51
|
Totaro D, Radoman B, Schmelzer B, Rothbauer M, Steiger MG, Mayr T, Sauer M, Ertl P, Mattanovich D. Microscale Perfusion-Based Cultivation for Pichia pastoris Clone Screening Enables Accelerated and Optimized Recombinant Protein Production Processes. Biotechnol J 2020; 16:e2000215. [PMID: 32935449 DOI: 10.1002/biot.202000215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/28/2020] [Indexed: 11/06/2022]
Abstract
Pichia pastoris has emerged in the past years as a promising host for recombinant protein and biopharmaceutical production. In the establishment of high cell density fed-batch biomanufacturing, screening phase and early bioprocess development (based on microplates and shake flasks) still represent a bottleneck due to high-cost and time-consuming procedures as well as low experiment complexity. In the present work, a screening protocol developed for P. pastoris clone selection is implemented in a multiplexed microfluidic device with 15 μL cultivation chambers able to operate in perfusion mode and monitor dissolved oxygen content in the culture in a non-invasive way. The setup allowed us to establish carbon-limited conditions and evaluate strain responses to different input variables. Results from micro-scale perfusion cultures are then compared with 1L fed-batch fermentation. The best producer in terms of titer and productivity is rapidly identified after 12 h from inoculation and the results confirmed by lab-scale fermentation. Moreover, the physiological analyses of the strains under different conditions suggested how more complex experimental conditions are achievable despite the relatively easy, straight-forward, and cost-effective experimental setup. Implementation and standardization of these micro-scale protocols could reduce the demand for lab-scale bioreactor cultivations thus accelerating the development of protein production processes.
Collapse
Affiliation(s)
- Damiano Totaro
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna, 1060, Austria
| | - Bojana Radoman
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernhard Schmelzer
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mario Rothbauer
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna, 1060, Austria
| | - Matthias G Steiger
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Institute of Chemical, Environmental and Bioscience Engineering, Vienna University of Technology, Getreidemarkt 9/166 A, Vienna, 1060, Austria
| | - Torsten Mayr
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9 / II + III, Graz, 8010, Austria
| | - Michael Sauer
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna, 1060, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
52
|
de Lorenzo V, Krasnogor N, Schmidt M. For the sake of the Bioeconomy: define what a Synthetic Biology Chassis is! N Biotechnol 2020; 60:44-51. [PMID: 32889152 DOI: 10.1016/j.nbt.2020.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
At the onset of the 4th Industrial Revolution, the role of synthetic biology (SynBio) as a fuel for the bioeconomy requires clarification of the terms typically adopted by this growing scientific-technical field. The concept of the chassis as a defined, reusable biological frame where non-native components can be plugged in and out to create new functionalities lies at the boundary between frontline bioengineering and more traditional recombinant DNA technology. As synthetic biology leaves academic laboratories and starts penetrating industrial and environmental realms regulatory agencies demand clear definitions and descriptions of SynBio constituents, processes and products. In this article, the state of the ongoing discussion on what is a chassis is reviewed, a non-equivocal nomenclature for the jargon used is proposed and objective criteria are recommended for distinguishing SynBio agents from traditional GMOs. The use of genomic barcodes as unique identifiers is strongly advocated. Finally the soil bacterium Pseudomonas putida is shown as an example of the roadmap that one environmental isolate may go through to become a bona fide SynBio chassis.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC) Madrid 28049, Spain.
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) research group, Newcastle University, Newcastle Upon Tyne NE4 5TG UK
| | | |
Collapse
|
53
|
Le HHM, Vang D, Amer N, Vue T, Yee C, Kaou H, Harrison JS, Xiao N, Lin-Cereghino J, Lin-Cereghino GP, Thor D. Enhancement of cell proliferation and motility of mammalian cells grown in co-culture with Pichia pastoris expressing recombinant human FGF-2. Protein Expr Purif 2020; 176:105724. [PMID: 32846209 DOI: 10.1016/j.pep.2020.105724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022]
Abstract
Many studies examining the biological function of recombinant proteins and their effects on the physiology of mammalian cells stipulate that the proteins be purified before being used as therapeutic agents. In this study, we explored the possibility of using unpurified recombinant proteins to treat mammalian cells. The recombinant protein was used directly from the expression source and the biological function was compared to purified commercially available, equivalent protein. The model for this purpose was recombinant FGF-2, expressed by Pichia pastoris, which was used to treat the murine fibroblast cell line, NIH/3T3. We generated a P. pastoris strain (yHL11) that constitutively secreted a biologically active recombinant FGF-2 protein containing an N-terminal c-myc epitope (Myc-FGF-2). Myc-FGF-2 was then used without purification either a) in the form of conditioned mammalian cell culture medium or b) during co-cultures of yHL11 with NIH/3T3 to induce higher proliferation and motility of NIH/3T3 cells. The effects of Myc-FGF-2 on cell physiology were comparable to commercially available FGF-2. To our knowledge, this is the first time the physiology of cultured mammalian cells had been successfully altered with a recombinant protein secreted by P. pastoris while the two species shared the same medium and culture conditions. Our data demonstrated the biological activity of unpurified recombinant FGF-2 on NIH/3T3 cells and provided a foundation for directly using unpurified recombinant proteins expressed by P. pastoris with mammalian cells, potentially as wound-healing therapeutics.
