51
|
Karunarathna B, Wanniarachchi JD, Prashantha MAB, Govender KK. Enhancing styrene monomer recovery from polystyrene pyrolysis: insights from density functional theory. J Mol Model 2023; 29:255. [PMID: 37464131 DOI: 10.1007/s00894-023-05661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT Plastic waste pyrolysis offers a potential solution to reduce plastic accumulation, but prioritizing monomer recovery from the process is crucial to effectively address the environmental consequences of plastic accumulation. This study focuses on enhancing the yield of styrene during the pyrolysis of polystyrene by investigating thermal and kinetic data. A comprehensive investigation into the thermal degradation pathways of polystyrene is imperative to overcome the challenges associated with its waste management. The calculated bond dissociation energies reveal that the cleavage of non-terminal carbon-carbon bonds is energetically favorable, resulting in the formation of high molecular weight benzylic radicals. Based on these findings, four pyrolysis pathways are proposed, and the associated thermodynamic and kinetic parameters are determined using the DFT method. The major products identified in this study include styrene, α-methylstyrene, isopropylbenzene, methylbenzene, ethylbenzene, and methane. Furthermore, optimizing the temperature profile of the reactor is shown to enhance the recovery of styrene, thereby contributing to the reduction of plastic waste. This study provides valuable insights into the effective resource recovery from polystyrene waste pyrolysis, emphasizing the significance of managing pyrolysis conditions to achieve maximum yield. By controlling the temperature profile during the pyrolysis process, it is possible to obtain a high yield of styrene, facilitating the efficient recovery of the monomer from waste polystyrene and addressing the environmental concerns associated with plastic accumulation. METHODS In this study, all calculations were performed using the B3LYP/6-31G(d) level of theory with the Gaussian 16 program package. The proposed model underwent geometry optimization and frequency calculations. Transition states were optimized using the TS Berny method, and energy profiles along reaction pathways were refined using the QST3 method. The IRC method validated proposed mechanisms and investigated energy profiles. Structural models were visualized using GaussView 6.0.
Collapse
Affiliation(s)
- Baggya Karunarathna
- Department of Chemistry, Eastern University Sri Lanka, Vantharumoolai, Chenkalady, Sri Lanka.
| | | | - M A B Prashantha
- Department of Chemistry, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - K K Govender
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
- National Institute for Theoretical and Computational Sciences, NITheCS, Stellenbosch, South Africa
| |
Collapse
|
52
|
Loy ACM, Lim JY, How BS, Yiin CL, Lock SSM, Lim LG, Alhamzi H, Yoo C. Rethinking of the future sustainable paradigm roadmap for plastic waste management: A multi-nation scale outlook compendium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163458. [PMID: 37068680 DOI: 10.1016/j.scitotenv.2023.163458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/13/2023] [Accepted: 04/08/2023] [Indexed: 06/01/2023]
Abstract
The myriad consumption of plastic regularly, environmental impact and health disquietude of humans are at high risk. Along the line, international cooperation on a global scale is epitomized to mitigate the environmental threats from plastic usage, not limited to implementing international cooperation strategies and policies. Here, this study aims to provide explicit insight into possible cooperation strategies between countries on the post-treatment and management of plastic. First, a thorough cradle-to-grave assessment in terms of economic, environmental, and energy requirements is conducted on the entire life cycle across different types of plastic polymers in 6 main countries, namely the United States of America, China, Germany, Japan, South Korea, and Malaysia. Subsequently, P-graph is introduced to identify the integrative plastic waste treatment scheme that minimizes the economic, environmental, and energy criteria (1000 sets of solutions are found). Furthermore, TOPSIS analysis is also being adapted to search for a propitious solution with optimal balance between the dominant configuration of economic, environmental, and energy nexus. The most sustainable configuration (i.e., integrated downcycle and reuse routes in a closed loop system except in South Korea, which proposed another alternative to treat the plastic waste using landfill given the cheaper cost) is reported with 4.08 × 108 USD/yr, 1.76× 108 kg CO2/yr, and 2.73 × 109 MJ/yr respectively. To attain a high precision result, Monte-Carlo simulation is introduced (10,000 attempts) to search for possible uncertainties, and lastly, a potential global plastic waste management scheme is proposed via the PESTLE approach.
Collapse
Affiliation(s)
- Adrian Chun Minh Loy
- Department of Chemical and Biological Engineering, Monash University, Victoria 3800, Australia
| | - Juin Yau Lim
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea
| | - Bing Shen How
- Biomass Waste-to-Wealth Special Interest Group, Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, 93350 Kuching, Sarawak, Malaysia.
| | - Chung Loong Yiin
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
| | - Serene Sow Mun Lock
- CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
| | - Lam Ghai Lim
- Department of Electrical and Robotics Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Hatem Alhamzi
- National Center for Environmental Technology (NCET), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, 11442 Riyadh, Saudi Arabia.
| | - ChangKyoo Yoo
- Integrated Engineering, Dept. of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-Si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
53
|
Samal A, Das N. Mini-review on remediation of plastic pollution through photoreforming: progress, possibilities, and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83138-83152. [PMID: 37351752 DOI: 10.1007/s11356-023-28253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The increasing plastic pollution has raised significant concerns about the environment and the destruction of its precious resources. Making value-added products out of plastic waste is an effective way to reduce plastic pollution and use it as a valuable resource. Plastic reforming driven by sunlight offers a quick and low-energy way to produce hydrogen from waste. Photoreforming of plastic waste is an emerging technology that cannot only break down plastic polymer waste into value-added chemicals but also produce solar fuel cell quality H2. Technologies, such as pyrolysis, combustion, and advanced oxidation, are right now being studied for converting plastic pollution into energy. A thorough summary and comparison of different technologies have not yet been published. Open dumping and combustion are two main steps to deal with waste plastics, but these processes experience inefficiencies and cannot adequately address the challenges. In this mini-review, we aimed to provide a short overview of the recently reported conventional and novel plastic waste treatment methods. The current research on the photoreforming of plastics conducted by various groups and some advantages and disadvantages of this practice has been discussed thoroughly. Also, some notes were made on the prospective future scope present in this particular research area to achieve a carbon-free fuel system. The purpose of this review is to encourage the utilisation of plastic garbage as an alternative source of energy.
Collapse
Affiliation(s)
- Alaka Samal
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751 004, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, 751 004, India.
| |
Collapse
|
54
|
Kwon H, Mpourmpakis G. Ab Initio Thermochemistry of Highly Flexible Molecules for Thermal Decomposition Analysis. J Chem Theory Comput 2023; 19:3652-3663. [PMID: 37310272 PMCID: PMC10308812 DOI: 10.1021/acs.jctc.3c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 06/14/2023]
Abstract
Pyrolysis is a promising technology for chemical recycling of waste plastics, since it enables the generation of high-value chemicals with low capital and operating cost. The calculation of thermodynamic equilibrium composition using the Gibbs free energy minimization approach can determine pyrolysis operating conditions that produce desired products. However, the availability of thermochemical data can limit the application of equilibrium calculations. While density functional theory (DFT) calculations have been commonly used to produce accurate thermochemical data (e.g., enthalpies of formation) of small molecules, the accuracy and computational cost of these calculations are both challenging to handle for large, flexible molecules, exhibiting multiple conformations at elevated (i.e., pyrolysis) temperatures. In this work, we develop a computational framework to calculate accurate, temperature-dependent thermochemistry of large and flexible molecules by combining force field based conformational search, DFT calculations, thermochemical corrections, and Boltzmann statistics. Our framework produces accurately calculated thermochemistry that is used to predict equilibrium thermal decomposition profiles of octadecane, a model compound of polyethylene. Our thermochemistry results are compared against literature data demonstrating a great agreement, and the predicted decomposition profiles rationalize a series of pyrolysis experimental observations. Our work systematically addresses entropic contributions of large molecules and suggests paths for accurate and yet computationally feasible calculations of Gibbs free energies. The first-principles-based thermodynamic equilibrium analysis proposed in this work can be a significant step toward predicting temperature-dependent product distributions from plastic pyrolysis and guide experimentation on chemical plastic recycling.
Collapse
Affiliation(s)
| | - Giannis Mpourmpakis
- Department of Chemical and
Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
55
|
Chang SH. Plastic waste as pyrolysis feedstock for plastic oil production: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162719. [PMID: 36933741 DOI: 10.1016/j.scitotenv.2023.162719] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 03/04/2023] [Indexed: 05/06/2023]
Abstract
Turning plastic waste into plastic oil by pyrolysis is one of the promising techniques to eradicate plastic waste pollution and accelerate the circular economy of plastic materials. Plastic waste is an attractive pyrolysis feedstock for plastic oil production owing to its favorable chemical properties of proximate analysis, ultimate analysis, and heating value other than its abundant availability. Despite the exponential growth of scientific output from 2015 to 2022, a vast majority of the current review articles cover the pyrolysis of plastic waste into a series of fuels and value-added products, and up-to-date reviews exclusively on plastic oil production from pyrolysis are relatively scarce. In light of this void in the current review articles, this review attempts to provide an up-to-date overview of plastic waste as pyrolysis feedstock for plastic oil production. A particular emphasis is placed on the common types of plastic as primary sources of plastic pollution, the characteristics (proximate analysis, ultimate analysis, hydrogen/carbon ratio, heating value, and degradation temperature) of various plastic wastes and their potential as pyrolysis feedstock, and the pyrolysis systems (reactor type and heating method) and conditions (temperature, heating rate, residence time, pressure, particle size, reaction atmosphere, catalyst and its operation modes, and single and mixed plastic wastes) used in plastic waste pyrolysis for plastic oil production. The characteristics of plastic oil from pyrolysis in terms of physical properties and chemical composition are also outlined and discussed. The major challenges and future prospects for the large-scale production of plastic oil from pyrolysis are also addressed.
