affiliation(s)
- Hanpeng Wu
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Xuhai Li
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhan Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yingrong Ye
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Yichun Chen
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China
| | - Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan 528225, Guangdong Province, PR China.
| |
Collapse
|
54
|
Chen J, Yu H, Tan X, Mok SWF, Xie Y, Wang Y, Jiang X, Macrae VE, Lan L, Fu X, Zhu D. PFKFB3-driven vascular smooth muscle cell glycolysis promotes vascular calcification via the altered FoxO3 and lactate production. FASEB J 2023; 37:e23182. [PMID: 37682013 DOI: 10.1096/fj.202300900r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
A link between increased glycolysis and vascular calcification has recently been reported, but it remains unclear how increased glycolysis contributes to vascular calcification. We therefore investigated the role of PFKFB3, a critical enzyme of glycolysis, in vascular calcification. We found that PFKFB3 expression was upregulated in calcified mouse VSMCs and arteries. We showed that expression of miR-26a-5p and miR-26b-5p in calcified mouse arteries was significantly decreased, and a negative correlation between Pfkfb3 mRNA expression and miR-26a-5p or miR-26b-5p was seen in these samples. Overexpression of miR-26a/b-5p significantly inhibited PFKFB3 expression in VSMCs. Intriguingly, pharmacological inhibition of PFKFB3 using PFK15 or knockdown of PFKFB3 ameliorated vascular calcification in vD3 -overloaded mice in vivo or attenuated high phosphate (Pi)-induced VSMC calcification in vitro. Consistently, knockdown of PFKFB3 significantly reduced glycolysis and osteogenic transdifferentiation of VSMCs, whereas overexpression of PFKFB3 in VSMCs induced the opposite effects. RNA-seq analysis and subsequent experiments revealed that silencing of PFKFB3 inhibited FoxO3 expression in VSMCs. Silencing of FoxO3 phenocopied the effects of PFKFB3 depletion on Ocn and Opg expression but not Alpl in VSMCs. Pyruvate or lactate supplementation, the product of glycolysis, reversed the PFKFB3 depletion-mediated effects on ALP activity and OPG protein expression in VSMCs. Our results reveal that blockade of PFKFB3-mediated glycolysis inhibits vascular calcification in vitro and in vivo. Mechanistically, we show that FoxO3 and lactate production are involved in PFKFB3-driven osteogenic transdifferentiation of VSMCs. PFKFB3 may be a promising therapeutic target for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Jiaxin Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Xiao Tan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xueyan Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
55
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|
56
|
He J, Xie X, Xiao Z, Qian W, Zhang L, Hou X. Piezo1 in Digestive System Function and Dysfunction. Int J Mol Sci 2023; 24:12953. [PMID: 37629134 PMCID: PMC10454946 DOI: 10.3390/ijms241612953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Piezo1, a non-selective cation channel directly activated by mechanical forces, is widely expressed in the digestive system and participates in biological functions physiologically and pathologically. In this review, we summarized the latest insights on Piezo1’s cellular effect across the entire digestive system, and discussed the role of Piezo1 in various aspects including ingestion and digestion, material metabolism, enteric nervous system, intestinal barrier, and inflammatory response within digestive system. The goal of this comprehensive review is to provide a solid foundation for future research about Piezo1 in digestive system physiologically and pathologically.
Collapse
Affiliation(s)
| | | | | | | | - Lei Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (J.H.); (X.X.); (Z.X.); (W.Q.)
| |
Collapse
|
57
|
Popa-Fotea NM, Ferdoschi CE, Micheu MM. Molecular and cellular mechanisms of inflammation in atherosclerosis. Front Cardiovasc Med 2023; 10:1200341. [PMID: 37600028 PMCID: PMC10434786 DOI: 10.3389/fcvm.2023.1200341] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis and its complications are a major cause of morbidity and mortality worldwide in spite of the improved medical and invasive treatment in terms of revascularization. Atherosclerosis is a dynamic, multi-step process in which inflammation is a ubiquitous component participating in the initiation, development, and entanglements of the atherosclerotic plaque. After activation, the immune system, either native or acquired, is part of the atherosclerotic dynamics enhancing the pro-atherogenic function of immune or non-immune cells, such as endothelial cells, smooth muscle cells, or platelets, through mediators such as cytokines or directly by cell-to-cell interaction. Cytokines are molecules secreted by the activated cells mentioned above that mediate the inflammatory component of atherosclerosis whose function is to stimulate the immune cells and the production of further cytokines. This review provides insights of the cell axis activation and specific mechanisms and pathways through which inflammation actuates atherosclerosis.
Collapse
Affiliation(s)
- Nicoleta-Monica Popa-Fotea
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital, Bucharest, Romania
| | - Corina-Elena Ferdoschi
- Department 4 Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila,”Bucharest, Romania
| | | |
Collapse
|
58
|
Zhi Y, Cai C, Xu T, Sun F, Wang KP, Ji Z, Pei Y, Geng S, Wang H. Silencing of FGF6 hampers aerobic glycolysis and angiogenesis in bladder cancer by regulating PI3K/Akt and MAPK signaling pathways. J Biochem Mol Toxicol 2023; 37:e23399. [PMID: 37345681 DOI: 10.1002/jbt.23399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/12/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Metabolic abnormalities and uncontrolled angiogenesis are two vital features of malignant tumors. Although fibroblast growth factor 6 (FGF6) is known to promote the proliferation and migration of bladder cancer (BC) cells, its influences on aerobic glycolysis and angiogenesis in BC remain unclear. Gene expression at messenger RNA and protein levels were examined by reverse transcription-quantitative polymerase chain reaction and Western blot analyses, respectively. Lactate production and glucose uptake in BC cells were evaluated by performing aerobic glycolysis assays. A vasculogenic mimicry assay was executed for assessing the angiogenesis of BC cells. The viability, migration, and angiogenesis of human umbilical vein endothelial cells (HUVECs) cocultured with supernatants of BC cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound healing assay, and tube formation assay. It was found that FGF6 displayed a high level in BC cell lines. Silencing of FGF6 reduced the levels of lactate production, glucose uptake, and the expression of angiogenic factors and glycolytic enzymes in BC cells, which also inhibited the viability and migration of HUVECs. In addition, FGF6 depletion or aerobic glycolysis inhibitor 2-deoxy-d-glucose treatment decreased the total branching length and intersection number of both BC cells and HUVECs. Moreover, glucose or lactate treatment reversed FGF6-induced suppression of cell viability, migration, tube formation, and vasculogenic mimicry. The activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) signaling pathways was blocked by silenced FGF6. Furthermore, PI3K/Akt inhibitor (LY2940002) and p38-MAPK inhibitor (SB203580) inhibited the levels of aerobic glycolysis-related proteins. In conclusion, FGF6 knockdown suppressed aerobic glycolysis, thereby inhibiting angiogenesis in BC via regulation of the PI3K/Akt and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yunlai Zhi
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Chengkuan Cai
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Tianxi Xu
- Department of Basic Medicine, Shandong University, Grade 2021, Jinan, Shandong, China
| | - Fanghu Sun
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Kun Peng Wang
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Zhengshuai Ji
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Yuhan Pei
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Shen Geng
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Hui Wang
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
59
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
60
|
Lee-Rueckert M, Canyelles M, Tondo M, Rotllan N, Kovanen PT, Llorente-Cortes V, Escolà-Gil JC. Obesity-induced changes in cancer cells and their microenvironment: Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism. Semin Cancer Biol 2023; 93:36-51. [PMID: 37156344 DOI: 10.1016/j.semcancer.2023.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity.
Collapse
Affiliation(s)
| | - Marina Canyelles
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mireia Tondo
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | | | - Vicenta Llorente-Cortes
- Wihuri Research Institute, Helsinki, Finland; Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| |
Collapse
|
61
|
Yang Q, Zong X, Zhuang L, Pan R, Tudi X, Fan Q, Tao R. PFKFB3 Inhibitor 3PO Reduces Cardiac Remodeling after Myocardial Infarction by Regulating the TGF-β1/SMAD2/3 Pathway. Biomolecules 2023; 13:1072. [PMID: 37509108 PMCID: PMC10377206 DOI: 10.3390/biom13071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Adverse cardiac remodeling, including cardiac fibrosis, after myocardial infarction (MI) is a major cause of long-term heart failure. 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), an enzyme that regulates glucose metabolism, also plays an important role in various fibrotic and cardiovascular diseases. However, its effects on MI remain unknown. Here, PFKFB3 inhibitor 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) and a permanent left anterior descending ligation mouse model were used to explore the functional role of PFKFB3 in MI. We showed that PFKFB3 expression increased significantly in the area of cardiac infarction during the early phase after MI, peaking on day 3. 3PO treatment markedly improved cardiac function, accompanied by decreased infarction size and collagen density in the infarct area. Meanwhile, 3PO attenuated cardiac fibrosis after MI by reducing the expression of collagen and fibronectin in murine hearts. Notably, 3PO reduced PFKFB3 expression and inhibited the transforming growth factor-beta 1/mothers against the decapentaplegic homolog 2/3 (TGF-β1/SMAD2/3) signaling pathway to inhibit cardiac fibrosis after MI. Moreover, PFKFB3 expression in neonatal rat cardiac fibroblasts (NRCFs) increased significantly after MI and under hypoxia, whereas 3PO alleviated the migratory capacity and activation of NRCFs induced by TGF-β1. In conclusion, 3PO effectively reduced fibrosis and improved adverse cardiac remodeling after MI, suggesting PFKFB3 inhibition as a novel therapeutic strategy to reduce the incidence of chronic heart failure following MI.