Collapse
Affiliation(s)
- Henry Hieu M Le
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - David Vang
- Department of Biomedical Science, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Nadia Amer
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Tou Vue
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Colwin Yee
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Hyam Kaou
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Joseph S Harrison
- Department of Chemistry, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Nan Xiao
- Department of Biomedical Science, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| | - Joan Lin-Cereghino
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Geoff P Lin-Cereghino
- Department of Biological Sciences, College of the Pacific, University of the Pacific, Stockton, CA, USA
| | - Der Thor
- Department of Biomedical Science, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| |
Collapse
|
54
|
Demir İ, Çalık P. Hybrid-architectured double-promoter expression systems enhance and upregulate-deregulated gene expressions in Pichia pastoris in methanol-free media. Appl Microbiol Biotechnol 2020; 104:8381-8397. [DOI: 10.1007/s00253-020-10796-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
|
55
|
Zhou HY, Zhou JB, Yi XN, Wang YM, Xue YP, Chen DS, Cheng XP, Li M, Wang HY, Chen KQ, Liu ZQ, Zheng YG. Heterologous expression and biochemical characterization of a thermostable endo-β-1,4-glucanase from Colletotrichum orchidophilum. Bioprocess Biosyst Eng 2020; 44:67-79. [PMID: 32772153 DOI: 10.1007/s00449-020-02420-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/29/2020] [Indexed: 01/23/2023]
Abstract
To develop new cellulases for efficient utilization of the lignocellulose, an endoglucanase (CoCel5A) gene from Colletotrichum orchidophilum was synthesized and a recombinant Pichia pastoris GS115/pPIC9K/cocel5A was constructed for secretory expression of CoCel5A. After purification, the protein CoCel5A was biochemically characterized. The endoglucanase CoCel5A exhibited the optimal activity at 55-75 °C and high thermostability (about 85% residual activity) at the temperature of 55 °C after incubation for 3 h. The highest activity of CoCel5A was detected when 100 mM citric acid buffer (pH 4.0-5.0) was used and excellent pH stability (up to 95% residual activity) was observed after incubation in 100 mM citric acid buffer (pH 3.0-6.0) at 4 °C for 24 h. Carboxymethyl cellulose sodium salt (n = approx. 500) (CMC) and β-D-glucan were the best substrates for CoCel5A among the tested substrates. The kinetic parameters Vmax, Km, and Kcat/Km values against CMC were 290.70 U/mg, 2.65 mg/mL, and 75.67 mL/mg/s, respectively; and 228.31 U/mg, 2.06 mg/mL, and 76.45 mL/mg/s against β-D-glucan, respectively, suggesting that CoCel5A has high affinity and catalytic efficiency. These properties supported the potential application of CoCel5A in biotechnological and environmental fields.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jian-Bao Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Nan Yi
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yan-Mei Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - De-Shui Chen
- Zhejiang Huakang Pharmaceutical Co., LTD, 18 Huagong Road, Huabu Town, Kaihua, 324302, People's Republic of China
| | - Xin-Ping Cheng
- Zhejiang Huakang Pharmaceutical Co., LTD, 18 Huagong Road, Huabu Town, Kaihua, 324302, People's Republic of China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., LTD, 18 Huagong Road, Huabu Town, Kaihua, 324302, People's Republic of China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., LTD, 18 Huagong Road, Huabu Town, Kaihua, 324302, People's Republic of China
| | - Kai-Qian Chen
- Zhejiang Huakang Pharmaceutical Co., LTD, 18 Huagong Road, Huabu Town, Kaihua, 324302, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China.
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang, People's Republic of China
- The National and Local, Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
56
|
Abstract
This chapter represents a journey through flavoprotein oxidases. The purpose is to excite the reader curiosity regarding this class of enzymes by showing their diverse applications. We start with a brief overview on oxidases to then introduce flavoprotein oxidases and elaborate on the flavin cofactors, their redox and spectroscopic characteristics, and their role in the catalytic mechanism. The six major flavoprotein oxidase families will be described, giving examples of their importance in biology and their biotechnological uses. Specific attention will be given to a few selected flavoprotein oxidases that are not extensively discussed in other chapters of this book. Glucose oxidase, cholesterol oxidase, 5-(hydroxymethyl)furfural (HMF) oxidase and methanol oxidase are four examples of oxidases belonging to the GMC-like flavoprotein oxidase family and that have been shown to be valuable biocatalysts. Their structural and mechanistic features and recent enzyme engineering will be discussed in details. Finally we give a look at the current trend in research and conclude with a future outlook.