Collapse
Affiliation(s)
- Siu Hua Chang
- Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia.
| |
Collapse
|
56
|
Kalenjuk Pivarski B, Tekić D, Šmugović S, Banjac M, Novaković A, Mutavdžić B, Ivanović V, Tešanović D, Đerčan B, Ikonić P, Petrović M, Udovičić DI, Popović AV, Marić A. Factors Affecting the Consumption of Traditional Food in Tourism-Perceptions of the Management Sector of Catering Facilities. Foods 2023; 12:2338. [PMID: 37372549 DOI: 10.3390/foods12122338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The topic of this study is the factors that influence the consumption of traditional food products (TFPs) in tourism, as seen from the perspective of management-sector employees in food and beverage catering facilities. The paper aims to analyse the economic, environmental, social, and touristic factors that highly influence the consumption patterns of catering facilities which are significant providers of traditional gastronomic experiences in tourism, by using the specially designed TFPct scale. The study was conducted on a sample of 300 catering facilities in AP Vojvodina (the Republic of Serbia). An explanatory factor analysis was used to confirm the key factors that influence the consumption of traditional products used to prepare the meals that are a part of what catering facilities offer. Subsequently, a binary logistics regression model was used to establish which of the indicated factors has a statistically significant effect on the management's decision to purchase these products for their catering facility. The study showed that the TFPct scale is appropriate for this type of research, and that economic factors are key factors in the consumption of traditional products. Moreover, compared with other types of catering facilities, interest in the consumption of these products is clearly expressed by a la carte restaurants.
Collapse
Affiliation(s)
- Bojana Kalenjuk Pivarski
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
- Faculty of Economics, University of East Sarajevo, 71420 Pale, Bosnia and Herzegovina
| | - Dragana Tekić
- Department of Agricultural Economics and Rural Sociology, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Stefan Šmugović
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Maja Banjac
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Aleksandra Novaković
- Faculty of Education, University of East Sarajevo, 76300 Bijeljina, Bosnia and Herzegovina
| | - Beba Mutavdžić
- Department of Agricultural Economics and Rural Sociology, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Velibor Ivanović
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragan Tešanović
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Bojan Đerčan
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Predrag Ikonić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Marica Petrović
- Department of Agricultural Economics and Rural Sociology, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Dragana Ilić Udovičić
- Academy of Professional Studies Šabac, Department of Medical and Business-Technological Studies, 15000 Šabac, Serbia
| | - Aleksandra Vasić Popović
- Academy of Professional Studies Šabac, Department of Medical and Business-Technological Studies, 15000 Šabac, Serbia
| | - Aleksandar Marić
- Institute of Food Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
57
|
Ragusa A, De Luca C, Zucchelli E, Rinaldo D, Svelato A. Plastic, microplastic, and the inconsistency of human thought. Front Public Health 2023; 11:1145240. [PMID: 37342277 PMCID: PMC10277741 DOI: 10.3389/fpubh.2023.1145240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023] Open
Affiliation(s)
- Antonio Ragusa
- Department of Obstetrics and Gynecology, Campus Bio-Medico University Hospital Foundation Rome, Rome, Italy
| | - Caterina De Luca
- Department of Obstetrics and Gynecology, Fatebenefratelli Gemelli Hospital, Isola Tiberina, Rome, Italy
| | - Emma Zucchelli
- Instituto de Salud Global, Universitat de Barcelona, Barcelona, Spain
| | - Denise Rinaldo
- Department of Obstetrics and Gynecology, Azienda Socio Sanitaria Territoriale (ASST) Bergamo Est, Bolognini Hospital, Seriate, Italy
| | - Alessandro Svelato
- Department of Obstetrics and Gynecology, Fatebenefratelli Gemelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
58
|
Vlad-Bubulac T, Hamciuc C, Serbezeanu D, Suflet DM, Rusu D, Lisa G, Anghel I, Preda DM, Todorova T, Rîmbu CM. Organophosphorus Reinforced Poly(vinyl alcohol) Nanocomposites Doped with Silver-Loaded Zeolite L Nanoparticles as Sustainable Materials for Packaging Applications. Polymers (Basel) 2023; 15:polym15112573. [PMID: 37299371 DOI: 10.3390/polym15112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The sustainable development of innovative eco-friendly multifunctional nanocomposites, possessing superior characteristics, is a noteworthy topic. Novel semi-interpenetrated nanocomposite films based on poly(vinyl alcohol) covalently and thermally crosslinked with oxalic acid (OA), reinforced with a novel organophosphorus flame retardant (PFR-4) derived from co-polycondensation in solution reaction of equimolar amounts of co-monomers, namely, bis((6-oxido-6H-dibenz[c,e][1,2]oxaphosphorinyl)-(4-hydroxyaniline)-methylene)-1,4-phenylene, bisphenol S, and phenylphosphonic dichloride, in a molar ratio of 1:1:2, and additionally doped with silver-loaded zeolite L nanoparticles (ze-Ag), have been prepared by casting from solution technique. The morphology of the as prepared PVA-oxalic acid films and their semi-interpenetrated nanocomposites with PFR-4 and ze-Ag was investigated by scanning electron microscopy (SEM), while the homogeneous distribution of the organophosphorus compound and nanoparticles within the nanocomposite films has been introspected by means of energy dispersive X-ray spectroscopy (EDX). It was established that composites with a very low phosphorus content had noticeably improved flame retardancy. The peak of the heat release rate was reduced up to 55%, depending on the content of the flame-retardant additive and the doping ze-Ag nanoparticles introduced into the PVA/OA matrix. The ultimate tensile strength and elastic modulus increased significantly in the reinforced nanocomposites. Considerably increased antimicrobial activity was revealed in the case of the samples containing silver-loaded zeolite L nanoparticles.
Collapse
Affiliation(s)
- Tăchiță Vlad-Bubulac
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Corneliu Hamciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Diana Serbezeanu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Daniela Rusu
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, 73 Bd. Mangeron, 700050 Iasi, Romania
| | - Ion Anghel
- Fire Officers Faculty, Police Academy "Alexandru Ioan Cuza", Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Dana-Maria Preda
- Fire Officers Faculty, Police Academy "Alexandru Ioan Cuza", Morarilor Str. 3, Sector 2, 022451 Bucharest, Romania
| | - Totka Todorova
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., bl.11, 1113 Sofia, Bulgaria
| | - Cristina Mihaela Rîmbu
- Department of Public Health, Iasi University of Life Sciences, 8 Sadoveanu Alley, 707027 Iasi, Romania
| |
Collapse
|
59
|
Fu X, Liu L, Han H, Li Y, Si S, Xu B, Dai W, Yang H, He T, Du X, Pei X. Integrated fecal microbiome and metabolome analysis explore the link between polystyrene nanoplastics exposure and male reproductive toxicity in mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:1277-1291. [PMID: 36880397 DOI: 10.1002/tox.23763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 05/18/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are novel environmental pollutants that are ubiquitous in the environment and everyday life. NPs can easily enter the tissues and have more significant potential health risks due to their smaller diameter. Previous studies have shown that NPs can induce male reproductive toxicity, but the detailed mechanisms remain uncertain. In this study, intragastric administration treated mice with polystyrene NPs (PS-NPs, 50, and 90 nm) at 3 and 15 mg/mL/day doses for 30 days. Then, the fresh fecal samples were collected from those mice that the exposure doses of 50 nm PS-NPs at 3 mg/mL/day and 90 nm at 15 mg/mL/day for subsequent investigations of 16S rRNA and metabolomics according to significant toxicological effects (Sperm number, viability, abnormality, and testosterone level). The conjoint analysis findings indicated that PS-NPs disrupted the homeostasis of the gut microbiota, metabolism, and male reproduction, suggesting that abnormal gut microbiota-metabolite pathways may be important in PS-NPs-induced male reproductive toxicity. Meanwhile, the common differential metabolites such as 4-deoxy-Erythronic acid, 8-iso-15-keto-PGE2, apo-10'-violaxanthin, beta-D-glucosamine, isokobusone, oleamide, oxoadipic acid, sphingosine induced by 50 and 90 nm PS-NPs might be used as biomarkers to explore PS-NPs-induced male reproductive toxicity. In addition, this study systematically demonstrated that nano-scale PS-NPs induced male reproductive toxicity via the crosstalk of gut microbiota and metabolites. It also provided valuable insights into the toxicity of PS-NPs, which was conducive to reproductive health risk assessment for public health prevention and treatment.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shengbin Si
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
60
|
Villafañe AB, Ronda AC, Rodríguez Pirani LS, Picone AL, Lucchi LD, Romano RM, Pereyra MT, Arias AH. Microplastics and anthropogenic debris in rainwater from Bahia Blanca, Argentina. Heliyon 2023; 9:e17028. [PMID: 37383205 PMCID: PMC10293668 DOI: 10.1016/j.heliyon.2023.e17028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Concern about atmospheric microplastic (MP) contamination has increased in recent years. This study assessed the abundance of airborne anthropogenic particles, including MPs, deposited in rainfall in Bahia Blanca, southwest Buenos Aires, Argentina. Rainwater samples were collected monthly from March to December 2021 using an active wet-only collector consisting of a glass funnel and a PVC pipe that is only open during rain events. Results obtained show that all rain samples contained anthropogenic debris. The term "anthropogenic debris" is used to refer to the total number of particles as not all the particles found could be determined as plastic. Among all the samples, an average deposition of 77 ± 29 items (anthropogenic debris) m-2d-1 was found. The highest deposition was observed in November (148 items m-2d-1) while the lowest was found in March (46 items m-2d-1). Anthropogenic debris ranged in size from 0.1 mm to 3.87 mm with the most abundant particles being smaller than 1 mm (77.8%). The dominant form of particles found were fibers (95%), followed by fragments (3.1%). Blue color predominated (37.2%) in the total number of samples, followed by light blue (23.3%) and black (21.7%). Further, small particles (<2 mm), apparently composed of mineral material and plastic fibers, were recognized. The chemical composition of suspected MPs was examined by Raman microscopy. The analysis of μ-Raman spectra confirmed the presence of polystyrene, polyethylene terephthalate, and polyethylene vinyl acetate fibers and provided evidence of fibers containing industrial additives such as indigo dye. This is the first assessment of MP pollution in rain in Argentina.
