51
|
Pagliuca A, Akova M. Foreword. J Antimicrob Chemother 2022; 77:ii1-ii2. [DOI: 10.1093/jac/dkac350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- A Pagliuca
- Department of Haematological Medicine, King’s College Hospital NHS Foundation Trust , London , UK
| | - M Akova
- Department of Infectious Diseases, Hacettepe University School of Medicine , Ankara , Turkey
| |
Collapse
|
52
|
Abstract
The discovery of amphotericin B, a polyene antifungal compound, in the 1950s, and the formulation of this compound in a liposomal drug delivery system, has resulted in decades of use in systemic fungal infections. The use of liposomal amphotericin B formulation is referenced in many international guidelines for the treatment of fungal infections such as Aspergillus and cryptococcal disease and Candida infections, as well as other less common infections such as visceral leishmaniasis. With the development of liposomal amphotericin B, an improved therapeutic index could be achieved that allowed the attainment of higher drug concentrations in both the plasma and tissue while simultaneously lowering the toxicity compared with amphotericin B deoxycholate. In over 30 years of experience with this drug, a vast amount of information has been collected on preclinical and clinical efficacy against a wide variety of pathogens, as well as evidence on its toxicity. This article explores the history and nature of the liposomal formulation, the key clinical studies that developed the pharmacokinetic, safety and efficacy profile of the liposomal formulation, and the available microbiological data.
Collapse
Affiliation(s)
- R J Brüggemann
- Department of Pharmacy, and Radboudumc Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, The Netherlands
| | - G M Jensen
- Pharmaceutical Development and Manufacturing, Gilead Sciences Inc., La Verne, CA, USA
| | - C Lass-Flörl
- Department of Hygiene, Medical Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
53
|
Schulz J, Michelet R, Zeitlinger M, Mikus G, Kloft C. Microdialysis of Drug and Drug Metabolite: a Comprehensive In Vitro Analysis for Voriconazole and Voriconazole N-oxide. Pharm Res 2022; 39:2991-3003. [PMID: 36171344 PMCID: PMC9633485 DOI: 10.1007/s11095-022-03292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Voriconazole is a therapeutically challenging antifungal drug associated with high interindividual pharmacokinetic variability. As a prerequisite to performing clinical trials using the minimally-invasive sampling technique microdialysis, a comprehensive in vitro microdialysis characterization of voriconazole (VRC) and its potentially toxic N-oxide metabolite (NO) was performed. METHODS The feasibility of simultaneous microdialysis of VRC and NO was explored in vitro by investigating the relative recovery (RR) of both compounds in the absence and presence of the other. The dependency of RR on compound combination, concentration, microdialysis catheter and study day was evaluated and quantified by linear mixed-effects modeling. RESULTS Median RR of VRC and NO during individual microdialysis were high (87.6% and 91.1%). During simultaneous microdialysis of VRC and NO, median RR did not change (87.9% and 91.1%). The linear mixed-effects model confirmed the absence of significant differences between RR of VRC and NO during individual and simultaneous microdialysis as well as between the two compounds (p > 0.05). No concentration dependency of RR was found (p = 0.284). The study day was the main source of variability (46.3%) while the microdialysis catheter only had a minor effect (4.33%). VRC retrodialysis proved feasible as catheter calibration for both compounds. CONCLUSION These in vitro microdialysis results encourage the application of microdialysis in clinical trials to assess target-site concentrations of VRC and NO. This can support the generation of a coherent understanding of VRC pharmacokinetics and its sources of variability. Ultimately, a better understanding of human VRC pharmacokinetics might contribute to the development of personalized dosing strategies.
Collapse
Affiliation(s)
- Josefine Schulz
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
54
|
Mora-Soize C, Carsin-Vu A, Caby GM, Belkessa N, Marcus C, Soize S. Recurrent massive hemoptysis from distal pulmonary pseudoaneurysms complicating invasive aspergillosis in a teenager. Radiol Case Rep 2022; 17:3897-3902. [PMID: 35996719 PMCID: PMC9391511 DOI: 10.1016/j.radcr.2022.07.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/05/2022] Open
Abstract
Invasive pulmonary aspergillosis in children rarely complicates life-threatening massive hemoptysis. Here, we report the case of a 15-year-old girl with acute lymphoblastic leukemia who was hospitalized for fever and medullary aplasia 1 month after beginning chemotherapy for invasive pulmonary aspergillosis. Despite voriconazole and caspofungine treatment, excavation of some lesions caused a unilateral small pneumothorax and bilateral pleural effusion, justifying intensive care management. The massive hemoptysis that occurred on day 23 was complicated with heart failure, and the patient was promptly resuscitated. Fibroscopy and computed tomography angiography (CTA) did not reveal the origin or cause of the bleeding. A second massive bleeding event occurred on day 32, and heart failure resolved after 10min of low flow. A new CTA showed 2 pseudoaneurysms of the subsegmental pulmonary arteries that were treated with embolization. Sedation was gradually decreased owing to improvement in respiratory status, but the patient did not regain consciousness because of deep brain sequelae. A limitation of care was decided upon, and the patient died in the following weeks. Massive hemoptysis is a rare life-threatening complication of invasive pulmonary aspergillosis, especially in children. Pulmonary artery pseudoaneurysms are unusual and should be detected as soon as possible to guide therapy. Intensive care management should be followed by embolization if the patient is stable; otherwise, surgery is indicated, ideally after identifying the source of bleeding by CTA or bronchoscopy. Early CTA follow-up can be proposed if the source of bleeding is still unknown as pseudoaneurysms can appear or grow rapidly.
Collapse
Affiliation(s)
- Caroline Mora-Soize
- Department of Pediatric Radiology, American Memorial Hospital, CHU de Reims, Université de Reims Champagne-Ardenne, 47 rue Cognacq-Jay, 51092, Reims, France
- Department of Diagnostic and Interventional Radiology, Hôpital Robert Debré, CHU de Reims, 51 avenue du Général Koening, Université de Reims Champagne-Ardenne, 51092, Reims, France
| | - Aline Carsin-Vu
- Department of Pediatric Radiology, American Memorial Hospital, CHU de Reims, Université de Reims Champagne-Ardenne, 47 rue Cognacq-Jay, 51092, Reims, France
| | - Gratiela Mac Caby
- Department of Pediatric Radiology, American Memorial Hospital, CHU de Reims, Université de Reims Champagne-Ardenne, 47 rue Cognacq-Jay, 51092, Reims, France
| | - Nasredine Belkessa
- Department of Pediatric Radiology, American Memorial Hospital, CHU de Reims, Université de Reims Champagne-Ardenne, 47 rue Cognacq-Jay, 51092, Reims, France
- Department of Diagnostic and Interventional Radiology, Hôpital Robert Debré, CHU de Reims, 51 avenue du Général Koening, Université de Reims Champagne-Ardenne, 51092, Reims, France
| | - Claude Marcus
- Department of Pediatric Radiology, American Memorial Hospital, CHU de Reims, Université de Reims Champagne-Ardenne, 47 rue Cognacq-Jay, 51092, Reims, France
- Department of Diagnostic and Interventional Radiology, Hôpital Robert Debré, CHU de Reims, 51 avenue du Général Koening, Université de Reims Champagne-Ardenne, 51092, Reims, France
| | - Sebastien Soize
- Department of Radiology, Hôpital Maison Blanche, CHU de Reims, Université de Reims Champagne-Ardenne, 45 rue Cognacq-Jay, 51092, Reims, France
| |
Collapse
|
55
|
Novel Insights into Fungal Infections Prophylaxis and Treatment in Pediatric Patients with Cancer. Antibiotics (Basel) 2022; 11:antibiotics11101316. [PMID: 36289974 PMCID: PMC9598217 DOI: 10.3390/antibiotics11101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Invasive fungal diseases (IFDs) are a relevant cause of morbidity and mortality in children with cancer. Their correct prevention and management impact patients’ outcomes. The aim of this review is to highlight the rationale and novel insights into antifungal prophylaxis and treatment in pediatric patients with oncological and hematological diseases. The literature analysis showed that IFDs represent a minority of cases in comparison to bacterial and viral infections, but their impact might be far more serious, especially when prolonged antifungal therapy or invasive surgical treatments are required to eradicate colonization. A personalized approach is recommended since pediatric patients with cancer often present with different complications and require tailored therapy. Moreover, while the Aspergillus infection rate does not seem to increase, in the near future, new therapeutic recommendations should be required in light of new epidemiological data on Candidemia due to resistant species. Finally, further studies on CAR-T treatment and other immunotherapies are needed in patients with unique needs and the risk of complications. Definitive guidelines on IFD treatment considering the evolving epidemiology of antifungal resistance, new therapeutic approaches in pediatric cancer, novel antifungal drugs and the importance of an appropriate antifungal stewardship are urgently needed.
Collapse
|
56
|
Huang D, Li H, Lin Y, Lin J, Li C, Kuang Y, Zhou W, Huang B, Wang P. Antibiotic-induced depletion of Clostridium species increases the risk of secondary fungal infections in preterm infants. Front Cell Infect Microbiol 2022; 12:981823. [PMID: 36118040 PMCID: PMC9473543 DOI: 10.3389/fcimb.2022.981823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Preterm infants or those with low birth weight are highly susceptible to invasive fungal disease (IFD) and other microbial or viral infection due to immaturity of their immune system. Antibiotics are routinely administered in these vulnerable infants in treatment of sepsis and other infectious diseases, which might cause perturbation of gut microbiome and hence development of IFD. In this study, we compared clinical characteristics of fungal infection after antibiotic treatment in preterm infants. As determined by 16S rRNA sequencing, compared with non-IFD patients with or without antibiotics treatment, Clostridium species in the intestinal tracts of patients with IFD were almost completely eliminated, and Enterococcus were increased. We established a rat model of IFD by intraperitoneal inoculation of C. albicans in rats pretreated with meropenem and vancomycin. After pretreatment with antibiotics, the intestinal microbiomes of rats infected with C. albicans were disordered, as characterized by an increase of proinflammatory conditional pathogens and a sharp decrease of Clostridium species and Bacteroides. Immunofluorescence analysis showed that C. albicans-infected rats pretreated with antibiotics were deficient in IgA and IL10, while the number of Pro-inflammatory CD11c+ macrophages was increased. In conclusion, excessive use of antibiotics promoted the imbalance of intestinal microbiome, especially sharp decreases of short-chain fatty acids (SCFA)-producing Clostridium species, which exacerbated the symptoms of IFD, potentially through decreased mucosal immunomodulatory molecules. Our results suggest that inappropriate use of broad-spectrum antibiotics may promote the colonization of invasive fungi. The results of this study provide new insights into the prevention of IFD in preterm infants.
