51
|
Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022; 16:884785. [PMID: 35615623 PMCID: PMC9124768 DOI: 10.3389/fncir.2022.884785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.
Collapse
Affiliation(s)
- Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Brian R. Noga Patrick J. Whelan
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Brian R. Noga Patrick J. Whelan
| |
Collapse
|
52
|
Kantak SS, Johnson T, Zarzycki R. Linking Pain and Motor Control: Conceptualization of Movement Deficits in Patients With Painful Conditions. Phys Ther 2022; 102:6497839. [PMID: 35079833 DOI: 10.1093/ptj/pzab289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 09/13/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
UNLABELLED When people experience or expect pain, they move differently. Pain-altered movement strategies, collectively described here as pain-related movement dysfunction (PRMD), may persist well after pain resolves and, ultimately, may result in altered kinematics and kinetics, future reinjury, and disability. Although PRMD may manifest as abnormal movements that are often evident in clinical assessment, the underlying mechanisms are complex, engaging sensory-perceptual, cognitive, psychological, and motor processes. Motor control theories provide a conceptual framework to determine, assess, and target processes that contribute to normal and abnormal movement and thus are important for physical therapy and rehabilitation practice. Contemporary understanding of motor control has evolved from reflex-based understanding to a more complex task-dependent interaction between cognitive and motor systems, each with distinct neuroanatomic substrates. Though experts have recognized the importance of motor control in the management of painful conditions, there is no comprehensive framework that explicates the processes engaged in the control of goal-directed actions, particularly in the presence of pain. This Perspective outlines sensory-perceptual, cognitive, psychological, and motor processes in the contemporary model of motor control, describing the neural substrates underlying each process and highlighting how pain and anticipation of pain influence motor control processes and consequently contribute to PRMD. Finally, potential lines of future inquiry-grounded in the contemporary model of motor control-are outlined to advance understanding and improve the assessment and treatment of PRMD. IMPACT This Perspective proposes that approaching PRMD from a contemporary motor control perspective will uncover key mechanisms, identify treatment targets, inform assessments, and innovate treatments across sensory-perceptual, cognitive, and motor domains, all of which have the potential to improve movement and functional outcomes in patients with painful conditions.
Collapse
Affiliation(s)
- Shailesh S Kantak
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA.,Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| | - Tessa Johnson
- Neuroplasticity and Motor Behavior Laboratory, Moss Rehabilitation Research Institute, Elkins Park, Pennsylvania, USA
| | - Ryan Zarzycki
- Department of Physical Therapy, Arcadia University, Glenside, Pennsylvania, USA
| |
Collapse
|
53
|
Grossman CD, Cohen JY. Neuromodulation and Neurophysiology on the Timescale of Learning and Decision-Making. Annu Rev Neurosci 2022; 45:317-337. [PMID: 35363533 DOI: 10.1146/annurev-neuro-092021-125059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nervous systems evolved to effectively navigate the dynamics of the environment to achieve their goals. One framework used to study this fundamental problem arose in the study of learning and decision-making. In this framework, the demands of effective behavior require slow dynamics-on the scale of seconds to minutes-of networks of neurons. Here, we review the phenomena and mechanisms involved. Using vignettes from a few species and areas of the nervous system, we view neuromodulators as key substrates for temporal scaling of neuronal dynamics. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
54
|
Park J, Phillips JW, Guo JZ, Martin KA, Hantman AW, Dudman JT. Motor cortical output for skilled forelimb movement is selectively distributed across projection neuron classes. SCIENCE ADVANCES 2022; 8:eabj5167. [PMID: 35263129 PMCID: PMC8906739 DOI: 10.1126/sciadv.abj5167] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 01/18/2022] [Indexed: 05/30/2023]
Abstract
The interaction of descending neocortical outputs and subcortical premotor circuits is critical for shaping skilled movements. Two broad classes of motor cortical output projection neurons provide input to many subcortical motor areas: pyramidal tract (PT) neurons, which project throughout the neuraxis, and intratelencephalic (IT) neurons, which project within the cortex and subcortical striatum. It is unclear whether these classes are functionally in series or whether each class carries distinct components of descending motor control signals. Here, we combine large-scale neural recordings across all layers of motor cortex with cell type-specific perturbations to study cortically dependent mouse motor behaviors: kinematically variable manipulation of a joystick and a kinematically precise reach-to-grasp. We find that striatum-projecting IT neuron activity preferentially represents amplitude, whereas pons-projecting PT neurons preferentially represent the variable direction of forelimb movements. Thus, separable components of descending motor cortical commands are distributed across motor cortical projection cell classes.
Collapse
Affiliation(s)
- Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James W. Phillips
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jian-Zhong Guo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kathleen A. Martin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Adam W. Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Joshua T. Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
55
|
Pimentel-Farfan AK, Báez-Cordero AS, Peña-Rangel TM, Rueda-Orozco PE. Cortico-striatal circuits for bilaterally coordinated movements. SCIENCE ADVANCES 2022; 8:eabk2241. [PMID: 35245127 PMCID: PMC8896801 DOI: 10.1126/sciadv.abk2241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/12/2022] [Indexed: 06/01/2023]
Abstract
Movement initiation and control require the orchestrated activity of sensorimotor cortical and subcortical regions. However, the exact contribution of specific pathways and interactions to the final behavioral outcome are still under debate. Here, by combining structural lesions, pathway-specific optogenetic manipulations and freely moving electrophysiological recordings in rats, we studied cortico-striatal interactions in the context of forelimb bilaterally coordinated movements. We provide evidence indicating that bilateral actions are initiated by motor cortical regions where intratelencephalic bilateral cortico-striatal (bcs-IT) projections recruit the sensorimotor striatum to provide stability and duration to already commanded bilateral movements. Furthermore, striatal spiking activity was correlated with movement duration and kinematic parameters of the execution. bcs-IT stimulation affected only the representation of movement duration but spared that of kinematics. Our findings confirm the modular organization of information processing in the striatum and its involvement in moment-to-moment movement control but not initiation or selection.
Collapse
|
56
|
Kim B, Tag SH, Nam E, Ham S, Ahn S, Kim J, Cho DW, Lee S, Yang YS, Lee SE, Kim YS, Cho IJ, Kim KP, Han SC, Im HI. SYNCRIP controls miR-137 and striatal learning in animal models of methamphetamine abstinence. Acta Pharm Sin B 2022; 12:3281-3297. [PMID: 35967275 PMCID: PMC9366222 DOI: 10.1016/j.apsb.2022.02.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/18/2022] Open
Abstract
Abstinence from prolonged psychostimulant use prompts stimulant withdrawal syndrome. Molecular adaptations within the dorsal striatum have been considered the main hallmark of stimulant abstinence. Here we explored striatal miRNA–target interaction and its impact on circulating miRNA marker as well as behavioral dysfunctions in methamphetamine (MA) abstinence. We conducted miRNA sequencing and profiling in the nonhuman primate model of MA abstinence, followed by miRNA qPCR, LC–MS/MS proteomics, immunoassays, and behavior tests in mice. In nonhuman primates, MA abstinence triggered a lasting upregulation of miR-137 in the dorsal striatum but a simultaneous downregulation of circulating miR-137. In mice, aberrant increase in striatal miR-137-dependent inhibition of SYNCRIP essentially mediated the MA abstinence-induced reduction of circulating miR-137. Pathway modeling through experimental deduction illustrated that the MA abstinence-mediated downregulation of circulating miR-137 was caused by reduction of SYNCRIP-dependent miRNA sorting into the exosomes in the dorsal striatum. Furthermore, diminished SYNCRIP in the dorsal striatum was necessary for MA abstinence-induced behavioral bias towards egocentric spatial learning. Taken together, our data revealed circulating miR-137 as a potential blood-based marker that could reflect MA abstinence-dependent changes in striatal miR-137/SYNCRIP axis, and striatal SYNCRIP as a potential therapeutic target for striatum-associated cognitive dysfunction by MA withdrawal syndrome.
Collapse
|
57
|
Wolff SBE, Ko R, Ölveczky BP. Distinct roles for motor cortical and thalamic inputs to striatum during motor skill learning and execution. SCIENCE ADVANCES 2022; 8:eabk0231. [PMID: 35213216 PMCID: PMC8880788 DOI: 10.1126/sciadv.abk0231] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 01/03/2022] [Indexed: 05/11/2023]
Abstract
The acquisition and execution of motor skills are mediated by a distributed motor network, spanning cortical and subcortical brain areas. The sensorimotor striatum is an important cog in this network, yet the roles of its two main inputs, from motor cortex and thalamus, remain largely unknown. To address this, we silenced the inputs in rats trained on a task that results in highly stereotyped and idiosyncratic movement patterns. While striatal-projecting motor cortex neurons were critical for learning these skills, silencing this pathway after learning had no effect on performance. In contrast, silencing striatal-projecting thalamus neurons disrupted the execution of the learned skills, causing rats to revert to species-typical pressing behaviors and preventing them from relearning the task. These results show distinct roles for motor cortex and thalamus in the learning and execution of motor skills and suggest that their interaction in the striatum underlies experience-dependent changes in subcortical motor circuits.
Collapse
Affiliation(s)
| | - Raymond Ko
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
58
|
Su Z, Wang Z, Lindtner S, Yang L, Shang Z, Tian Y, Guo R, You Y, Zhou W, Rubenstein JL, Yang Z, Zhang Z. Dlx1/2-dependent expression of Meis2 promotes neuronal fate determination in the mammalian striatum. Development 2022; 149:dev200035. [PMID: 35156680 PMCID: PMC8918808 DOI: 10.1242/dev.200035] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/04/2022] [Indexed: 12/16/2022]
Abstract
The striatum is a central regulator of behavior and motor function through the actions of D1 and D2 medium-sized spiny neurons (MSNs), which arise from a common lateral ganglionic eminence (LGE) progenitor. The molecular mechanisms of cell fate specification of these two neuronal subtypes are incompletely understood. Here, we found that deletion of murine Meis2, which is highly expressed in the LGE and derivatives, led to a large reduction in striatal MSNs due to a block in their differentiation. Meis2 directly binds to the Zfp503 and Six3 promoters and is required for their expression and specification of D1 and D2 MSNs, respectively. Finally, Meis2 expression is regulated by Dlx1/2 at least partially through the enhancer hs599 in the LGE subventricular zone. Overall, our findings define a pathway in the LGE whereby Dlx1/2 drives expression of Meis2, which subsequently promotes the fate determination of striatal D1 and D2 MSNs via Zfp503 and Six3.
