51
|
White D, de Vries G, Dawes A. Microtubule Patterning in the Presence of Stationary Motor Distributions. Bull Math Biol 2014; 76:1917-40. [DOI: 10.1007/s11538-014-9991-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/24/2014] [Indexed: 11/24/2022]
|
52
|
Scholey JE, Nithianantham S, Scholey JM, Al-Bassam J. Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. eLife 2014; 3:e02217. [PMID: 24714498 PMCID: PMC3978770 DOI: 10.7554/elife.02217] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chromosome segregation during mitosis depends upon Kinesin-5 motors, which display a conserved, bipolar homotetrameric organization consisting of two motor dimers at opposite ends of a central rod. Kinesin-5 motors crosslink adjacent microtubules to drive or constrain their sliding apart, but the structural basis of their organization is unknown. In this study, we report the atomic structure of the bipolar assembly (BASS) domain that directs four Kinesin-5 subunits to form a bipolar minifilament. BASS is a novel 26-nm four-helix bundle, consisting of two anti-parallel coiled-coils at its center, stabilized by alternating hydrophobic and ionic four-helical interfaces, which based on mutagenesis experiments, are critical for tetramerization. Strikingly, N-terminal BASS helices bend as they emerge from the central bundle, swapping partner helices, to form dimeric parallel coiled-coils at both ends, which are offset by 90°. We propose that BASS is a mechanically stable, plectonemically-coiled junction, transmitting forces between Kinesin-5 motor dimers during microtubule sliding. DOI: http://dx.doi.org/10.7554/eLife.02217.001.
Collapse
Affiliation(s)
- Jessica E Scholey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| | | | | | | |
Collapse
|
53
|
Analysis of mitotic protein dynamics and function in Drosophila embryos by live cell imaging and quantitative modeling. Methods Mol Biol 2014; 1136:3-30. [PMID: 24633790 DOI: 10.1007/978-1-4939-0329-0_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Mitosis depends upon the mitotic spindle, a dynamic protein machine that uses ensembles of dynamic microtubules (MTs) and MT-based motor proteins to assemble itself, control its own length (pole-pole spacing), and segregate chromosomes during anaphase A (chromosome-to-pole motility) and anaphase B (spindle elongation). In this review, we describe how the molecular and biophysical mechanisms of these processes can be analyzed in the syncytial Drosophila embryo by combining (1) time-lapse imaging and other fluorescence light microscopy techniques to study the dynamics of mitotic proteins such as tubulins, mitotic motors, and chromosome or centrosome proteins; (2) the perturbation of specific mitotic protein function using microinjected inhibitors (e.g., antibodies) or mutants to infer protein function; and (3) mathematical modeling of the qualitative models derived from these experiments, which can then be used to make predictions which are in turn tested experimentally. We provide details of the methods we use for embryo preparation, fluorescence imaging, and mathematical modeling.
Collapse
|
54
|
Edamatsu M. Bidirectional motility of the fission yeast kinesin-5, Cut7. Biochem Biophys Res Commun 2014; 446:231-4. [PMID: 24589736 DOI: 10.1016/j.bbrc.2014.02.106] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 02/21/2014] [Indexed: 01/19/2023]
Abstract
Kinesin-5 is a homotetrameric motor with its motor domain at the N-terminus. Kinesin-5 crosslinks microtubules and functions in separating spindle poles during mitosis. In this study, the motile properties of Cut7, fission yeast kinesin-5, were examined for the first time. In in vitro motility assays, full-length Cut7 moved toward minus-end of microtubules, but the N-terminal half of Cut7 moved toward the opposite direction. Furthermore, additional truncated constructs lacking the N-terminal or C-terminal regions, but still contained the motor domain, did not switch the motile direction. These indicated that Cut7 was a bidirectional motor, and microtubule binding regions at the N-terminus and C-terminus were not involved in its directionality.
Collapse
Affiliation(s)
- Masaki Edamatsu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
55
|
Wang H, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM. Patronin mediates a switch from kinesin-13-dependent poleward flux to anaphase B spindle elongation. J Cell Biol 2013; 203:35-46. [PMID: 24100293 PMCID: PMC3798244 DOI: 10.1083/jcb.201306001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022] Open
Abstract
Anaphase B spindle elongation contributes to chromosome segregation during Drosophila melanogaster embryo mitosis. We propose that this process is driven by a kinesin-5-generated interpolar microtubule (MT; ipMT) sliding filament mechanism that engages when poleward flux is turned off. In this paper, we present evidence that anaphase B is induced by the minus end-stabilizing protein patronin, which antagonizes the kinesin-13 depolymerase KLP10A at spindle poles, thereby switching off the depolymerization of the minus ends of outwardly sliding ipMTs to suppress flux. Although intact cortices, kinetochore MTs, and midzone augmentation are dispensable, this patronin-based change in ipMT minus-end dynamics is sufficient to induce the elongation of spindles capable of separating chromosomes.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Molecular and Cell Biology, University of California, Davis, Davis, CA 95616
| | | | | | | |
Collapse
|
56
|
Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 2013; 531:133-49. [PMID: 23954229 DOI: 10.1016/j.gene.2013.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022]
Abstract
Kinesin motor proteins comprise an ATPase superfamily that works hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on multi-faceted analyses of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic.