Collapse
Affiliation(s)
- Qian Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Zong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Roubai Pan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xierenayi Tudi
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institution of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Fan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Tao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
62
|
Zhou ZY, Chang TF, Lin ZB, Jing YT, Wen LS, Niu YL, Bai Q, Guo CM, Sun JX, Wang YS, Dou GR. Microglial Galectin3 enhances endothelial metabolism and promotes pathological angiogenesis via Notch inhibition by competitively binding to Jag1. Cell Death Dis 2023; 14:380. [PMID: 37369647 DOI: 10.1038/s41419-023-05897-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Microglia were considered as immune cells in inflammation until their angiogenic role was widely understood. Although the pro-inflammatory role of microglia in retinal angiogenesis has been explored, little is known about its role in pro-angiogenesis and the microglia-endothelia interaction. Here, we report that galectin-3 (Gal3) released by activated microglia functions as a communicator between microglia and endothelia and competitively binds to Jag1, thus inhibiting the Notch signaling pathway and enhancing endothelial angiogenic metabolism to promote angiogenesis. These results suggest that Gal3 may be a novel and effective target in the treatment of retinal angiogenesis.
Collapse
Affiliation(s)
- Zi-Yi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian-Fang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Bin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Shi Wen
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Li Niu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Bai
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Mei Guo
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
63
|
Wang H, Liang W, Wang X, Zhan Y, Wang W, Yang L, Zhu Y. Notch mediates the glycolytic switch via PI3K/Akt signaling to support embryonic development. Cell Mol Biol Lett 2023; 28:50. [PMID: 37365491 DOI: 10.1186/s11658-023-00459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Energy metabolism disorder or insufficient energy supply during incubation will affect the development and survival of avian embryos. Especially, β-oxidation could not provide the continuous necessary energy for avian embryonic development due to the increasing energy demand under hypoxic conditions during the mid-late embryonic stages. The role and mechanism of hypoxic glycolysis replacing β-oxidation as the main source of energy supply for avian embryonic development in the mid-late stages is unclear. RESULTS Here, we found that in ovo injection with glycolysis inhibitor or γ-secretase inhibitor both decreased the hepatic glycolysis level and impaired goose embryonic development. Intriguingly, the blockade of Notch signaling is also accompanied by the inhibition of PI3K/Akt signaling in the embryonic primary hepatocytes and embryonic liver. Notably, the decreased glycolysis and impaired embryonic growth induced by the blockade of Notch signaling were restored by activation of PI3K/Akt signaling. CONCLUSIONS Notch signaling regulates a key glycolytic switch in a PI3K/Akt-dependent manner to supply energy for avian embryonic growth. Our study is the first to demonstrate the role of Notch signaling-induced glycolytic switching in embryonic development, and presents new insight into the energy supply patterns in embryogenesis under hypoxic conditions. In addition, it may also provide a natural hypoxia model for developmental biology studies such as immunology, genetics, virology, cancer, etc.
Collapse
Affiliation(s)
- Heng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Wenqi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Xuyang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Yuchun Zhan
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China.
| |
Collapse
|
64
|
Sokol L, Cuypers A, Truong ACK, Bouché A, Brepoels K, Souffreau J, Rohlenova K, Vinckier S, Schoonjans L, Eelen G, Dewerchin M, de Rooij LPMH, Carmeliet P. Prioritization and functional validation of target genes from single-cell transcriptomics studies. Commun Biol 2023; 6:648. [PMID: 37330599 PMCID: PMC10276815 DOI: 10.1038/s42003-023-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/01/2023] [Indexed: 06/19/2023] Open
Abstract
Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.
Collapse
Affiliation(s)
- Liliana Sokol
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anne Cuypers
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Anh-Co K Truong
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Ann Bouché
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Joris Souffreau
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Vestec, Prague-West, Czech Republic
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
| | - Laura P M H de Rooij
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology (CCB), VIB and Department of Oncology, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Heterogeneity, Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
65
|
Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, Sedgeman L, Turner M, Plath K, Iruela-Arispe ML, de Aguiar Vallim TQ, Christofk HR. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep 2023; 42:112411. [PMID: 37086408 PMCID: PMC10332406 DOI: 10.1016/j.celrep.2023.112411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.
Collapse
Affiliation(s)
- Andrew C Cicchetto
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elsie C Jacobson
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hannah Sunshine
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blake R Wilde
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Abigail S Krall
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Leslie Sedgeman
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
66
|
Wang F, Yin X, Fan YM, Zhang X, Ma C, Jia K, Zhou W, Tang Z, Qi LW, Li J. Upregulation of glycolytic enzyme PFKFB3 by deubiquitinase OTUD4 promotes cardiac fibrosis post myocardial infarction. J Mol Med (Berl) 2023:10.1007/s00109-023-02323-6. [PMID: 37162556 DOI: 10.1007/s00109-023-02323-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Metabolic dysregulations have emerged as a major mediator of cardiovascular disorders and fibrotic diseases. Metabolic reprogramming contributes a lot to cardiac fibroblast activation and cardiac fibrosis post-myocardial infarction (MI), yet the mechanism remains incompletely understood. Our work aimed to determine whether or not glycolytic reprogramming, regulated by phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3), is a therapeutic target for alleviating post-MI cardiac fibrosis. Here, we showed that cardiac fibroblasts displayed cell energy phenotype toward augmented glycolysis in response to transforming growth factor-beta 1 (TGF-β1), evidenced by significant extracellular acidification rate (ECAR) increase and lactate accumulation. The expression of glycolytic enzyme PFKFB3, a master activator of glycolysis, was up-regulated in TGF-β1-treated cardiac fibroblasts and in cardiac fibroblasts of post-MI mice. Pharmacological inhibition of PFKFB3 by 3PO diminished TGF-β1-mediated profibrotic phenotypes, attenuated cardiac fibrosis, and preserved cardiac functions in post-MI mice. Meanwhile, the genetic inhibition of PFKFB3 decreased the cardiac fibroblast activation and reversed the differentiated phenotypes in vitro and in vivo. Mechanistically, we identified deubiquitinase OTUD4 as a new binding protein of PFKFB3, and their interaction blocked PFKFB3 degradation via OTUD4-mediated deubiquitylation. Taken together, this work characterized a key role for PFKFB3 in cardiac fibroblast activation and suggested that inhibiting PFKFB3-involved glycolysis is an alternative way to alleviate post-MI cardiac fibrosis. KEY MESSAGES: PFKFB3, a master activator of glycolysis, was highly expressed in ischemic cardiac fibroblasts to enhance cardiac fibrosis The deubiquitinase OTUD4 was identified as a new binding protein of PFKFB3 TGF-β1 blunted the ubiquitination-mediated degradation of PFKFB3 via OTUD4-mediated deubiquitylation Blockade of PFKFB3 contributed to ameliorating ischemia-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Feizuo Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 210009, Jiangsu, China
| | - Xiaojian Yin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 210009, Jiangsu, China
| | - Yuan-Ming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 210009, Jiangsu, China
| | - Xinyao Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 210009, Jiangsu, China
| | - Chao Ma
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Keke Jia
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 210009, Jiangsu, China
| | - Zongxiang Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Road, Nanjing, 210009, Jiangsu, China.
| | - Jia Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
67
|
Gao J, Shen W. Sirtuin-3-Mediated Cellular Metabolism Links Cardiovascular Remodeling with Hypertension. BIOLOGY 2023; 12:biology12050686. [PMID: 37237500 DOI: 10.3390/biology12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Hypertension can cause structural and functional abnormalities in the cardiovascular system, which can be attributed to both hemodynamic and nonhemodynamic factors. These alterations are linked with metabolic changes and are induced by pathological stressors. Sirtuins are enzymes that act as stress sensors and regulate metabolic adaptation by deacetylating proteins. Among them, mitochondrial SIRT3 performs a crucial role in maintaining metabolic homeostasis. Evidence from experimental and clinical studies has shown that hypertension-induced decreases in SIRT3 activity can lead to cellular metabolism reprogramming and, subsequently, increased susceptibility to endothelial dysfunction, myocardial hypertrophy, myocardial fibrosis, and heart failure. This review presents recent research advances in SIRT3-mediated metabolic adaptation in hypertensive cardiovascular remodeling.