Collapse
Affiliation(s)
- Zihao Su
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Ziwu Wang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Susan Lindtner
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Lin Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zicong Shang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yu Tian
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Rongliang Guo
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Yan You
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - John L. Rubenstein
- Department of Psychiatry, Nina Ireland Laboratory of Developmental Neurobiology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | - Zhuangzhi Zhang
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| |
Collapse
|
59
|
Berret B, Baud-Bovy G. Evidence for a cost of time in the invigoration of isometric reaching movements. J Neurophysiol 2022; 127:689-701. [PMID: 35138953 DOI: 10.1152/jn.00536.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How the brain determines the vigor of goal-directed movements is a fundamental question in neuroscience. Recent evidence has suggested that vigor results from a trade-off between a cost related to movement production (cost of movement) and a cost related to our brain's tendency to temporally discount the value of future reward (cost of time). However, whether it is critical to hypothesize a cost of time to explain the vigor of basic reaching movements with intangible reward is unclear because the cost of movement may be theoretically sufficient for this purpose. Here we directly address this issue by designing an isometric reaching task whose completion can be accurate and effortless in prefixed durations. The cost of time hypothesis predicts that participants should be prone to spend energy to save time even if the task can be accomplished at virtually no motor cost. Accordingly, we found that all participants generated substantial amounts of force to invigorate task accomplishment, especially when the prefixed duration was long enough. Remarkably, the time saved by each participant was linked to their original vigor in the task and predicted by an optimal control model balancing out movement and time costs. Taken together, these results supports the existence of an idiosyncratic, cognitive cost of time that underlies the invigoration of basic isometric reaching movements.
Collapse
Affiliation(s)
- Bastien Berret
- Université Paris-Saclay CIAMS, 91405, Orsay, France.,CIAMS, Université d'Orléans, 45067, Orléans, France.,Institut Universitaire de France, Paris, France
| | - Gabriel Baud-Bovy
- Robotics, Brain and Cognitive Sciences Unit, Istituto Italiano di Tecnologia, Genoa, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
60
|
Marie A, Leroy J, Darricau M, Alfos S, De Smedt-Peyrusse V, Richard E, Vancassel S, Bosch-Bouju C. Preventive Vitamin A Supplementation Improves Striatal Function in 6-Hydroxydopamine Hemiparkinsonian Rats. Front Nutr 2022; 9:811843. [PMID: 35178422 PMCID: PMC8843942 DOI: 10.3389/fnut.2022.811843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background The mechanisms leading to a loss of dopaminergic (DA) neurons from the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) have multifactorial origins. In this context, nutrition is currently investigated as a modifiable environmental factor for the prevention of PD. In particular, initial studies revealed the deleterious consequences of vitamin A signaling failure on dopamine-related motor behaviors. However, the potential of vitamin A supplementation itself to prevent neurodegeneration has not been established yet. Objective The hypothesis tested in this study is that preventive vitamin A supplementation can protect DA neurons in a rat model of PD. Methods The impact of a 5-week preventive supplementation with vitamin A (20 IU/g of diet) was measured on motor and neurobiological alterations induced by 6-hydroxydopamine (6-OHDA) unilateral injections in the striatum of rats. Rotarod, step test and cylinder tests were performed up to 3 weeks after the lesion. Post-mortem analyses (retinol and monoamines dosages, western blots, immunofluorescence) were performed to investigate neurobiological processes. Results Vitamin A supplementation improved voluntary movements in the cylinder test. In 6-OHDA lesioned rats, a marked decrease of dopamine levels in striatum homogenates was measured. Tyrosine hydroxylase labeling in the SNc and in the striatum was significantly decreased by 6-OHDA injection, without effect of vitamin A. By contrast, vitamin A supplementation increased striatal expression of D2 and RXR receptors in the striatum of 6-OHDA lesioned rats. Conclusions Vitamin A supplementation partially alleviates motor alterations and improved striatal function, revealing a possible beneficial preventive approach for PD.
Collapse
Affiliation(s)
- Anaïs Marie
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
| | - Julien Leroy
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
| | - Morgane Darricau
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, University of Bordeaux, Bordeaux, France
| | - Serge Alfos
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
| | - Veronique De Smedt-Peyrusse
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
| | - Emmanuel Richard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospital-Universitaire (CHU) Bordeaux, University of Bordeaux, Bordeaux, France
| | - Sylvie Vancassel
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
| | - Clementine Bosch-Bouju
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Institut Polytechnique de Bordeaux (INP), NutriNeuro, University of Bordeaux, Bordeaux, France
- *Correspondence: Clementine Bosch-Bouju
| |
Collapse
|
61
|
Fasano A, Mazzoni A, Falotico E. Reaching and Grasping Movements in Parkinson's Disease: A Review. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1083-1113. [PMID: 35253780 PMCID: PMC9198782 DOI: 10.3233/jpd-213082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Parkinson's disease (PD) is known to affect the brain motor circuits involving the basal ganglia (BG) and to induce, among other signs, general slowness and paucity of movements. In upper limb movements, PD patients show a systematic prolongation of movement duration while maintaining a sufficient level of endpoint accuracy. PD appears to cause impairments not only in movement execution, but also in movement initiation and planning, as revealed by abnormal preparatory activity of motor-related brain areas. Grasping movement is affected as well, particularly in the coordination of the hand aperture with the transport phase. In the last fifty years, numerous behavioral studies attempted to clarify the mechanisms underlying these anomalies, speculating on the plausible role that the BG-thalamo-cortical circuitry may play in normal and pathological motor control. Still, many questions remain open, especially concerning the management of the speed-accuracy tradeoff and the online feedback control. In this review, we summarize the literature results on reaching and grasping in parkinsonian patients. We analyze the relevant hypotheses on the origins of dysfunction, by focusing on the motor control aspects involved in the different movement phases and the corresponding role played by the BG. We conclude with an insight into the innovative stimulation techniques and computational models recently proposed, which might be helpful in further clarifying the mechanisms through which PD affects reaching and grasping movements.
Collapse
Affiliation(s)
- Alessio Fasano
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Correspondence to: Alessio Fasano and Egidio Falotico, The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy. Tel.: +39 050 883 457; E-mails: and
| | - Alberto Mazzoni
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Egidio Falotico
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Correspondence to: Alessio Fasano and Egidio Falotico, The BioRobotics Institute, Scuola Superiore Sant’Anna, Polo Sant’Anna Valdera, Viale Rinaldo Piaggio, 34, 56025 Pontedera (PI), Italy. Tel.: +39 050 883 457; E-mails: and
| |
Collapse
|
62
|
Härmson O, Grima LL, Panayi MC, Husain M, Walton ME. 5-HT 2C receptor perturbation has bidirectional influence over instrumental vigour and restraint. Psychopharmacology (Berl) 2022; 239:123-140. [PMID: 34762147 PMCID: PMC8770415 DOI: 10.1007/s00213-021-05992-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/20/2021] [Indexed: 10/25/2022]
Abstract
The serotonin (5-HT) system, particularly the 5-HT2C receptor, has consistently been implicated in behavioural control. However, while some studies have focused on the role 5-HT2C receptors play in regulating motivation to work for reward, others have highlighted its importance in response restraint. To date, it is unclear how 5-HT transmission at this receptor regulates the balance of response invigoration and restraint in anticipation of future reward. In addition, it remains to be established how 5-HT2C receptors gate the influence of internal versus cue-driven processes over reward-guided actions. To elucidate these issues, we investigated the effects of administering the 5-HT2C receptor antagonist SB242084, both systemically and directly into the nucleus accumbens core (NAcC), in rats performing a Go/No-Go task for small or large rewards. The results were compared to the administration of d-amphetamine into the NAcC, which has previously been shown to promote behavioural activation. Systemic perturbation of 5-HT2C receptors-but crucially not intra-NAcC infusions-consistently boosted rats' performance and instrumental vigour on Go trials when they were required to act. Concomitantly, systemic administration also reduced their ability to withhold responding for rewards on No-Go trials, particularly late in the holding period. Notably, these effects were often apparent only when the reward on offer was small. By contrast, inducing a hyperdopaminergic state in the NAcC with d-amphetamine strongly impaired response restraint on No-Go trials both early and late in the holding period, as well as speeding action initiation. Together, these findings suggest that 5-HT2C receptor transmission, outside the NAcC, shapes the vigour of ongoing goal-directed action as well as the likelihood of responding as a function of expected reward.
Collapse
Affiliation(s)
- Oliver Härmson
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
| | - Laura L Grima
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| | - Marios C Panayi
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- National Institute On Drug Abuse, Biomedical Research Center, 251 Bayview Boulevard, Suite 200, Baltimore, MD, 21224, USA
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 9DU, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 3SR, UK
| | - Mark E Walton
- Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK.
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX1 3SR, UK.
| |
Collapse
|
63
|
Going beyond primary motor cortex to improve brain–computer interfaces. Trends Neurosci 2022; 45:176-183. [DOI: 10.1016/j.tins.2021.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/01/2021] [Accepted: 12/19/2021] [Indexed: 01/08/2023]
|
64
|
Hamilos AE, Spedicato G, Hong Y, Sun F, Li Y, Assad J. Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. eLife 2021; 10:62583. [PMID: 34939925 PMCID: PMC8860451 DOI: 10.7554/elife.62583] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Clues from human movement disorders have long suggested that the neurotransmitter dopamine plays a role in motor control, but how the endogenous dopaminergic system influences movement is unknown. Here we examined the relationship between dopaminergic signaling and the timing of reward-related movements in mice. Animals were trained to initiate licking after a self-timed interval following a start-timing cue; reward was delivered in response to movements initiated after a criterion time. The movement time was variable from trial-to-trial, as expected from previous studies. Surprisingly, dopaminergic signals ramped-up over seconds between the start-timing cue and the self-timed movement, with variable dynamics that predicted the movement/reward time on single trials. Steeply rising signals preceded early lick-initiation, whereas slowly rising signals preceded later initiation. Higher baseline signals also predicted earlier self-timed movements. Optogenetic activation of dopamine neurons during self-timing did not trigger immediate movements, but rather caused systematic early-shifting of movement initiation, whereas inhibition caused late-shifting, as if modulating the probability of movement. Consistent with this view, the dynamics of the endogenous dopaminergic signals quantitatively predicted the moment-by-moment probability of movement initiation on single trials. We propose that ramping dopaminergic signals, likely encoding dynamic reward expectation, can modulate the decision of when to move.