Collapse
Affiliation(s)
- Dabin Huang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huixian Li
- Department of Data Center, Guangdong Provincial People’s Hospital, Guangzhou, China
| | - Yuying Lin
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinting Lin
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Chengxi Li
- Department of Pediatrics, Guangzhou Medical University, Guangzhou, China
| | - Yashu Kuang
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| | - Bing Huang
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Wei Zhou, ; Bing Huang, ; Ping Wang,
| |
Collapse
|
57
|
Challenges in the Treatment of Invasive Aspergillosis in Immunocompromised Children. Antimicrob Agents Chemother 2022; 66:e0215621. [PMID: 35766509 PMCID: PMC9295552 DOI: 10.1128/aac.02156-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Invasive aspergillosis (IA) is associated with significant morbidity and mortality. Voriconazole remains the drug of choice for the treatment of IA in children; however, the complex kinetics of voriconazole in children make dosing challenging and therapeutic drug monitoring (TDM) essential for treatment success. The overarching goal of this review is to discuss the role of voriconazole, posaconazole, isavuconazole, liposomal amphotericin B, echinocandins, and combination antifungal therapy for the treatment of IA in children. We also provide a detailed discussion of antifungal TDM in children.
Collapse
|
58
|
Ullah N, Sepulcri C, Mikulska M. Isavuconazole for COVID-19-Associated Invasive Mold Infections. J Fungi (Basel) 2022; 8:674. [PMID: 35887431 PMCID: PMC9323932 DOI: 10.3390/jof8070674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Isavuconazole is a broad-spectrum antifungal drug recently approved as a first-line treatment for invasive aspergillosis and as a first or alternative treatment for mucormycosis. The purpose of this review was to report and discuss the use of isavuconazole for the treatment of COVID-19-associated aspergillosis (CAPA), and COVID-19-associated mucormycosis (CAM). Among all studies which reported treatment of CAPA, approximately 10% of patients were reportedly treated with isavuconazole. Considering 14 identified studies that reported the use of isavuconazole for CAPA, isavuconazole was used in 40% of patients (95 of 235 treated patients), being first-line monotherapy in over half of them. We identified six studies that reported isavuconazole use in CAM, either alone or in combination therapy. Overall, isavuconazole was used as therapy in 13% of treated CAM patients, frequently as combination or sequential therapy. The use of isavuconazole in CAPA and CAM is complicated by the challenge of achieving adequate exposure in COVID-19 patients who are frequently obese and hospitalized in the ICU with concomitant renal replacement therapy (RRT) or extracorporeal membrane oxygenation (ECMO). The presence of data on high efficacy in the treatment of aspergillosis, lower potential for drug-drug interactions (DDIs) and for subtherapeutic levels, and no risk of QT prolongation compared to other mold-active azoles, better safety profile than voriconazole, and the possibility of using an intravenous formulation in the case of renal failure are the advantages of using isavuconazole in this setting.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
| | - Chiara Sepulcri
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
59
|
Tilen R, Paioni P, Goetschi AN, Goers R, Seibert I, Müller D, Bielicki JA, Berger C, Krämer SD, Meyer zu Schwabedissen HE. Pharmacogenetic Analysis of Voriconazole Treatment in Children. Pharmaceutics 2022; 14:pharmaceutics14061289. [PMID: 35745860 PMCID: PMC9227859 DOI: 10.3390/pharmaceutics14061289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Voriconazole is among the first-line antifungal drugs to treat invasive fungal infections in children and known for its pronounced inter- and intraindividual pharmacokinetic variability. Polymorphisms in genes involved in the metabolism and transport of voriconazole are thought to influence serum concentrations and eventually the therapeutic outcome. To investigate the impact of these genetic variants and other covariates on voriconazole trough concentrations, we performed a retrospective data analysis, where we used medication data from 36 children suffering from invasive fungal infections treated with voriconazole. Data were extracted from clinical information systems with the new infrastructure SwissPKcdw, and linear mixed effects modelling was performed using R. Samples from 23 children were available for DNA extraction, from which 12 selected polymorphism were genotyped by real-time PCR. 192 (49.1%) of 391 trough serum concentrations measured were outside the recommended range. Voriconazole trough concentrations were influenced by polymorphisms within the metabolizing enzymes CYP2C19 and CYP3A4, and within the drug transporters ABCC2 and ABCG2, as well as by the co-medications ciprofloxacin, levetiracetam, and propranolol. In order to prescribe an optimal drug dosage, pre-emptive pharmacogenetic testing and careful consideration of co-medications in addition to therapeutic drug monitoring might improve voriconazole treatment outcome of children with invasive fungal infections.
Collapse
Affiliation(s)
- Romy Tilen
- Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; (P.P.); (C.B.)
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
- Correspondence: (R.T.); (H.E.M.z.S.)
| | - Paolo Paioni
- Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; (P.P.); (C.B.)
| | - Aljoscha N. Goetschi
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (A.N.G.); (S.D.K.)
| | - Roland Goers
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
| | - Daniel Müller
- Institute of Clinical Chemistry, University Hospital Zurich, Rämistr. 100, 8091 Zurich, Switzerland;
| | - Julia A. Bielicki
- Paediatric Research Centre, University Children’s Hospital Basel, Basel, Spitalstrasse 33, 4056 Basel, Switzerland;
| | - Christoph Berger
- Division of Infectious Diseases and Hospital Epidemiology, University Children’s Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland; (P.P.); (C.B.)
| | - Stefanie D. Krämer
- Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland; (A.N.G.); (S.D.K.)
| | - Henriette E. Meyer zu Schwabedissen
- Biopharmacy, Department of Pharmaceutical Sciences, University Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; (R.G.); (I.S.)
- Correspondence: (R.T.); (H.E.M.z.S.)
| |
Collapse
|
60
|
Fan X, Zhang H, Wen Z, Zheng X, Yang Y, Yang J. Effects of CYP2C19, CYP2C9 and CYP3A4 gene polymorphisms on plasma voriconazole levels in Chinese pediatric patients. Pharmacogenet Genomics 2022; 32:152-158. [PMID: 35081606 DOI: 10.1097/fpc.0000000000000464] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Voriconazole is the most commonly used antifungal agent in clinical application. Previous studies suggested that voriconazole was extensively metabolized by CYP450 enzyme system, including CYP2C19, CYP2C9 and CYP3A4, which contributed to the individual variability of the pharmacokinetic process of voriconazole. This study aimed to investigate the effects of CYP2C19, CYP2C9 and CYP3A4 gene polymorphisms on plasma voriconazole concentrations in Chinese pediatric patients. METHODS This study prospectively evaluated pediatric patients administrating voriconazole for the treatment or prophylaxis of invasive fungal infections from October 2018 to July 2020. Seven single-nucleotide polymorphisms in CYP2C19 (CYP2C19*2, CYP2C19*3, and CYP2C19*17), CYP2C9 (CYP2C9*3, CYP2C9*13) and CYP3A4 (CYP3A4*22, rs4646437) were detected by real-time fluorescent PCR with TaqMan probes. The voriconazole trough plasma concentration was determined by UPLC-MS/MS. RESULTS A total of 68 pediatric patients were enrolled in this study. Our results showed that voriconazole plasma concentrations of patients with CYP2C19*2 or CYP2C19*3 allele were significantly higher than that with wild-type carriers (P < 0.0001, P = 0.004, respectively). However, CYP2C9*3 and CYP3A4 rs4646437 were not significantly associated with voriconazole plasma levels. The CYP2C19*17, CYP2C9*13 and CYP3A4*22 alleles were not observed in our study. Additionally, multiple linear regression analysis indicated that CYP2C19*2 and CYP2C19*3 alleles remained predictors of voriconazole plasma concentration (r2 = 0.428; P < 0.0001). For CYP2C19 metabolizer phenotype, trough concentration of voriconazole was significantly lower in NM group compared with IM (P < 0.0001) and PM (P = 0.004) groups. CONCLUSION Voriconazole plasma levels in pediatric patients are mainly affected by CYP2C19 gene polymorphisms.
Collapse
Affiliation(s)
- Xinghua Fan
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University and
| | - Hong Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Zhipeng Wen
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University and
| | - Xiaoli Zheng
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University and
| | - Yi Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University and
| | - Jihong Yang
- Department of Pharmacy, The Affiliated Hospital of Guizhou Medical University and
| |
Collapse
|
61
|
Successful treatment of hepatic and mesh Aspergillosis in a neonate with giant omphalocele. J Mycol Med 2022; 32:101245. [DOI: 10.1016/j.mycmed.2022.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/23/2022]
|
62
|
Chen YN, Hsu JF, Chu SM, Lai MY, Lin C, Huang HR, Yang PH, Chiang MC, Tsai MH. Clinical and Microbiological Characteristics of Neonates with Candidemia and Impacts of Therapeutic Strategies on the Outcomes. J Fungi (Basel) 2022; 8:jof8050465. [PMID: 35628721 PMCID: PMC9148079 DOI: 10.3390/jof8050465] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022] Open
Abstract
Neonatal candidemia is associated with significant morbidities and a high mortality rate. We aimed to investigate the clinical characteristics of Candida bloodstream infections in neonates and the impact of therapeutic strategies on the outcomes. We identified all the neonates with candidemia from a medical center in Taiwan over an 18-year period (2003−2021) and analyzed them. Clinical isolates were confirmed by DNA sequencing, and antifungal susceptibility testing was performed. The prognostic factors associated with clinical treatment failure (30-day, all-cause mortality and persistent candidemia > 72 h after antifungal agents) and in-hospital mortality were analyzed using logistic regression modeling. A total of 123 neonates with 139 episodes of candidemia were included in the study. The median (IQR) gestational age and birth weight of the neonates with candidemia were 29.0 (26.0−35.0) weeks and 1104.0 (762.0−2055) g, respectively. The most common Candida spp. was Candida albicans (n = 57, 41.0%), followed by C. parapsilosis (n = 44, 31.7%), Candida guilliermondii (n = 12, 8.6%), and C. glabrata (n = 11, 7.9%). The overall susceptibility to fluconazole was 81.3%, and the resistant rates against other antifungal agents were less than 3%. The cumulative mortality rate at 7 and 30 days after the first episode of candidemia was 11.3% and 32.3%, respectively. The overall in-hospital mortality rate was 42.3%. The treatment outcomes did not change over the study period and were not affected by delayed initiation of antifungal agents. Multivariate analysis showed that delayed catheter removal (odds ratio [OR], 5.54; 95% confidence interval [CI]: 1.93−15.86, p = 0.001), septic shock (OR, 7.88; 95% CI: 2.83−21.93, p < 0.001), and multiple chronic comorbidities (OR, 8.71; 95% CI: 1.82−41.81, p = 0.007) were independently associated with the final in-hospital mortality. We concluded that the overall mortality of neonatal candidemia has remained consistently high over the past decade. Prompt early catheter removal and an aggressive treatment strategy for neonatal candidemia with septic shock would be critical to improving patient outcomes.
Collapse
Affiliation(s)
- Yu-Ning Chen
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-N.C.); (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
| | - Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-N.C.); (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-N.C.); (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
| | - Mei-Yin Lai
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-N.C.); (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
| | - Chih Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Keelung 204, Taiwan
| | - Hsuan-Rong Huang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-N.C.); (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
| | - Peng-Hong Yang
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
- Department of Pediatrics, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-N.C.); (J.-F.H.); (S.-M.C.); (M.-Y.L.); (H.-R.H.); (M.-C.C.)
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (C.L.); (P.-H.Y.)