Collapse
Affiliation(s)
- A. Belén Villafañe
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
| | - Ana C. Ronda
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | - Lucas S. Rodríguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - A. Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - Leandro D. Lucchi
- Comité Técnico Ejecutivo, Municipalidad de Bahía Blanca, Av. Gral. San Martín 3474 , Bahía Blanca, Argentina
| | - Rosana M. Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. Blvd. 120 N° 1465, La Plata (1900), Argentina
| | - Marcelo T. Pereyra
- INQUISUR-Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca, Argentina
| | - Andrés H. Arias
- Instituto Argentino de Oceanografía (IADO-CONICET/UNS), Camino La Carrindanga km 7.5, 8000, Bahía Blanca, Argentina
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, Bahía Blanca, Argentina
| |
Collapse
|
61
|
Cahill JF, Kertesz V, Saint-Vincent P, Valentino H, Drufva E, Thiele N, Michener JK. High-Throughput Characterization and Optimization of Polyamide Hydrolase Activity Using Open Port Sampling Interface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37262418 DOI: 10.1021/jasms.3c00097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enzymatic biodegradation of polymers, such as polyamides (PA), has the potential to cost-effectively reduce plastic waste, but enhancements in degradation efficiency are needed. Engineering enzymes through directed evolution is one pathway toward identification of critical domains needed for improving activity. However, screening such enzymatic libraries (100s-to-1000s of samples) is time-consuming. Here we demonstrate the use of robotic autosampler (PAL) and immediate drop on demand technology (I.DOT) liquid handling systems coupled with open-port sampling interface-mass spectrometry (OPSI-MS) to screen for PA6 and PA66 hydrolysis by 6-aminohexanoate-oligomer endo-hydrolase (nylon hydrolase, NylC) in a high-throughput (8-20 s/sample) manner. The OPSI-MS technique required minimal sample preparation and was amenable to 96-well plate formats for automated processing. Enzymatic hydrolysis of PA characteristically produced soluble linear oligomer products that could be identified by OPSI-MS. Incubation temperatures and times were optimized for PA6 (65 °C, 24 h) and PA66 (75 °C, 24 h) over 108 experiments. In addition, the I.DOT/OPSI-MS quantified production of PA6 linear dimer (8.3 ± 1.6 μg/mL) and PA66 linear monomer (13.5 ± 1.5 μg/mL) by NylC with a lower limit of detection of 0.029 and 0.032 μg/mL, respectively. For PA6 and PA66, linear oligomer production corresponded to 0.096 ± 0.018% and 0.204 ± 0.028% conversion of dry pellet mass, respectively. The developed methodology is expected to be utilized to assess enzymatic hydrolysis of engineered enzyme libraries, comprising hundreds to thousands of individual samples.
Collapse
Affiliation(s)
- John F Cahill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Patricia Saint-Vincent
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Hannah Valentino
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Erin Drufva
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Nikki Thiele
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| | - Joshua K Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|
62
|
Nesterovschi I, Marica I, Andrea Levei E, Bogdan Angyus S, Kenesz M, Teodora Moldovan O, Cîntă Pînzaru S. Subterranean transport of microplastics as evidenced in karst springs and their characterization using Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 298:122811. [PMID: 37156178 DOI: 10.1016/j.saa.2023.122811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The increasing use of plastic materials has led to accumulation of large amounts of plastic waste in environment and a global challenge to be tackled with. The natural process of macro-plastics aging generates a multitude of secondary microplastic fragments accumulating in all areas of the planet. The pollution with microplastics of large water bodies, such as rivers, seas and oceans was already proven, but the presence of microplastics even in karst spring water was not reported yet. In this study, Raman micro-spectroscopy was used to confirm the presence of microplastics in the spring water samples collected from two rural karst springs in the Apuseni Mountains (Țarina and Josani), North-Western Romania. Two sets of water samples of 1000 L collected in spring time 2021 and one in autumn 2021 were filtered and analyzed. Using the Python programming language and combining two separate Raman databases, one for plastics and the other for pigments, we established a customized database to unambiguously identify the type of plastic and pigment present in the discovered micro-fragments. The generated reference pigment-plastic spectra were compared to those of potential microplastics found on filters and Pearson's coefficient was used to measure the level of similarity. The presence of microplastics in karst spring waters was confirmed and a quantitative estimation expressed as number of fragments or fibers per liter was 0.034 in Josani and 0.06 in Țarina karst spring. Five months later sampling (autumn 2021) revealed 0.05 microplastics per liter. The spectral results revealed that most microplastics found were dominated by polyethylene terephthalate (PET), followed by polypropylene and interestingly, abundant blue micro-fragments were identified according to their copper phthalocyanine pigments (pigment Blue 15) or indigo carmine (pigment Blue 63) characteristic spectral fingerprints, which surpassed the inherent spectral background level characteristic for the Raman spectra of naturally contaminated waste micro-samples. Their origin in mountain karst spring waters and potential decrease in time is discussed.
Collapse
Affiliation(s)
- Ion Nesterovschi
- Babeș-Bolyai University, Physics Faculty, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Ioana Marica
- Babeș-Bolyai University, Physics Faculty, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO INOE 2000, Research Institute for Analytical Instrum+entation, 67 Donath, 400293 Cluj-Napoca, Romania
| | - Simion Bogdan Angyus
- INCDO INOE 2000, Research Institute for Analytical Instrum+entation, 67 Donath, 400293 Cluj-Napoca, Romania; Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| | - Marius Kenesz
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, 5 Clinicilor, 400006 Cluj-Napoca, Romania; Romanian Institute of Science and Technology, Saturn 24-26, 400504 Cluj-Napoca, Romania
| | - Oana Teodora Moldovan
- Emil Racovita Institute of Speleology, Cluj-Napoca Department, 5 Clinicilor, 400006 Cluj-Napoca, Romania; Romanian Institute of Science and Technology, Saturn 24-26, 400504 Cluj-Napoca, Romania
| | - Simona Cîntă Pînzaru
- Babeș-Bolyai University, Physics Faculty, 1 Kogălniceanu, 400084 Cluj-Napoca, Romania.
| |
Collapse
|
63
|
Singh AK, Aboo S, Goswami T, Kar G. Jute and kenaf carrier bags: an eco-friendly alternative to plastic bags in India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61904-61912. [PMID: 36934180 DOI: 10.1007/s11356-023-26436-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
Increasing demand for shopping and packaging carrier bags has given rise to various issues relating to its disposal as well as to the overall environmental footprint and sustainability of the packaging materials. This study assesses the carbon footprint and life cycle environmental impacts of the production, usage, and disposal of low density polyethylene (LDPE) and two natural fibre carrier bags (jute and kenaf). Life cycle assessment study was conducted of all inputs and outputs, aggregated in the form of resources used and environmental emissions, extending from the production of raw materials to the final disposal of the product. The carbon footprint and GHG emissions of jute and kenaf carrier bags were estimated using the CO2, N2O, and CH4 emissions coefficients of inputs. Research literature from life cycle impact assessment (LCIA) results was used to determine the effects of LDPE polyethylene packaging material. It was observed that the global warming potential (GWP) for the production of 1 kg of LDPE (100 micron) carrier bag (39.4 kg CO2eq) is more than 490 times higher than jute and kenaf carrier bags. In general, LDPE materials have the greatest impact on the carbon footprint and resource depletion. The LDPE material also has the highest impacts on indicators of terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication as compared to jute and kenaf fibres. Since jute and kenaf are natural fibres, they sequester a substantial quantity of carbon during their agricultural stages. As a result, greenhouse gas (GHG) emission emissions of jute and kenaf were found to be negative. Popularising the use of jute and kenaf products as alternatives to plastic in industrialised countries would benefit the reduction of plastic waste and its negative environmental effects. Additional production of jute and kenaf fibre, which are already available in major bast fibre producing countries like India and Bangladesh, could meet the demand for fibre-based carrier bags.
Collapse
Affiliation(s)
- Arvind Kumar Singh
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibre, Nilganj, Barrackpore, Kolkata, West Bengal, -700121, India.
| | - Shamna Aboo
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibre, Nilganj, Barrackpore, Kolkata, West Bengal, -700121, India
| | - Tinku Goswami
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibre, Nilganj, Barrackpore, Kolkata, West Bengal, -700121, India
| | - Gouranga Kar
- Crop Production Division, ICAR-Central Research Institute for Jute and Allied Fibre, Nilganj, Barrackpore, Kolkata, West Bengal, -700121, India
| |
Collapse
|
64
|
Efimov MN, Vasilev AA, Muratov DG, Kostev AI, Kolesnikov EA, Kiseleva SG, Karpacheva GP. Conversion of polyethylene terephthalate waste into high-yield porous carbon adsorbent via pyrolysis of dipotassium terephthalate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 162:113-122. [PMID: 36965449 DOI: 10.1016/j.wasman.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/31/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
A method for conversion of polyethylene terephthalate (PET) waste into porous carbon material is proposed. The recycling of PET bottle waste includes the stages of low-temperature hydrolysis of the polymer and subsequent pyrolysis at 800 °C. To provide PET hydrolysis at ∼150 °C and atmospheric pressure, the polymer was pre-dissolved in dimethyl sulfoxide and then an aqueous solution of potassium hydroxide was added. The potassium terephthalate formed as a result of the alkaline hydrolysis of PET allows the carbon-containing precursor to be preserved for further activation to temperatures beyond 600 °C. The proposed method leads to the formation of a porous carbon material, increasing the yield of carbon residue to 25 wt%, which is higher compared to the yield of carbon residue in the direct pyrolysis of PET. The obtained porous carbon is characterized by graphite-like structure and specific surface area of ∼1100 m2 g-1. It has been shown that PET-derived carbon material can be used to remove pollutants from aqueous media. The adsorption properties of the carbon material were demonstrated by adsorption of methylene blue from an aqueous solution. The capacity of the carbon material was found to be 443 mg g-1.