Collapse
Affiliation(s)
- Allison E Hamilos
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Giulia Spedicato
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ye Hong
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Fangmiao Sun
- State Key Laboratory of Membrane Biology, Peking University School of Life Science, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peiking University School of Life Sciences, Beijing, China
| | - John Assad
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
65
|
Kazemi A, Mirian MS, Lee S, McKeown MJ. Galvanic Vestibular Stimulation Effects on EEG Biomarkers of Motor Vigor in Parkinson's Disease. Front Neurol 2021; 12:759149. [PMID: 34803892 PMCID: PMC8599939 DOI: 10.3389/fneur.2021.759149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Impaired motor vigor (MV) is a critical aspect of Parkinson's disease (PD) pathophysiology. While MV is predominantly encoded in the basal ganglia, deriving (cortical) EEG measures of MV may provide valuable targets for modulation via galvanic vestibular stimulation (GVS). Objective: To find EEG features predictive of MV and examine the effects of high-frequency GVS. Methods: Data were collected from 20 healthy control (HC) and 18 PD adults performing 30 trials total of a squeeze bulb task with sham or multi-sine (50-100 Hz "GVS1" or 100-150 Hz "GVS2") stimuli. For each trial, we determined the time to reach maximum force after a "Go" signal, defined MV as the inverse of this time, and used the EEG data 1-sec prior to this time for prediction. We utilized 53 standard EEG features, including relative spectral power, harmonic parameters, and amplitude and phase of bispectrum corresponding to standard EEG bands from each of 27 EEG channels. We then used LASSO regression to select a sparse set of features to predict MV. The regression weights were examined, and separate band-specific models were developed by including only band-specific features (Delta, Theta, Alpha-low, Alpha-high, Beta, Gamma). The correlation between MV prediction and measured MV was used to assess model performance. Results: Models utilizing broadband EEG features were capable of accurately predicting MV (controls: 75%, PD: 81% of the variance). In controls, all EEG bands performed roughly equally in predicting MV, while in the PD group, the model using only beta band features did not predict MV well compared to other bands. Despite having minimal effects on the EEG feature values themselves, both GVS stimuli had significant effects on MV and profound effects on MV predictability via the EEG. With the GVS1 stimulus, beta-band activity in PD subjects became more closely associated with MV compared to the sham condition. With GVS2 stimulus, MV could no longer be accurately predicted from the EEG. Conclusions: EEG features can be a proxy for MV. However, GVS stimuli have profound effects on the relationship between EEG and MV, possibly via direct vestibulo-basal ganglia connections not measurable by the EEG.
Collapse
Affiliation(s)
- Alireza Kazemi
- Center for Mind and Brain, Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Maryam S. Mirian
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Soojin Lee
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Wellcome Centre for Integrative Neuroimaging (FMRIB), University of Oxford, Oxford, United Kingdom
| | - Martin J. McKeown
- Pacific Parkinson's Research Centre, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
66
|
|
67
|
Magnusson JL, Leventhal DK. Revisiting the "Paradox of Stereotaxic Surgery": Insights Into Basal Ganglia-Thalamic Interactions. Front Syst Neurosci 2021; 15:725876. [PMID: 34512279 PMCID: PMC8429495 DOI: 10.3389/fnsys.2021.725876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Basal ganglia dysfunction is implicated in movement disorders including Parkinson Disease, dystonia, and choreiform disorders. Contradicting standard "rate models" of basal ganglia-thalamic interactions, internal pallidotomy improves both hypo- and hyper-kinetic movement disorders. This "paradox of stereotaxic surgery" was recognized shortly after rate models were developed, and is underscored by the outcomes of deep brain stimulation (DBS) for movement disorders. Despite strong evidence that DBS activates local axons, the clinical effects of lesions and DBS are nearly identical. These observations argue against standard models in which GABAergic basal ganglia output gates thalamic activity, and raise the question of how lesions and stimulation can have similar effects. These paradoxes may be resolved by considering thalamocortical loops as primary drivers of motor output. Rather than suppressing or releasing cortex via motor thalamus, the basal ganglia may modulate the timing of thalamic perturbations to cortical activity. Motor cortex exhibits rotational dynamics during movement, allowing the same thalamocortical perturbation to affect motor output differently depending on its timing with respect to the rotational cycle. We review classic and recent studies of basal ganglia, thalamic, and cortical physiology to propose a revised model of basal ganglia-thalamocortical function with implications for basic physiology and neuromodulation.
Collapse
Affiliation(s)
| | - Daniel K Leventhal
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States.,Parkinson Disease Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, United States.,Department of Neurology, VA Ann Arbor Health System, Ann Arbor, MI, United States
| |
Collapse
|
68
|
Lemke SM, Ramanathan DS, Darevksy D, Egert D, Berke JD, Ganguly K. Coupling between motor cortex and striatum increases during sleep over long-term skill learning. eLife 2021; 10:e64303. [PMID: 34505576 PMCID: PMC8439654 DOI: 10.7554/elife.64303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/09/2021] [Indexed: 01/02/2023] Open
Abstract
The strength of cortical connectivity to the striatum influences the balance between behavioral variability and stability. Learning to consistently produce a skilled action requires plasticity in corticostriatal connectivity associated with repeated training of the action. However, it remains unknown whether such corticostriatal plasticity occurs during training itself or 'offline' during time away from training, such as sleep. Here, we monitor the corticostriatal network throughout long-term skill learning in rats and find that non-rapid-eye-movement (NREM) sleep is a relevant period for corticostriatal plasticity. We first show that the offline activation of striatal NMDA receptors is required for skill learning. We then show that corticostriatal functional connectivity increases offline, coupled to emerging consistent skilled movements, and coupled cross-area neural dynamics. We then identify NREM sleep spindles as uniquely poised to mediate corticostriatal plasticity, through interactions with slow oscillations. Our results provide evidence that sleep shapes cross-area coupling required for skill learning.
Collapse
Affiliation(s)
- Stefan M Lemke
- Neuroscience Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Neurology Service, San Francisco Veterans Affairs Medical CenterSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Istituto Italiano di TecnologiaRoveretoItaly
| | | | - David Darevksy
- Neurology Service, San Francisco Veterans Affairs Medical CenterSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Daniel Egert
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Joshua D Berke
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Karunesh Ganguly
- Neurology Service, San Francisco Veterans Affairs Medical CenterSan FranciscoUnited States
- Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Weill Institute for Neurosciences and Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
69
|
Dhawale AK, Wolff SBE, Ko R, Ölveczky BP. The basal ganglia control the detailed kinematics of learned motor skills. Nat Neurosci 2021; 24:1256-1269. [PMID: 34267392 PMCID: PMC11152194 DOI: 10.1038/s41593-021-00889-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
The basal ganglia are known to influence action selection and modulation of movement vigor, but whether and how they contribute to specifying the kinematics of learned motor skills is not understood. Here, we probe this question by recording and manipulating basal ganglia activity in rats trained to generate complex task-specific movement patterns with rich kinematic structure. We find that the sensorimotor arm of the basal ganglia circuit is crucial for generating the detailed movement patterns underlying the acquired motor skills. Furthermore, the neural representations in the striatum, and the control function they subserve, do not depend on inputs from the motor cortex. Taken together, these results extend our understanding of the basal ganglia by showing that they can specify and control the fine-grained details of learned motor skills through their interactions with lower-level motor circuits.
Collapse
Affiliation(s)
- Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Centre for Neuroscience, Indian Institute of Science, Bangalore, India
| | - Steffen B E Wolff
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond Ko
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
70
|
Dacre J, Colligan M, Clarke T, Ammer JJ, Schiemann J, Chamosa-Pino V, Claudi F, Harston JA, Eleftheriou C, Pakan JMP, Huang CC, Hantman AW, Rochefort NL, Duguid I. A cerebellar-thalamocortical pathway drives behavioral context-dependent movement initiation. Neuron 2021; 109:2326-2338.e8. [PMID: 34146469 PMCID: PMC8315304 DOI: 10.1016/j.neuron.2021.05.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Executing learned motor behaviors often requires the transformation of sensory cues into patterns of motor commands that generate appropriately timed actions. The cerebellum and thalamus are two key areas involved in shaping cortical output and movement, but the contribution of a cerebellar-thalamocortical pathway to voluntary movement initiation remains poorly understood. Here, we investigated how an auditory "go cue" transforms thalamocortical activity patterns and how these changes relate to movement initiation. Population responses in dentate/interpositus-recipient regions of motor thalamus reflect a time-locked increase in activity immediately prior to movement initiation that is temporally uncoupled from the go cue, indicative of a fixed-latency feedforward motor timing signal. Blocking cerebellar or motor thalamic output suppresses movement initiation, while stimulation triggers movements in a behavioral context-dependent manner. Our findings show how cerebellar output, via the thalamus, shapes cortical activity patterns necessary for learned context-dependent movement initiation.