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
- Correspondence: ; Tel.: +886-5-691-5151 (ext. 2879); Fax: +886-5-691-3222
| |
Collapse
|
63
|
Abstract
BACKGROUND Extreme immature infants are at an increased risk of fungal infection due to immaturity of the skin barrier and the immune system. Besides Candida infections, in particular, Aspergillus may cause life-threatening diseases in preterm infants. Frequently, Aspergillus primarily affects the skin and may cause extensive damage. METHODS We searched our hospital database for fungal infections other than Candida in preterm infants treated between 2015 and 2020 at our level III neonatal intensive care unit of the University Hospital of Cologne. RESULTS In total, 13 preterm infants were identified. Of these, 11 had cutaneous Aspergillosis, one infant had severe enterocolitis caused by Aspergillus and Rhizopus and one had invasive intraabdominal Trichosporon mucoides infection. All infants were born <24 weeks of gestation, were delivered due to premature labor or chorioamnionitis, and had received prenatal steroids and/or hydrocortisone. Voriconazole and liposomal Amphotericin B were first-line treatments and the length of treatment varied between 3 and 148 days. Two infants died associated with severe infection. Liver toxicity was observed in six infants treated with Voriconazole. Therapeutic drug management for Voriconazole was performed in four infants. Target levels were not achieved by the doses that are recommended. CONCLUSIONS Rare fungal infections, predominantly cutaneous Aspergillosis affects the most immature preterm infants and may cause severe disease. Treatment with Voriconazole has a high rate of liver toxicity and target levels are difficult to achieve in extremely immature infants.
Collapse
|
64
|
Ertem O, Tufekci O, Oren H, Tuncok Y, Ergon MC, Gumustekin M. Evaluation of voriconazole related adverse events in pediatric patients with hematological malignancies. J Oncol Pharm Pract 2022:10781552221086887. [PMID: 35285751 DOI: 10.1177/10781552221086887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Despite therapeutic drug monitoring and pharmacogenetic-guided dose selection are recommended for pediatric patients, safety of voriconazole is mostly monitored by clinical assessment. Having comprehensive knowledge of safety profile and distinguishing incidental events from the reactions that are truly related to voriconazole use are crucial for safer and uninterrupted treatment. OBJECTIVES This study aimed to address adverse reactions during the first month of voriconazole use by systematically evaluating retrospective records of all adverse events. Patients/Methods: It is a single-center, retrospective analysis of patients who received voriconazole from 1 September 2010 to 1 September 2020. Severity of abnormal findings in medical records were systematically graded. Causality between voriconazole and the events was evaluated by Liverpool Causality Assessment Tool (LCAT), Naranjo Algorithm and World Health Organization Causality Assessment System. The events with possible or probable causal relation to voriconazole are classified as adverse reaction. RESULTS Records of 45 patients included in the study. The overall frequency of adverse reactions was 51.1%. Hepatobiliary laboratory adverse reactions identified in 48.9% of the patients and led to treatment discontinuation in 20.0%. Amylase and lipase elevation (2.2%), ventricular extra systoles (2.2%), hallucination and nightmares (2.2%) were other adverse reactions. CONCLUSIONS Hepatobiliary abnormalities were the most common adverse reactions and the most common cause of treatment discontinuation. For safer treatment in critically ill patients, the dose should be personalized. To clearly identify the accurate frequency and the causality of all adverse reactions, prospective studies with much larger sample size are needed.
Collapse
Affiliation(s)
- Ozge Ertem
- Medical Pharmacology, University of Health Sciences Izmir Bozyaka Education and Research Hospital, Karabaglar/Izmir, Turkey
| | - Ozlem Tufekci
- Division of Pediatric Hematology, Department of Pediatrics, Dokuz Eylul University School of Medicine, Balcova/Izmir, Turkey
| | - Hale Oren
- Division of Pediatric Hematology, Department of Pediatrics, Dokuz Eylul University School of Medicine, Balcova/Izmir, Turkey
| | - Yesim Tuncok
- Department of Medical Pharmacology, Dokuz Eylul University School of Medicine, Balcova/Izmir, Turkey
| | - Mahmut Cem Ergon
- Department of Medical Microbiology, Dokuz Eylul University School of Medicine, Balcova/Izmir, Turkey
| | - Mukaddes Gumustekin
- Department of Medical Pharmacology, Dokuz Eylul University School of Medicine, Balcova/Izmir, Turkey
| |
Collapse
|
65
|
Antifungal Combination Therapy for Invasive Fungal Infections in a Paediatric Oncology and Haematology Department: A Retrospective Analysis of Practice. J Mycol Med 2022; 32:101276. [DOI: 10.1016/j.mycmed.2022.101276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/23/2022]
|
66
|
Ferreras-Antolín L, Irwin A, Atra A, Chapelle F, Drysdale SB, Emonts M, McMaster P, Paulus S, Patel S, Rompola M, Vergnano S, Whittaker E, Warris A. Pediatric Antifungal Prescribing Patterns Identify Significant Opportunities to Rationalize Antifungal Use in Children. Pediatr Infect Dis J 2022; 41:e69-e74. [PMID: 34784303 PMCID: PMC8826618 DOI: 10.1097/inf.0000000000003402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The need for pediatric antifungal stewardship programs has been driven by an increasing consumption of antifungals for prophylactic and empirical use. Drivers and rational of antifungal prescribing need to be identified to optimize prescription behaviors. METHODS A prospective modified weekly Point Prevalence Survey capturing antifungal prescriptions for children (> 90 days to < 18 years of age) in 12 centers in England during 26 consecutive weeks was performed. Demographic, diagnostic and treatment information was collected for each patient. Data were entered into an online REDCap database. RESULTS One thousand two hundred fifty-eight prescriptions were included for 656 pediatric patients, 44.9% were girls, with a median age of 6.4 years (interquartile range, 2.5-11.3). Most common underlying condition was malignancy (55.5%). Four hundred nineteen (63.9%) received antifungals for prophylaxis, and 237 (36.1%) for treatment. Among patients receiving antifungal prophylaxis, 40.2% did not belong to a high-risk group. In those receiving antifungal treatment, 45.9%, 29.4%, 5.1% and 19.6% had a diagnosis of suspected, possible, probable of proven invasive fungal disease (IFD), respectively. Proven IFD was diagnosed in 78 patients, 84.6% (n = 66) suffered from invasive candidiasis and 15.4% (n = 12) from an invasive mold infection. Liposomal amphotericin B was the most commonly prescribed antifungal for both prophylaxis (36.6%) and empiric and preemptive treatment (47.9%). Throughout the duration of the study, 72 (11.0%) patients received combination antifungal therapy. CONCLUSIONS Antifungal use in pediatric patients is dominated by liposomal amphotericin B and often without evidence for the presence of IFD. A significant proportion of prophylactic and empiric antifungal use was seen in pediatric patients not at high-risk for IFD.
Collapse
Affiliation(s)
- Laura Ferreras-Antolín
- From the Medical Research Council Centre for Medical Mycology, University of Exeter, United Kingdom
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Adam Irwin
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Ayad Atra
- Department of Paediatric Oncology, Royal Marsden Hospital, Downs Road, Sutton, London, United Kingdom
| | - Faye Chapelle
- Department of Infectious Diseases and Immunology, Evelina Children Hospital, London, United Kingdom
| | - Simon B. Drysdale
- St George’s University Hospitals NHS Foundation Trust, London, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Marieke Emonts
- Department of Paediatric Immunology, Infectious Diseases and Allergy, Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Paddy McMaster
- Department of Paediatric Infectious Diseases, Royal Manchester Childrens´ Hospital, Manchester, United Kingdom
| | - Stephane Paulus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sanjay Patel
- Department of Paediatric Infectious Diseases, University Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Menie Rompola
- Dept. of Paediatric Haematology and Oncology, Leeds General Infirmary, Leeds, United Kingdom
| | - Stefania Vergnano
- Department of Paediatric Infectious Diseases, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Elizabeth Whittaker
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust and Section of Paediatrics, Department of Infectious Diseases, Imperial College, London, United Kingdom
| | - Adilia Warris
- From the Medical Research Council Centre for Medical Mycology, University of Exeter, United Kingdom
- Department of Paediatric Infectious Diseases, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
67
|
Kably B, Launay M, Derobertmasure A, Lefeuvre S, Dannaoui E, Billaud EM. Antifungal Drugs TDM: Trends and Update. Ther Drug Monit 2022; 44:166-197. [PMID: 34923544 DOI: 10.1097/ftd.0000000000000952] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The increasing burden of invasive fungal infections results in growing challenges to antifungal (AF) therapeutic drug monitoring (TDM). This review aims to provide an overview of recent advances in AF TDM. METHODS We conducted a PubMed search for articles during 2016-2020 using "TDM" or "pharmacokinetics" or "drug-drug-interaction" with "antifungal," consolidated for each AF. Selection was limited to English language articles with human data on drug exposure. RESULTS More than 1000 articles matched the search terms. We selected 566 publications. The latest findings tend to confirm previous observations in real-life clinical settings. The pharmacokinetic variability related to special populations is not specific but must be considered. AF benefit-to-risk ratio, drug-drug interaction (DDI) profiles, and minimal inhibitory concentrations for pathogens must be known to manage at-risk situations and patients. Itraconazole has replaced ketoconazole in healthy volunteers DDI studies. Physiologically based pharmacokinetic modeling is widely used to assess metabolic azole DDI. AF prophylactic use was studied more for Aspergillus spp. and Mucorales in oncohematology and solid organ transplantation than for Candida (already studied). Emergence of central nervous system infection and severe infections in immunocompetent individuals both merit special attention. TDM is more challenging for azoles than amphotericin B and echinocandins. Fewer TDM requirements exist for fluconazole and isavuconazole (ISZ); however, ISZ is frequently used in clinical situations in which TDM is recommended. Voriconazole remains the most challenging of the AF, with toxicity limiting high-dose treatments. Moreover, alternative treatments (posaconazole tablets, ISZ) are now available. CONCLUSIONS TDM seems to be crucial for curative and/or long-term maintenance treatment in highly variable patients. TDM poses fewer cost issues than the drugs themselves or subsequent treatment issues. The integration of clinical pharmacology into multidisciplinary management is now increasingly seen as a part of patient care.