Collapse
Affiliation(s)
- M N Efimov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow, Russia.
| | - A A Vasilev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow, Russia
| | - D G Muratov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow, Russia
| | - A I Kostev
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow, Russia
| | - E A Kolesnikov
- National University of Science and Technology "MISiS", Leninskiy Prospekt. 4, 119049 Moscow, Russia
| | - S G Kiseleva
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow, Russia
| | - G P Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow, Russia
| |
Collapse
|
65
|
Idris SN, Amelia TSM, Bhubalan K, Lazim AMM, Zakwan NAMA, Jamaluddin MI, Santhanam R, Amirul AAA, Vigneswari S, Ramakrishna S. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review. ENVIRONMENTAL RESEARCH 2023; 231:115988. [PMID: 37105296 DOI: 10.1016/j.envres.2023.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Plastics have become an integral part of human life. Single-use plastics (SUPs) are disposable plastics designed to be used once then promptly discarded or recycled. This SUPs range from packaging and takeaway containers to disposable razors and hotel toiletries. Synthetic plastics, which are made of non-renewable petroleum and natural gas resources, require decades to perpetually disintegrate in nature thus contribute to plastic pollution worldwide, especially in marine environments. In response to these problems, bioplastics or bio-based and biodegradable polymers from renewable sources has been considered as an alternative. Understanding the mechanisms behind the degradation of conventional SUPs and biodegradability of their greener counterpart, bioplastics, is crucial for appropriate material selection in the future. This review aims to provide insights into the degradation or disintegration of conventional single-use plastics and the biodegradability of the different types of greener-counterparts, bioplastics, their mechanisms, and conditions. This review highlights on the biodegradation in the environments including composting systems. Here, the various types of alternative biodegradable polymers, such as bacterially biosynthesised bioplastics, natural fibre-reinforced plastics, starch-, cellulose-, lignin-, and soy-based polymers were explored. Review of past literature revealed that although bioplastics are relatively eco-friendly, their natural compositions and properties are inconsistent. Furthermore, the global plastic market for biodegradable plastics remains relatively small and require further research and commercialization efforts, especially considering the urgency of plastic and microplastic pollution as currently critical global issue. Biodegradable plastics have potential to replace conventional plastics as they show biodegradation ability under real environments, and thus intensive research on the various biodegradable plastics is needed to inform stakeholders and policy makers on the appropriate response to the gradually emerging biodegradable plastics.
Collapse
Affiliation(s)
- Siti Norliyana Idris
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Anim Maisara Mohd Lazim
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Muhammad Imran Jamaluddin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Rameshkumar Santhanam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Science, Universiti Sains Malaysia, Pulau Pinang, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang, Malaysia.
| | - Sevakumaran Vigneswari
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, national University of Singapore, 119260, Singapore.
| |
Collapse
|
66
|
Salinas J, Carpena V, Martínez-Gallardo MR, Segado M, Estrella-González MJ, Toribio AJ, Jurado MM, López-González JA, Suárez-Estrella F, López MJ. Development of plastic-degrading microbial consortia by induced selection in microcosms. Front Microbiol 2023; 14:1143769. [PMID: 37113240 PMCID: PMC10126402 DOI: 10.3389/fmicb.2023.1143769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
The increase in the production of highly recalcitrant plastic materials, and their accumulation in ecosystems, generates the need to investigate new sustainable strategies to reduce this type of pollution. Based on recent works, the use of microbial consortia could contribute to improving plastic biodegradation performance. This work deals with the selection and characterization of plastic-degrading microbial consortia using a sequential and induced enrichment technique from artificially contaminated microcosms. The microcosm consisted of a soil sample in which LLDPE (linear low-density polyethylene) was buried. Consortia were obtained from the initial sample by sequential enrichment in a culture medium with LLDPE-type plastic material (in film or powder format) as the sole carbon source. Enrichment cultures were incubated for 105 days with monthly transfer to fresh medium. The abundance and diversity of total bacteria and fungi were monitored. Like LLDPE, lignin is a very complex polymer, so its biodegradation is closely linked to that of some recalcitrant plastics. For this reason, counting of ligninolytic microorganisms from the different enrichments was also performed. Additionally, the consortium members were isolated, molecularly identified and enzymatically characterized. The results revealed a loss of microbial diversity at each culture transfer at the end of the induced selection process. The consortium selected from selective enrichment in cultures with LLDPE in powder form was more effective compared to the consortium selected in cultures with LLDPE in film form, resulting in a reduction of microplastic weight between 2.5 and 5.5%. Some members of the consortia showed a wide range of enzymatic activities related to the degradation of recalcitrant plastic polymers, with Pseudomonas aeruginosa REBP5 or Pseudomonas alloputida REBP7 strains standing out. The strains identified as Castellaniella denitrificans REBF6 and Debaryomyces hansenii RELF8 were also considered relevant members of the consortia although they showed more discrete enzymatic profiles. Other consortium members could collaborate in the prior degradation of additives accompanying the LLDPE polymer, facilitating the subsequent access of other real degraders of the plastic structure. Although preliminary, the microbial consortia selected in this work contribute to the current knowledge of the degradation of recalcitrant plastics of anthropogenic origin accumulated in natural environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Francisca Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3, CIAIMBITAL, University of Almeria, Almeria, Spain
| | | |
Collapse
|
67
|
Dey TK, Rasel M, Roy T, Uddin ME, Pramanik BK, Jamal M. Post-pandemic micro/nanoplastic pollution: Toward a sustainable management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161390. [PMID: 36621482 PMCID: PMC9814273 DOI: 10.1016/j.scitotenv.2023.161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The global health crisis caused by the COVID-19 pandemic has resulted in massive plastic pollution from the use of personal protection equipment (PPE), with polypropylene (PP) being a major component. Owing to the weathering of exposed PPEs, such contamination causes microplastic (MP) and nanoplastic (NP) pollution and is extremely likely to act as a vector for the transportation of COVID-19 from one area to another. Thus, a post-pandemic scenario can forecast with certainty that a significant amount of plastic garbage combined with MP/NP formation has an adverse effect on the ecosystem. Therefore, updating traditional waste management practices, such as landfilling and incineration, is essential for making plastic waste management sustainable to avert this looming catastrophe. This study investigates the post-pandemic scenario of MP/NP pollution and provides an outlook on an integrated approach to the recycling of PP-based plastic wastes. The recovery of crude oil, solid char, hydrocarbon gases, and construction materials by approximately 75, 33, 55, and 2 %, respectively, could be achieved in an environmentally friendly and cost-effective manner. Furthermore, the development of biodegradable and self-sanitizing smart PPEs has been identified as a promising alternative for drastically reducing plastic pollution.
Collapse
Affiliation(s)
- Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Rasel
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Md Elias Uddin
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Biplob K Pramanik
- Department of Civil and Infrastructure Engineering, RMIT University, Australia
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh; Microplastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
68
|
Thew CXE, Lee ZS, Srinophakun P, Ooi CW. Recent advances and challenges in sustainable management of plastic waste using biodegradation approach. BIORESOURCE TECHNOLOGY 2023; 374:128772. [PMID: 36828218 DOI: 10.1016/j.biortech.2023.128772] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Versatility and desirable attributes of synthetic plastics have greatly contributed towards their wide applications. However, vast accumulation of plastic wastes in environment as a result of their highly recalcitrant nature has given rise to plastic pollution. Existing strategies in alleviating plastic wastes accumulation are inadequate, and there is a pressing need for alternative sustainable approaches in tackling plastic pollution. In this context, plastic biodegradation has emerged as a sustainable and environmental-friendly approach in handling plastic wastes accumulation, due to its milder and less energy-intensive conditions. In recent years, extensive research effort has focused on the identification of microorganisms and enzymes with plastic-degrading abilities. This review aims to provide a timely and holistic view on the current status of plastic biodegradation, focusing on recent breakthroughs and discoveries in this field. Furthermore, current challenges associated to plastic biodegradation are discussed, and the future perspectives for continuous advancement of plastic biodegradation are highlighted.
Collapse
Affiliation(s)
- Crystal Xue Er Thew
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Zhi Sen Lee
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Penjit Srinophakun
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
69
|
Study and Characterization of Regenerated Hard Foam Prepared by Polyol Hydrolysis of Waste Polyurethane. Polymers (Basel) 2023; 15:polym15061445. [PMID: 36987224 PMCID: PMC10054186 DOI: 10.3390/polym15061445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 03/17/2023] Open
Abstract
In this paper, four different kinds of diols were used for the alcoholysis of waste thermoplastic polyurethane elastomers. The recycled polyether polyols were used to prepare regenerated thermosetting polyurethane rigid foam through one-step foaming. We used four different kinds of alcoholysis agents, according to different proportions of the complex, and we combined them with an alkali metal catalyst (KOH) to trigger the catalytic cleavage of the carbamate bonds in the waste polyurethane elastomers. The effects of the different types and different chain lengths of the alcoholysis agents on the degradation of the waste polyurethane elastomers and the preparation of regenerated polyurethane rigid foam were studied. Based on the viscosity, GPC, FT-IR, foaming time and compression strength, water absorption, TG, apparent density, and thermal conductivity of the recycled polyurethane foam, eight groups of optimal components were selected and discussed. The results showed that the viscosity of the recovered biodegradable materials was between 485 and 1200 mPa·s. The hard foam of the regenerated polyurethane was prepared using biodegradable materials instead of commercially available polyether polyols, and its compressive strength was between 0.131 and 0.176 MPa. The water absorption rate ranged from 0.7265 to 1.9923%. The apparent density of the foam was between 0.0303 and 0.0403 kg/m3. The thermal conductivity ranged from 0.0151 to 0.0202 W/(m·K). A large number of experimental results showed that the degradation of the waste polyurethane elastomers by the alcoholysis agents was successful. The thermoplastic polyurethane elastomers can not only be reconstructed, but they can also be degraded by alcoholysis to produce regenerated polyurethane rigid foam.
Collapse
|
70
|
Yu J, Liu X, Xu S, Shao P, Li J, Chen Z, Wang X, Lin Y, Renard CMGC. Advances in green solvents for production of polysaccharide-based packaging films: Insights of ionic liquids and deep eutectic solvents. Compr Rev Food Sci Food Saf 2023; 22:1030-1057. [PMID: 36579838 DOI: 10.1111/1541-4337.13099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/30/2022]
Abstract
The problems with plastic materials and the good film-forming properties of polysaccharides motivated research in the development of polysaccharide-based films. In the last 5 years, there has been an explosion of publications on using green solvents, including ionic liquids (ILs), and deep eutectic solvents (DESs) as candidates to substitute the conventional solvents/plasticizers for preparations of desired polysaccharide-based films. This review summarizes related properties and recovery of ILs and DESs, a series of green preparation strategies (including pretreatment solvents/reaction media, ILs/DESs as components, extraction solvents of bioactive compounds added into films), and inherent properties of polysaccharide-based films with/without ILs and DESs. Major reported advantages of these new solvents are high dissolving capacity of certain ILs/DESs for polysaccharides (i.e., up to 30 wt% for cellulose) and better plasticizing ability than traditional plasticizers. In addition, they frequently display intrinsic antioxidant and antibacterial activities that facilitate ILs/DESs applications in the processing of polysaccharide-based films (especially active food packaging films). ILs/DESs in the film could also be further recycled by water or ethanol/methanol treatment followed by drying/evaporation. One particularly promising approach is to use bioactive cholinium-based ILs and DESs with good safety and plasticizing ability to improve the functional properties of prepared films. Whole extracts by ILs/DESs from various byproducts can also be directly used in films without separation/polishing of compounds from the extracting agents. Scaling-up, including costs and environmental footprint, as well as the safety and applications in real foods of polysaccharide-based film with ILs/DESs (extracts) deserves more studies.