Collapse
Affiliation(s)
- Joshua Dacre
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Matt Colligan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas Clarke
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Julian J Ammer
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Julia Schiemann
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Victor Chamosa-Pino
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Claudi
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - J Alex Harston
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Constantinos Eleftheriou
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janelle M P Pakan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ian Duguid
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK; Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
71
|
Guo L, Kondapavulur S, Lemke SM, Won SJ, Ganguly K. Coordinated increase of reliable cortical and striatal ensemble activations during recovery after stroke. Cell Rep 2021; 36:109370. [PMID: 34260929 PMCID: PMC8357409 DOI: 10.1016/j.celrep.2021.109370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/03/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Skilled movements rely on a coordinated cortical and subcortical network, but how this network supports motor recovery after stroke is unknown. Previous studies focused on the perilesional cortex (PLC), but precisely how connected subcortical areas reorganize and coordinate with PLC is unclear. The dorsolateral striatum (DLS) is of interest because it receives monosynaptic inputs from motor cortex and is important for learning and generation of fast reliable actions. Using a rat focal stroke model, we perform chronic electrophysiological recordings in motor PLC and DLS during long-term recovery of a dexterous skill. We find that recovery is associated with the simultaneous emergence of reliable movement-related single-trial ensemble spiking in both structures along with increased cross-area alignment of spiking. Our study highlights the importance of consistent neural activity patterns across brain structures during recovery and suggests that modulation of cross-area coordination can be a therapeutic target for enhancing motor function post-stroke.
Collapse
Affiliation(s)
- Ling Guo
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sravani Kondapavulur
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefan M Lemke
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Seok Joon Won
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Karunesh Ganguly
- Neurology and Rehabilitation Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA; Department of Neurology & Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Bioengineering Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
72
|
Luan M, Mirifar A. The Effect of Attentional Direction on Sub-Stages of Preparing for Motor Skill Execution Across Practice. Percept Mot Skills 2021; 128:1292-1309. [PMID: 33928825 PMCID: PMC8107505 DOI: 10.1177/00315125211009026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While several empirical studies using dual-task methodology have examined the effect of attentional direction on motor skill execution; few have studied the effect of attentional direction on just the preparation phase of motor practice. In this study, via a keying sequence paradigm, we explored processing stages of preparation for a motor skill and disentangled the effect of attentional direction on various stages across practice. First, participants learned two keying sequences (three versus six keys). Then, they practiced the keying sequences in response to corresponding sequence labels under two block-wise alternating dual-task conditions. To dissect the preparation phase into sequence selection and sequence initiation stages, participants received varying amounts of preparation time (0, 300, 900 ms) before a starting signal instructed them to begin sequence execution. In each trial, a tone was paired with one of the three or six keypresses, and participants indicated either the keypress with which the tone was presented (skill-focused dual task) or the tone's pitch (extraneous dual task) after the sequence execution. We found that attentional direction affected only the sequence selection stage, not the sequence initiation stage. During early practice, compared to drawing attention away from execution, directing attention toward execution led to faster sequence selection. This advantage decreased with practice and vanished during late blocks of trials. Moreover, for the execution phase, relative to directing attention toward execution, drawing attention away from execution led to better performance of keying sequence execution across practice. Thus, attentional direction alone does not fully explain the difference between performance patterns at different skill levels in the dual-task literature; rather, types of motor skills and dual task difficulty levels may also drive performance differences.
Collapse
Affiliation(s)
- Mengkai Luan
- Department of Sport and Health Sciences, Technische Universität München, Germany
| | - Arash Mirifar
- Department of Sport and Health Sciences, Technische Universität München, Germany
| |
Collapse
|
73
|
Yang SJ, Del Bonis-O'Donnell JT, Beyene AG, Landry MP. Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging. Nat Protoc 2021; 16:3026-3048. [PMID: 34021297 PMCID: PMC10505477 DOI: 10.1038/s41596-021-00530-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
Dopamine neuromodulation of neural synapses is a process implicated in a number of critical brain functions and diseases. Development of protocols to visualize this dynamic neurochemical process is essential to understanding how dopamine modulates brain function. We have developed a non-genetically encoded, near-IR (nIR) catecholamine nanosensor (nIRCat) capable of identifying ~2-µm dopamine release hotspots in dorsal striatal brain slices. nIRCat is readily synthesized through sonication of single walled carbon nanotubes with DNA oligos, can be readily introduced into both genetically tractable and intractable organisms and is compatible with a number of dopamine receptor agonists and antagonists. Here we describe the synthesis, characterization and implementation of nIRCat in acute mouse brain slices. We demonstrate how nIRCat can be used to image electrically or optogenetically stimulated dopamine release, and how these procedures can be leveraged to study the effects of dopamine receptor pharmacology. In addition, we provide suggestions for building or adapting wide-field microscopy to be compatible with nIRCat nIR fluorescence imaging. We discuss strategies for analyzing nIR video data to identify dopamine release hotspots and quantify their kinetics. This protocol can be adapted and implemented for imaging other neuromodulators by using probes of this class and can be used in a broad range of species without genetic manipulation. The synthesis and characterization protocols for nIRCat take ~5 h, and the preparation and fluorescence imaging of live brain slices by using nIRCats require ~6 h.
Collapse
Affiliation(s)
- Sarah J Yang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Abraham G Beyene
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Innovative Genomics Institute (IGI), Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
74
|
Neurodevelopment of the incentive network facilitates motivated behaviour from adolescence to adulthood. Neuroimage 2021; 237:118186. [PMID: 34020019 DOI: 10.1016/j.neuroimage.2021.118186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The ability to enhance motivated performance through incentives is crucial to guide and ultimately optimise the outcome of goal-directed behaviour. It remains largely unclear how motivated behaviour and performance develops particularly across adolescence. Here, we used computational fMRI to assess how response speed and its underlying neural circuitry are modulated by reward and loss in a monetary incentive delay paradigm. We demonstrate that maturational fine-tuning of functional coupling within the cortico-striatal incentive circuitry from adolescence to adulthood facilitates the ability to enhance performance selectively for higher subjective values. Additionally, during feedback, we found developmental sex differences of striatal representations of reward prediction errors in an exploratory analysis. Our findings suggest that a reduced capacity to utilise subjective value for motivated behaviour in adolescence is rooted in immature information processing in the incentive system. This indicates that the neurocircuitry for coordination of incentivised, motivated cognitive control acts as a bottleneck for behavioural adjustments in adolescence.
Collapse
|
75
|
Carmichael K, Evans RC, Lopez E, Sun L, Kumar M, Ding J, Khaliq ZM, Cai H. Function and Regulation of ALDH1A1-Positive Nigrostriatal Dopaminergic Neurons in Motor Control and Parkinson's Disease. Front Neural Circuits 2021; 15:644776. [PMID: 34079441 PMCID: PMC8165242 DOI: 10.3389/fncir.2021.644776] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Dopamine is an important chemical messenger in the brain, which modulates movement, reward, motivation, and memory. Different populations of neurons can produce and release dopamine in the brain and regulate different behaviors. Here we focus our discussion on a small but distinct group of dopamine-producing neurons, which display the most profound loss in the ventral substantia nigra pas compacta of patients with Parkinson's disease. This group of dopaminergic neurons can be readily identified by a selective expression of aldehyde dehydrogenase 1A1 (ALDH1A1) and accounts for 70% of total nigrostriatal dopaminergic neurons in both human and mouse brains. Recently, we presented the first whole-brain circuit map of these ALDH1A1-positive dopaminergic neurons and reveal an essential physiological function of these neurons in regulating the vigor of movement during the acquisition of motor skills. In this review, we first summarize previous findings of ALDH1A1-positive nigrostriatal dopaminergic neurons and their connectivity and functionality, and then provide perspectives on how the activity of ALDH1A1-positive nigrostriatal dopaminergic neurons is regulated through integrating diverse presynaptic inputs and its implications for potential Parkinson's disease treatment.
Collapse
Affiliation(s)
- Kathleen Carmichael
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
- The Graduate Partnership Program of NIH and Brown University, National Institutes of Health, Bethesda, MD, United States
| | - Rebekah C. Evans
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, United States
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Elena Lopez
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Lixin Sun
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Mantosh Kumar
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Jinhui Ding
- Computational Biology Group, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Zayd M. Khaliq
- Cellular Neurophysiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
76
|
Maltese M, March JR, Bashaw AG, Tritsch NX. Dopamine differentially modulates the size of projection neuron ensembles in the intact and dopamine-depleted striatum. eLife 2021; 10:e68041. [PMID: 33983121 PMCID: PMC8163504 DOI: 10.7554/elife.68041] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) is a critical modulator of brain circuits that control voluntary movements, but our understanding of its influence on the activity of target neurons in vivo remains limited. Here, we use two-photon Ca2+ imaging to monitor the activity of direct and indirect-pathway spiny projection neurons (SPNs) simultaneously in the striatum of behaving mice during acute and prolonged manipulations of DA signaling. We find that increasing and decreasing DA biases striatal activity toward the direct and indirect pathways, respectively, by changing the overall number of SPNs recruited during behavior in a manner not predicted by existing models of DA function. This modulation is drastically altered in a model of Parkinson's disease. Our results reveal a previously unappreciated population-level influence of DA on striatal output and provide novel insights into the pathophysiology of Parkinson's disease.
Collapse
Affiliation(s)
- Marta Maltese
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone HealthNew YorkUnited States
| | - Jeffrey R March
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone HealthNew YorkUnited States
| | - Alexander G Bashaw
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone HealthNew YorkUnited States
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
- Fresco Institute for Parkinson’s and Movement Disorders, New York University Langone HealthNew YorkUnited States
| |
Collapse
|
77
|
Cataldi S, Stanley AT, Miniaci MC, Sulzer D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J 2021; 289:2263-2281. [PMID: 33977645 DOI: 10.1111/febs.15908] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/28/2021] [Accepted: 04/30/2021] [Indexed: 01/11/2023]
Abstract
The synaptic pathways in the striatum are central to basal ganglia functions including motor control, learning and organization, action selection, acquisition of motor skills, cognitive function, and emotion. Here, we review the role of the striatum and its connections in motor learning and performance. The development of new techniques to record neuronal activity and animal models of motor disorders using neurotoxin, pharmacological, and genetic manipulations are revealing pathways that underlie motor performance and motor learning, as well as how they are altered by pathophysiological mechanisms. We discuss approaches that can be used to analyze complex motor skills, particularly in rodents, and identify specific questions central to understanding how striatal circuits mediate motor learning.