Collapse
Affiliation(s)
- Benjamin Kably
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| | - Manon Launay
- Laboratoire de Pharmacologie-Toxicologie-Gaz du sang, Hôpital Nord-CHU Saint Etienne, Saint-Etienne
| | - Audrey Derobertmasure
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
| | - Sandrine Lefeuvre
- Laboratoire de Toxicologie et Pharmacocinétique, CHU de Poitiers, Poitiers; and
| | - Eric Dannaoui
- Faculté de Médecine, Université de Paris, Paris, France
- Unité de Parasitologie-Mycologie, Laboratoire de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Eliane M Billaud
- Laboratoire de Pharmacologie-Toxicologie, Hôpital Européen Georges Pompidou, AP-HP Centre
- Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
68
|
Central Nervous System Fungal Infections in Paediatric Patients. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-021-00427-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
69
|
|
70
|
Yang A, Hu Y, Chen P, Zheng G, Hu X, Zhang J, Wang J, Wang C, Huang Z, Zhang Y, Guo Y. Diagnosis by metagenomic next-generation sequencing of a Talaromyces marneffei bloodstream infection in an HIV-negative child: A case report. Front Pediatr 2022; 10:903617. [PMID: 36046481 PMCID: PMC9421359 DOI: 10.3389/fped.2022.903617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Talaromyces marneffei (TM) bloodstream infections are life- threatening in immunocompromised individuals. The lack of specific clinical features for these infections and poor sensitivity associated with routine examination procedures make diagnosis challenging. Untimely diagnosis and delayed antifungal treatment threatens the life of such patients. CASE DESCRIPTION We report a case of a TM bloodstream infection, confirmed by the results of blood culture, of a child who was HIV negative and possessed a CD40LG gene mutation. A diagnosis of TM was established by blood metagenomic next-generation sequencing (mNGS) of the patient's blood, which was confirmed by microbiological culture of blood. On admission, this previously healthy male patient was 8-months of age, who presented with recurrent fever and a cough of 6-days in duration. His condition did not improve after antibacterial treatment for 5-days, with significant and recurrent fever and worsening spirit. He was referred to the Department of Pediatrics in our tertiary medical institution with a white blood cell count of 21.5*10∧9/L, C-reactive protein of 47.98 mg/L, and procalcitonin of 0.28 ng/mL. A bloodstream infection was not excluded and blood was collected for microbial culture. The patient received a 1-day treatment of cefoperazone sulbactam and 6-days of imipenem cilastatin. Symptoms did not improve and fever persisted. Blood was submitted for mNGS analysis and within 14-h, 14,352 TM reads were detected with a relative abundance of 98.09%. Antibiotic treatment was immediately changed to intravenous amphotericin B combined with oral itraconazole. The condition of the child gradually improved. Blood culture showed TM on the 7th day after hospitalization, confirming bloodstream infection. After the 13th day of hospital admission, the patient's body temperature dropped close to 38°C and was discharged on the 30th day of hospitalization. Oral itraconazole was prescribed with follow up at the outpatient clinic. CONCLUSIONS HIV-negative patients with CD40LG mutations may be potential hosts for TM. TM infections are rare in children and their detection by conventional microbial culture methods are inadequate for an early diagnosis. mNGS is a rapid detection method that permits early diagnosis of uncommon infectious agents, such as TM, allowing for improved patient outcomes.
Collapse
Affiliation(s)
- Aimei Yang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Hu
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peiling Chen
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guilang Zheng
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuejiao Hu
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingwen Zhang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing Wang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chun Wang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijian Huang
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxin Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuxiong Guo
- Department of Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
71
|
Invasive fungal infections in neonates: a review. Pediatr Res 2022; 91:404-412. [PMID: 34880444 DOI: 10.1038/s41390-021-01842-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections remain the leading causes of morbidity and mortality in neonates, especially preterm and very low birth weight infants. Most invasive fungal infections are due to Candida or Aspergillus species, and other fungi are increasingly reported and described. Appropriate identification and treatment are required to augment activity and reduce the toxicity of antifungal drugs. Successful use of antifungals in the vulnerable neonatal population is important for both prevention and treatment of infection. Strategies for prevention, including prophylactic antifungal therapy as well as reducing exposure to modifiable risk factors, like limiting antibiotic exposure, discontinuation of central catheters, and hand hygiene are key techniques to prevent and decrease rates of invasive fungal infections. In conclusion, this is a review of the most common causes, prevention strategies, prophylaxis, and treatment of invasive fungal infections in neonates.
Collapse
|
72
|
Teh BW, Yeoh DK, Haeusler GM, Yannakou CK, Fleming S, Lindsay J, Slavin MA. Consensus guidelines for antifungal prophylaxis in haematological malignancy and haemopoietic stem cell transplantation, 2021. Intern Med J 2021; 51 Suppl 7:67-88. [PMID: 34937140 DOI: 10.1111/imj.15588] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antifungal prophylaxis can reduce morbidity and mortality from invasive fungal disease (IFD). However, its use needs to be optimised and appropriately targeted to patients at highest risk to derive the most benefit. In addition to established risks for IFD, considerable recent progress in the treatment of malignancies has resulted in the development of new 'at-risk' groups. The changing epidemiology of IFD and emergence of drug resistance continue to impact choice of prophylaxis, highlighting the importance of active surveillance and knowledge of local epidemiology. These guidelines aim to highlight emerging risk groups and review the evidence and limitations around new formulations of established agents and new antifungal drugs. It provides recommendations around use and choice of antifungal prophylaxis, discusses the potential impact of the changing epidemiology of IFD and emergence of drug resistance, and future directions for risk stratification to assist optimal management of highly vulnerable patients.
Collapse
Affiliation(s)
- Benjamin W Teh
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Daniel K Yeoh
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Gabrielle M Haeusler
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Royal Children's Hospital, Melbourne, Victoria, Australia.,Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Costas K Yannakou
- Department of Molecular Oncology and Cancer Immunology, Epworth Freemasons Hospital, Epworth HealthCare, Melbourne, Victoria, Australia
| | - Shaun Fleming
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Health, Melbourne, Victoria, Australia
| | - Julian Lindsay
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Monica A Slavin
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Immunocompromised Host Infection Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
73
|
Douglas AP, Smibert OC, Bajel A, Halliday CL, Lavee O, McMullan B, Yong MK, Hal SJ, Chen SC. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51 Suppl 7:143-176. [DOI: 10.1111/imj.15591] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Abby P. Douglas
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Olivia. C. Smibert
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Infectious Diseases Austin Health Melbourne Victoria Australia
| | - Ashish Bajel
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- Department of Clinical Haematology Peter MacCallum Cancer Centre and The Royal Melbourne Hospital Melbourne Victoria Australia
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
| | - Orly Lavee
- Department of Haematology St Vincent's Hospital Sydney New South Wales Australia
| | - Brendan McMullan
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Immunology and Infectious Diseases Sydney Children's Hospital Sydney New South Wales Australia
- School of Women's and Children's Health University of New South Wales Sydney New South Wales Australia
| | - Michelle K. Yong
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service Royal Melbourne Hospital Melbourne Victoria Australia
| | - Sebastiaan J. Hal
- Sydney Medical School University of Sydney Sydney New South Wales Australia
- Department of Microbiology and Infectious Diseases Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Sharon C.‐A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital Sydney New South Wales Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity The University of Sydney Sydney New South Wales Australia
- Sydney Medical School University of Sydney Sydney New South Wales Australia
| | | |
Collapse
|
74
|
Özen S, Özdemir H, Evren E, Taşkın EÇ, Arga G, Konca HK, Çakmaklı HF, Haskoloğlu Ş, Okulu E, Dinçaslan H, İnce E, İleri T, Taçyıldız N, Doğu F, Us E, Karahan ZC, Fitöz S, Kendirli T, Kuloğlu Z, Tutar E, İkincioğulları A, Ünal E, Ertem M, İnce E, Çiftçi E. The role of galactomannan test results in the diagnosis of pediatric invasive aspergillosis. Infect Dis (Lond) 2021; 54:269-276. [PMID: 34842498 DOI: 10.1080/23744235.2021.2008486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is an important cause of morbidity and mortality in immunosuppressed children. Early detection of the infection can improve prognosis in this patient population. OBJECTIVES To investigate the utility of Aspergillus galactomannan antigen assay (GM-EIA) as a diagnostic tool for IA in at-risk paediatric patients. PATIENTS/METHODS For the study, 659 GM-EIA results from 59 patients diagnosed with IA and 3368 GM-EIA results from 351 subjects without evidence for IA (controls) were reviewed retrospectively. Three cut-off values (i.e. ≥0.5, ≥1, ≥1.5) were specified to determine GM-EIA positivity. RESULTS The median age was 6.3 years for boys and 14.5 years for girls. There was a significant difference between the girls and boys in terms of age (p < 0.01). For proven/probable/possible IA patients, sensitivity of 67.8% and specificity of 59.8% were detected when the ≥0.5 cut-off value was used for GM-EIA-positivity. The specificity increased to 80% at the cut-off of ≥1 and to 88% at the cut-off of ≥1.5. False positivity rates were 9.14, 3, and 1.45% at the ≥0.5, ≥1 and ≥1.5 cut-offs respectively. In the proven/probable IA group, sensitivity and negative predictive values were 86.9 and 97.2% at the ≥0.5 cut-off, 85.7 and 97.9%, at the ≥1 cut-off and 84.2 and 98.1% at ≥1.5 cut-off respectively. The positive likelihood ratio was 7.57 and the odds ratio was 42.67 at ≥1.5 cut-off. CONCLUSION The GM-EIA may be used for both screening and diagnostic purposes in paediatric patients using a cut-off value of ≥1.5 for GM-EIA positivity.
Collapse
Affiliation(s)
- Seval Özen
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Halil Özdemir
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Esra Çakmak Taşkın
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Gül Arga
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hatice Kübra Konca
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hasan Fatih Çakmaklı
- Division of Pediatric Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Şule Haskoloğlu
- Division of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Emel Okulu
- Division of Neonatology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Handan Dinçaslan
- Division of Pediatric Oncology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Elif İnce
- Division of Pediatric Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Talia İleri
- Division of Pediatric Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nurdan Taçyıldız
- Division of Pediatric Oncology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Figen Doğu
- Division of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ebru Us
- Department of Medical Microbiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Ceren Karahan
- Department of Medical Microbiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Suat Fitöz
- Department of Radiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Tanıl Kendirli
- Division of Pediatric Intensive Care, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Zarife Kuloğlu
- Division of Pediatric Gastroenterology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ercan Tutar
- Division of Pediatric Cardiology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aydan İkincioğulları
- Division of Pediatric Immunology and Allergy, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Emel Ünal
- Division of Pediatric Oncology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Mehmet Ertem
- Division of Pediatric Hematology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Erdal İnce
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ergin Çiftçi
- Division of Pediatric Infectious Diseases, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
75
|
Panagopoulou P, Roilides E. Evaluating posaconazole, its pharmacology, efficacy and safety for the prophylaxis and treatment of fungal infections. Expert Opin Pharmacother 2021; 23:175-199. [PMID: 34758695 DOI: 10.1080/14656566.2021.1996562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Invasive fungal diseases (IFDs) are a significant cause of morbidity and mortality among immunocompromised patients. Safe and effective antifungal medications used for prophylaxis and treatment are pivotal in their management. Posaconazole is a promising triazole antifungal agent. AREAS COVERED The authors discuss the pharmacological properties of posaconazole, including pharmacokinetics/pharmacodynamics, safety and tolerability profile, together with efficacy data for prophylaxis and treatment as well as its use in special populations based on current literature. EXPERT OPINION Posaconazole has a favorable safety and tolerability profile; however, caution is advised when co-administered with agents that are CYP3A4 inhibitors, because their concentration may significantly increase, and their levels should be closely monitored. It has an extended spectrum of activity against yeasts and filamentous fungi. It is successfully used as prophylaxis for patients with acute myeloid leukemia (AML)/myelodysplastic syndrome (MDS) and post-hematopoietic cell transplantation (HCT) with graft-versus-host disease (GVHD). It is the first line treatment for oropharyngeal candidiasis and is also used as a salvage treatment for refractory IFDs. Currently available formulations include the oral suspension, delayed-release tablets and solution for intravenous infusion, all with different PK/PD properties and indications. Its use in children and adolescents is currently being examined in Phase-II clinical trials.