Collapse
Affiliation(s)
- Jiahao Yu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
- Zhejiang NHU Co., Ltd, Xinchang, China
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shanlin Xu
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Ping Shao
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | | - Zhirong Chen
- School of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xuanpeng Wang
- Guangdong Qingyunshan Pharmaceutical Co., Ltd., Shaoguan, China
| | - Yang Lin
- School of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | | |
Collapse
|
71
|
Zunita M, Winoto HP, Fauzan MFK, Haikal R. Recent Advances in Plastics Waste Degradation Using Ionic Liquid-Based Process. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
72
|
Morales IDG, Macusi ED, Jondonero MAP, Guihawan JQ, Bacosa HP, Amparado RF. Facemask: Protection or threat? MARINE POLLUTION BULLETIN 2023; 188:114681. [PMID: 36758311 PMCID: PMC9902895 DOI: 10.1016/j.marpolbul.2023.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Facemasks were widely used as a protection against SARS-COV-2, which significantly reduced COVID-19 transmission during the pandemic. However, concerns have been raised regarding its adverse impacts on human health due to intense use and mismanagement. Although rampant plastic littering was the norm before the pandemic, the magnitude of the problem is worsening as potentially COVID-19-infected facemasks are thrown along the shoreline. This study assessed the discarded facemasks on the most popular beach destinations in Mati City, Davao Oriental, Philippines. A total of N = 284 discarded facemasks were found in a cumulative area of 22,500 m2, with an average density of 8.4 × 10-4 items/m2. The surgical facemask (82 %; n = 234) was the most abundant type of facemask found in the areas, followed by KF94 (16 %; n = 45) and KN95 (2 %; n = 5). The Analysis of Variance (ANOVA) showed significant differences in the visual counts of facemasks on the three beaches (p < 0.05).
Collapse
Affiliation(s)
- Ilah Dianne G Morales
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines.
| | - Edison D Macusi
- Institute of Agriculture and Life Sciences (IALS), Davao Oriental State University (DOrSU), Mati City, Davao Oriental, Philippines
| | | | - Jaime Q Guihawan
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines
| | - Hernando P Bacosa
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines
| | - Ruben F Amparado
- Environmental Science Graduate Program, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology (MSU-IIT), Iligan City, Lanao del Norte, Philippines
| |
Collapse
|
73
|
Agumba D, Pham DH, Kim J. Ultrastrong, Hydrostable, and Degradable Straws Derived from Microplastic-Free Thermoset Films for Sustainable Development. ACS OMEGA 2023; 8:7968-7977. [PMID: 36873009 PMCID: PMC9979226 DOI: 10.1021/acsomega.2c07797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Single-use plastics such as straws have caused intricate environmental challenges since they are not readily assimilated into nature at the end of life. Paper straws, on the contrary, become soggy and collapse in drinks resulting in an obnoxious user experience. Here, all-natural, biocompatible, degradable straws and thermoset films are engineered by integrating economical natural resources-lignin and citric acid-into edible starch and poly(vinyl alcohol), making them the casting slurry. The slurries were cast on a glass substrate, partially dried, and rolled on a Teflon rod to fabricate the straws. The straws are perfectly adhered at the edges by the strong hydrogen bonds from the crosslinker-citric acid-during drying, thus eliminating the need for adhesives and binders. Further, curing the straws and films in a vacuum oven at 180 °C results in enhanced hydrostability and endows the films with excellent tensile strength, toughness, and ultraviolet radiation shielding. The functionality of the straws and films surpassed paper and plastic straws, making them quintessential candidates for all-natural sustainable development.
Collapse
Affiliation(s)
| | | | - Jaehwan Kim
- . Tel: +82-32-860-7326.
Fax: +82-32-832-7325
| |
Collapse
|
74
|
Kolitha BS, Jayasekara SK, Tannenbaum R, Jasiuk IM, Jayakody LN. Repurposing of waste PET by microbial biotransformation to functionalized materials for additive manufacturing. J Ind Microbiol Biotechnol 2023; 50:kuad010. [PMID: 37248049 PMCID: PMC10549213 DOI: 10.1093/jimb/kuad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/20/2023] [Indexed: 05/31/2023]
Abstract
Plastic waste is an outstanding environmental thread. Poly(ethylene terephthalate) (PET) is one of the most abundantly produced single-use plastics worldwide, but its recycling rates are low. In parallel, additive manufacturing is a rapidly evolving technology with wide-ranging applications. Thus, there is a need for a broad spectrum of polymers to meet the demands of this growing industry and address post-use waste materials. This perspective article highlights the potential of designing microbial cell factories to upcycle PET into functionalized chemical building blocks for additive manufacturing. We present the leveraging of PET hydrolyzing enzymes and rewiring the bacterial C2 and aromatic catabolic pathways to obtain high-value chemicals and polymers. Since PET mechanical recycling back to original materials is cost-prohibitive, the biochemical technology is a viable alternative to upcycle PET into novel 3D printing materials, such as replacements for acrylonitrile butadiene styrene. The presented hybrid chemo-bio approaches potentially enable the manufacturing of environmentally friendly degradable or higher-value high-performance polymers and composites and their reuse for a circular economy. ONE-SENTENCE SUMMARY Biotransformation of waste PET to high-value platform chemicals for additive manufacturing.
Collapse
Affiliation(s)
- Bhagya S Kolitha
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Sandhya K Jayasekara
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Rina Tannenbaum
- Department of Materials Science and Chemical Engineering, the Stony Brook University Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Iwona M Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
75
|
Pazmiño MF, Del Hierro AG, Flores FJ. Genetic diversity and organic waste degrading capacity of Hermetia illucens from the evergreen forest of the Equatorial Choco lowland. PeerJ 2023; 11:e14798. [PMID: 36755868 PMCID: PMC9901308 DOI: 10.7717/peerj.14798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Globally, microplastics (MP) represent a growing burden for ecosystems due to their increasing presence at different trophic levels. In Ecuador, the lack of waste segregation has increased the quantity of waste, primarily organics and plastics, overloading landfills and water sources. Over time, plastics reduce in size and silently enter the food chain of animals, such as insects. The black soldier fly (BSF) larvae, Hermetia illucens (Linnaeus, 1758), is a species with devouring behavior used for waste management because of its beneficial qualities such as fly pest control, biomass production, and rapid organic waste degradation. Studies have uncovered the insect's ability to tolerate MP, and consider the possibility that they may be able to degrade polymers. For the first time in Ecuador, the present study characterized H. illucens using the sequences of different molecular markers. Finally, H. illucens' degrading capacity was evaluated in the presence of MP and decaying food residues, resembling landfill conditions.
Collapse
Affiliation(s)
- María Fernanda Pazmiño
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Ana G. Del Hierro
- Laboratorio de Investigación Aplicada—Biotecnología, Instituto Nacional de Biodiversidad-INABIO, Quito, Pichincha, Ecuador
| | - Francisco Javier Flores
- Departamento de Ciencias de la Vida y de la Agricultura, Facultad de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas-ESPE, Quito, Pichincha, Ecuador,Centro de Investigación de Alimentos, Facultad de Ciencias de la Ingeniería e Industrias, Universidad Tecnológica Equinoccial, Quito, Pichincha, Ecuador
| |
Collapse
|
76
|
Abdelzaher MA. Sustainable development goals for industry, innovation, and infrastructure: demolition waste incorporated with nanoplastic waste enhanced the physicomechanical properties of white cement paste composites. APPLIED NANOSCIENCE 2023; 13:1-16. [PMID: 36710716 PMCID: PMC9873541 DOI: 10.1007/s13204-023-02766-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
The COVID-19 pandemic significantly impacts the increase in plastic waste from food packaging, masks, gloves, and personal protective equipment (PPE), resulting in an environmental disaster, if collected, processed, transported, or disposed inappropriately. Plastic waste has a very long deterioration time in the environment (soil and water), cheap, and plentiful. Additionally, construction waste disposal is a process that transfers debris to a state that does lead to any sustainable or environmental problems. The core objective of this current research work is to provide safety and efficacy by partial substitution of both ultrafine demolition waste (UDW), incorporated with nanoplastic waste (NPW), for eco-white cement (E-WC) composition. E-WC is designed by partially substituted WC with UDW (1.0, 5.0, 10.0, 15.0, and 20.0 wt.%); incorporated with NPW (1.0 and 3.0 wt.%); to adequately protect people and the environment over long periods. The context examines the high performance, physicomechanical properties and high durability of blends as presences of silica in UDW proposed a hydraulic filler material, plus; high surface area of NPW. The microstructure and workability are characterized by X-Ray Fluorescence (XRF), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM) measurements. The record results show greatly enhanced in the mechanical strength due to the combination of NPW and UDW (active silica). With the presence of NPW and UDW in WC matrix, the highest level of crystallization formed consequently a decrease in whiteness reflection (Ry) and total porosity. In summary, WC blend with NPW and UDW reflects better workability and energy saving qualities, which are economical and environmentally beneficial and may result in decreased construction budget and improve a long-term raw material sustainability.
Collapse
Affiliation(s)
- M. A. Abdelzaher
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef, 62511 Egypt
| |
Collapse
|
77
|
J RB, V GS. A systematic review on plastic waste conversion for a circular economy: recent trends and emerging technologies. Catal Sci Technol 2023. [DOI: 10.1039/d2cy02066a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Our biosphere has been adversely affected by plastic waste pollution, especially non-biodegradables in landfills, which induces hazardous chemical leaching and toxic gas emissions on burning into the atmosphere.