Collapse
Affiliation(s)
- Caterina Martin
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
57
|
Pichia pastoris — recombinant enzyme producent for environment treatment — review. ACTA CHIMICA SLOVACA 2020. [DOI: 10.2478/acs-2020-0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Since environmental pollution is increasing, scientists try to find a sustainable way for its clean up and for environment protection. Due to increasing knowledge of genetics and recombinant technologies, recombinant enzymes have been increasingly applied for these purposes. This article deals with the possibilities of environmental treatment with different types of enzymes produced by P. pastoris. Environment is polluted mostly with pesticides, wastewaters, phenol compounds, plastics, toxic compounds, wastes from medical treatment, etc. All these compounds have to be eliminated considering the deteriorating biodiversity, human health, and condition of plants. Enzymes are an environmentally friendly way of such treatment.
Collapse
|
58
|
Guyot L, Hartmann L, Mohammed-Bouteben S, Caro L, Wagner R. Preparation of Recombinant Membrane Proteins from Pichia pastoris for Molecular Investigations. ACTA ACUST UNITED AC 2020; 100:e104. [PMID: 32289210 DOI: 10.1002/cpps.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris is a eukaryotic microorganism reputed for its ability to mass-produce recombinant proteins, including integral membrane proteins, for various applications. This article details a series of protocols that progress towards the production of integral membrane proteins, their extraction and purification in the presence of detergents, and their eventual reconstitution in lipid nanoparticles. These basic procedures can be further optimized to provide integral membrane protein samples that are compatible with a number of structural and/or functional investigations at the molecular level. Each protocol provides general guidelines, technical hints, and specific recommendations, and is illustrated with case studies corresponding to several representative mammalian proteins. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Production of membrane proteins in a P. pastoris recombinant clone using methanol induction Basic Protocol 2: Preparation of whole-membrane fractions Alternate Protocol 1: Preparation of yeast protoplasts Basic Protocol 3: Extraction of membrane proteins from whole-membrane fractions Basic Protocol 4: Purification of membrane proteins Alternate Protocol 2: Purification of membrane proteins from yeast protoplasts Alternate Protocol 3: Simultaneous protoplast preparation and membrane solubilization for purification of membrane proteins Basic Protocol 5: Reconstitution of detergent-purified membrane proteins in lipid nanoparticles.
Collapse
Affiliation(s)
- Lucile Guyot
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France.,NovAliX, Illkirch, France
| | - Lucie Hartmann
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Sarah Mohammed-Bouteben
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Lydia Caro
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| | - Renaud Wagner
- IMPReSs Facility, Biotechnology and Cell Signaling UMR 7242, CNRS-University of Strasbourg, Illkirch, Cedex, France
| |
Collapse
|
59
|
Tripathi NK, Shrivastava A. Recent Developments in Bioprocessing of Recombinant Proteins: Expression Hosts and Process Development. Front Bioeng Biotechnol 2019; 7:420. [PMID: 31921823 PMCID: PMC6932962 DOI: 10.3389/fbioe.2019.00420] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases, along with cancers, are among the main causes of death among humans worldwide. The production of therapeutic proteins for treating diseases at large scale for millions of individuals is one of the essential needs of mankind. Recent progress in the area of recombinant DNA technologies has paved the way to producing recombinant proteins that can be used as therapeutics, vaccines, and diagnostic reagents. Recombinant proteins for these applications are mainly produced using prokaryotic and eukaryotic expression host systems such as mammalian cells, bacteria, yeast, insect cells, and transgenic plants at laboratory scale as well as in large-scale settings. The development of efficient bioprocessing strategies is crucial for industrial production of recombinant proteins of therapeutic and prophylactic importance. Recently, advances have been made in the various areas of bioprocessing and are being utilized to develop effective processes for producing recombinant proteins. These include the use of high-throughput devices for effective bioprocess optimization and of disposable systems, continuous upstream processing, continuous chromatography, integrated continuous bioprocessing, Quality by Design, and process analytical technologies to achieve quality product with higher yield. This review summarizes recent developments in the bioprocessing of recombinant proteins, including in various expression systems, bioprocess development, and the upstream and downstream processing of recombinant proteins.
Collapse
Affiliation(s)
- Nagesh K. Tripathi
- Bioprocess Scale Up Facility, Defence Research and Development Establishment, Gwalior, India
| | - Ambuj Shrivastava
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|