Collapse
Affiliation(s)
- Paraskevi Panagopoulou
- 4th Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, and Papageorgiou General Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, and Hippokration General Hospital, Thessaloniki, Greece.,Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
76
|
Subramaniyan V, Fuloria S, Darnal HK, Meenakshi DU, Sekar M, Nordin RB, Chakravarthi S, Sathasivam KV, Khan SA, Wu YS, Kumari U, Sudhakar K, Malviya R, Sharma VK, Fuloria NK. COVID-19-associated mucormycosis and treatments. ASIAN PAC J TROP MED 2021; 14:401-409. [DOI: 10.4103/1995-7645.326253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In the current pandemic, COVID-19 patients with predisposing factors are at an increased risk of mucormycosis, an uncommon angioinvasive infection that is caused by fungi with Mucor genus which is mainly found in plants and soil. Mucormycosis development in COVID-19 patient is related to various factors, such as diabetes, immunocompromise and neutropenia. Excessive use of glucocorticoids for the treatment of critically ill COVID-19 patients also leads to opportunistic infections, such as pulmonary aspergillosis. COVID-19 patients with mucormycosis have a very high mortality rate. This review describes the pathogenesis and various treatment approaches for mucormycosis in COVID-19 patients, including medicinal plants, conventional therapies, adjunct and combination therapies.
Collapse
|
77
|
Challenges with Utilizing the 1,3-Beta-d-Glucan and Galactomannan Assays To Diagnose Invasive Mold Infections in Immunocompromised Children. J Clin Microbiol 2021; 59:e0327620. [PMID: 33883182 DOI: 10.1128/jcm.03276-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Establishing the diagnosis of invasive mold infections (IMI) in immunocompromised children is challenging due to nonspecific clinical presentations and the limited sensitivity of traditional culture-based methods. Rapid non-culture-based diagnostics such as the 1,3-beta-d-glucan and galactomannan assays have emerged as promising adjuncts to conventional diagnostic tests in adults. Available data suggest that 1,3-beta-d-glucan has limited accuracy in the pediatric population and is not recommended to be used for the diagnosis of IMI in children. On the other hand, the diagnostic performance of the serum and bronchoalveolar lavage galactomannan in immunocompromised children is comparable to results observed in adults and can be used as a screening tool in children at high risk of developing invasive aspergillosis (IA) who are not receiving mold-active antifungal prophylaxis and as a diagnostic tool in symptomatic children suspected of having IA. Herein, we summarize the available evidence for the use of these rapid non-culture-based diagnostics in immunocompromised children. We also summarize potential causes of false positivity for the 1,3-beta-d-glucan and galactomannan assays.
Collapse
|
78
|
Tsang CC, Teng JLL, Lau SKP, Woo PCY. Rapid Genomic Diagnosis of Fungal Infections in the Age of Next-Generation Sequencing. J Fungi (Basel) 2021; 7:jof7080636. [PMID: 34436175 PMCID: PMC8398552 DOI: 10.3390/jof7080636] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have recently developed beyond the research realm and started to mature into clinical applications. Here, we review the current use of NGS for laboratory diagnosis of fungal infections. Since the first reported case in 2014, >300 cases of fungal infections diagnosed by NGS were described. Pneumocystis jirovecii is the predominant fungus reported, constituting ~25% of the fungi detected. In ~12.5% of the cases, more than one fungus was detected by NGS. For P. jirovecii infections diagnosed by NGS, all 91 patients suffered from pneumonia and only 1 was HIV-positive. This is very different from the general epidemiology of P. jirovecii infections, of which HIV infection is the most important risk factor. The epidemiology of Talaromyces marneffei infection diagnosed by NGS is also different from its general epidemiology, in that only 3/11 patients were HIV-positive. The major advantage of using NGS for laboratory diagnosis is that it can pick up all pathogens, particularly when initial microbiological investigations are unfruitful. When the cost of NGS is further reduced, expertise more widely available and other obstacles overcome, NGS would be a useful tool for laboratory diagnosis of fungal infections, particularly for difficult-to-grow fungi and cases with low fungal loads.
Collapse
|
79
|
Safety, Tolerability, and Population Pharmacokinetics of Intravenous and Oral Isavuconazonium Sulfate in Pediatric Patients. Antimicrob Agents Chemother 2021; 65:e0029021. [PMID: 34031051 PMCID: PMC8284446 DOI: 10.1128/aac.00290-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Isavuconazole, administered as the water-soluble prodrug isavuconazonium sulfate, is a new triazole agent used to treat invasive fungal infections. This phase 1 study evaluated the pharmacokinetics (PK), safety, and tolerability of isavuconazole in 46 immunocompromised pediatric patients, stratified by age (1 to <6 [intravenous (i.v.) only], 6 to <12, and 12 to <18 years), receiving 10 mg/kg body weight (maximum, 372 mg) isavuconazonium sulfate either i.v. or orally. A population PK model using weight-based allometric scaling was constructed with the pediatric i.v. and oral data plus i.v. data from a phase 1 study in adults. The best model was a 3-compartment model with combined zero-order and first-order input, with linear elimination. Stepwise covariate modeling was performed in Perl-speaks-NONMEM version 4.7.0. None of the covariates examined, including age, sex, race, and body mass index, were statistically significant for any of the PK parameters. The area under the concentration-time curve at steady state (AUCSS) was predicted for pediatric patients using 1,000 Monte Carlo simulations per age cohort for each administration route. The probability of target attainment (AUCSS range, 60 to 233 μg · h/ml) was estimated; this target range was derived from plasma drug exposures in adults receiving the recommended clinical dose. Predicted plasma drug exposures were within the target range for >80% and >76% of simulated pediatric patients following i.v. or oral administration, respectively. Intravenous and oral administration of isavuconazonium sulfate at the studied dosage of 10 mg/kg was well tolerated and resulted in exposure in pediatric patients similar to that in adults. (This study has been registered at ClinicalTrials.gov under identifier NCT03241550).
Collapse
|
80
|
Impact of antifungal stewardship interventions on the susceptibility of colonized Candida species in pediatric patients with malignancy. Sci Rep 2021; 11:14099. [PMID: 34238976 PMCID: PMC8266849 DOI: 10.1038/s41598-021-93421-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/18/2021] [Indexed: 12/28/2022] Open
Abstract
There is a worldwide concern regarding the antimicrobial resistance and the inappropriate use of antifungal agents, which had led to an ever-increasing antifungal resistance. This study aimed to identify the antifungal susceptibility of colonized Candida species isolated from pediatric patients with cancer and evaluate the clinical impact of antifungal stewardship (AFS) interventions on the antifungal susceptibility of colonized Candida species. Candida species colonization was evaluated among hospitalized children with cancer in a tertiary teaching hospital, Shiraz 2017–2018. Samples were collected from the mouth, nose, urine, and stool of the patients admitted to our center and cultured on sabouraud dextrose agar. The isolated yeasts identified by polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLP). DNA Extracted and PCR amplification was performed using the ITS1 and ITS4 primer pairs and Msp I enzyme. The broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) for amphotericin B, caspofungin, and azoles. The prevalence of Candida albicans in the present study was significantly higher than other Candida species. Candida albicans species were completely susceptible to the azoles. The susceptibility rate of C. albicans to amphotericin B and caspofungin was 93.1% and 97.1%, respectively. The fluconazole MIC values of Candida albicans decreased significantly during the post-AFS period (P < 0.001; mean difference: 72.3; 95% CI of the difference: 47.36–98.62). We found that 52.5% (53/117) of the isolated C. albicans were azole-resistant before AFS implementation, while only 1.5% (2/102) of the isolates were resistant after implementation of the AFS program (P < 0.001). C. albicans fluconazole and caspofungin resistant rate also decreased significantly (P < 0.001) after implementation of the AFS program [26 (32.9%) versus 0 (0.0%) and 11 (10.9%) versus 1 (0.9%), respectively]. Besides, fluconazole use (p < 0.05) and fluconazole expenditure reduced significantly (about one thousand US$ per year) after the AFS program. Our results confirm the positive effect of optimized antifungal usage and bedside intervention on the susceptibility of Candida species after the implementation of the AFS program. C. albicans and C. glabrata exhibited a significant increase in susceptibility after the execution of the AFS program.
Collapse
|
81
|
Hematopoietic Stem Cell Transplantation Cures Therapy-refractory Aspergillosis in Chronic Granulomatous Disease. Pediatr Infect Dis J 2021; 40:649-654. [PMID: 34097656 DOI: 10.1097/inf.0000000000003109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pulmonary invasive aspergillosis is a frequent and life-threatening complication for patients with chronic granulomatous disease (CGD). Despite combined treatment with several groups of antifungal agents, conservative treatment of invasive aspergillosis often remains refractory. Pulmonary invasive aspergillosis is often treated by surgical resection of consolidated lobes or segments, donor granulocyte transfusions and allogeneic hematopoietic stem cell transplantation (HSCT). These options are not mutually exclusive and often combined. METHODS AND RESULTS We here describe the treatment of 3 patients with CGD who received HSCT upon active pulmonary invasive aspergillosis: Two of them received HSCT as salvage therapy for refractory aspergillosis, and 1 patient received elective HSCT in infancy but developed pulmonary aspergillosis during secondary graft failure. Based on our experience and available literature, we discuss indication as well as timing of HSCT, granulocyte transfusions and surgery in patients with CGD and pulmonary invasive aspergillosis. CONCLUSIONS Upon diagnosis with invasive aspergillosis in CGD, we propose to start antifungal treatment and preparation for HSCT at the same time. Remission of pulmonary invasive aspergillosis before HSCT remains preferable but is not mandatory. When pulmonary aspergillosis in patients with CGD remains refractory for longer than 3 months on conservative treatment, HSCT without prior surgery or accompanying granulocyte transfusions is a feasible option.
Collapse
|
82
|
Is Posaconazole Really Effective in Adolescent patients as a Prophylactic Agent: Experience of a Tertiary Care Center. J Pediatr Hematol Oncol 2021; 43:e613-e618. [PMID: 33560081 DOI: 10.1097/mph.0000000000002080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/20/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Invasive fungal infections (IFIs) are a leading cause of morbidity and death in immunocompromised patients. Data on efficacy and pharmacokinetics of posaconazole in pediatric patients are rare (1 to 5). Herein, we retrospectively analyzed adolescent patients who had received posaconazole as antifungal prophylaxis. METHODS We retrospectively analyzed patients who received posaconazole as primary or secondary antifungal prophylaxis. RESULTS A total of 34 adolescent patients, 19 men (55.9%) and 15 women (44.1%) with a mean age of 15.8±2.1 years were included. Twenty-five of 34 (73.5%) patients were on primary and nine of 34 (26.5%) patients were on secondary antifungal prophylaxis. Diagnosis of the patients receiving posaconazole as primary antifungal prophylaxis were acute myeloid leukemia (n=12, 48%), hematopoietic stem cell transplantation (n=7, 28%), acute lymphoblastic leukemia (n=5, 20%), and Fanconi aplastic anemia (n=1, 4%). Five patients (55.6%) with hematopoietic stem cell transplantation, 1 patient with acute myeloid leukemia (11.1%), 1 patient with Fanconi aplastic anemia (11.1%), and 2 (22.2%) patients with chronic granulomatous disease received posaconazole as secondary antifungal prophylaxis. Twelve of 25 (48%) patients receiving posaconazole as primary antifungal prophylaxis were complicated by IFI; 4 of them were proven, 6 probable, and 2 with possible IFI. Three of 9 patients (33.3%) receiving posaconazole as secondary antifungal prophylaxis was complicated by IFI (P=0.29), 2 of them were probable and 1 was possible IFI. Five of 25 patients (20%) receiving posaconazole as primary prophylaxis died because of IFI. CONCLUSION Improvement of antifungal prophylaxis in patients with high risk of invasive infections seems clearly necessary, and analyzing serum posaconazole levels and individualizing dosing may be 1 approach to improve outcomes.