Collapse
Affiliation(s)
- Stefano Cataldi
- Departments of Psychiatry, Neurology, Pharmacology, Biology, Columbia University, New York, NY, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | - Adrien T Stanley
- Departments of Psychiatry, Neurology, Pharmacology, Biology, Columbia University, New York, NY, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| | | | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Biology, Columbia University, New York, NY, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, NY, USA
| |
Collapse
|
78
|
Kao TC, Sadabadi MS, Hennequin G. Optimal anticipatory control as a theory of motor preparation: A thalamo-cortical circuit model. Neuron 2021; 109:1567-1581.e12. [PMID: 33789082 PMCID: PMC8111422 DOI: 10.1016/j.neuron.2021.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/09/2020] [Accepted: 03/05/2021] [Indexed: 11/21/2022]
Abstract
Across a range of motor and cognitive tasks, cortical activity can be accurately described by low-dimensional dynamics unfolding from specific initial conditions on every trial. These "preparatory states" largely determine the subsequent evolution of both neural activity and behavior, and their importance raises questions regarding how they are, or ought to be, set. Here, we formulate motor preparation as optimal anticipatory control of future movements and show that the solution requires a form of internal feedback control of cortical circuit dynamics. In contrast to a simple feedforward strategy, feedback control enables fast movement preparation by selectively controlling the cortical state in the small subspace that matters for the upcoming movement. Feedback but not feedforward control explains the orthogonality between preparatory and movement activity observed in reaching monkeys. We propose a circuit model in which optimal preparatory control is implemented as a thalamo-cortical loop gated by the basal ganglia.
Collapse
Affiliation(s)
- Ta-Chu Kao
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Mahdieh S Sadabadi
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK; Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Guillaume Hennequin
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
79
|
Cui Q, Pamukcu A, Cherian S, Chang IYM, Berceau BL, Xenias HS, Higgs MH, Rajamanickam S, Chen Y, Du X, Zhang Y, McMorrow H, Abecassis ZA, Boca SM, Justice NJ, Wilson CJ, Chan CS. Dissociable Roles of Pallidal Neuron Subtypes in Regulating Motor Patterns. J Neurosci 2021; 41:4036-4059. [PMID: 33731450 PMCID: PMC8176746 DOI: 10.1523/jneurosci.2210-20.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 01/27/2023] Open
Abstract
We have previously established that PV+ neurons and Npas1+ neurons are distinct neuron classes in the external globus pallidus (GPe): they have different topographical, electrophysiological, circuit, and functional properties. Aside from Foxp2+ neurons, which are a unique subclass within the Npas1+ class, we lack driver lines that effectively capture other GPe neuron subclasses. In this study, we examined the utility of Kcng4-Cre, Npr3-Cre, and Npy2r-Cre mouse lines (both males and females) for the delineation of GPe neuron subtypes. By using these novel driver lines, we have provided the most exhaustive investigation of electrophysiological studies of GPe neuron subtypes to date. Corroborating our prior studies, GPe neurons can be divided into two statistically distinct clusters that map onto PV+ and Npas1+ classes. By combining optogenetics and machine learning-based tracking, we showed that optogenetic perturbation of GPe neuron subtypes generated unique behavioral structures. Our findings further highlighted the dissociable roles of GPe neurons in regulating movement and anxiety-like behavior. We concluded that Npr3+ neurons and Kcng4+ neurons are distinct subclasses of Npas1+ neurons and PV+ neurons, respectively. Finally, by examining local collateral connectivity, we inferred the circuit mechanisms involved in the motor patterns observed with optogenetic perturbations. In summary, by identifying mouse lines that allow for manipulations of GPe neuron subtypes, we created new opportunities for interrogations of cellular and circuit substrates that can be important for motor function and dysfunction.SIGNIFICANCE STATEMENT Within the basal ganglia, the external globus pallidus (GPe) has long been recognized for its involvement in motor control. However, we lacked an understanding of precisely how movement is controlled at the GPe level as a result of its cellular complexity. In this study, by using transgenic and cell-specific approaches, we showed that genetically-defined GPe neuron subtypes have distinct roles in regulating motor patterns. In addition, the in vivo contributions of these neuron subtypes are in part shaped by the local, inhibitory connections within the GPe. In sum, we have established the foundation for future investigations of motor function and disease pathophysiology.
Collapse
Affiliation(s)
- Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Suraj Cherian
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Isaac Y M Chang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Matthew H Higgs
- Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas
| | - Shivakumar Rajamanickam
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston 77030, Texas
- Department of Integrative Pharmacology, University of Texas, Houston 77030, Texas
| | - Yi Chen
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison 53706, Wisconsin
| | - Xixun Du
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Yu Zhang
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Hayley McMorrow
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Zachary A Abecassis
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington 20057, DC
| | - Nicholas J Justice
- Center for Metabolic and degenerative disease, Institute of Molecular Medicine, University of Texas, Houston 77030, Texas
- Department of Integrative Pharmacology, University of Texas, Houston 77030, Texas
| | - Charles J Wilson
- Department of Biology, University of Texas at San Antonio, San Antonio 78249, Texas
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago 60611, Illinois
| |
Collapse
|
80
|
The Self-Prioritization Effect: Self-referential processing in movement highlights modulation at multiple stages. Atten Percept Psychophys 2021; 83:2656-2674. [PMID: 33861428 PMCID: PMC8302500 DOI: 10.3758/s13414-021-02295-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2021] [Indexed: 11/12/2022]
Abstract
A wealth of recent research supports the validity of the Self-Prioritization Effect (SPE)—the performance advantage for responses to self-associated as compared with other-person-associated stimuli in a shape–label matching task. However, inconsistent findings have been reported regarding the particular stage(s) of information processing that are influenced. In one account, self-prioritization modulates multiple stages of processing, whereas according to a competing account, self-prioritization is driven solely by a modulation in central-stage information-processing. To decide between these two possibilities, the present study tested whether the self-advantage in arm movements previously reported could reflect a response bias using visual feedback (Experiment 1), or approach motivation processes (Experiments 1 and 2). In Experiment 1, visual feedback was occluded in a ballistic movement-time variant of the matching task, whereas in Experiment 2, task responses were directed away from the stimuli and the participant’s body. The advantage for self in arm-movement responses emerged in both experiments. The findings indicate that the self-advantage in arm-movement responses does not depend on the use of visual feedback or on a self/stimuli-directed response. They further indicate that self-relevance can modulate movement responses (predominantly) using proprioceptive, kinaesthetic, and tactile information. These findings support the view that self-relevance modulates arm-movement responses, countering the suggestion that self-prioritization only influences central-stage processes, and consistent with a multiple-stage influence instead.
Collapse
|
81
|
Amaya KA, Smith KS. Spatially restricted inhibition of cholinergic interneurons in the dorsolateral striatum encourages behavioral exploration. Eur J Neurosci 2021; 53:2567-2579. [PMID: 33462844 DOI: 10.1111/ejn.15117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
When pursuing desirable outcomes, one must make the decision between exploring possible actions to obtain those outcomes and exploiting known strategies to maximize efficiency. The dorsolateral striatum (DLS) has been extensively studied with respect to how actions can develop into habits and has also been implicated as an area involved in governing exploitative behavior. Surprisingly, prior work has shown that DLS cholinergic interneurons (ChIs) are not involved in the canonical habit formation function ascribed to the DLS but are instead modulators of behavioral flexibility after initial learning. To further probe this, we evaluated the role of DLS ChIs in behavioral exploration during a brief instrumental training experiment. Through designer receptors exclusively activated by designer drugs (DREADDs) in ChAT-Cre rats, ChIs in the DLS were inhibited during specific phases of the experiment: instrumental training, free-reward delivery, at both times, or never. Without ChI activity during instrumental training, animals biased their responding toward an "optimal" strategy while continuing to work efficiently. This effect was observed again when contingencies were removed as animals with ChIs offline during that phase, regardless of ChI inhibition previously, decreased responding more than animals with ChIs intact. These findings build upon a growing body of literature implicating ChIs in the striatum as gate-keepers of behavioral flexibility and exploration.
Collapse
Affiliation(s)
- Kenneth A Amaya
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Kyle S Smith
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
82
|
Targeted Application of Motor Learning Theory to Leverage Youth Neuroplasticity for Enhanced Injury-Resistance and Exercise Performance: OPTIMAL PREP. ACTA ACUST UNITED AC 2021. [DOI: 10.1007/s42978-020-00085-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
83
|
Herz DM, Meder D, Camilleri JA, Eickhoff SB, Siebner HR. Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling. Mov Disord 2021; 36:1180-1190. [PMID: 33427336 PMCID: PMC8127399 DOI: 10.1002/mds.28468] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Motor‐related brain activity in Parkinson's disease has been investigated in a multitude of functional neuroimaging studies, which often yielded apparently conflicting results. Our previous meta‐analysis did not resolve inconsistencies regarding cortical activation differences in Parkinson's disease, which might be related to the limited number of studies that could be included. Therefore, we conducted a revised meta‐analysis including a larger number of studies. The objectives of this study were to elucidate brain areas that consistently show abnormal motor‐related activation in Parkinson's disease and to reveal their functional connectivity profiles using meta‐analytic approaches. Methods We applied a quantitative meta‐analysis of functional neuroimaging studies testing limb movements in Parkinson's disease comprising data from 39 studies, of which 15 studies (285 of 571 individual patients) were published after the previous meta‐analysis. We also conducted meta‐analytic connectivity modeling to elucidate the connectivity profiles of areas showing abnormal activation. Results We found consistent motor‐related underactivation of bilateral posterior putamen and cerebellum in Parkinson's disease. Primary motor cortex and the supplementary motor area also showed deficient activation, whereas cortical regions localized directly anterior to these areas expressed overactivation. Connectivity modeling revealed that areas showing decreased activation shared a common pathway through the posterior putamen, whereas areas showing increased activation were connected to the anterior putamen. Conclusions Despite conflicting results in individual neuroimaging studies, this revised meta‐analytic approach identified consistent patterns of abnormal motor‐related activation in Parkinson's disease. The distinct patterns of decreased and increased activity might be determined by their connectivity with different subregions of the putamen. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Damian M Herz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - David Meder
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Julia A Camilleri
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Simon B Eickhoff
- Research Center Juelich, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Juelich, Germany.,Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
84
|
Lopez-Huerta VG, Denton JA, Nakano Y, Jaidar O, Garcia-Munoz M, Arbuthnott GW. Striatal bilateral control of skilled forelimb movement. Cell Rep 2021; 34:108651. [PMID: 33472081 DOI: 10.1016/j.celrep.2020.108651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/02/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023] Open
Abstract
Skilled motor behavior requires bihemispheric coordination, and participation of striatal outputs originating from two neuronal groups identified by distinctive expression of D1 or D2 dopamine receptors. We trained mice to reach for and grasp a single food pellet and determined how the output pathways differently affected forelimb trajectory and task efficiency. We found that inhibition and excitation of D1-expressing spiny projection neurons (D1SPNs) have a similar effect on kinematics results, as if excitation and inhibition disrupt the whole ensemble dynamics and not exclusively one kind of output. In contrast, D2SPNs participate in control of target accuracy. Further, ex vivo electrophysiological comparison of naive mice and mice exposed to the task showed stronger striatal neuronal connectivity for ipsilateral D1 and contralateral D2 neurons in relation to the paw used. In summary, while the output pathways work together to smoothly execute skill movements, practice of the movement itself changes synaptic patterns.