Collapse
|
57
|
Salemi JD, McGilvray PT, Maresca TJ. Development of a Drosophila cell-based error correction assay. Front Oncol 2013; 3:187. [PMID: 23888285 PMCID: PMC3719216 DOI: 10.3389/fonc.2013.00187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022] Open
Abstract
Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT) interactions before anaphase onset results in chromosomal instability (CIN), which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F) is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5). Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due, in part, to kinesin-14 (Ncd) activity when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC). Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and CIN.
Collapse
Affiliation(s)
- Jeffrey D Salemi
- Biology Department, University of Massachusetts , Amherst, MA , USA
| | | | | |
Collapse
|
58
|
The bipolar assembly domain of the mitotic motor kinesin-5. Nat Commun 2013; 4:1343. [PMID: 23299893 PMCID: PMC3562449 DOI: 10.1038/ncomms2348] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/30/2012] [Indexed: 01/13/2023] Open
Abstract
An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5's bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil 'BASS' (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments.
Collapse
|
59
|
Abstract
Successful completion of diverse cellular functions, such as mitosis, positioning organelles, and assembling cilia, depends on the proper assembly of microtubule-based structures. While essentially all of the proteins needed to assemble these structures are now known, we cannot explain how even simple features such as size and shape are determined. As steps toward filling this knowledge gap, there have been several recent efforts toward reconstituting, with purified proteins, the basic structural motifs that recur in diverse cytoskeletal arrays. We discuss these studies and highlight how they shed light on the self-organized assembly of complex and dynamic cytoskeleton-based cellular structures.
Collapse
|
60
|
Goulet A, Moores C. New insights into the mechanism of force generation by kinesin-5 molecular motors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:419-66. [PMID: 23809441 DOI: 10.1016/b978-0-12-407696-9.00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinesin-5 motors are members of a superfamily of microtubule-dependent ATPases and are widely conserved among eukaryotes. Kinesin-5s typically form homotetramers with pairs of motor domains located at either end of a dumbbell-shaped molecule. This quaternary structure enables cross-linking and ATP-driven sliding of pairs of microtubules, although the exact molecular mechanism of this activity is still unclear. Kinesin-5 function has been characterized in greatest detail in cell division, although a number of interphase roles have also been defined. The kinesin-5 ATPase is tuned for slow microtubule sliding rather than cellular transport and-in vertebrates-can be inhibited specifically by allosteric small molecules currently in cancer clinical trials. The biophysical and structural basis of kinesin-5 mechanochemistry is being elucidated and has provided further insight into kinesin-5 activities. However, it is likely that the precise mechanism of these important motors has evolved according to functional context and regulation in individual organisms.
Collapse
Affiliation(s)
- Adeline Goulet
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|
61
|
A kinesin-mediated mechanism that couples centrosomes to nuclei. Cell Mol Life Sci 2012; 70:1285-96. [PMID: 23161062 DOI: 10.1007/s00018-012-1205-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 10/03/2012] [Accepted: 10/22/2012] [Indexed: 12/13/2022]
Abstract
The M-type kinesin isoform, Kif9, has recently been implicated in maintaining a physical connection between the centrosome and nucleus in Dictyostelium discoideum. However, the mechanism by which Kif9 functions to link these two organelles remains obscure. Here we demonstrate that the Kif9 protein is localized to the nuclear envelope and is concentrated in the region underlying the centrosome point of attachment. Nuclear anchorage appears mediated through a specialized transmembrane domain located in the carboxyl terminus. Kif9 interacts with microtubules in in vitro binding assays and effects an endwise depolymerization of the polymer. These results suggest a model whereby Kif9 is anchored to the nucleus and generates a pulling force that reels the centrosome up against the nucleus. This is a novel activity for a kinesin motor, one important for progression of cells into mitosis and to ensure centrosome-nuclear parity in a multinuclear environment.