Collapse
Affiliation(s)
- Jing Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weili Shen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
68
|
Rezazadeh-Gavgani E, Oladghaffari M, Bahramian S, Majidazar R, Dolati S. MicroRNA-21: A critical underestimated molecule in diabetic retinopathy. Gene 2023; 859:147212. [PMID: 36690226 DOI: 10.1016/j.gene.2023.147212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Diabetes mellitus (DM) has grown in attention in recent years as a result of its debilitating complications and chronic disabilities. Diabetic retinopathy (DR) is a chronic microvascular complication of DM and is considered as the primary reason for blindness in adults. Early diagnosis of diabetes complications along with targeted therapy options are critical in avoiding morbidity and mortality associated with complications of diabetes. miR-21 is an important and widely studied non-coding-RNA (ncRNA) with considerable roles in various pathologic conditions including diabetic complications. miR-21 is one of the most elevated miRNAs in response to hyperglycemia and its role in angiogenesis is a major culprit of a wide range of disorders including DR. The main role of miR-21 in DR pathophysiology is believed to be through regulating angiogenesis in retina. This article aims to outline miR-21 biogenesis and distribution in human body along with discussions about its role in DR pathogenesis and its biomarker value in order to facilitate understanding of the new characteristics of miR-21 in DR management.
Collapse
Affiliation(s)
| | - Mobina Oladghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Bahramian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Majidazar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
69
|
Yang K, Qiu T, Gong X, Zhou J, Lan Y, Chen S, Ji Y. Integrated nontargeted and targeted metabolomics analyses amino acids metabolism in infantile hemangioma. Front Oncol 2023; 13:1132344. [PMID: 37025602 PMCID: PMC10070834 DOI: 10.3389/fonc.2023.1132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in children. However, the exact pathogenesis of IH remains unclear. Integrated nontargeted and targeted metabolic analyses were performed to obtain insight into the possible pathogenic mechanism of IH. The results of nontargeted metabolic analysis showed that 216 and 128 differential metabolites (DMs) were identified between hemangioma-derived endothelial cells (HemECs) and HUVECs in positive-ion and negative-ion models, respectively. In both models, these DMs were predominantly enriched in pathways related to amino acid metabolism, including aminoacyl-tRNA biosynthesis and arginine and proline metabolism. Then, targeted metabolic analysis of amino acids was further performed to further clarify HemEC metabolism. A total of 22 amino acid metabolites were identified, among which only 16 metabolites, including glutamine, arginine and asparagine, were significantly differentially expressed between HemECs and HUVECs. These significant amino acids were significantly enriched in 10 metabolic pathways, including 'alanine, aspartate and glutamate metabolism', 'arginine biosynthesis', 'arginine and proline metabolism', and 'glycine, serine and threonine metabolism'. The results of our study revealed that amino acid metabolism is involved in IH. Key differential amino acid metabolites, including glutamine, asparagine and arginine, may play an important role in regulating HemEC metabolism.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
70
|
Kotlyarov S, Kotlyarova A. Participation of Krüppel-like Factors in Atherogenesis. Metabolites 2023; 13:448. [PMID: 36984888 PMCID: PMC10052737 DOI: 10.3390/metabo13030448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Atherosclerosis is an important problem in modern medicine, the keys to understanding many aspects of which are still not available to clinicians. Atherosclerosis develops as a result of a complex chain of events in which many cells of the vascular wall and peripheral blood flow are involved. Endothelial cells, which line the vascular wall in a monolayer, play an important role in vascular biology. A growing body of evidence strengthens the understanding of the multifaceted functions of endothelial cells, which not only organize the barrier between blood flow and tissues but also act as regulators of hemodynamics and play an important role in regulating the function of other cells in the vascular wall. Krüppel-like factors (KLFs) perform several biological functions in various cells of the vascular wall. The large family of KLFs in humans includes 18 members, among which KLF2 and KLF4 are at the crossroads between endothelial cell mechanobiology and immunometabolism, which play important roles in both the normal vascular wall and atherosclerosis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
71
|
Becker LM, Chen SH, Rodor J, de Rooij LPMH, Baker AH, Carmeliet P. Deciphering endothelial heterogeneity in health and disease at single-cell resolution: progress and perspectives. Cardiovasc Res 2023; 119:6-27. [PMID: 35179567 PMCID: PMC10022871 DOI: 10.1093/cvr/cvac018] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/16/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Endothelial cells (ECs) constitute the inner lining of vascular beds in mammals and are crucial for homeostatic regulation of blood vessel physiology, but also play a key role in pathogenesis of many diseases, thereby representing realistic therapeutic targets. However, it has become evident that ECs are heterogeneous, encompassing several subtypes with distinct functions, which makes EC targeting and modulation in diseases challenging. The rise of the new single-cell era has led to an emergence of studies aimed at interrogating transcriptome diversity along the vascular tree, and has revolutionized our understanding of EC heterogeneity from both a physiological and pathophysiological context. Here, we discuss recent landmark studies aimed at teasing apart the heterogeneous nature of ECs. We cover driving (epi)genetic, transcriptomic, and metabolic forces underlying EC heterogeneity in health and disease, as well as current strategies used to combat disease-enriched EC phenotypes, and propose strategies to transcend largely descriptive heterogeneity towards prioritization and functional validation of therapeutically targetable drivers of EC diversity. Lastly, we provide an overview of the most recent advances and hurdles in single EC OMICs.
Collapse
Affiliation(s)
| | | | | | | | - Andrew H Baker
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| | - Peter Carmeliet
- Corresponding authors. Tel: +32 16 32 62 47, E-mail: (P.C.); Tel: +44 (0)131 242 6774, E-mail: (A.H.B.)
| |
Collapse
|
72
|
Zhang D, Li AM, Hu G, Huang M, Yang F, Zhang L, Wellen KE, Xu X, Conn CS, Zou W, Kahn M, Rhoades SD, Weljie AM, Fuchs SY, Amankulor N, Yoshor D, Ye J, Koumenis C, Gong Y, Fan Y. PHGDH-mediated endothelial metabolism drives glioblastoma resistance to chimeric antigen receptor T cell immunotherapy. Cell Metab 2023; 35:517-534.e8. [PMID: 36804058 PMCID: PMC10088869 DOI: 10.1016/j.cmet.2023.01.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 10/24/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023]
Abstract
The efficacy of immunotherapy is limited by the paucity of T cells delivered and infiltrated into the tumors through aberrant tumor vasculature. Here, we report that phosphoglycerate dehydrogenase (PHGDH)-mediated endothelial cell (EC) metabolism fuels the formation of a hypoxic and immune-hostile vascular microenvironment, driving glioblastoma (GBM) resistance to chimeric antigen receptor (CAR)-T cell immunotherapy. Our metabolome and transcriptome analyses of human and mouse GBM tumors identify that PHGDH expression and serine metabolism are preferentially altered in tumor ECs. Tumor microenvironmental cues induce ATF4-mediated PHGDH expression in ECs, triggering a redox-dependent mechanism that regulates endothelial glycolysis and leads to EC overgrowth. Genetic PHGDH ablation in ECs prunes over-sprouting vasculature, abrogates intratumoral hypoxia, and improves T cell infiltration into the tumors. PHGDH inhibition activates anti-tumor T cell immunity and sensitizes GBM to CAR T therapy. Thus, reprogramming endothelial metabolism by targeting PHGDH may offer a unique opportunity to improve T cell-based immunotherapy.
Collapse
Affiliation(s)
- Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Albert M Li
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Guanghui Hu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Crystal S Conn
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Kahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seth D Rhoades
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim M Weljie
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nduka Amankulor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Gong
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
73
|
The TRPM7 channel reprograms cellular glycolysis to drive tumorigenesis and angiogenesis. Cell Death Dis 2023; 14:183. [PMID: 36878949 PMCID: PMC9988972 DOI: 10.1038/s41419-023-05701-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Cancer or endothelial cells preferably catabolize glucose through aerobic glycolysis rather than oxidative phosphorylation. Intracellular ionic signaling has been shown to regulate glucose metabolism, but the underlying ion channel has yet to be identified. RNA-seq, metabolomics and genetic assay revealed that the TRPM7 channel regulated cellular glycolysis. Deletion of TRPM7 suppressed cancer cell glycolysis and reduced the xenograft tumor burden. Deficiency of endothelial TRPM7 inhibited postnatal retinal angiogenesis in mice. Mechanistically, TRPM7 transcriptionally regulated the solute carrier family 2 member 3 (SLC2A3, also known as GLUT3) via Ca2+ influx-induced calcineurin activation. Furthermore, CREB-regulated transcription coactivator 2 (CRTC2) and CREB act downstream of calcineurin to relay Ca2+ signal to SLC2A3 transcription. Expression of the constitutively active CRTC2 or CREB in TRPM7 knockout cell normalized glycolytic metabolism and cell growth. The TRPM7 channel represents a novel regulator of glycolytic reprogramming. Inhibition of the TRPM7-dependent glycolysis could be harnessed for cancer therapy.