Collapse
Affiliation(s)
- Violeta G Lopez-Huerta
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute of Cellular Physiology, National University of Mexico, Mexico City 04510, Mexico.
| | - Jai A Denton
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute of Vector-Borne Disease, Monash University, Clayton, VIC 3800, Australia
| | - Yoko Nakano
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Omar Jaidar
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Chem-H-/Neuro Research Building, Neurosurgery School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Marianela Garcia-Munoz
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Gordon W Arbuthnott
- Brain Mechanisms for Behaviour Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
85
|
Adkins TJ, Lee TG. Reward modulates cortical representations of action. Neuroimage 2020; 228:117708. [PMID: 33385555 DOI: 10.1016/j.neuroimage.2020.117708] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022] Open
Abstract
People are capable of rapid improvements in performance when they are offered a reward. The neural mechanism by which this performance enhancement occurs remains unclear. We investigated this phenomenon by offering people monetary reward for successful performance in a sequence production task. We found that people performed actions more quickly and accurately when they were offered large reward. Increasing reward magnitude was associated with elevated activity throughout the brain prior to movement. Multivariate patterns of activity in these reward-responsive regions encoded information about the upcoming action. Follow-up analyses provided evidence that action decoding in pre-SMA and other motor planning areas was improved for large reward trials and successful action decoding in SMA was associated with improved performance. These results suggest that reward may enhance performance by enhancing neural representations of action used in motor planning.
Collapse
Affiliation(s)
- Tyler J Adkins
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
86
|
Engert F. Neuromodulation: How Dopaminergic Neurons Shape and Modulate Behavior. Curr Biol 2020; 30:R1422-R1425. [DOI: 10.1016/j.cub.2020.09.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
87
|
Bova A, Gaidica M, Hurst A, Iwai Y, Hunter J, Leventhal DK. Precisely timed dopamine signals establish distinct kinematic representations of skilled movements. eLife 2020; 9:e61591. [PMID: 33245045 PMCID: PMC7861618 DOI: 10.7554/elife.61591] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Brain dopamine is critical for normal motor control, as evidenced by its importance in Parkinson Disease and related disorders. Current hypotheses are that dopamine influences motor control by 'invigorating' movements and regulating motor learning. Most evidence for these aspects of dopamine function comes from simple tasks (e.g. lever pressing). Therefore, the influence of dopamine on motor skills requiring multi-joint coordination is unknown. To determine the effects of precisely timed dopamine manipulations on the performance of a complex, finely coordinated dexterous skill, we optogenetically stimulated or inhibited midbrain dopamine neurons as rats performed a skilled reaching task. We found that reach kinematics and coordination between gross and fine movements progressively changed with repeated manipulations. However, once established, rats transitioned abruptly between aberrant and baseline reach kinematics in a dopamine-dependent manner. These results suggest that precisely timed dopamine signals have immediate and long-term influences on motor skill performance, distinct from simply 'invigorating' movement.
Collapse
Affiliation(s)
- Alexandra Bova
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Matt Gaidica
- Neuroscience Graduate Program, University of MichiganAnn ArborUnited States
| | - Amy Hurst
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Yoshiko Iwai
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Julia Hunter
- Department of Neurology, University of MichiganAnn ArborUnited States
| | - Daniel K Leventhal
- Department of Neurology, University of MichiganAnn ArborUnited States
- Department of Biomedical Engineering, University of MichiganAnn ArborUnited States
- Parkinson Disease Foundation Research Center of Excellence, University of MichiganAnn ArborUnited States
- Department of Neurology, VA Ann Arbor Health SystemAnn ArborUnited States
| |
Collapse
|
88
|
Moskowitz S, Russ DW, Clark LA, Wages NP, Grooms DR, Woods AJ, Suhr J, Simon JE, O'Shea A, Criss CR, Fadda P, Clark BC. Is impaired dopaminergic function associated with mobility capacity in older adults? GeroScience 2020; 43:1383-1404. [PMID: 33236263 DOI: 10.1007/s11357-020-00303-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/18/2020] [Indexed: 01/14/2023] Open
Abstract
The capacity to move is essential for independence and declines with age. Slow movement speed, in particular, is strongly associated with negative health outcomes. Prior research on mobility (herein defined as movement slowness) and aging has largely focused on musculoskeletal mechanisms and processes. More recent work has provided growing evidence for a significant role of the nervous system in contributing to reduced mobility in older adults. In this article, we report four pieces of complementary evidence from behavioral, genetic, and neuroimaging experiments that, we believe, provide theoretical support for the assertion that the basal ganglia and its dopaminergic function are responsible, in part, for age-related reductions in mobility. We report four a posteriori findings from an existing dataset: (1) slower central activation of ballistic force development is associated with worse mobility among older adults; (2) older adults with the Val/Met intermediate catecholamine-O-methyl-transferase (COMT) genotype involved in dopamine degradation exhibit greater mobility than their homozygous counterparts; (3) there are moderate relationships between performance times from a series of lower and upper extremity tasks supporting the notion that movement speed in older adults is a trait-like attribute; and (4) there is a relationship of functional connectivity within the medial orbofrontal (mOFC) cortico-striatal network and measures of mobility, suggesting that a potential neural mechanism for impaired mobility with aging is the deterioration of the integrity of key regions within the mOFC cortico-striatal network. These findings align with recent basic and clinical science work suggesting that the basal ganglia and its dopaminergic function are mechanistically linked to age-related reductions in mobility capacity.
Collapse
Affiliation(s)
- Simon Moskowitz
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA
| | - David W Russ
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Rehabilitation and Communication Sciences, Ohio University, Athens, OH, USA.,School of Physical Therapy & Rehabilitation Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Leatha A Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Biomedical Sciences at Ohio University, Athens, OH, USA.,Department of Family Medicine at Ohio University, Athens, OH, USA
| | - Nathan P Wages
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Biomedical Sciences at Ohio University, Athens, OH, USA
| | - Dustin R Grooms
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Applied Health and Wellness, Ohio University, Athens, OH, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Julie Suhr
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,Department of Psychology, Ohio University, Athens, OH, USA
| | - Janet E Simon
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA.,School of Applied Health and Wellness, Ohio University, Athens, OH, USA
| | - Andrew O'Shea
- Center for Cognitive Aging and Memory, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Cody R Criss
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA
| | - Paolo Fadda
- Genomics Shared Resource-Comprehensive Cancer Center, The Ohio State University, Athens, OH, USA
| | - Brian C Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, 250 Irvine Hall, Athens, OH, 45701, USA. .,Department of Biomedical Sciences at Ohio University, Athens, OH, USA. .,Division of Geriatric Medicine at Ohio University, Athens, OH, USA.
| |
Collapse
|
89
|
Zeng S, Wang S, Xie X, Yang SH, Fan JH, Nie Z, Huang Y, Wang HH. Live-Cell Imaging of Neurotransmitter Release with a Cell-Surface-Anchored DNA-Nanoprism Fluorescent Sensor. Anal Chem 2020; 92:15194-15201. [PMID: 33136382 DOI: 10.1021/acs.analchem.0c03764] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurotransmitters are essential chemical mediators for neuronal communication in variable neuromodulations. However, the progress of neuroscience is hampered by the shortage of suitable sensors to track neurotransmitters with high spatial and temporal resolution. Here, we introduce a self-assembled DNA-nanoprism fluorescent probe capable of nongenetically engineering the cell surface for ultrasensitive imaging of the neurotransmitter release at a single live-cell level. The DNA-nanoprism structure conjugated with three cholesterol tails enables the probe to rapidly and stably anchor on the cell surface within 10 min. The in situ detection of neurotransmitters is achieved by equipping the DNA-nanoprism with an aptamer-based "turn-on" fluorescent sensory module for the transmitter of interest. In a proof-of-concept study, we directly visualized the transient dopamine (DA) release on the cell surface with selective responsivity and high spatiotemporal precision and further explored the dynamic correlation between DA release and calcium influx triggered by high K+. This study provides a robust and sensitive tool for cell-surface-targeted imaging of neuromodulations, which might open up a new avenue to improve the understanding of neurochemistry and advance neuroscience research.
Collapse
Affiliation(s)
- Shu Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xuan Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Si-Hui Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jia-Hui Fan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hong-Hui Wang
- College of Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
90
|
ADHD-like behaviors caused by inactivation of a transcription factor controlling the balance of inhibitory and excitatory neuron development in the mouse anterior brainstem. Transl Psychiatry 2020; 10:357. [PMID: 33087695 PMCID: PMC7578792 DOI: 10.1038/s41398-020-01033-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022] Open
Abstract
The neural circuits regulating motivation and movement include midbrain dopaminergic neurons and associated inhibitory GABAergic and excitatory glutamatergic neurons in the anterior brainstem. Differentiation of specific subtypes of GABAergic and glutamatergic neurons in the mouse embryonic brainstem is controlled by a transcription factor Tal1. This study characterizes the behavioral and neurochemical changes caused by the absence of Tal1 function. The Tal1cko mutant mice are hyperactive, impulsive, hypersensitive to reward, have learning deficits and a habituation defect in a novel environment. Only minor changes in their dopaminergic system were detected. Amphetamine induced striatal dopamine release and amphetamine induced place preference were normal in Tal1cko mice. Increased dopamine signaling failed to stimulate the locomotor activity of the Tal1cko mice, but instead alleviated their hyperactivity. Altogether, the Tal1cko mice recapitulate many features of the attention and hyperactivity disorders, suggesting a role for Tal1 regulated developmental pathways and neural structures in the control of motivation and movement.