Collapse
|
83
|
Tragiannidis A, Kattamis A, Vyzantiadis TA. Invasive Fungal Infections in Children with Haematological Malignancies: Diagnostic and Therapeutic Challenges. J Fungi (Basel) 2021; 7:jof7070516. [PMID: 34203146 PMCID: PMC8305930 DOI: 10.3390/jof7070516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Affiliation(s)
- Athanasios Tragiannidis
- Children & Adolescent Haematology-Oncology Unit, Second Department of Paediatrics, Aristotle University of Thessaloniki, AHEPA Hospital, 53646 Thessaloniki, Greece;
| | - Antonios Kattamis
- Paediatric Haematology-Oncology Unit, First Department of Paediatrics, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Timoleon-Achilleas Vyzantiadis
- First Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310-999027
| |
Collapse
|
84
|
Mendoza-Palomar N, Soques E, Benitez-Carabante MI, Gonzalez-Amores M, Fernandez-Polo A, Renedo B, Martin MT, Soler-Palacin P, Diaz-de-Heredia C. Low-dose liposomal amphotericin B for antifungal prophylaxis in paediatric allogeneic haematopoietic stem cell transplantation. J Antimicrob Chemother 2021; 75:2264-2271. [PMID: 32335674 DOI: 10.1093/jac/dkaa149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Primary antifungal prophylaxis in paediatric allogeneic HSCT recipients is mainly based on azoles, which can have related toxicity and drug interactions. Low-dose liposomal amphotericin B (L-AmB) is an attractive intravenous alternative because of its low toxicity and lower risk of interactions. OBJECTIVES To evaluate the effectiveness and safety of L-AmB (1 mg/kg/day) for primary antifungal prophylaxis in pre-engraftment paediatric HSCT patients. PATIENTS AND METHODS Retrospective, observational study including all consecutive patients aged ≤18 years who underwent HSCT and received antifungal prophylaxis with intravenous L-AmB (1 mg/kg/day, from day -1 to 48 h before discharge) between January 2012 and December 2016. RESULTS In total, 125 HSCT procedures in 118 patients were included, median age 7.2 years (IQR 4.2-11.5). Haematological malignancies were the main underlying condition (63.6%), and 109 (87.2%) were considered at high risk for invasive fungal infection (IFI). Ten patients (7.7%), all high risk, developed breakthrough IFI (three Candida spp., seven invasive mould infections) and tended to have higher overall mortality. The only statistically significant risk factor for IFI was cytomegalovirus co-infection. Adverse events, all grade I, occurred in 25 (20%), requiring L-AmB withdrawal in one case. Overall survival at 30 days was 99.2%. At study completion, one patient had died of IFI. CONCLUSIONS The incidence of breakthrough IFI was comparable to that of previous reports, with a very low rate of significant toxicity. Thus, prophylactic L-AmB may be a safe, effective option for antifungal prophylaxis in the pre-engraftment phase for children undergoing HSCT, even those at high risk.
Collapse
Affiliation(s)
- Natalia Mendoza-Palomar
- Paediatric Infectious Diseases and Immunodeficiencies Unit, University Hospital Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Elena Soques
- Paediatric Oncology and Haematology Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Miriam Gonzalez-Amores
- Paediatric Infectious Diseases and Immunodeficiencies Unit, University Hospital Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Aurora Fernandez-Polo
- Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.,Pharmacy Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Berta Renedo
- Pharmacy Department, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Maria Teresa Martin
- Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.,Microbiology Department, University Hospital Vall d'Hebron, Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Pere Soler-Palacin
- Paediatric Infectious Diseases and Immunodeficiencies Unit, University Hospital Vall d'Hebron, Barcelona, Spain.,Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Cristina Diaz-de-Heredia
- Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain.,Paediatric Oncology and Haematology Department, University Hospital Vall d'Hebron, Barcelona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
85
|
González-Vicent M, Ramos-Amador JT. [Fungal infection in immunocompromised children]. Rev Iberoam Micol 2021; 38:75-83. [PMID: 34148786 DOI: 10.1016/j.riam.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/01/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, immunodeficiency condition has experienced a rise among children, who are at risk of invasive fungal infections (IFI) due to their health condition. Cancer, non-malignant hematological diseases, as primary immunodeficiencies, hematopoietic stem cell transplantation (HSCT), extreme prematurity, or critically ill condition in Pediatric Intensive Care Unit (PICU) are some immunosuppressive situations in children. The use of oncologic therapies, including immunotherapy and monoclonal antibodies, for the treatment of the aforementioned health conditions has led to an increase in morbidity and mortality rates of IFI in children. The underlying diseases and their management, comorbidities, the diagnostic tests used (both molecular and imaging), as well as the treatment used can be significantly different between adult patients and children admitted to PICU or with cancer. In pediatrics, the treatment of IFI is based primarily on pharmacokinetic studies performed in adults. In higher risk patients prophylaxis should be considered and, in the case of an IFI diagnosis, an antifungal treatment should be administered as early as possible, supported by the reversion of the immune dysfunction and surgery when appropriate.
Collapse
|
86
|
Voriconazole Use in Children: Therapeutic Drug Monitoring and Control of Inflammation as Key Points for Optimal Treatment. J Fungi (Basel) 2021; 7:jof7060456. [PMID: 34200506 PMCID: PMC8227726 DOI: 10.3390/jof7060456] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Voriconazole plasma concentrations (PC) are highly variable, particularly in children. Dose recommendations in 2-12-year-old patients changed in 2012. Little data on therapeutic drug monitoring (TDM) after these new recommendations are available. We aimed to evaluate voriconazole monitoring in children with invasive fungal infection (IFI) after implementation of new dosages and its relationship with safety and effectiveness. A prospective, observational study, including children aged 2-12 years, was conducted. TDM was performed weekly and doses were changed according to an in-house protocol. Effectiveness, adverse events, and factors influencing PC were analysed. A total of 229 PC from 28 IFI episodes were obtained. New dosing led to a higher rate of adequate PC compared to previous studies; still, 35.8% were outside the therapeutic range. In patients aged < 8 years, doses to achieve therapeutic levels were higher than recommended. Severe hypoalbuminemia and markedly elevated C-reactive protein were related to inadequate PC. Therapeutic PC were associated with drug effectiveness and safety. Higher doses in younger patients and a dose adjustment protocol based on TDM should be considered. Voriconazole PC variability has decreased with current updated recommendations, but it remains high and is influenced by inflammatory status. Additional efforts to control inflammation in children with IFI should be encouraged.
Collapse
|
87
|
Abstract
Over the past 15 years, there has been an increase in the development and utilization of newer antifungal agents. The ideal antifungal, however, in regard to spectrum of activity, pharmacokinetic/pharmacodynamic properties, development of resistance, safety, and drug interaction profile remains elusive. This article reviews pharmacologic aspects of Food and Drug Administration-approved polyenes, flucytosine, azoles, and echinocandins as well as promising pipeline antifungal agents. Unique properties of these newer agents are highlighted. The clinical role of established and investigational antifungal agents as treatment and/or prevention of invasive fungal infections is discussed.
Collapse
Affiliation(s)
- Melissa D Johnson
- Duke University Medical Center, Box 102359 DUMC, Durham NC 27710, USA.
| |
Collapse
|
88
|
Lysen C, Silva-Flannery L, Zaki SR, Gary JM, Lockhart SR. Performance evaluation of fungal DNA PCR amplification from formalin-fixed paraffin-embedded tissue for diagnosis: Experience of a tertiary reference laboratory. Mycoses 2021; 64:603-611. [PMID: 33527526 PMCID: PMC11950817 DOI: 10.1111/myc.13249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diagnosis of invasive fungal infections from formalin-fixed paraffin-embedded (FFPE) tissues by PCR amplification is a developing technology. One of the difficulties of establishing a validated protocol for this testing is that the gold standard, culture, is much less sensitive than the test being validated. OBJECTIVES To validate FFPE PCR as a refence laboratory identification methodology in the absence of abundant gold standard specimens. METHODS In this validation, PCR from FFPE tissue was compared to other diagnostic methods for genus/species identification. Four different groups of correlative data from FFPE tissues were used to validate this procedure. Thirteen specimens had culture or serology results and FFPE PCR results, 49 specimens had both immunohistochemistry (IHC) identification and FFPE PCR results, 118 specimens had histological evidence of fungal elements, 64 of which also had FFPE PCR results, and 36 fungal mock tissues or fungal negative tissues were used. RESULTS The sensitivity determined from the tissues with positive fungal histopathology was 54%. The specificity of the cases for which there were both culture and FFPE PCR results was 100%. For the correlation with IHC, the specificity was 98%. For the mock tissues and fungal negative tissues, the calculated analytical sensitivity was 94%, specificity was 95%, and accuracy was 94%. CONCLUSIONS By uniquely combining various data sources, this study provides a comprehensive framework for how validation can be achieved in the absence of a gold standard and outlines the excellent performance of PCR from FFPE tissue, despite relatively the low sensitivity when compared to histopathology.
Collapse
Affiliation(s)
- Colleen Lysen
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Luciana Silva-Flannery
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sherif R Zaki
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Joy M Gary
- Infectious Disease Pathology Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
89
|
Bury D, Tissing WJE, Muilwijk EW, Wolfs TFW, Brüggemann RJ. Clinical Pharmacokinetics of Triazoles in Pediatric Patients. Clin Pharmacokinet 2021; 60:1103-1147. [PMID: 34002355 PMCID: PMC8416858 DOI: 10.1007/s40262-021-00994-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Triazoles represent an important class of antifungal drugs in the prophylaxis and treatment of invasive fungal disease in pediatric patients. Understanding the pharmacokinetics of triazoles in children is crucial to providing optimal care for this vulnerable population. While the pharmacokinetics is extensively studied in adult populations, knowledge on pharmacokinetics of triazoles in children is limited. New data are still emerging despite drugs already going off patent. This review aims to provide readers with the most current knowledge on the pharmacokinetics of the triazoles: fluconazole, itraconazole, voriconazole, posaconazole, and isavuconazole. In addition, factors that have to be taken into account to select the optimal dose are summarized and knowledge gaps are identified that require further research. We hope it will provide clinicians guidance to optimally deploy these drugs in the setting of a life-threatening disease in pediatric patients.