Collapse
|
74
|
Tofovic SP. Purine Nucleoside Phosphorylase: A New Pharmacological Target in Sickle Cell Disease and Hemolytic Vasculopathy. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
75
|
Li J, Zhou Y, Eelen G, Zhou QT, Feng WB, Labroska V, Ma FF, Lu HP, Dewerchin M, Carmeliet P, Wang MW, Yang DH. A high-throughput screening campaign against PFKFB3 identified potential inhibitors with novel scaffolds. Acta Pharmacol Sin 2023; 44:680-692. [PMID: 36114272 PMCID: PMC9958033 DOI: 10.1038/s41401-022-00989-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
The growth of solid tumors depends on tumor vascularization and the endothelial cells (ECs) that line the lumen of blood vessels. ECs generate a large fraction of ATP through glycolysis, and elevation of their glycolytic activity is associated with angiogenic behavior in solid tumors. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) positively regulates glycolysis via fructose-2/6-bisphosphate, the product of its kinase activity. Partial inhibition of glycolysis in tumor ECs by targeting PFKFB3 normalizes the otherwise abnormal tumor vessels, thereby reducing metastasis and improving the outcome of chemotherapy. Although a limited number of tool compounds exist, orally available PFKFB3 inhibitors are unavailable. In this study we conducted a high-throughput screening campaign against the kinase activity of PFKFB3, involving 250,240 chemical compounds. A total of 507 initial hits showing >50% inhibition at 20 µM were identified, 66 of them plus 1 analog from a similarity search consistently displayed low IC50 values (<10 µM). In vitro experiments yielded 22 nontoxic hits that suppressed the tube formation of primary human umbilical vein ECs at 10 µM. Of them, 15 exhibited binding affinity to PFKFB3 in surface plasmon resonance assays, including 3 (WNN0403-E003, WNN1352-H007 and WNN1542-F004) that passed the pan-assay interference compounds screening without warning flags. This study provides potential leads to the development of new PFKFB3 inhibitors.
Collapse
Affiliation(s)
- Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB-KU Leuven, Leuven, 3000, Belgium
| | - Qing-Tong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wen-Bo Feng
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Viktorija Labroska
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen-Fen Ma
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, 201300, China
| | - Hui-Ping Lu
- Department of Pharmacy, Pudong Hospital, Fudan University, Shanghai, 201300, China
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB-KU Leuven, Leuven, 3000, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven and Center for Cancer Biology, VIB-KU Leuven, Leuven, 3000, Belgium
| | - Ming-Wei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - De-Hua Yang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Research Center for Deepsea Bioresources, Sanya, 572025, China.
| |
Collapse
|
76
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
77
|
Yang K, Qiu T, Zhou J, Gong X, Zhang X, Lan Y, Zhang Z, Ji Y. Blockage of glycolysis by targeting PFKFB3 suppresses the development of infantile hemangioma. J Transl Med 2023; 21:85. [PMID: 36740704 PMCID: PMC9901151 DOI: 10.1186/s12967-023-03932-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Infantile hemangioma (IH) is the most common tumor among infants, but the exact pathogenesis of IH is largely unknown. Our previous study revealed that glucose metabolism may play an important role in the pathogenesis of IH and that the inhibition of the glycolytic key enzyme phosphofructokinase-1 suppresses angiogenesis in IH. 6-Phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) is a metabolic enzyme that converts fructose-6-bisphosphate to fructose-2,6-bisphosphate (F-2,6-BP), which is the most potent allosteric activator of the rate-limiting enzyme phosphofructokinase-1. This study was performed to explore the role of PFKFB3 in IH. METHODS Microarray analysis was performed to screen the differentially expressed genes (DEGs) between proliferating and involuting IH tissues. PFKFB3 expression was examined by western blot and immunohistochemistry analyses. Cell migration, apoptosis and tube formation were analyzed. Metabolic analyses were performed to investigate the effect of PFKFB3 inhibition by PFK15. Mouse models were established to examine the effect of PFKFB3 inhibition in vivo. RESULTS PFKFB3 was identified as one of the most significant DEGs and was more highly expressed in proliferating IH tissues and hemangioma-derived endothelial cells (HemECs) than in involuting IH tissues and human umbilical vein endothelial cells, respectively. PFKFB3 inhibition by PFK15 suppressed HemEC glucose metabolism mainly by affecting glycolytic metabolite metabolism and decreasing the glycolytic flux. Moreover, PFK15 inhibited HemEC angiogenesis and migration and induced apoptosis via activation of the apoptosis pathway. Treatment with the combination of PFK15 with propranolol had a synergistic inhibitory effect on HemECs. Moreover, PFKFB3 knockdown markedly suppressed HemEC angiogenesis. Mechanistically, inhibition of PFKFB3 suppressed the PI3K-Akt signaling pathway and induced apoptotic cell death. More importantly, the suppression of PFKFB3 by PFK15 or shPFKFB3 led to markedly reduced tumor growth in vivo. CONCLUSIONS Our findings suggest that PFKFB3 inhibition can suppress IH angiogenesis and induce apoptosis. Thus, targeting PFKFB3 may be a novel therapeutic strategy for IH.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Centre, National Children's Medical Centre for South Central Region, Guangzhou Medical University, Guangzhou, 510623, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
| | - Xuepeng Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
| | - Zixin Zhang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, #37 Guo-Xue-Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
78
|
Afonso J, Gonçalves C, Costa M, Ferreira D, Santos L, Longatto-Filho A, Baltazar F. Glucose Metabolism Reprogramming in Bladder Cancer: Hexokinase 2 (HK2) as Prognostic Biomarker and Target for Bladder Cancer Therapy. Cancers (Basel) 2023; 15:cancers15030982. [PMID: 36765947 PMCID: PMC9913750 DOI: 10.3390/cancers15030982] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Proliferating cancer cells are able to reprogram their energy metabolism, favouring glycolysis even in the presence of oxygen and fully functioning mitochondria. Research is needed to validate the glycolysis-related proteins as prognostic/predictive biomarkers in urothelial bladder carcinoma (UBC), a malignancy tagged by high recurrence rates and poor response to chemotherapy. Here, we assessed GLUT1, HK2, PFKL, PKM2, phospho-PDH, and LDHA immunoexpression in 76 UBC samples, differentiating among urothelial, fibroblast, and endothelial cells and among normoxic versus hypoxic areas. We additionally studied the functional effects of the HK2 inhibitor 2-deoxy-D-glucose (2DG) in "in vitro" and "in vivo" preclinical UBC models. We showed that the expression of the glycolysis-related proteins is associated with UBC aggressiveness and poor prognosis. HK2 remained as an independent prognostic factor for disease-free and overall survival. 2DG decreased the UBC cell's viability, proliferation, migration, and invasion; the inhibition of cell cycle progression and apoptosis occurrence was also verified. A significant reduction in tumour growth and blood vessel formation upon 2DG treatment was observed in the chick chorioallantoic membrane assay. 2DG potentiated the cisplatin-induced inhibition of cell viability in a cisplatin-resistant subline. This study highlights HK2 as a prognostic biomarker for UBC patients and demonstrates the potential benefits of using 2DG as a glycolysis inhibitor. Future studies should focus on integrating 2DG into chemotherapy design, as an attempt to overcome cisplatin resistance.
Collapse
Affiliation(s)
- Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Céline Gonçalves
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Costa
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lúcio Santos
- Experimental Pathology and Therapeutics Group, Research Center of the Portuguese Institute of Oncology (CI-IPOP), 4200-072 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), 4200-072 Porto, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Laboratory of Medical Investigation (LIM14), Faculty of Medicine, São Paulo State University, São Paulo 01049-010, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo 14784-400, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-60-48-28
| |
Collapse
|
79
|
Hasan SS, Fischer A. Notch Signaling in the Vasculature: Angiogenesis and Angiocrine Functions. Cold Spring Harb Perspect Med 2023; 13:a041166. [PMID: 35667708 PMCID: PMC9899647 DOI: 10.1101/cshperspect.a041166] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formation of a functional blood vessel network is a complex process tightly controlled by pro- and antiangiogenic signals released within the local microenvironment or delivered through the bloodstream. Endothelial cells precisely integrate such temporal and spatial changes in extracellular signals and generate an orchestrated response by modulating signaling transduction, gene expression, and metabolism. A key regulator in vessel formation is Notch signaling, which controls endothelial cell specification, proliferation, migration, adhesion, and arteriovenous differentiation. This review summarizes the molecular biology of endothelial Notch signaling and how it controls angiogenesis and maintenance of the established, quiescent vasculature. In addition, recent progress in the understanding of Notch signaling in endothelial cells for controlling organ homeostasis by transcriptional regulation of angiocrine factors and its relevance to disease will be discussed.
Collapse
Affiliation(s)
- Sana S Hasan
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
80
|
Li A, Zhu L, Lei N, Wan J, Duan X, Liu S, Cheng Y, Wang M, Gu Z, Zhang H, Bai Y, Zhang L, Wang F, Ni C, Qin Z. S100A4-dependent glycolysis promotes lymphatic vessel sprouting in tumor. Angiogenesis 2023; 26:19-36. [PMID: 35829860 DOI: 10.1007/s10456-022-09845-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Tumor-induced lymphangiogenesis promotes the formation of new lymphatic vessels, contributing to lymph nodes (LNs) metastasis of tumor cells in both mice and humans. Vessel sprouting appears to be a critical step in this process. However, how lymphatic vessels sprout during tumor lymphangiogenesis is not well-established. Here, we report that S100A4 expressed in lymphatic endothelial cells (LECs) promotes lymphatic vessel sprouting in a growing tumor by regulating glycolysis. In mice, the loss of S100A4 in a whole body (S100A4-/-), or specifically in LECs (S100A4ΔLYVE1) leads to impaired tumor lymphangiogenesis and disrupted metastasis of tumor cells to sentinel LNs. Using a 3D spheroid sprouting assay, we found that S100A4 in LECs was required for the lymphatic vessel sprouting. Further investigations revealed that S100A4 was essential for the position and motility of tip cells, where it activated AMPK-dependent glycolysis during lymphatic sprouting. In addition, the expression of S100A4 in LECs was upregulated under hypoxic conditions. These results suggest that S100A4 is a novel regulator of tumor-induced lymphangiogenesis. Targeting S100A4 in LECs may be a potential therapeutic strategy for lymphatic tumor metastasis.