Collapse
Affiliation(s)
- Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu-610005, India
| | - Godvin Sharmila V
- Department of Civil Engineering, Rohini College of Engineering and Technology, Kanyakumari, Tamil Nadu, India
| |
Collapse
|
78
|
Bhanot V, Panwar J. Unveiling the potential of Lichtheimia ramosa AJP11 for myco-transformation of polystyrene sulfonate and its driving molecular mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116579. [PMID: 36302301 DOI: 10.1016/j.jenvman.2022.116579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is a major environmental concern due to its deleterious effects on various ecosystems. The limitations and shortcomings of waste management strategies has led to the over-accumulation of plastic waste, mainly comprised of single-use plastics, such as polystyrene (PS). Considering the advantages of biotransformation over the other plastic disposal methods, it has become a major focus of the modern research. Biotransformation of plastics involves its microbial hydrolysis into short chain oligomers and monomers that are eventually assimilated as carbon source by the microbes leading to the release of CO2. As fungi are known to possess multifarious and highly regulated enzyme system capable of utilizing diverse nutrient sources, the present study explored the potential of Lichtheimia ramosa AJP11 towards myco-transformation of polystyrene sulfonate (PSS), a structural analogue of polystyrene (PS). During the 30-day incubation period of L. ramosa AJP11 in minimal salt medium (MSM)+1% PSS, the fungus showed 41.6% increment in its fresh weight biomass, indicating the utilization of PSS as sole carbon source. Further analysis revealed the generation of various reaction intermediates such as alkanes and fatty acids, crucial for the continuum of fungal metabolic pathways. Moreover, detection of PS oligomers such as cyclohexane and 2,4-DTBP confirmed the myco-transformation of PSS. The extracellular fungal protein profile showed considerable overexpression of a 14.4 kDa protein, characterized to be a hydrophobic surface binding (Hsb) protein, which is hypothesized to adsorb onto the PSS to facilitate its transformation. Further, in silico analysis of Hsb protein indicated it to be an amphiphilic α-helical protein with ability to bind styrene sulfonate unit via both hydrogen and hydrophobic interactions, with a binding energy of -5.02 kcal mol-1. These findings open new avenues for over expression of Hsb under controlled reactor conditions to accelerate the PS waste disposal.
Collapse
Affiliation(s)
- Vishalakshi Bhanot
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India
| | - Jitendra Panwar
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
79
|
Özen HA, Mutuk T, Yiğiter M. Smoke filtration performances of membranes produced from commercial PVA and recycled PET by electrospinning method and ANN modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2469-2479. [PMID: 35927407 DOI: 10.1007/s11356-022-22383-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Plastic waste and air pollution are becoming a great concern due to their adverse effect on human health and the environment. There is increasing number of evidence showing that recycling plastic and filtering harmful air pollutants are one of the most effective and promising way to eliminate their hazard on the environment. In this purpose, we developed eco-friendly filtration materials from recycled PET by electrospinning method to be used in air filtration and compared them with conventional PVA membranes. Filtration efficiency of prepared membranes were tested homemade membrane system using cigarette smoke source. Characterization results and smoke filtration performance of recycled PET and PVA membranes before and after smoke filtration were examined. The results demonstrated that the removal efficiencies of PVA-5 wt.%, PVA-10 wt.%, and PVA-15 wt.% were 4.11%, 11.32%, and 12.14%, respectively. A similar trend was also observed in recycled PET-5 wt.%, PET-10 wt.%, and PET-15 wt.% membranes with 4.32%, 10.79%, and 11.68% of filtration efficiency, respectively. Based on this result, using recycled PET can be an alternative way to produce a higher value product compared to traditional polymer membranes used commercially. This result is also supported by the neural network model of this study.
Collapse
Affiliation(s)
- Hülya Aykaç Özen
- Department of Environmental Engineering, Ondokuz Mayis University, 55200, Samsun, Turkey
| | - Tuğba Mutuk
- Department of Metallurgical and Materials Engineering, Ondokuz Mayis University, 55200, Samsun, Turkey.
| | - Merve Yiğiter
- Department of Metallurgical and Materials Engineering, Ondokuz Mayis University, 55200, Samsun, Turkey
| |
Collapse
|
80
|
Naguib HM. Recycled polyester filled with eggshells waste-based nano CaCO 3: thermo-mechanical and flame-retardant features. NEW J CHEM 2023. [DOI: 10.1039/d3nj00538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Improved environmental-friendly fire-retardant nanocomposite.
Collapse
Affiliation(s)
- Hamdy M. Naguib
- Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, Jiangsu Province, China
| |
Collapse
|
81
|
Khan H, Baig A, Faisal M, Khan A, Gul K, Ali N, Ali N, Bilal M. Exploration of solid waste materials for sustainable manufacturing of cementitious composites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86606-86615. [PMID: 35799009 DOI: 10.1007/s11356-022-21473-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The problem of disposing and managing solid waste materials has become one of the major environmental, economic, and social issues. Utilization of solid wastes in the production of building materials not only solves the problem of their disposal but also helps in the conversion of wastes into useful and cost-effective products. In the present study, solid waste materials of organic and inorganic nature were applied in the production of sustainable cementitious composites (CC) and studied the effect of incorporated wastes on physical and mechanical properties of the resultant CC. The selected solid waste materials were cotton, polyester, PET, carpet, glass, and granulated blast furnace slag (GBFS). These wastes were incorporated in CC in different proportions and form the tuff tiles using moulds (12.5″ × 6″ × 2.5″). The various physical (fineness, setting time, bulk density, and water absorption capacity) and mechanical (flexural strength) properties of all the specimens were determined after curing period of 3, 7, and 28 days. The results show that the incorporation of solid wastes in CC did not much affect their physical characteristics. However, the CC incorporated with the selected solid waste materials have a pronounced effect of their flexural strength and found to be higher (12-875%) compared to the plain CC. Similarly, the incorporation of the selected inorganic wastes (302-715 psi) in CC exhibit much higher flexural strength compared to the organic wastes (136-235 psi). The maximum flexural strength was observed when GBFS was utilized as a solid waste. The present work will provide a reliable step for the solid waste management and conversion of such wastes into useful commercial products for concrete manufacturing.
Collapse
Affiliation(s)
- Hamayun Khan
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan.
| | - Anwar Baig
- Department of Chemistry, Islamia College University, Peshawar, 25120, Pakistan
| | - Mahtab Faisal
- PCSIR Laboratories Complex, Peshawar, 25120, Pakistan
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Kashif Gul
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| |
Collapse
|
82
|
Rizwan K, Bilal M. Developments in advanced oxidation processes for removal of microplastics from aqueous matrices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86933-86953. [PMID: 36279055 DOI: 10.1007/s11356-022-23545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Continuous incorporation of microplastics (MPs) and their fragmented residues into the ecosystem has sparked significant scientific apprehensions about persistence, a multitude of sources, and toxicity impacts on human health and aquatic entities. Overcoming this multifaceted hazard necessitates the development of novel techniques with robust efficiencies to eliminate microplastics from the environmental compartments. Coagulation, flocculation, and membrane filtration are non-destructive techniques but necessitate extra steps for microplastic degradation, whereas biological means have been confirmed less efficient (less than 15% degradation). Recent reports have emphasized advanced oxidation processes (AOPs) as practical treatment alternatives, representing superior catalytic efficacy for microplastic degradation (≈30-95%). Nevertheless, additional investigations should be carried out to evaluate the performance of AOPs in degrading microplastics under real environmental matrices. Moreover, the detection of transformed metabolites, degradation mechanistic insights, and toxicity bioassays are required to substantiate AOP assumption as feasible remediation substitutes. This review focuses on the source, occurrence, discharge, transportation, and associated paramount health risks of microplastics. Advanced oxidation processes-assisted removal of microplastics from the aqueous matrices is thoroughly vetted with up-to-date findings. Factors affecting the degradation of MPs have been discussed in detail. In addition to the generalized mechanistic insights into photocatalytic degradation, the risk assessment of aging intermediates is also comprehended. Finally, the review was concluded by emphasizing current research gaps and incoming research tendencies to provide guidelines for efficiently addressing microplastic pollution.
Collapse
Affiliation(s)
- Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Ponzan, PL-60695, Poland
| |
Collapse
|
83
|
Fomin EO, Trofimchuk ES, Moskvina MA, Nikonorova NI. Features of Thermo-Oxidative Degradation and Pyrolysis of Nanocomposites Based on Porous Polyethylene and Silica. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
84
|
Choudhury M, Sahoo S, Samanta P, Tiwari A, Tiwari A, Chadha U, Bhardwaj P, Nalluri A, Eticha TK, Chakravorty A. COVID-19: An Accelerator for Global Plastic Consumption and Its Implications. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2022; 2022:1066350. [PMID: 36246469 PMCID: PMC9568321 DOI: 10.1155/2022/1066350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Plastic has been ingrained in our society. Repercussions on the usage of nonbiodegradable plastics and their problems have been recently realized. Despite its detrimental environmental impact, the COVID-19 epidemic has compelled worldwide citizens to increase their plastic use due to affordability and availability. The volume of hospital solid waste, particularly plastics, is overgrowing due to an unexpected increase in medical waste, culminating in the global waste management catastrophe. Henceforth, adopting good waste management practices along with appropriate technologies and viewing the current issue from a fresh perspective would be an opportunity in this current scenario. Accordingly, this review study will focus on the plastic waste scenario before and during the COVID-19 epidemic. This review also disseminates alternative disposal options and recommends practical solutions to lessen human reliance on traditional plastics. Further, the responsibilities of various legislative and regulatory authorities at the local, regional, and worldwide levels are addressed.