Collapse
Affiliation(s)
- Didi Bury
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim J E Tissing
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Eline W Muilwijk
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Tom F W Wolfs
- Department of Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Infectious Diseases, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Roger J Brüggemann
- Department of Supportive Care, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
- Center of Expertise in Mycology Radboudumc/CWZ, Nijmegen, The Netherlands.
| |
Collapse
|
90
|
Itsaradisaikul S, Pakakasama S, Boonsathorn S, Techasaensiri C, Rattanasiri S, Apiwattanakul N. Invasive Fungal Disease Among Pediatric and Adolescent Patients Undergoing Itraconazole Prophylaxis After Hematopoietic Stem Cell Transplantation. Transplant Proc 2021; 53:2021-2028. [PMID: 33994183 DOI: 10.1016/j.transproceed.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Invasive fungal disease (IFD) is a major cause of morbidity and mortality in patients after hematopoietic stem cell transplantation (HSCT). Itraconazole has been used for prevention of IFD, but data related to incidence and associated factors of IFD in pediatric and adolescent patients on itraconazole prophylaxis remain scarce. OBJECTIVES To identify incidence and risk factors associated with IFD among pediatric and adolescent patients receiving itraconazole prophylaxis after HSCT. METHODS Patients younger than 21 years who received itraconazole prophylaxis after HSCT from January 2007 to December 2016 were retrospectively enrolled. Incidence of IFD within 1 year and associated factors were analyzed. RESULTS All patients received itraconazole during the pre-engraftment period. Of 170 patients, 29 had IFD, with an incidence of 17.1% at 1 year. IFD at 1 year was significantly associated with increased mortality. Of 29 patients with IFD, only 9 developed IFD while on itraconazole prophylaxis (5.3%), all of whom had invasive pulmonary aspergillosis. No invasive candidiasis occurred during itraconazole prophylaxis. Prolonged neutropenia (hazard ratio [HR] = 1.08; 95% confidence interval [CI], 1.02-1.13), graft-versus-host disease within 100 days after transplantation (HR = 3.17; 95% CI, 1.17-8.57), and using etoposide in preconditioning regimens (HR = 21.60; 95% CI, 2.44-190.95) were significantly associated with IFD at 1 year. No patients had to discontinue itraconazole because of its adverse effects. CONCLUSIONS Itraconazole proffered good efficacy for prevention of candidiasis during the pre-engraftment period. Most IFD episodes occurred after the engraftment period when itraconazole had been discontinued. During this period, patients with risk factors require appropriate fungal prophylaxis.
Collapse
Affiliation(s)
- Suluk Itsaradisaikul
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Department of Pediatrics, Uttaradit Hospital, Uttaradit, Thailand
| | - Samart Pakakasama
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sophida Boonsathorn
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonnamet Techasaensiri
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sasivimol Rattanasiri
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
91
|
Diagnostic Capacity for Invasive Fungal Infections in the Greek Paediatric Haematology-Oncology Units: Report from the Infection Working Group of the Hellenic Society of Paediatric Haematology-Oncology. J Fungi (Basel) 2021; 7:jof7050357. [PMID: 34062951 PMCID: PMC8147432 DOI: 10.3390/jof7050357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
An audit based on a specific questionnaire was attempted, in order to investigate the mycology laboratory diagnostic capacity for invasive fungal diseases (IFDs) in Greek Paediatric Haematology-Oncology departments/units. The study provided the relevant information for the years 2019 and 2020 and included data from all units, concerning culture-based methods and direct microscopy, phenotypic and molecular identification, sensitivity testing, serology and molecular diagnosis, as well as therapeutic drug monitoring. The target was mostly to reveal the level of laboratory coverage for hospitalised paediatric patients, independently of the possibility of performing the tests in the host hospital, or otherwise to refer the specimens elsewhere. In total, the current study demonstrated that the most important facilities and services regarding the IFD diagnostics for paediatric haematology-oncology patients in Greece are available and relatively easily accessible, with a reasonable turnaround time. Acting as an initial registry for further improvements, the audit can serve as a valuable approach to the actual situation and future perspectives. A national clinical mycology network under the auspices of the relevant scientific societies will probably facilitate collaboration between all the departments (clinical and laboratory) involved in invasive fungal infections and provide an easier approach to any necessary test for any hospitalised patient.
Collapse
|
92
|
White PL, Bretagne S, Caliendo AM, Loeffler J, Patterson TF, Slavin M, Wingard JR. Aspergillus Polymerase Chain Reaction-An Update on Technical Recommendations, Clinical Applications, and Justification for Inclusion in the Second Revision of the EORTC/MSGERC Definitions of Invasive Fungal Disease. Clin Infect Dis 2021; 72:S95-S101. [PMID: 33709129 DOI: 10.1093/cid/ciaa1865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aspergillus polymerase chain reaction testing of blood and respiratory samples has recently been included in the second revision of the EORTC/MSGERC definitions for classifying invasive fungal disease. This is a result of considerable efforts to standardize methodology, the availability of commercial assays and external quality control programs, and additional clinical validation. This supporting article provides both clinical and technical justifications for its inclusion while also summarizing recent advances and likely future developments in the molecular diagnosis of invasive aspergillosis.
Collapse
Affiliation(s)
- P Lewis White
- Public Health Wales Mycology Reference Laboratory, Cardiff, United Kingdom
| | - Stephane Bretagne
- Mycology Laboratory, Saint Louis Hospital, Paris and Université de Paris, France
| | - Angela M Caliendo
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Juergen Loeffler
- Department of Molecular Biology and Infection, University Hospital Wuerzburg, Medical Hospital II, Wuerzburg, Germany
| | - Thomas F Patterson
- Department of Medicine, University of Texas Health San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Monica Slavin
- National Centre for Infections in Cancer, Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Australia
| | - John R Wingard
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
93
|
8th European Conference on Infections in Leukaemia: 2020 guidelines for the diagnosis, prevention, and treatment of invasive fungal diseases in paediatric patients with cancer or post-haematopoietic cell transplantation. Lancet Oncol 2021; 22:e254-e269. [PMID: 33811813 DOI: 10.1016/s1470-2045(20)30723-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022]
Abstract
Paediatric patients with cancer and those undergoing allogeneic haematopoietic cell transplantation have an increased susceptibility to invasive fungal diseases. In addition to differences in underlying conditions and comorbidities relative to adults, invasive fungal diseases in infants, children, and adolescents are unique in terms of their epidemiology, the validity of current diagnostic methods, the pharmacology and dosing of antifungal agents, and the absence of phase 3 clinical trials to provide data to guide evidence-based interventions. To re-examine the state of knowledge and to further improve invasive fungal disease diagnosis, prevention, and management, the 8th European Conference on Infections in Leukaemia (ECIL-8) reconvened a Paediatric Group to review the literature and to formulate updated recommendations according to the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and European Confederation of Medical Mycology (ECMM) grading system, which are summarised in this Review.
Collapse
|
94
|
|
95
|
Rare Infant Case of Pulmonary Aspergilloma Highlighting Common Challenges With Voriconazole Dosing. Pediatr Infect Dis J 2021; 40:227-230. [PMID: 33565811 DOI: 10.1097/inf.0000000000002959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We describe a 6-week-old male-term infant with a pulmonary aspergilloma diagnosed following lobectomy for suspected pleuropulmonary blastoma, with characteristic histopathologic findings and Aspergillus detected by polymerase chain reaction. Intensive testing did not reveal primary or secondary immunodeficiency. During 5 weeks treatment with voriconazole including regular therapeutic drug monitoring and dose adjustment, a level in the target range was never achieved. When the patient developed photosensitivity, treatment was stopped without relapse over 12 months follow-up. Voriconazole dosing is notoriously challenging in children. We review the cumulative published experience with voriconazole use in infants to highlight even greater difficulty in infants. Pulmonary aspergillosis is typically a disease affecting immunocompromised or critically ill patients. In children, it is well described in those with chronic granulomatous disease (CGD) as a complication of immunosuppressive antineoplastic chemotherapy and rarely in extremely- or very-low birthweight premature neonatal intensive care patients. The diagnosis is extremely rare in children without underlying risk factors. To our knowledge, this is the first report of a pulmonary aspergilloma in an immunocompetent infant.
Collapse
|
96
|
Lass-Flörl C, Samardzic E, Knoll M. Serology anno 2021-fungal infections: from invasive to chronic. Clin Microbiol Infect 2021; 27:1230-1241. [PMID: 33601011 DOI: 10.1016/j.cmi.2021.02.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diagnosing invasive or chronic fungal infections is a challenge, particularly in the immunocompromised host. Microscopy and culture remain the reference standard, but are insensitive. The use of non-culture-based techniques is recommended in conjunction with conventional methods to improve the diagnostic yield. OBJECTIVES The aim was to provide an updated 2021 inventory of fungal antigen and serology tests for diagnosing invasive and chronic fungal infections, the key focus was set on Aspergillus, Candida and Cryptococcus species. SOURCES Pubmed search for publications with the key words fungal antigen tests, laboratory-based diagnosis of invasive pulmonary aspergillosis, chronic pulmonary aspergillosis, invasive candidiasis, invasive fungal infections and cryptococcal infections published from 2017 to 2020. CONTENT Antigen assays such as the galactomannan (GM) and β-d-glucan detection systems are frequently used, but these tests vary in sensitivity and specificity, depending on the patient population involved, specimens inspected, cut-offs defined, test strategy applied and inclusion or exclusion of possible fungal case definitions. Multiple different detection systems are available, with recently introduced new point-of-care tests such as the lateral flow device and the lateral flow assay. Despite a wide heterogeneity in populations evaluated, studies indicate a better diagnostic performance of bronchoalveolar lavage GM in comparison with serum GM, and a suboptimal specificity of GM bronchoalveolar lavages (cut-off ≥1) and serum β-d-glucan in non-neutropenic individuals. Point-of-care cryptococcal antigen tests show excellent performance. IMPLICATIONS There are fungal antigen detection tests available with excellent to reasonable clinical performance to diagnose invasive fungal infections. Only a few assays are useful to monitor therapeutic response. There are multiple marketed IgG antibody tests to detect Aspergillus fumigatus antibodies, the titres vary widely and the performance differs significantly. In general, diagnostic tests are vulnerable to being affected by the host, the microbe and laboratory setting.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria.
| | - Eldina Samardzic
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| | - Miriam Knoll
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
| |
Collapse
|
97
|
Petraitis V, Petraitiene R, Katragkou A, Maung BBW, Moradi PW, Sussman-Straus GE, Naing E, Kovanda LL, Finkelman MA, Walsh TJ. Antifungal efficacy of isavuconazole and liposomal amphotericin B in a rabbit model of Exserohilum rostratum meningoencephalitis: A preclinical paradigm for management of CNS phaeohyphomycosis. Med Mycol 2021; 59:189-196. [PMID: 33313821 PMCID: PMC7857906 DOI: 10.1093/mmy/myaa102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/22/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment options for Exserohilum rostratum meningoencephalitis and other causes of phaeohyphomycosis of the central nervous system (CNS) are limited, while mortality and morbidity remain high. We therefore evaluated isavuconazole, a new antifungal triazole in comparison to liposomal amphotericin B (LAMB), in vitro and in the rabbit model of Exserohilum rostratum meningoencephalitis. We hypothesized that isavuconazole alone or in combination with LAMB or micafungin may be alternative options for treatment of CNS phaeohyphomycosis. We therefore investigated the in vitro antifungal activity of isavuconazole alone or in combination with amphotericin B deoxycholate (DAMB) or micafungin and efficacy of treatment with isavuconazole and LAMB in a rabbit model of experimental E. rostratum meningoencephalitis. Combination checkerboard plates were used to determine the minimum inhibitory concentrations, minimal lethal concentrations, fractional inhibitory concentration indices, and Bliss surface analysis of isavuconazole and amphotericin B deoxycholate (DAMB), either alone or in combination. As there were no in vitro synergistic or antagonistic interactions for either combination of antifungal agents against the E. rostratum isolates, in vivo studies were conducted with isavuconazole and LAMB as monotherapies. Rabbits were divided in following groups: treated with isavuconazole at 60 mg/kg/d (ISAV60), LAMB at 5.0 (LAMB5), 7.5 (LAMB7.5), and 10 mg/kg/d (LAMB10), and untreated controls (UC). In ISAV60-, LAMB5-, LAMB7.5-, and LAMB10-treated rabbits, significant reductions of fungal burden of E. rostratum in cerebral, cerebellar, and spinal cord tissues (P < 0.01) were demonstrated in comparison to those of UC. These antifungal effects correlated with significant reduction of CSF (1→3)-β-D-glucan levels vs UC (P < 0.05). These data establish new translational insights into treatment of CNS phaeohyphomycosis.