Collapse
Affiliation(s)
- Anqi Li
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
- School of Basic Medical Sciences, The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Linyu Zhu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Ningjing Lei
- School of Basic Medical Sciences, The Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiajia Wan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xixi Duan
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuangqing Liu
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanru Cheng
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuoyu Gu
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huilei Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yueyue Bai
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Li Zhang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Fazhan Wang
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Ni
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
81
|
Chelakkot C, Chelakkot VS, Shin Y, Song K. Modulating Glycolysis to Improve Cancer Therapy. Int J Mol Sci 2023; 24:2606. [PMID: 36768924 PMCID: PMC9916680 DOI: 10.3390/ijms24032606] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer cells undergo metabolic reprogramming and switch to a 'glycolysis-dominant' metabolic profile to promote their survival and meet their requirements for energy and macromolecules. This phenomenon, also known as the 'Warburg effect,' provides a survival advantage to the cancer cells and make the tumor environment more pro-cancerous. Additionally, the increased glycolytic dependence also promotes chemo/radio resistance. A similar switch to a glycolytic metabolic profile is also shown by the immune cells in the tumor microenvironment, inducing a competition between the cancer cells and the tumor-infiltrating cells over nutrients. Several recent studies have shown that targeting the enhanced glycolysis in cancer cells is a promising strategy to make them more susceptible to treatment with other conventional treatment modalities, including chemotherapy, radiotherapy, hormonal therapy, immunotherapy, and photodynamic therapy. Although several targeting strategies have been developed and several of them are in different stages of pre-clinical and clinical evaluation, there is still a lack of effective strategies to specifically target cancer cell glycolysis to improve treatment efficacy. Herein, we have reviewed our current understanding of the role of metabolic reprogramming in cancer cells and how targeting this phenomenon could be a potential strategy to improve the efficacy of conventional cancer therapy.
Collapse
Affiliation(s)
| | - Vipin Shankar Chelakkot
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Youngkee Shin
- Laboratory of Molecular Pathology and Cancer Genomics, Research Institute of Pharmaceutical Science, Department of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Song
- College of Pharmacy, Duksung Women’s University, Seoul 01366, Republic of Korea
| |
Collapse
|
82
|
Lv N, Shen S, Chen Q, Tong J. Long noncoding RNAs: glycolysis regulators in gynaecologic cancers. Cancer Cell Int 2023; 23:4. [PMID: 36639695 PMCID: PMC9838043 DOI: 10.1186/s12935-023-02849-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The three most common gynaecologic cancers that seriously threaten female lives and health are ovarian cancer, cervical cancer, and endometrial cancer. Glycolysis plays a vital role in gynaecologic cancers. Several long noncoding RNAs (lncRNAs) are known to function as oncogenic molecules. LncRNAs impact downstream target genes by acting as ceRNAs, guides, scaffolds, decoys, or signalling molecules. However, the role of glycolysis-related lncRNAs in regulating gynaecologic cancers remains poorly understood. In this review, we emphasize the functional roles of many lncRNAs that have been found to promote glycolysis in gynaecologic cancers and discuss reasonable strategies for future research.
Collapse
Affiliation(s)
- Nengyuan Lv
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Siyi Shen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Qianying Chen
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| | - Jinyi Tong
- grid.268505.c0000 0000 8744 8924Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XDepartment of Obstetrics and Gynecology, Affiliated Hangzhou First People’s Hospital, Zhejiang University of Medicine, Hangzhou, 310006 Zhejiang Province People’s Republic of China
| |
Collapse
|
83
|
Zhang H, Wang Y, Qu M, Li W, Wu D, Cata JP, Miao C. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med 2023; 13:e1170. [PMID: 36629024 PMCID: PMC9832433 DOI: 10.1002/ctm2.1170] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sepsis is a persistent systemic inflammatory condition involving multiple organ failures resulting from a dysregulated immune response to infection, and one of the hallmarks of sepsis is endothelial dysfunction. During its progression, neutrophils are the first line of innate immune defence against infection. Aside from traditional mechanisms, such as phagocytosis or the release of inflammatory cytokines, reactive oxygen species and other antibacterial substances, activated neutrophils also release web-like structures composed of tangled decondensed DNA, histone, myeloperoxidase and other granules called neutrophil extracellular traps (NETs), which can efficiently ensnare bacteria in the circulation. In contrast, excessive neutrophil activation and NET release may induce endothelial cells to shift toward a pro-inflammatory and pro-coagulant phenotype. Furthermore, neutrophils and NETs can degrade glycocalyx on the endothelial cell surface and increase endothelium permeability. Consequently, the endothelial barrier collapses, contributing to impaired microcirculatory blood flow, tissue hypoperfusion and life-threatening organ failure in the late phase of sepsis.
Collapse
Affiliation(s)
- Hao Zhang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Yanghanzhao Wang
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Mengdi Qu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Wenqian Li
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
| | - Dan Wu
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| | - Juan P. Cata
- Department of Anesthesiology and Perioperative MedicineThe University of Texas‐MD Anderson Cancer CenterHoustonTexasUSA
- Anesthesiology and Surgical Oncology Research GroupHoustonTexasUSA
| | - Changhong Miao
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key laboratory of Perioperative Stress and ProtectionShanghaiChina
- Department of AnesthesiologyShanghai Medical CollegeFudan University, Shanghai, China
| |
Collapse
|
84
|
Weber CM, Moiz B, Zic SM, Alpízar Vargas V, Li A, Clyne AM. Induced pluripotent stem cell-derived cells model brain microvascular endothelial cell glucose metabolism. Fluids Barriers CNS 2022; 19:98. [PMID: 36494870 PMCID: PMC9733016 DOI: 10.1186/s12987-022-00395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Glucose transport from the blood into the brain is tightly regulated by brain microvascular endothelial cells (BMEC), which also use glucose as their primary energy source. To study how BMEC glucose transport contributes to cerebral glucose hypometabolism in diseases such as Alzheimer's disease, it is essential to understand how these cells metabolize glucose. Human primary BMEC (hpBMEC) can be used for BMEC metabolism studies; however, they have poor barrier function and may not recapitulate in vivo BMEC function. iPSC-derived BMEC-like cells (hiBMEC) are readily available and have good barrier function but may have an underlying epithelial signature. In this study, we examined differences between hpBMEC and hiBMEC glucose metabolism using a combination of dynamic metabolic measurements, metabolic mass spectrometry, RNA sequencing, and Western blots. hiBMEC had decreased glycolytic flux relative to hpBMEC, and the overall metabolomes and metabolic enzyme levels were different between the two cell types. However, hpBMEC and hiBMEC had similar glucose metabolism, including nearly identical glucose labeled fractions of glycolytic and TCA cycle metabolites. Treatment with astrocyte conditioned media and high glucose increased glycolysis in both hpBMEC and hiBMEC, though hpBMEC decreased glycolysis in response to fluvastatin while hiBMEC did not. Together, these results suggest that hiBMEC can be used to model cerebral vascular glucose metabolism, which expands their use beyond barrier models.
Collapse
Affiliation(s)
| | - Bilal Moiz
- University of Maryland, College Park, MD, 20742, USA
| | - Sophia M Zic
- University of Maryland, College Park, MD, 20742, USA
| | | | - Andrew Li
- University of Maryland, College Park, MD, 20742, USA
| | | |
Collapse
|
85
|
Ding J, Li B, Zhang H, Xu Z, Zhang Q, Ye R, Feng S, Jiang Q, Zhu W, Yan B. Suppression of Pathological Ocular Neovascularization by a Small Molecular Multi-Targeting Kinase Inhibitor, DCZ19903. Transl Vis Sci Technol 2022; 11:8. [PMID: 36484641 DOI: 10.1167/tvst.11.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The administration of anti-vascular endothelial growth factor agents is the standard firs-line therapy for ocular vascular diseases, but some patients still have poor outcomes and drug resistance. This study investigated the role of DCZ19903, a small molecule multitarget kinase inhibitor, in ocular angiogenesis. Methods The toxicity of DCZ19903 was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays, flow cytometry, Calcein-AM/PI staining, and terminal uridine nick-end labeling staining. Oxygen-induced retinopathy and laser-induced choroidal neovascularization models were adopted to assess the antiangiogenic effects of DCZ19903 by Isolectin B4 (GS-IB4) and hematoxylin-eosin staining. EdU assays, transwell migration assays, tube formation, and choroid sprouting assays were performed to determine the antiangiogenic effects of DCZ19903. The antiangiogenic mechanism of DCZ19903 was determined using network pharmacology approach and western blots. Results There was no obvious cytotoxicity or tissue toxicity after DCZ19903 treatment. DCZ19903 exerted the antiangiogenic effects in OIR model and choroidal neovascularization model. DCZ19903 inhibited the proliferation, tube formation, migration ability of endothelial cells, and choroidal explant sprouting. DCZ19903 plus ranibizumab achieved greater antiangiogenetic effects than DCZ19903 or ranibizumab alone. DCZ19903 exerted its antiangiogenic effects via affecting the activation of ERK1/2 and p38 signaling. Conclusions DCZ19903 is a promising drug for antiangiogenic treatment in ocular vascular diseases. Translational Relevance These findings suggest that DCZ19903 possesses great antiangiogenic potential for treating ocular vascular diseases.