Collapse
Affiliation(s)
- Moharana Choudhury
- Environmental Research and Management Division, Voice of Environment (VoE), Guwahati, 781034 Assam, India
- Department of Environmental Science, Tezpur University, Tezpur, Assam, India
| | - Subhrajeet Sahoo
- Centre for Life Sciences, Vidyasagar University, Midnapore 721102, India
| | - Palas Samanta
- Department of Environmental Science, Sukanta Mahavidyalaya, University of North Bengal, Dhupguri, West Bengal, India
| | - Arushi Tiwari
- Department of Chemistry, Indian Institute of Technology (IIT), Madras, Tamil Nadu, India
| | - Alavya Tiwari
- School of Chemical Engineering (SCHEME), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Utkarsh Chadha
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
- Department of Materials Science and Engineering, Faculty of Applied Sciences and Engineering, School of Graduate Studies, University of Toronto, Toronto, Ontario, Canada M5S 2Z9
| | - Preetam Bhardwaj
- Centre of Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
| | - Abhishek Nalluri
- Department of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tolera Kuma Eticha
- Department of Biology, College of Natural and Computational Sciences, Ambo University, Ambo, Ethiopia
| | - Arghya Chakravorty
- Centre of Nanotechnology Research, Vellore Institute of Technology, Vellore 632014, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
- Research and Development Action Wing, Baranagar Baghajatin Social Welfare Organisation, Kolkata 700036, India
| |
Collapse
|
85
|
Maquart PO, Froehlich Y, Boyer S. Plastic pollution and infectious diseases. Lancet Planet Health 2022; 6:e842-e845. [PMID: 36208647 DOI: 10.1016/s2542-5196(22)00198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.
| | | | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| |
Collapse
|
86
|
Kim SH, Cho JY, Cho DH, Jung HJ, Kim BC, Bhatia SK, Park SH, Park K, Yang YH. Acceleration of Polybutylene Succinate Biodegradation by Terribacillus sp. JY49 Isolated from a Marine Environment. Polymers (Basel) 2022; 14:polym14193978. [PMID: 36235926 PMCID: PMC9571400 DOI: 10.3390/polym14193978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Polybutylene succinate (PBS) is a bioplastic substitute for synthetic plastics that are made from petroleum-based products such as polyethylene and polypropylene. However, the biodegradation rate of PBS is still low and similar to that of polylactic acid (PLA). Moreover, our knowledge about degrader species is limited to a few fungi and mixed consortia. Here, to identify a bacterial degrader to accelerate PBS degradation, we screened and isolated Terribacillus sp. JY49, which showed significant degradability. In order to optimize solid and liquid culture conditions, the effect of factors such as temperature, additional carbon sources, and salt concentrations on degradation was confirmed. We observed a degradation yield of 22.3% after 7 days when adding 1% of glucose. Additionally, NaCl was added to liquid media, and degradation yield was decreased but PBS films were broken into pieces. Comparing the degree of PBS degradation during 10 days, the degradation yield was 31.4% after 10 days at 30 °C. Alteration of physical properties of films was analyzed by using scanning electron microscopy (SEM), gel permeation chromatography (GPC), and Fourier transform infrared (FT-IR). In addition, Terribacillus sp. JY49 showed clear zones on poly(butylene adipate-co-terephthalate) (PBAT), polycaprolactone (PCL), and copolymers such as P(3HB-co-3HV) and P(3HV-co-4HB), exhibiting a broad spectrum of degradation activities on bioplastics. However, there was no significant difference in absorbance when esterase activity was examined for different types of bioplastics. Overall, Terribacillus sp. JY49 is a potential bacterial strain that can degrade PBS and other bioplastics, and this is the first report of Terribacillus sp. as a bioplastic degrader.
Collapse
Affiliation(s)
- Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Korea
- Correspondence: ; Tel.: +82-2-450-2-3936
| |
Collapse
|
87
|
Haque F, Fan C. Prospect of microplastic pollution control under the "New normal" concept beyond COVID-19 pandemic. JOURNAL OF CLEANER PRODUCTION 2022; 367:133027. [PMID: 35821718 PMCID: PMC9257196 DOI: 10.1016/j.jclepro.2022.133027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/19/2022] [Accepted: 07/02/2022] [Indexed: 05/04/2023]
Abstract
Coronavirus disease (COVID-19) has led to increasing demand for single-use plastic which aggravates the already existing plastic waste problem. Not only does the demand for personal protective equipment (PPE) increase, but also people shift their preference to online shopping and food delivery to comply with administrative policies for COVID-19 pandemic control. The used PPEs, packaging materials, and food containers may not be handled or recycled properly after their disposal. As a result, the mismanaged plastic waste is discharged into the environment and it may pose even greater risks after breaking into smaller fragments, which was regarded as the source of secondary microplastics (MPs, < 5 mm) or nanoplastics (NPs, < 1 μm). The main objective of this manuscript is to provide a review of the studies related to microplastic release due to pandemic-associated plastic waste. This study summarizes the limited work published on the ecotoxicological/toxicological effect of MPs/NPs released from PPE on aquatic organisms, soil organisms, as well as humans. Given the current status of research on MPs from COVID-related plastic waste, the immediate research directions needed on this topic were discussed.
Collapse
Affiliation(s)
- Fatima Haque
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da-An District, Taipei, Taiwan, 10617
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da-An District, Taipei, Taiwan, 10617
| |
Collapse
|
88
|
Pisani XG, Lompré JS, Pires A, Greco LL. Plastics in scene: A review of the effect of plastics in aquatic crustaceans. ENVIRONMENTAL RESEARCH 2022; 212:113484. [PMID: 35644492 DOI: 10.1016/j.envres.2022.113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution in aquatic environments is present in all compartments from surface water to benthic sediment, becoming a topic of emerging concern due to the internalization, retention time, and its effects on aquatic biota. Crustacea with nearly 70,000 species, broad distribution and different roles in the trophic webs is a significant target of the increasing plastic pollution. At least 98 publications in the last 10 years report the impact of plastics in crustaceans, all suggesting that this taxon is at high risk for ecosystem disadvantage by plastic contamination loads. This review compiles the current knowledge on physiological effects (endpoints) by plastic contamination analyzed in crustaceans in the last 10 years, highlighting their use as model species for ecotoxicological tests, sentinels species and bioindicators. Plastic contamination analyzed in this review includes macroplastic, microplastic, and nanoplastic, in a wide variety of types. The studies were focused on 38 marine species with an economic interest in fisheries and aquaculture; 14 freshwater with a higher frequency in standard test species and 4 estuarial and 3 mangrove species with ecological interest. The publications reviewed were divided into studies describing plastic presence in crustaceans without reporting toxic effects and those with analysis of plastic toxicity. Publications describing the plastic presence in the organisms show that the ingestion in individual effects and food-web transfer in ecological effects were the most frequent endpoints. The publications that analyzed plastic toxicity through survival, nutrition-metabolism-assimilation, and reproduction in individual effects, and bioaccumulation in ecological effects were the most frequent endpoints. This review gathers the available information on the use of crustaceans as model species in environmental impact for toxicity screening and hazard assessment. Besides, identifying knowledge gaps will let us propose some future directions in research and the effects on target fisheries species which involves a possible effect on human health.
Collapse
Affiliation(s)
- Ximena González Pisani
- Centro para El Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Puerto Madryn, Argentina; Instituto Patagónico Del Mar, Facultad de Ciencias Naturales y de La Salud, Universidad Nacional de La Patagonia "San Juan Bosco" (IPaM-UNPSJB), Puerto Madryn, Argentina.
| | - Julieta Sturla Lompré
- Centro para El Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Puerto Madryn, Argentina
| | - Adilia Pires
- Center for Environmental and Marine Studies (CESAM) & Departament of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Laura López Greco
- Universidad de Buenos Aires-CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de La Reproducción, Crecimiento y Nutrición de Crustáceos Decápodos, Buenos Aires, Argentina
| |
Collapse
|
89
|
Mészáros E, Bodor A, Szierer Á, Kovács E, Perei K, Tölgyesi C, Bátori Z, Feigl G. Indirect effects of COVID-19 on the environment: How plastic contamination from disposable surgical masks affect early development of plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129255. [PMID: 35739774 PMCID: PMC9158377 DOI: 10.1016/j.jhazmat.2022.129255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/23/2023]
Abstract
Personal protective equipment, used extensively during the COVID-19 pandemic, heavily burdened the environment due to improper waste management. Owing to their fibrous structure, layered non-woven polypropylene (PP) disposable masks release secondary fragments at a much higher rate than other plastic waste types, thus, posing a barely understood new form of ecological hazard. Here we show that PP mask fragments of different sizes induce morphogenic responses in plants during their early development. Using in vitro systems and soil-filled rhizotrons, we found that several PP mask treatments modified the root growth of Brassica napus (L.) regardless of the experimental system. The environment around the root and mask fragments seemed to influence the effect of PP fabric fragment contamination on early root growth. In soil, primary root length was clearly inhibited by larger PP mask fragments at 1 % concentration, while the two smallest sizes of applied mask fragments caused distinct, concentration-dependent changes in the lateral root numbers. Our results indicate that PP can act as a stressor: contamination by PP surgical masks affects plant growth and hence, warrants attention. Further investigations regarding the effects of plastic pollution on plant-soil interactions involving various soil types are urgently needed.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Hungary
| | - Attila Bodor
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary; Department of Biotechnology, University of Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Hungary
| | | | - Zoltán Bátori
- Department of Ecology, University of Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Hungary.
| |
Collapse
|
90
|
Cho JY, Kim SH, Cho DH, Jung HJ, Chan Kim B, Bhatia SK, Gurav R, Lee J, Park SH, Park K, Joo HS, Yang YH. Simultaneous monitoring of each component on degradation of blended bioplastic using gas chromatography-mass spectrometry. Anal Biochem 2022; 655:114832. [DOI: 10.1016/j.ab.2022.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
|
91
|
Current Prospects for Plastic Waste Treatment. Polymers (Basel) 2022; 14:polym14153133. [PMID: 35956648 PMCID: PMC9370925 DOI: 10.3390/polym14153133] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/17/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
The excessive amount of global plastic produced over the past century, together with poor waste management, has raised concerns about environmental sustainability. Plastic recycling has become a practical approach for diminishing plastic waste and maintaining sustainability among plastic waste management methods. Chemical and mechanical recycling are the typical approaches to recycling plastic waste, with a simple process, low cost, environmentally friendly process, and potential profitability. Several plastic materials, such as polypropylene, polystyrene, polyvinyl chloride, high-density polyethylene, low-density polyethylene, and polyurethanes, can be recycled with chemical and mechanical recycling approaches. Nevertheless, due to plastic waste’s varying physical and chemical properties, plastic waste separation becomes a challenge. Hence, a reliable and effective plastic waste separation technology is critical for increasing plastic waste’s value and recycling rate. Integrating recycling and plastic waste separation technologies would be an efficient method for reducing the accumulation of environmental contaminants produced by plastic waste, especially in industrial uses. This review addresses recent advances in plastic waste recycling technology, mainly with chemical recycling. The article also discusses the current recycling technology for various plastic materials.