Collapse
|
91
|
Luan M, Mirifar A, Beckmann J, Ehrlenspiel F. The Varying Effects of Dual Tasks on the Performance of Motor Skills across Practice. J Mot Behav 2020; 53:644-655. [PMID: 34024264 DOI: 10.1080/00222895.2020.1828797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Numerous previous studies using the dual-task methodology have indicated that the effect of attentional direction on the performance of motor skill differs as a function of skill levels. Whereas previous studies relied mostly on inter-individual comparisons, this study focused on how the effects of different attentional conditions change within individuals with practice. Participants were instructed to learn a short and a long keying sequence (three versus six keys) and then practiced under two block-wise alternating dual-task conditions. In each trial, a tone, either low- or high-pitched, was presented at one of the three/six keys and participants had to indicate either the pitch of the tone (extraneous dual task) or the key with which the tone was presented (skill-focused dual task) after finishing the execution of the keying sequence. Motor task performance was assessed by reaction time (RT) and movement duration (MD), and the concurrent cognitive task performance was assessed by the error rate. RT was faster in the skill-focused dual-task condition at the beginning of practice, whereas a generally shorter MD was found in the extraneous dual-task condition. The error rate in the extraneous dual task decreased with practice, whereas in the skill-focused dual task, it increased with practice. These results show that the effects of attentional direction differ not only as a function of the amount of practice but also as a function of the stage of information processing. Furthermore, our results indicate that the direction of attention alone does not explain the different patterns of performance at different skill levels seen across dual-task studies; rather, the skill levels, the nature of cognitive demands, the difficulty level of dual tasks, and the complexity of the motor skill could all drive performance differences.
Collapse
Affiliation(s)
- Mengkai Luan
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munchen, Germany
| | - Arash Mirifar
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munchen, Germany
| | - Jürgen Beckmann
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munchen, Germany
| | - Felix Ehrlenspiel
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munchen, Germany
| |
Collapse
|
92
|
Shah VV, McNames J, Harker G, Mancini M, Carlson-Kuhta P, Nutt JG, El-Gohary M, Curtze C, Horak FB. Effect of Bout Length on Gait Measures in People with and without Parkinson's Disease during Daily Life. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5769. [PMID: 33053703 PMCID: PMC7601493 DOI: 10.3390/s20205769] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 01/06/2023]
Abstract
Although the use of wearable technology to characterize gait disorders in daily life is increasing, there is no consensus on which specific gait bout length should be used to characterize gait. Clinical trialists using daily life gait quality as study outcomes need to understand how gait bout length affects the sensitivity and specificity of measures to discriminate pathological gait as well as the reliability of gait measures across gait bout lengths. We investigated whether Parkinson's disease (PD) affects how gait characteristics change as bout length changes, and how gait bout length affects the reliability and discriminative ability of gait measures to identify gait impairments in people with PD compared to neurotypical Old Adults (OA). We recruited 29 people with PD and 20 neurotypical OA of similar age for this study. Subjects wore 3 inertial sensors, one on each foot and one over the lumbar spine all day, for 7 days. To investigate which gait bout lengths should be included to extract gait measures, we determined the range of gait bout lengths available across all subjects. To investigate if the effect of bout length on each gait measure is similar or not between subjects with PD and OA, we used a growth curve analysis. For reliability and discriminative ability of each gait measure as a function of gait bout length, we used the intraclass correlation coefficient (ICC) and area under the curve (AUC), respectively. Ninety percent of subjects walked with a bout length of less than 53 strides during the week, and the majority (>50%) of gait bouts consisted of less than 12 strides. Although bout length affected all gait measures, the effects depended on the specific measure and sometimes differed for PD versus OA. Specifically, people with PD did not increase/decrease cadence and swing duration with bout length in the same way as OA. ICC and AUC characteristics tended to be larger for shorter than longer gait bouts. Our findings suggest that PD interferes with the scaling of cadence and swing duration with gait bout length. Whereas control subjects gradually increased cadence and decreased swing duration as bout length increased, participants with PD started with higher than normal cadence and shorter than normal stride duration for the smallest bouts, and cadence and stride duration changed little as bout length increased, so differences between PD and OA disappeared for the longer bout lengths. Gait measures extracted from shorter bouts are more common, more reliable, and more discriminative, suggesting that shorter gait bouts should be used to extract potential digital biomarkers for people with PD.
Collapse
Affiliation(s)
- Vrutangkumar V. Shah
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - James McNames
- Department of Electrical and Computer Engineering, Portland State University, Portland, OR 97207, USA;
| | - Graham Harker
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - Martina Mancini
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - Patricia Carlson-Kuhta
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | - John G. Nutt
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| | | | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE 68182, USA;
| | - Fay B. Horak
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA; (G.H.); (M.M.); (P.C.-K.); (J.G.N.); (F.B.H.)
| |
Collapse
|
93
|
Pamukcu A, Cui Q, Xenias HS, Berceau BL, Augustine EC, Fan I, Chalasani S, Hantman AW, Lerner TN, Boca SM, Chan CS. Parvalbumin + and Npas1 + Pallidal Neurons Have Distinct Circuit Topology and Function. J Neurosci 2020; 40:7855-7876. [PMID: 32868462 PMCID: PMC7548687 DOI: 10.1523/jneurosci.0361-20.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/23/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022] Open
Abstract
The external globus pallidus (GPe) is a critical node within the basal ganglia circuit. Phasic changes in the activity of GPe neurons during movement and their alterations in Parkinson's disease (PD) argue that the GPe is important in motor control. Parvalbumin-positive (PV+) neurons and Npas1+ neurons are the two principal neuron classes in the GPe. The distinct electrophysiological properties and axonal projection patterns argue that these two neuron classes serve different roles in regulating motor output. However, the causal relationship between GPe neuron classes and movement remains to be established. Here, by using optogenetic approaches in mice (both males and females), we showed that PV+ neurons and Npas1+ neurons promoted and suppressed locomotion, respectively. Moreover, PV+ neurons and Npas1+ neurons are under different synaptic influences from the subthalamic nucleus (STN). Additionally, we found a selective weakening of STN inputs to PV+ neurons in the chronic 6-hydroxydopamine lesion model of PD. This finding reinforces the idea that the reciprocally connected GPe-STN network plays a key role in disease symptomatology and thus provides the basis for future circuit-based therapies.SIGNIFICANCE STATEMENT The external pallidum is a key, yet an understudied component of the basal ganglia. Neural activity in the pallidum goes awry in neurologic diseases, such as Parkinson's disease. While this strongly argues that the pallidum plays a critical role in motor control, it has been difficult to establish the causal relationship between pallidal activity and motor function/dysfunction. This was in part because of the cellular complexity of the pallidum. Here, we showed that the two principal neuron types in the pallidum have opposing roles in motor control. In addition, we described the differences in their synaptic influence. Importantly, our research provides new insights into the cellular and circuit mechanisms that explain the hypokinetic features of Parkinson's disease.
Collapse
Affiliation(s)
- Arin Pamukcu
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Qiaoling Cui
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Harry S Xenias
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Brianna L Berceau
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Elizabeth C Augustine
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Isabel Fan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Saivasudha Chalasani
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Adam W Hantman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Talia N Lerner
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| |
Collapse
|
94
|
The Dorsal Striatum Energizes Motor Routines. Curr Biol 2020; 30:4362-4372.e6. [PMID: 32946750 DOI: 10.1016/j.cub.2020.08.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
The dorsal striatum (dS) has been implicated in storing procedural memories and controlling movement kinematics. Since procedural memories are expressed through movements, the exact nature of the dS function has proven difficult to delineate. Here, we challenged rats in complementary locomotion-based tasks designed to alleviate this confound. Surprisingly, dS lesions did not impair the rats' ability to remember the procedure for the successful completion of motor routines. However, the speed and initiation of the reward-oriented phase of the routines were irreversibly altered by the dS lesion. Further behavioral analyses, combined with modeling in the optimal control framework, indicated that these kinematic alterations were well explained by an increased sensitivity to effort. Our work provides evidence supporting a primary role of the dS in modulating the kinematics of reward-oriented actions, a function that may be related to the optimization of the energetic costs of moving.
Collapse
|
95
|
Geva S, Jentschke S, Argyropoulos GPD, Chong WK, Gadian DG, Vargha-Khadem F. Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia. Neuroimage Clin 2020; 28:102429. [PMID: 33010533 PMCID: PMC7530343 DOI: 10.1016/j.nicl.2020.102429] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Acute sentinel hypoxia-ischaemia in neonates can target the hippocampus, mammillary bodies, thalamus, and the basal ganglia. Our previous work with paediatric patients with a history of hypoxia-ischaemia has revealed hippocampal and diencephalic damage that impacts cognitive memory. However, the structural and functional status of other brain regions vulnerable to hypoxia-ischaemia, such as the basal ganglia, has not been investigated in these patients. Furthermore, it is not known whether there are any behavioural sequelae of such damage, especially in patients with no diagnosis of neurological disorder. Based on the established role of the basal ganglia and the thalamus in movement coordination, we studied manual motor function in 20 participants exposed to neonatal hypoxia-ischaemia, and a group of 17 healthy controls of comparable age. The patients' handwriting speed and accuracy was within the normal range (Detailed Assessment of Speed of Handwriting), and their movement adaptation learning (Rotary Pursuit task) was comparable to the control group's performance. However, as a group, patients showed an impairment in the Grooved Pegboard task and a trend for impairment in speed of movement while performing the Rotary Pursuit task, suggesting that some patients have subtle deficits in fine, complex hand movements. Voxel-based morphometry and volumetry showed bilateral reduction in grey matter volume of the thalamus and caudate nucleus. Reduced volumes in the caudate nucleus correlated across patients with performance on the Grooved Pegboard task. In summary, the fine movement coordination deficit affecting the hand and the wrist in patients exposed to early hypoxic-ischaemic brain injury may be related to reduced volumes of the caudate nucleus, and consistent with anecdotal parental reports of clumsiness and coordination difficulties in this cohort.