Collapse
Affiliation(s)
- Jingjuan Ding
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Li
- State Key Laboratory of Drug Research, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Ye
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Siguo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Biao Yan
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
86
|
Fu Z, Nilsson AK, Hellstrom A, Smith LEH. Retinopathy of prematurity: Metabolic risk factors. eLife 2022; 11:e80550. [PMID: 36420952 PMCID: PMC9691009 DOI: 10.7554/elife.80550] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
At preterm birth, the retina is incompletely vascularized. Retinopathy of prematurity (ROP) is initiated by the postnatal suppression of physiological retinal vascular development that would normally occur in utero. As the neural retina slowly matures, increasing metabolic demand including in the peripheral avascular retina, leads to signals for compensatory but pathological neovascularization. Currently, only late neovascular ROP is treated. ROP could be prevented by promoting normal vascular growth. Early perinatal metabolic dysregulation is a strong but understudied risk factor for ROP and other long-term sequelae of preterm birth. We will discuss the metabolic and oxygen needs of retina, current treatments, and potential interventions to promote normal vessel growth including control of postnatal hyperglycemia, dyslipidemia and hyperoxia-induced retinal metabolic alterations. Early supplementation of missing nutrients and growth factors and control of supplemental oxygen promotes physiological retinal development. We will discuss the current knowledge gap in retinal metabolism after preterm birth.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Anders K Nilsson
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Lois EH Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
87
|
Zlacká J, Murár M, Addová G, Moravčík R, Boháč A, Zeman M. Synthesis of Glycolysis Inhibitor PFK15 and Its Synergistic Action with an Approved Multikinase Antiangiogenic Drug on Human Endothelial Cell Migration and Proliferation. Int J Mol Sci 2022; 23:ijms232214295. [PMID: 36430773 PMCID: PMC9697023 DOI: 10.3390/ijms232214295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Activated endothelial, immune, and cancer cells prefer glycolysis to obtain energy for their proliferation and migration. Therefore, the blocking of glycolysis can be a promising strategy against cancer and autoimmune disease progression. Inactivation of the glycolytic enzyme PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase) suppresses glycolysis level and contributes to decreased proliferation and migration of cancer (tumorigenesis) and endothelial (angiogenesis) cells. Recently, several glycolysis inhibitors have been developed, among them (E)-1-(pyridin-4-yl)-3-(quinolin-2-yl)prop-2-en-1-one (PFK15) that is considered as one of the most promising. It is known that PFK15 decreases glucose uptake into the endothelial cells and efficiently blocks pathological angiogenesis. However, no study has described sufficiently PFK15 synthesis enabling its general availability. In this paper we provide all necessary details for PFK15 preparation and its advanced characterization. On the other hand, there are known tyrosine kinase inhibitors (e.g., sunitinib), that affect additional molecular targets and efficiently block angiogenesis. From a biological point of view, we have studied and proved the synergistic inhibitory effect by simultaneous administration of glycolysis inhibitor PFK15 and multikinase inhibitor sunitinib on the proliferation and migration of HUVEC. Our results suggest that suppressing the glycolytic activity of endothelial cells in combination with growth factor receptor blocking can be a promising antiangiogenic treatment.
Collapse
Affiliation(s)
- Jana Zlacká
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Miroslav Murár
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Gabriela Addová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Roman Moravčík
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Andrej Boháč
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Biomagi, Ltd., Mamateyova 26, 851 04 Bratislava, Slovakia
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Correspondence:
| |
Collapse
|
88
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
89
|
Domínguez-Castro M, Domínguez-Galicia A, Pérez-Pérez O, Hernández-Pineda J, Mancilla-Herrera I, Bazán-Tejeda ML, Rodríguez-Cruz L, González-Torres MC, Montoya-Estrada A, Reyes-Muñoz E, Romo-Yáñez J. Hyperglycemia affects neuronal differentiation and Nestin, FOXO1, and LMO3 mRNA expression of human Wharton's jelly mesenchymal stem cells of children from diabetic mothers. Biochem Biophys Res Commun 2022; 637:300-307. [DOI: 10.1016/j.bbrc.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
90
|
Mohammadi P, Yarani R, Rahimpour A, Ranjbarnejad F, Mendes Lopes de Melo J, Mansouri K. Targeting endothelial cell metabolism in cancerous microenvironment: a new approach for anti-angiogenic therapy. Drug Metab Rev 2022; 54:386-400. [PMID: 36031813 DOI: 10.1080/03602532.2022.2116033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anti-angiogenic therapy is a practical approach to managing diseases with increased angiogenesis, such as cancer, maculopathies, and retinopathies. Considering the fundamental gaps in the knowledge of the vital pathways involved in angiogenesis and its inhibition and the insufficient efficiency of existing angiogenesis inhibitors, there is an increasing focus on the emergence of new therapeutic strategies aimed at inhibiting pathological angiogenesis. Angiogenesis is forming a new vascular network from existing vessels; endothelial cells (ECs), vascular lining cells, are the main actors of angiogenesis in physiological or pathological conditions. Switching from a quiescent state to a highly migratory and proliferative state during new vessel formation called "angiogenic switch" is driven by a "metabolic switch" in ECs, angiogenic growth factors, and other signals. As the characteristics of ECs change by altering the surrounding environment, they appear to have a different metabolism in a tumor microenvironment (TME). Therefore, pathological angiogenesis can be inhibited by targeting metabolic pathways. In the current review, we aim to discuss the EC metabolic pathways under normal and TME conditions to verify the suitability of targeting them with novel therapies.
Collapse
Affiliation(s)
- Parisa Mohammadi
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical, Sciences, Tehran, Iran
| | - Fatemeh Ranjbarnejad
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Joana Mendes Lopes de Melo
- Translational Type 1 Diabetes Research, Department of Clinical, Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Kamran Mansouri
- Medical Biology Research Center, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
91
|
Li H, Gu J, Tian Y, Li S, Zhang H, Dai Z, Wang Z, Zhang N, Peng R. A prognostic signature consisting of metabolism-related genes and SLC17A4 serves as a potential biomarker of immunotherapeutic prediction in prostate cancer. Front Immunol 2022; 13:982628. [PMID: 36325340 PMCID: PMC9620963 DOI: 10.3389/fimmu.2022.982628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa), a prevalent malignant cancer in males worldwide, screening for patients might benefit more from immuno-/chemo-therapy remained inadequate and challenging due to the heterogeneity of PCa patients. Thus, the study aimed to explore the metabolic (Meta) characteristics and develop a metabolism-based signature to predict the prognosis and immuno-/chemo-therapy response for PCa patients. METHODS Differentially expressed genes were screened among 2577 metabolism-associated genes. Univariate Cox analysis and random forest algorithms was used for features screening. Multivariate Cox regression analysis was conducted to construct a prognostic Meta-model based on all combinations of metabolism-related features. Then the correlation between MetaScore and tumor was deeply explored from prognostic, genomic variant, functional and immunological perspectives, and chemo-/immuno-therapy response. Multiple algorithms were applied to estimate the immunotherapeutic responses of two MeteScore groups. Further in vitro functional experiments were performed using PCa cells to validate the association between the expression of hub gene SLC17A4 which is one of the model component genes and tumor progression. GDSC database was employed to determine the sensitivity of chemotherapy drugs. RESULTS Two metabolism-related clusters presented different features in overall survival (OS). A metabolic model was developed weighted by the estimated regression coefficients in the multivariate Cox regression analysis (0.5154*GAS2 + 0.395*SLC17A4 - 0.1211*NTM + 0.2939*GC). This Meta-scoring system highlights the relationship between the metabolic profiles and genomic alterations, gene pathways, functional annotation, and tumor microenvironment including stromal, immune cells, and immune checkpoint in PCa. Low MetaScore is correlated with increased mutation burden and microsatellite instability, indicating a superior response to immunotherapy. Several medications that might improve patients` prognosis in the MetaScore group were identified. Additionally, our cellular experiments suggested knock-down of SLC17A4 contributes to inhibiting invasion, colony formation, and proliferation in PCa cells in vitro. CONCLUSIONS Our study supports the metabolism-based four-gene signature as a novel and robust model for predicting prognosis, and chemo-/immuno-therapy response in PCa patients. The potential mechanisms for metabolism-associated genes in PCa oncogenesis and progression were further determined.