Collapse
|
92
|
A Brief Review of Poly(Vinyl Chloride) (PVC) Recycling. Polymers (Basel) 2022; 14:polym14153035. [PMID: 35893999 PMCID: PMC9332854 DOI: 10.3390/polym14153035] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Bearing in mind the aspiration of the world economy to create as complete a closed loop of raw materials and energy as possible, it is important to know the individual links in such a system and to systematise the knowledge. Polymer materials, especially poly(vinyl chloride) (PVC), are considered harmful to the environment by a large part of society. The work presents a literature review on mechanical and feedstock recycling. The advantages and disadvantages of various recycling methods and their development perspectives are presented. The general characteristics of PVC are also described. In conclusion, it is stated that there are currently high recycling possibilities for PVC material and that intensive work is underway on the development of feedstock recycling. Based on the literature review, it was found that PVC certainly meets the requirements for materials involved in the circular economy.
Collapse
|
93
|
Closing of Carbon Cycle by Waste Gasification for Circular Economy Implementation in Poland. ENERGIES 2022. [DOI: 10.3390/en15144983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Domestic coal and waste resources, which are valuable sources of carbon, can support efforts to transform a linear economy into a circular carbon economy. Their use, as an alternative to conventional, imported fossil resources (crude oil, natural gas) for chemical production, provides an opportunity for Poland to solve problems related to competitiveness, security of supply, and sustainable development in various industries. This is important for Poland because it can provide it with a long-term perspective of economic growth and development, taking into account global trends (e.g., the Paris Agreement) and EU legislation. The article presents a concept to support the transformation from linear toward a circular carbon economy under Polish conditions. The carried-out analyses showed that coal, RDF, and plastic waste fuels can be a valuable source of raw material for the development of the chemical industry in Poland. Due to the assumed availability of plastic waste and the loss of carbon in the production process, coal consumption is estimated at 10 million t/yr, both in the medium- and long-term. In case where coal consumption is reduced and an additional source of ‘green hydrogen’ is used, CO2 emissions could be reduced even by 98% by 2050. The presented results show the technical and economic feasibility of the proposed solution and could be the basis for development of the roadmap for transition of the linear to circular economy under Polish condition.
Collapse
|
94
|
Topuz F, Oldal DG, Szekely G. Valorization of Polyethylene Terephthalate (PET) Plastic Wastes as Nanofibrous Membranes for Oil Removal: Sustainable Solution for Plastic Waste and Oil Pollution. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fuat Topuz
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Diana G. Oldal
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
95
|
Vikhareva IN, Aminova GK, Mazitova AK. Development of a Highly Efficient Environmentally Friendly Plasticizer. Polymers (Basel) 2022; 14:polym14091888. [PMID: 35567061 PMCID: PMC9100690 DOI: 10.3390/polym14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
The purpose of this work is the synthesis of adipic acid ester and the study of the possibility of its use as a PVC plasticizer. The resulting butyl phenoxyethyl adipate was characterized by Fourier-transform infrared spectrometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The compatibility, effectiveness and plasticizing effect of butyl phenoxyethyl adipate in comparison with dioctylphthalate (DOP) were determined. The new environmentally friendly plasticizer has good compatibility with PVC and high thermal stability. The effectiveness of the plasticizing action of adipate based on the glass-transition temperature was 132.2 °C in relation to pure PVC and 7.7 °C in comparison to compounds based on DOP. An increase in the fluidity of the melt of polyvinyl chloride (PVC) compounds in the temperature range of 160–205 °C by 19–50% confirms a decrease in the energy intensity of the processes of manufacturing and the processing of polymer materials containing a new additive.
Collapse
|
96
|
Kasmuri N, Tarmizi NAA, Mojiri A. Occurrence, impact, toxicity, and degradation methods of microplastics in environment-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30820-30836. [PMID: 35091947 DOI: 10.1007/s11356-021-18268-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Microplastic defines as a tiny plastic particle that has a size of less than 5 mm and is ubiquitous in the environment. Due to the tiny size, this microplastic adversely affected the environment, notably aquatic life via ingestion, choking, and entanglement. This microplastic is arduous to degrade as it takes a thousand years due to the properties of plastic itself and consequently remains in nature. In dealing with microplastic issues, this paper reflects the occurrence, impact, toxicity, and degradation methods of microplastics in the environment including physical, chemical, and biological treatments. Here, the physical treatment methods include incineration treatment, ultraviolet (UV), and photocatalytic. The incineration process contributes to environmental pollution due to the release of toxic gases into the atmosphere. In addition, chemical treatments for plastic waste are the degradation process involving chemical additives such as ethylene glycol (EG), nano-magnesium oxide (MgO), diethylene glycol (DEG), and calcium or zinc (Ca/Zn) stearate as a catalyst. These treatments depend on the chemicals that can affect human health and the ecosystem. The biodegradation treatment using bacterial and fungal species can consume the microplastic without disrupting the surrounding environment and biota. It includes recent findings on the biodegradation of microplastic under aerobic and anaerobic conditions. Thus, biodegradation can be considered the best option to degrade microplastic as green and sustainable technology.
Collapse
Affiliation(s)
- Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, University Technology MARA, 40450, Shah Alam, Selangor, Malaysia.
| | - Nur Aliah Ahmad Tarmizi
- School of Civil Engineering, College of Engineering, University Technology MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, 739-8527, Japan
| |
Collapse
|
97
|
Ahmad S, Ahmad HW, Bhatt P. Microbial adaptation and impact into the pesticide's degradation. Arch Microbiol 2022; 204:288. [PMID: 35482163 DOI: 10.1007/s00203-022-02899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/13/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The imprudent use of agrochemicals to control agriculture and household pests is unsafe for the environment. Hence, to protect the environment and diversity of living organisms, the degradation of pesticides has received widespread attention. There are different physical, chemical, and biological methods used to remediate pesticides in contaminated sites. Compared to other methods, biological approaches and their associated techniques are more effective, less expensive and eco-friendly. Microbes secrete several enzymes that can attach pesticides, break down organic compounds, and then convert toxic substances into carbon and water. Thus, there is a lack of knowledge regarding the functional genes and genomic potential of microbial species for the removal of emerging pollutants. Here we address the knowledge gaps by highlighting systematic biology and their role in adaptation of microbial species from agricultural soils with a history of pesticide usage and profiling shifts in functional genes and microbial taxa abundance. Moreover, by co-metabolism, the microbial species fulfill their nutritional requirements and perform more efficiently than single microbial-free cells. But in an open environment, free cells of microbes are not much prominent in the degradation process due to environmental conditions, incompatibilities with mechanical equipment and difficulties associated with evenly distributing inoculum through the agroecosystem. This review highlights emerging techniques involving the removal of pesticides in a field-scale environment like immobilization, biobed, biocomposites, biochar, biofilms, and bioreactors. In these techniques, different microbial cells, enzymes, natural fibers, and strains are used for the effective biodegradation of xenobiotic pesticides.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture and Rural Affairs; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Pankaj Bhatt
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47906, USA.
| |
Collapse
|
98
|
Bilal M, Qamar SA, Qamar M, Yadav V, Taherzadeh MJ, Lam SS, Iqbal HMN. Bioprospecting lignin biomass into environmentally friendly polymers—Applied perspective to reconcile sustainable circular bioeconomy. BIOMASS CONVERSION AND BIOREFINERY 2022. [DOI: 10.1007/s13399-022-02600-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
99
|
Conversion of Plastic Waste into Supports for Nanostructured Heterogeneous Catalysts: Application in Environmental Remediation. SURFACES 2021. [DOI: 10.3390/surfaces5010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastics are ubiquitous in our society and are used in many industries, such as packaging, electronics, the automotive industry, and medical and health sectors, and plastic waste is among the types of waste of higher environmental concern. The increase in the amount of plastic waste produced daily has increased environmental problems, such as pollution by micro-plastics, contamination of the food chain, biodiversity degradation and economic losses. The selective and efficient conversion of plastic waste for applications in environmental remediation, such as by obtaining composites, is a strategy of the scientific community for the recovery of plastic waste. The development of polymeric supports for efficient, sustainable, and low-cost heterogeneous catalysts for the treatment of organic/inorganic contaminants is highly desirable yet still a great challenge; this will be the main focus of this work. Common commercial polymers, like polystyrene, polypropylene, polyethylene therephthalate, polyethylene and polyvinyl chloride, are addressed herein, as are their main physicochemical properties, such as molecular mass, degree of crystallinity and others. Additionally, we discuss the environmental and health risks of plastic debris and the main recycling technologies as well as their issues and environmental impact. The use of nanomaterials raises concerns about toxicity and reinforces the need to apply supports; this means that the recycling of plastics in this way may tackle two issues. Finally, we dissert about the advances in turning plastic waste into support for nanocatalysts for environmental remediation, mainly metal and metal oxide nanoparticles.
Collapse
|
100
|
Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review. ENERGIES 2021. [DOI: 10.3390/en14248421] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plastic waste generation has increased dramatically every day. Indiscriminate disposal of plastic wastes can lead to several negative impacts on the environment, such as a significant increase in greenhouse gas emissions and water pollution. Therefore, it is wise to think of other alternatives to reduce plastic wastes without affecting the environment, including converting them into valuable products using effective methods such as pyrolysis. Products from the pyrolysis process encompassing of liquid, gas, and solid residues (char) can be turned into beneficial products, as the liquid product can be used as a commercial fuel and char can function as an excellent adsorbent. The char produced from plastic wastes could be modified to enhance carbon dioxide (CO2) adsorption performance. Therefore, this review attempts to compile relevant knowledge on the potential of adsorbents derived from waste plastic to capture CO2. This review was performed in accordance with PRISMA guidelines. The plastic-waste-derived activated carbon, as an adsorbent, could provide a promising method to solve the two environmental issues (CO2 emission and solid management) simultaneously. In addition, the future perspective on char derived from waste plastics is highlighted.
Collapse
|