Collapse
Affiliation(s)
- Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Ruta Petraitiene
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Aspasia Katragkou
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, New York, USA
| | - Bo Bo Win Maung
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Patriss W Moradi
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Gittel E Sussman-Straus
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Ethan Naing
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Laura L Kovanda
- Astellas Pharma Global Development, Inc., Northbrook, Illinois, USA
| | | | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine of Cornell University, New York, New York, USA
- Department of Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York, USA
- Department of Pediatrics, Weill Cornell Medicine of Cornell University, New York, New York, USA
| |
Collapse
|
98
|
Ifversen M, Meisel R, Sedlacek P, Kalwak K, Sisinni L, Hutt D, Lehrnbecher T, Balduzzi A, Diesch T, Jarisch A, Güngör T, Stein J, Yaniv I, Bonig H, Kuhlen M, Ansari M, Nava T, Dalle JH, Diaz-de-Heredia C, Trigoso E, Falkenberg U, Hartmann M, Deiana M, Canesi M, Broggi C, Bertaina A, Gibson B, Krivan G, Vettenranta K, Matic T, Buechner J, Lawitschka A, Peters C, Yesilipek A, Yalçin K, Lucchini G, Bakhtiar S, Turkiewicz D, Niinimäki R, Wachowiak J, Cesaro S, Dalissier A, Corbacioglu S, Willasch AM, Bader P. Supportive Care During Pediatric Hematopoietic Stem Cell Transplantation: Prevention of Infections. A Report From Workshops on Supportive Care of the Paediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT). Front Pediatr 2021; 9:705179. [PMID: 34395344 PMCID: PMC8358428 DOI: 10.3389/fped.2021.705179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/25/2021] [Indexed: 02/02/2023] Open
Abstract
Specific protocols define eligibility, conditioning, donor selection, graft composition and prophylaxis of graft vs. host disease for children and young adults undergoing hematopoietic stem cell transplant (HSCT). However, international protocols rarely, if ever, detail supportive care, including pharmaceutical infection prophylaxis, physical protection with face masks and cohort isolation or food restrictions. Supportive care suffers from a lack of scientific evidence and implementation of practices in the transplant centers brings extensive restrictions to the child's and family's daily life after HSCT. Therefore, the Board of the Pediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT) held a series of dedicated workshops since 2017 with the aim of initiating the production of a set of minimal recommendations. The present paper describes the consensus reached within the field of infection prophylaxis.
Collapse
Affiliation(s)
- Marianne Ifversen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Roland Meisel
- Division of Pediatric Stem Cell Therapy, Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Petr Sedlacek
- Department of Pediatric Hematology and Oncology, Hospital Motol, Charles University, Prague, Czechia
| | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplantation, Wroclaw Medical University, Wroclaw, Poland
| | - Luisa Sisinni
- Pediatric Hematology, Oncology and Hematopoietic Stem Cell Transplantation Unit, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Daphna Hutt
- Division of Pediatric Hematology, Oncology and Bone Marrow Transplantation, The Edmond and Lily Safra Children's Hospital, Tel Aviv, Israel
| | - Thomas Lehrnbecher
- Division for Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Tamara Diesch
- Division of Pediatric Hematology-Oncology, University Children's Hospital of Basel, Basel, Switzerland
| | - Andrea Jarisch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Hospital for Children and Adolescents, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Tayfun Güngör
- Department of Hematology, Immunology, Oncology and Stem Cell Transplantation, University Children's Hospital Zürich, Zurich, Switzerland
| | - Jerry Stein
- Division of Pediatric Hematoloy-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Isaac Yaniv
- Division of Pediatric Hematoloy-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology of Goethe University, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Michaela Kuhlen
- Paediatrics and Adolescent Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Marc Ansari
- Division of Pediatric Hematology-Oncology, University Hospital of Geneva, Geneva, Switzerland.,Cansearch Research Platform in Paediatric Oncology and Haematology, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tiago Nava
- Division of Pediatric Hematology-Oncology, University Hospital of Geneva, Geneva, Switzerland.,Cansearch Research Platform in Paediatric Oncology and Haematology, Department of Paediatrics, Gynaecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jean-Hugues Dalle
- Hematology and Immunology Department, Robert-Debre Hospital, Assistance Publique-Hopitaux de Paris and University of Paris, Paris, France
| | - Cristina Diaz-de-Heredia
- Department of Pediatric Oncology and Hematology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eugenia Trigoso
- Paediatric Transplant Unit, Hospital University and Polytechnic, Hospital LA FE, Valencia, Spain
| | - Ulrike Falkenberg
- Stem Cell Transplantation-Unit, Department of Pediatrics, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Mihaela Hartmann
- Stem Cell Transplantation-Unit, Department of Pediatrics, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Marco Deiana
- Paediatric Haematology-Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico G Gaslini, Genova, Italy
| | - Marta Canesi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Chiara Broggi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione Monza e Brianza per il Bambino e la sua Mamma, Ospedale San Gerardo, Monza, Italy
| | - Alice Bertaina
- Department of Pediatric Hematology-Oncology and Cell and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Bambino Gesù, Rome, Italy.,Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Brenda Gibson
- Department of Paediatric Haematology-Oncology, Royal Hospital for Children, Glasgow, United Kingdom
| | - Gergely Krivan
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Disease, Budapest, Hungary
| | - Kim Vettenranta
- Children's Hospital and Pediatric Research Center, University of Helsinki, Helsinki, Finland
| | - Toni Matic
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Jochen Buechner
- Department of Pediatric Hematology and Oncology, Oslo University Hospital, Oslo, Norway
| | - Anita Lawitschka
- Stem Cell Transplantation-Unit, Department of Pediatrics, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Christina Peters
- Stem Cell Transplantation-Unit, Department of Pediatrics, St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
| | - Akif Yesilipek
- Department of Pediatric Hematology and Pediatric Stem Cell Transplantation Unit, Antalya and Göztepe Medicalpark Hospitals, Antalya, Turkey
| | - Koray Yalçin
- Department of Pediatric Bone Marrow Transplantation Unit, Medicalpark Göztepe Hospital, Istanbul, Turkey
| | - Giovanna Lucchini
- Department of Bone Marrow Transplantation, Great Ormond Street Hospital for Children, National Health Service Foundation Trust, London, United Kingdom
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Hospital for Children and Adolescents, University Hospital, Goethe University, Frankfurt am Main, Germany
| | | | - Riitta Niinimäki
- Department of Pediatrics, Oulu University Hospital, Oulu, Finland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Hematopoietic Stem Cell Transplantation, Poznan University of Medical Sciences, Poznan, Poland
| | - Simone Cesaro
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Arnaud Dalissier
- European Society for Blood and Marrow Transplantation Paris Office, Hôpital Saint Antoine, Paris, France
| | - Selim Corbacioglu
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital of Regensburg, Regensburg, Germany
| | - Andre Manfred Willasch
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Hospital for Children and Adolescents, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Hospital for Children and Adolescents, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
99
|
Porzionato A, Stocco E, Emmi A, Macchi V, De Caro R. Case Report: Sudden Fatal Hemorrhage in Ulcerative Fungal Laryngotracheitis-A Pediatric Case Report. Front Pediatr 2021; 9:764027. [PMID: 35087772 PMCID: PMC8787292 DOI: 10.3389/fped.2021.764027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Abstract
In this report, we describe an autopsy case of a child affected by acute lymphoblastic leukemia and opportunistic pulmonary aspergillosis. The patient died because of a full-thickness tracheal wall ulceration with right inferior thyroid artery lesion and sudden hemorrhage, likely ascribable to undiagnosed invasive Aspergillus laryngotracheitis. Aspergillus infection, particularly in immunocompromised patients, should be considered an urgent risk factor to manage as it may lead to sudden fatal events in absence of evident critical symptoms.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Aron Emmi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, Padova, Italy
| |
Collapse
|
100
|
Zajac-Spychala O, Kampmeier S, Lehrnbecher T, Groll AH. Infectious Complications in Paediatric Haematopoetic Cell Transplantation for Acute Lymphoblastic Leukemia: Current Status. Front Pediatr 2021; 9:782530. [PMID: 35223707 PMCID: PMC8866305 DOI: 10.3389/fped.2021.782530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/15/2021] [Indexed: 12/02/2022] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) in paediatric patients with acute lymphoblastic leukaemia (ALL) is associated with a variety of infectious complications which result in significant morbidity and mortality. These patients are profoundly immunocompromised, and immune reconstitution after HSCT generally occurs in astrictly defined order. During the early phase after HSCT until engraftment, patients are at risk of infections due to presence of neutropenia and mucosal damage, with Gramme-positive and Gramme-negative bacteria and fungi being the predominant pathogens. After neutrophil recovery, the profound impairment of cell-mediated immunity and use of glucocorticosteroids for control of graft-vs.-host disease (GvHD) increases the risk of invasive mould infection and infection or reactivation of various viruses, such as cytomegalovirus, varicella zoster virus, Epstein-Barr virus and human adenovirus. In the late phase, characterised by impaired cellular and humoral immunity, particularly in conjunction with chronic GvHD, invasive infections with encapsulated bacterial infections are observed in addition to fungal and viral infections. HSCT also causes a loss of pretransplant naturally acquired and vaccine-acquired immunity; therefore, complete reimmunization is necessary to maintain long-term health in these patients. During the last two decades, major advances have been made in our understanding of and in the control of infectious complications associated with HSCT. In this article, we review current recommendations for the diagnosis, prophylaxis and treatment of infectious complications following HSCT for ALL in childhood.
Collapse
Affiliation(s)
- Olga Zajac-Spychala
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|