Collapse
Affiliation(s)
- Sharon Geva
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Sebastian Jentschke
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Georgios P D Argyropoulos
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - W K Chong
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, United Kingdom.
| | - David G Gadian
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry Section, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom.
| |
Collapse
|
96
|
Xiao X, Deng H, Furlan A, Yang T, Zhang X, Hwang GR, Tucciarone J, Wu P, He M, Palaniswamy R, Ramakrishnan C, Ritola K, Hantman A, Deisseroth K, Osten P, Huang ZJ, Li B. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement. Cell 2020; 183:211-227.e20. [PMID: 32937106 DOI: 10.1016/j.cell.2020.08.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/02/2020] [Accepted: 08/17/2020] [Indexed: 12/31/2022]
Abstract
The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the direct pathway, drives negative reinforcement and is essential for aversive learning in mice. Contrasting a "conventional" striosomal direct pathway, the Tshz1 neurons cause aversion, movement suppression, and negative reinforcement once activated, and they receive a distinct set of synaptic inputs. These neurons are predominantly excited by punishment rather than reward and represent the anticipation of punishment or the motivation for avoidance. Furthermore, inhibiting these neurons impairs punishment-based learning without affecting reward learning or movement. These results establish a major role of striosomal neurons in behaviors reinforced by punishment and moreover uncover functions of the direct pathway unaccounted for in classic models.
Collapse
Affiliation(s)
- Xiong Xiao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hanfei Deng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Tao Yang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xian Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ga-Ram Hwang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jason Tucciarone
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Priscilla Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Miao He
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | | | - Charu Ramakrishnan
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Adam Hantman
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA, USA; Department of Bioengineering and Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
97
|
Harrison EC, Earhart GM, Leventhal D, Quinn L, Pietro Mazzoni. A walking dance to improve gait speed for people with Parkinson disease: a pilot study. Neurodegener Dis Manag 2020; 10:301-308. [PMID: 32878538 DOI: 10.2217/nmt-2020-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To determine the effectiveness of a targeted dance intervention to improve walking speed for people with Parkinson disease (PD) by increasing motor motivation. Materials & methods: 11 participants with PD participated in a 6-week pilot study in which they learned a contemporary dance composed of walking steps and designed to mimic everyday walking. 1 h classes occurred twice-weekly. Results: Pre- and post-intervention assessments revealed a significant increase in gait speed (t9 = 3.30; p = 0.009), cadence (t9 = 2.345; p = 0.044), and stride length (t9 = 3.757; p = 0.005), and a significant decrease (improvement) in single support time variability (t9 = -2.744; p = 0.022). There were no significant changes in other measures of gait variability nor in motor symptoms, mood and anxiety, extent of life-space mobility, or quality of life. No adverse events were reported. Conclusion: Joywalk provides preliminary evidence that a targeted physical intervention for people with PD may specifically counter bradykinesia.
Collapse
Affiliation(s)
- Elinor C Harrison
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Gammon M Earhart
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.,Program in Physical Therapy, Washington University School of Medicine, St Louis, MO 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David Leventhal
- Dance For PD®, Mark Morris Dance Group, Brooklyn, NY 11217, USA
| | - Lori Quinn
- Department of Movement Science & Kinesiology, Teachers College, Columbia University, New York City, NY 10027, USA
| | - Pietro Mazzoni
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
98
|
Reynaud AJ, Saleri Lunazzi C, Thura D. Humans sacrifice decision-making for action execution when a demanding control of movement is required. J Neurophysiol 2020; 124:497-509. [PMID: 32639900 DOI: 10.1152/jn.00220.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence suggests that decision-making and action execution are governed by partly overlapping operating principles. Especially, previous work proposed that a shared decision urgency/movement vigor signal, possibly computed in the basal ganglia, coordinates both deliberation and movement durations in a way that maximizes the reward rate. Recent data support one aspect of this hypothesis, indicating that the urgency level at which a decision is made influences the vigor of the movement produced to express this choice. Here we investigated whether, conversely, the motor context in which a movement is executed determines decision speed and accuracy. Twenty human subjects performed a probabilistic decision task in which perceptual choices were expressed by reaching movements toward targets whose size and distance from a starting position varied in distinct blocks of trials. We found strong evidence for an influence of the motor context on most of the subjects' decision policy, but contrary to the predictions of the "shared regulation" hypothesis, we observed that slow movements executed in the most demanding motor blocks in terms of accuracy were often preceded by faster and less accurate decisions compared with blocks of trials in which big targets allowed expression of choices with fast and inaccurate movements. These results suggest that decision-making and motor control are not regulated by one unique "invigoration" signal determining both decision urgency and action vigor, but more likely by independent, yet interacting, decision urgency and movement vigor signals.NEW & NOTEWORTHY Recent hypotheses propose that choices and movements share optimization principles derived from economy, possibly implemented by one unique context-dependent regulation signal determining both processes' speed. In the present behavioral study conducted on human subjects, we demonstrate that action properties indeed influence perceptual decision-making, but that decision duration and action vigor are actually independently set depending on the difficulty of the movement executed to report a choice.
Collapse
Affiliation(s)
- Amélie J Reynaud
- Lyon Neuroscience Research Center - IMPACT Team, INSERM U1028 - CNRS UMR5225 - University of Lyon 1, Bron, France
| | - Clara Saleri Lunazzi
- Lyon Neuroscience Research Center - IMPACT Team, INSERM U1028 - CNRS UMR5225 - University of Lyon 1, Bron, France
| | - David Thura
- Lyon Neuroscience Research Center - IMPACT Team, INSERM U1028 - CNRS UMR5225 - University of Lyon 1, Bron, France
| |
Collapse
|
99
|
Latchoumane CFV, Barany DA, Karumbaiah L, Singh T. Neurostimulation and Reach-to-Grasp Function Recovery Following Acquired Brain Injury: Insight From Pre-clinical Rodent Models and Human Applications. Front Neurol 2020; 11:835. [PMID: 32849253 PMCID: PMC7396659 DOI: 10.3389/fneur.2020.00835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022] Open
Abstract
Reach-to-grasp is an evolutionarily conserved motor function that is adversely impacted following stroke and traumatic brain injury (TBI). Non-invasive brain stimulation (NIBS) methods, such as transcranial magnetic stimulation and transcranial direct current stimulation, are promising tools that could enhance functional recovery of reach-to-grasp post-brain injury. Though the rodent literature provides a causal understanding of post-injury recovery mechanisms, it has had a limited impact on NIBS protocols in human research. The high degree of homology in reach-to-grasp circuitry between humans and rodents further implies that the application of NIBS to brain injury could be better informed by findings from pre-clinical rodent models and neurorehabilitation research. Here, we provide an overview of the advantages and limitations of using rodent models to advance our current understanding of human reach-to-grasp function, cortical circuitry, and reorganization. We propose that a cross-species comparison of reach-to-grasp recovery could provide a mechanistic framework for clinically efficacious NIBS treatments that could elicit better functional outcomes for patients.
Collapse
Affiliation(s)
- Charles-Francois V. Latchoumane
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Deborah A. Barany
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| | - Lohitash Karumbaiah
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
| | - Tarkeshwar Singh
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Kinesiology, University of Georgia, Athens, GA, United States
| |
Collapse
|
100
|
Unbalanced Inhibitory/Excitatory Responses in the Substantia Nigra Pars Reticulata Underlie Cannabinoid-Related Slowness of Movements. J Neurosci 2020; 40:5769-5784. [PMID: 32532888 DOI: 10.1523/jneurosci.0045-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022] Open
Abstract
The substantia nigra pars reticulata (SNr), where the basal ganglia (BG) direct and indirect pathways converge, contains among the highest expression of cannabinoid receptor type 1 (CB1r) in the brain. Hence, SNr is an ideal locus to study pathway interactions and cannabinergic modulations. The objective of this study was to characterize the effects of systemic injections of the CB1r agonist (CP55940) on the balanced activity of the direct/indirect pathways in the SNr and its associated behaviors. To this aim, we recorded somatosensory and pathway-specific representations in the spiking activity of the SNr of male rats under CP55940. CB1r activation mainly decreased the inhibitory, potentially direct pathway component while sparing the excitatory, potentially indirect pathway component of somatosensory responses. As a result, cutaneous stimulation produced unbalanced responses favoring increased SNr firing rates, suggesting a potential locus for cannabinergic motor-related effects. To test this hypothesis, we implemented an ad hoc behavioral protocol for rats in which systemic administration of CP55940 produced kinematic impairments that were completely reverted by nigral injections of the CB1r antagonist (AM251). Our data suggest that cannabinoid-related motor effects are associated with unbalanced direct/indirect pathway activations that may be reverted by CB1r manipulation at the SNr.SIGNIFICANCE STATEMENT The cannabinergic system has been the target of multiple studies to master its potential use as a therapeutic agent. However, significant advances have been precluded by the lack of mechanistic explanations for the variety of its desirable/undesirable effects. Here, we have combined electrophysiological recordings, pharmacological and optogenetic manipulations, and an ad hoc behavioral protocol to understand how basal ganglia (BG) is affected by cannabinoids. We found that cannabinoids principally affect inhibitory inputs, potentially from the direct pathway, resulting in unbalanced responses in the substantia nigra pars reticulata (SNr) and suggesting a mechanism for the cannabinoid-related slowness of movements. This possibility was confirmed by behavioral experiments in which cannabinoid-related slowness of purposeful movements was reverted by cannabinoid receptor type 1 (CB1r) manipulations directly into the SNr.
Collapse
|