Collapse
Affiliation(s)
- He Li
- The Animal Laboratory Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Gu
- Department of Geriatric Urology, Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Martini-Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiu Tian
- Department of Infectious Disease, Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One‑Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Hei Longjiang, China
| | - Renjun Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
92
|
Lyu ZS, Tang SQ, Xing T, Zhou Y, Lv M, Fu HX, Wang Y, Xu LP, Zhang XH, Lee HY, Kong Y, Huang XJ. The glycolytic enzyme PFKFB3 determines bone marrow endothelial progenitor cell damage after chemotherapy and irradiation. Haematologica 2022; 107:2365-2380. [PMID: 35354250 PMCID: PMC9521251 DOI: 10.3324/haematol.2021.279756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Bone marrow (BM) endothelial progenitor cell (EPC) damage of unknown mechanism delays the repair of endothelial cells (EC) and recovery of hematopoiesis after chemo-radiotherapy. We found increased levels of the glycolytic enzyme PFKFB3 in the damaged BM EPC of patients with poor graft function, a clinical model of EPC damage-associated poor hematopoiesis after allogeneic hematopoietic stem cell transplantation. Moreover, in vitro the glycolysis inhibitor 3-(3-pyridinyl)- 1-(4-pyridinyl)-2-propen-1-one (3PO) alleviated the damaged BM EPC from patients with poor graft function. Consistently, PFKFB3 overexpression triggered BM EPC damage after 5-fluorouracil treatment and impaired hematopoiesis-supporting ability in vitro. Mechanistically, PFKFB3 facilitated pro-apoptotic transcription factor FOXO3A and expression of its downstream genes, including p21, p27, and FAS, after 5-fluorouracil treatment in vitro. Moreover, PFKFB3 induced activation of NF-κB and expression of its downstream adhesion molecule E-selectin, while it reduced hematopoietic factor SDF-1 expression, which could be rescued by FOXO3A silencing. High expression of PFKFB3 was found in damaged BM EC of murine models of chemo-radiotherapy-induced myelosuppression. Furthermore, a murine model of BM EC-specific PFKFB3 overexpression demonstrated that PFKFB3 aggravated BM EC damage, and impaired the recovery of hematopoiesis after chemotherapy in vivo, effects which could be mitigated by 3PO, indicating a critical role of PFKFB3 in regulating BM EC damage. Clinically, PFKFB3-induced FOXO3A expression and NF-κB activation were confirmed to contribute to the damaged BM EPC of patients with acute leukemia after chemotherapy. 3PO repaired the damaged BM EPC by reducing FOXO3A expression and phospho-NF-κB p65 in patients after chemotherapy. In summary, our results reveal a critical role of PFKFB3 in triggering BM EPC damage and indicate that endothelial-PFKFB3 may be a potential therapeutic target for myelosuppressive injury.
Collapse
Affiliation(s)
- Zhong-Shi Lyu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing
| | - Shu-Qian Tang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Tong Xing
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing
| | - Yang Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing
| | - Hsiang-Ying Lee
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; School of Life Sciences, Peking University, Beijing
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing.
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing.
| |
Collapse
|
93
|
Yan S, Li Q, Li S, Ai Z, Yuan D. The role of PFKFB3 in maintaining colorectal cancer cell proliferation and stemness. Mol Biol Rep 2022; 49:9877-9891. [PMID: 35553342 DOI: 10.1007/s11033-022-07513-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/25/2022] [Indexed: 12/24/2022]
Abstract
Since generally confronting with the hypoxic and stressful microenvironment, cancer cells alter their glucose metabolism pattern to glycolysis to sustain the continuous proliferation and vigorous biological activities. Bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isoform 3 (PFKFB3) functions as an effectively modulator of glycolysis and also participates in regulating angiogenesis, cell death and cell stemness. Meanwhile, PFKFB3 is highly expressed in a variety of cancer cells, and can be activated by several regulatory factors, such as hypoxia, inflammation and cellular signals. In colorectal cancer (CRC) cells, PFKFB3 not only has the property of high expression, but also probably relate to inflammation-cancer transformation. Recent studies indicate that PFKFB3 is involved in chemoradiotherapy resistance as well, such as breast cancer, endometrial cancer and CRC. Cancer stem cells (CSCs) are self-renewable cell types that contribute to oncogenesis, metastasis and relapse. Several studies indicate that CSCs utilize glycolysis to fulfill their energetic and biosynthetic demands in order to maintain rapid proliferation and adapt to the tumor microenvironment changes. In addition, elevated PFKFB3 has been reported to correlate with self-renewal and metastatic outgrowth in numerous kinds of CSCs. This review summarizes our current understanding of PFKFB3 roles in modulating cancer metabolism to maintain cell proliferation and stemness, and discusses its feasibility as a potential target for the discovery of antineoplastic agents, especially in CRC.
Collapse
Affiliation(s)
- Siyuan Yan
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China.
| | - Qianqian Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Shi Li
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Zhiying Ai
- Key Laboratory of Precision Oncology in Universities of Shandong, Jining Medical University, Jining, 272067, China
| | - Dongdong Yuan
- Shandong Academy of Pharmaceutical Sciences, Ji'nan, 250101, China
| |
Collapse
|
94
|
Quiroga J, Alarcón P, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-triggered extracellular trap formation in cattle polymorphonuclear leucocytes is glucose metabolism dependent. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104492. [PMID: 35830898 DOI: 10.1016/j.dci.2022.104492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
D-lactic acidosis is a metabolic disease of cattle caused by the digestive overgrowth of bacteria that are highly producers of d-lactate, a metabolite that then reaches and accumulates in the bloodstream. d-lactate is a proinflammatory agent in cattle that induces the formation of extracellular traps (ETs) in polymorphonuclear leucocytes (PMN), although information on PMN metabolic requirements for this response mechanism is insufficient. In the present study, metabolic pathways involved in ET formation induced by d-lactate were studied. We show that d-lactate but not l-lactate induced ET formation in cattle PMN. We analyzed the metabolomic changes induced by d-lactate in bovine PMN using gas chromatography-mass spectrometry (GC-MS). Several metabolic pathways were altered, including glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, and pentose phosphate pathway. d-lactate increased intracellular levels of glucose and glucose-6-phosphate, and increased uptake of the fluorescent glucose analog 2-NBDG, suggesting improved glycolytic activity. In addition, using an enzymatic assay and transmission electron microscopy (TEM), we observed that d-lactate was able to decrease intracellular glycogen levels and the presence of glycogen granules. Relatedly, d-lactate increased the expression of enzymes of glycolysis, gluconeogenesis and glycogen metabolism. In addition, 2DG (a hexokinase inhibitor), 3PO (a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 inhibitor), MB05032 (inhibitor of fructose-1,6-bisphosphatase) and CP-91149 (inhibitor of glycogen phosphorylase) reduced d-lactate-triggered ETosis. Taken together, these results suggest that d-lactate induces a metabolic rewiring that increases glycolysis, gluconeogenesis and glycogenolysis, all of which are required for d-lactate-induced ET release in cattle PMN.
Collapse
Affiliation(s)
- John Quiroga
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratorio de Farmacología de la Inflamación, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Laboratorio de Inmunometabolismo, Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
95
|
Metabolic Reprogramming in Tumor Endothelial Cells. Int J Mol Sci 2022; 23:ijms231911052. [PMID: 36232355 PMCID: PMC9570383 DOI: 10.3390/ijms231911052] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022] Open
Abstract
The dynamic crosstalk between the different components of the tumor microenvironment is critical to determine cancer progression, metastatic dissemination, tumor immunity, and therapeutic responses. Angiogenesis is critical for tumor growth, and abnormal blood vessels contribute to hypoxia and acidosis in the tumor microenvironment. In this hostile environment, cancer and stromal cells have the ability to alter their metabolism in order to support the high energetic demands and favor rapid tumor proliferation. Recent advances have shown that tumor endothelial cell metabolism is reprogrammed, and that targeting endothelial metabolic pathways impacts developmental and pathological vessel sprouting. Therefore, the use of metabolic antiangiogenic therapies to normalize the blood vasculature, in combination with immunotherapies, offers a clinical niche to treat cancer.
Collapse
|
96
|
Specific PFKFB3 Inhibitor Memorably Ameliorates Intervertebral Disc Degeneration via Inhibiting NF-κB and MAPK Signaling Pathway and Reprogramming of Energy Metabolism of Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7548145. [PMID: 36187335 PMCID: PMC9519352 DOI: 10.1155/2022/7548145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) is a characteristic of the dominating pathological processes of nucleus pulposus (NP) cell senescence, abnormal synthesis and irregular distribution of extracellular matrix (ECM), and tumor necrosis factor-α (TNF-α) induced inflammation. Nowadays, IVD acid environment variation which accelerates the pathological processes mentioned above arouses researchers' attention. KAN0438757 (KAN) is an effective inhibitor of selective metabolic kinase phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) that has both energy metabolism reprogramming and anti-inflammatory effects. Therefore, a potential therapeutic benefit of KAN lies in its ability to inhibit the development of IVDD. This study examined in vitro KAN toxicity in NP primary cells (NPPs). Moreover, KAN influenced tumor necrosis factor-α (TNF-α) induced ECM anabolism and catabolism; the inflammatory signaling pathway activation and the energy metabolism phenotype were also examined in NPPs. Furthermore, KAN's therapeutic effect was investigated in vivo using the rat tail disc puncture model. Phenotypically speaking, the KAN treatment partially rescued the ECM degradation and glycolysis energy metabolism phenotypes of NPPs induced by TNF-α. In terms of mechanism, KAN inhibited the activation of MAPK and NF-κB inflammatory signaling pathways induced by TNF-α and reprogramed the energy metabolism. For the therapeutic aspect, the rat tail disc puncture model demonstrated that KAN has a significant ameliorated effect on the progression of IVDD. To sum up, our research successfully authenticated the potential therapeutic effect of KAN on IVDD and declaimed its mechanisms of both novel energy metabolism reprogramming and conventional anti-inflammation effect.
Collapse
|
97
|
Xu R, Yuan W, Wang Z. Advances in Glycolysis Metabolism of Atherosclerosis. J Cardiovasc Transl Res 2022; 16:476-490. [PMID: 36068370 DOI: 10.1007/s12265-022-10311-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Glycolysis is an important way for various cells such as vascular wall endothelial cells, smooth muscle cells, macrophages, and other cells to obtain energy. In pathological conditions, it can participate in the process of AS by regulating lipid deposition, calcification, angiogenesis in plaques, etc., together with its metabolite lactic acid. Recent studies have shown that lactate-related lactylation modifications are ubiquitous in the human proteome and are involved in the regulation of various inflammatory diseases. Combined with the distribution and metabolic characteristics of cells in the plaque in the process of AS, glycolysis-lactate-lactylation modification may be a new entry point for targeted intervention in atherosclerosis in the future. Therefore, this article intends to elaborate on the role and mechanism of glycolysis-lactate-lactylation modification in AS, as well as the opportunities and challenges in targeted therapy, hoping to bring some help to relevant scholars in this field. In atherosclerosis, glycolysis, lactate, and lactylation modification as a metabolic sequence affect the functions of macrophages, smooth muscle cells, endothelial cells, lymphocytes, and other cells and interfere with processes such as vascular calcification and intraplaque neovascularization to influence the progression of atherosclerosis.
Collapse
Affiliation(s)
- Ruhan Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
98
|
Hu M, Bao R, Lin M, Han XR, Ai YJ, Gao Y, Guan KL, Xiong Y, Yuan HX. ALK fusion promotes metabolic reprogramming of cancer cells by transcriptionally upregulating PFKFB3. Oncogene 2022; 41:4547-4559. [PMID: 36064579 DOI: 10.1038/s41388-022-02453-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase of the insulin receptor kinase subfamily, is activated in multiple cancer types through translocation or overexpression. Although several generations of ALK tyrosine kinase inhibitors (TKIs) have been developed for clinic use, drug resistance remains a major challenge. In this study, by quantitative proteomic approach, we identified the glycolytic regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), as a new target of ALK. Expression of PFKFB3 is highly dependent on ALK activity in ALK+ anaplastic large cell lymphoma and non-small-cell lung cancer (NSCLC) cells. Notably, ALK and PFKFB3 expressions exhibit significant correlation in clinic ALK+ NSCLC samples. We further demonstrated that ALK promotes PFKFB3 transcription through the downstream transcription factor STAT3. Upregulation of PFKFB3 by ALK is important for high glycolysis level as well as oncogenic activity of ALK+ lymphoma cells. Finally, targeting PFKFB3 by its inhibitor can overcome drug resistance in cells bearing TKI-resistant mutants of ALK. Collectively, our studies reveal a novel ALK-STAT3-PFKFB3 axis to promote cell proliferation and tumorigenesis, providing an alternative strategy for the treatment of ALK-positive tumors.
Collapse
Affiliation(s)
- Mengnan Hu
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Laboratory of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ruoxuan Bao
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Laboratory of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Miao Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Thoracic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Xiao-Ran Han
- Cullgen (Shanghai) Inc., 230 Chuan Hong Road, Pu Dong New Area, Shanghai, China
| | - Ying-Jie Ai
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun Gao
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Laboratory of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yue Xiong
- Cullgen Inc., 12671 High Bluff Drive, San Diego, CA, 92130, USA
| | - Hai-Xin Yuan
- The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Laboratory of the Institutes of Biomedical Sciences, Fudan University, Shanghai, China. .,Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
99
|
Salyers ZR, Coleman M, Le D, Ryan TE. AAV-mediated expression of PFKFB3 in myofibers, but not endothelial cells, improves ischemic muscle function in mice with critical limb ischemia. Am J Physiol Heart Circ Physiol 2022; 323:H424-H436. [PMID: 35867710 PMCID: PMC11834898 DOI: 10.1152/ajpheart.00121.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) is a powerful driver of angiogenesis through its modulation of glycolytic metabolism within endothelial cells. Recent work has demonstrated that PFKFB3 modulates the response to muscle ischemia, however the cell specificity of these effects is not fully understood. In this study, we tested the impact of viral mediated expression of PFKFB3, driven by gene promoters specific for myofibers or endothelial cells, on ischemic hindlimb revascularization and muscle function. We hypothesized that both endothelium- and muscle-specific expression of PFKFB3 would attenuate limb pathology following femoral artery ligation. Male and female BALB/cJ mice were injected with adeno-associated virus encoding the either a green fluorescent protein (GFP) or PFKFB3 driven by either the human skeletal actin (ACTA1) or cadherin-5 (Cdh5) promoters. Four weeks after AAV treatment, mice were subjected to unilateral femoral artery ligation and limb perfusion and muscle function were assessed. Both endothelium- and muscle-specific PFKFB3 expression resulted in significantly more perfused capillaries within the ischemic limb muscle, but neither changed myofiber size/area. Muscle-specific, but not endothelium-specific, PFKFB3 expression significantly improved maximal force production in ischemic muscle (P = 0.0005). Notably, there was a significant effect of sex on maximal force levels in both cohorts of mice (P = 0.0075 and P = 0.0481), indicating that female mice had higher ischemic muscle strength compared with male mice, regardless of treatment group. Taken together, these data demonstrate that although both muscle- and endothelium-specific expression of PFKFB3 enhanced ischemic revascularization, only muscle-specific PFKFB3 expression improved muscle function.NEW & NOTEWORTHY Critical limb ischemia (CLI) carries a significant risk for limb amputation, and treatment options remain limited. We tested the impact of expression of PFKFB3 in myofibers or endothelial cells on limb pathology in mice with CLI. Although both muscle and endothelium-specific PFKFB3 expression increased perfused capillary density, only muscle-specific PFKFB3 expression improve contractile function. Regardless of treatment, female mice demonstrated better recovery from limb ischemic compared with male mice.
Collapse
Affiliation(s)
- Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Madeline Coleman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Dennis Le
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
- Center for Exercise Science, University of Florida, Gainesville, FL
- Myology Institute, University of Florida, Gainesville, FL
| |
Collapse
|
100
|
Zeng H, Pan T, Zhan M, Hailiwu R, Liu B, Yang H, Li P. Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct Target Ther 2022; 7:303. [PMID: 36045132 PMCID: PMC9433407 DOI: 10.1038/s41392-022-01097-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndoMT), the process wherein endothelial cells lose endothelial identity and adopt mesenchymal-like phenotypes, constitutes a critical contributor to cardiac fibrosis. The phenotypic plasticity of endothelial cells can be intricately shaped by alteration of metabolic pathways, but how endothelial cells adjust cellular metabolism to drive EndoMT is incompletely understood. Here, we identified 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) as a critical driver of EndoMT via triggering abnormal glycolysis and compromising mitochondrial respiration. Pharmacological suppression of PFKFB3 with salvianolic acid C (SAC), a phenolic compound derived from Salvia miltiorrhiza, attenuates EndoMT and fibrotic response. PFKFB3-haplodeficiency recapitulates the anti-EndoMT effect of SAC while PFKFB3-overexpression augments the magnitude of EndoMT and exacerbates cardiac fibrosis. Mechanistically, PFKFB3-driven glycolysis compromises cytoplasmic nicotinamide adenine dinucleotide phosphate (reduced form, NADPH) production via hijacking glucose flux from pentose phosphate pathway. Efflux of mitochondrial NADPH through isocitrate/α-ketoglutarate shuttle replenishes cytoplasmic NADPH pool but meanwhile impairs mitochondrial respiration by hampering mitochondrial iron-sulfur cluster biosynthesis. SAC disrupts PFKFB3 stability by accelerating its degradation and thus maintains metabolic homeostasis in endothelial cells, underlying its anti-EndoMT effects. These findings for the first time identify the critical role of PFKFB3 in triggering EndoMT by driving abnormal glycolysis in endothelial cells, and also highlight the therapeutic potential for pharmacological intervention of PFKFB3 (with SAC or other PFKFB3 inhibitors) to combat EndoMT-associated fibrotic responses via metabolic regulation.
Collapse
Affiliation(s)
- Hao Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Meiling Zhan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Renaguli Hailiwu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Baolin Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|