Collapse
|
62
|
Abstract
Anaphase B spindle elongation plays an important role in chromosome segregation. In the present paper, we discuss our model for anaphase B in Drosophila syncytial embryos, in which spindle elongation depends on an ip (interpolar) MT (microtubule) sliding filament mechanism generated by homotetrameric kinesin-5 motors acting in concert with poleward ipMT flux, which acts as an 'on/off' switch. Specifically, the pre-anaphase B spindle is maintained at a steady-state length by the balance between ipMT sliding and ipMT depolymerization at spindle poles, producing poleward flux. Cyclin B degradation at anaphase B onset triggers: (i) an MT catastrophe gradient causing ipMT plus ends to invade the overlap zone where ipMT sliding forces are generated; and (ii) the inhibition of ipMT minus-end depolymerization so flux is turned 'off', tipping the balance of forces to allow outward ipMT sliding to push apart the spindle poles. We briefly comment on the relationship of this model to anaphase B in other systems.
Collapse
|
63
|
Ramamurthy B, Cao W, De la Cruz EM, Mooseker MS. Plus-end directed myosins accelerate actin filament sliding by single-headed myosin VI. Cytoskeleton (Hoboken) 2012; 69:59-69. [PMID: 22213699 DOI: 10.1002/cm.21002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022]
Abstract
Myosin VI (Myo6) is unique among myosins in that it moves toward the minus (pointed) end of the actin filament. Thus to exert tension on, or move cargo along an actin filament, Myo6 is working against potentially multiple plus (barbed)-end myosins. To test the effect of plus-end motors on Myo6, the gliding actin filament assay was used to assess the motility of single-headed Myo6 in the absence and presence of cardiac myosin II (Myo2) and myosin Va (Myo5a). Myo6 alone exhibited a filament gliding velocities of 60.34 ± 13.68 nm/s. Addition of either Myo2 or Myo5a, at densities below that required to promote plus-end movement resulted in an increase in Myo6 velocity (~100-150% increase). Movement in the presence of these plus-end myosins was minus-end directed as determined using polarity tagged filaments. High densities of Myo2 or Myo5a were required to convert to plus-end directed motility indicating that Myo6 is a potent inhibitor of Myo2 and Myo5a. Previous studies have shown that two-headed Myo6 slows and then stalls in an anchored state under load. Consistent with these studies, velocity of a two headed heavy mero myosin form of Myo6 was unaffected by Myo5a at low densities, and was inhibited at high Myo5a densities.
Collapse
Affiliation(s)
- Bhagavathi Ramamurthy
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | | | |
Collapse
|
64
|
Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat Cell Biol 2011; 13:1259-64. [DOI: 10.1038/ncb2323] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022]
|
65
|
Charlebois BD, Kollu S, Schek HT, Compton DA, Hunt AJ. Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages. Biophys J 2011; 100:1756-64. [PMID: 21463589 DOI: 10.1016/j.bpj.2011.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 01/15/2011] [Accepted: 02/08/2011] [Indexed: 02/05/2023] Open
Abstract
During cell division, chromosomes must faithfully segregate to maintain genome integrity, and this dynamic mechanical process is driven by the macromolecular machinery of the mitotic spindle. However, little is known about spindle mechanics. For example, spindle microtubules are organized by numerous cross-linking proteins yet the mechanical properties of those cross-links remain unexplored. To examine the mechanical properties of microtubule cross-links we applied optical trapping to mitotic asters that form in mammalian mitotic extracts. These asters are foci of microtubules, motors, and microtubule-associated proteins that reflect many of the functional properties of spindle poles and represent centrosome-independent spindle-pole analogs. We observed bidirectional motor-driven microtubule movements, showing that microtubule linkages within asters are remarkably compliant (mean stiffness 0.025 pN/nm) and mediated by only a handful of cross-links. Depleting the motor Eg5 reduced this stiffness, indicating that Eg5 contributes to the mechanical properties of microtubule asters in a manner consistent with its localization to spindle poles in cells. We propose that compliant linkages among microtubules provide a mechanical architecture capable of accommodating microtubule movements and distributing force among microtubules without loss of pole integrity-a mechanical paradigm that may be important throughout the spindle.
Collapse
Affiliation(s)
- Blake D Charlebois
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
66
|
Wang H, Brust-Mascher I, Cheerambathur D, Scholey JM. Coupling between microtubule sliding, plus-end growth and spindle length revealed by kinesin-8 depletion. Cytoskeleton (Hoboken) 2011; 67:715-28. [PMID: 20814910 DOI: 10.1002/cm.20482] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitotic spindle length control requires coordination between microtubule (MT) dynamics and motor-generated forces. To investigate how MT plus-end polymerization contributes to spindle length in Drosophila embryos, we studied the dynamics of the MT plus-end depolymerase, kinesin-8, and the effects of kinesin-8 inhibition using mutants and antibody microinjection. As expected, kinesin-8 was found to contribute to anaphase A. Furthermore, kinesin-8 depletion caused: (i) excessive polymerization of interpolar (ip) MT plus ends, which "overgrow" to penetrate distal half spindles; (ii) an increase in the poleward ipMT sliding rate that is coupled to MT plus-end polymerization; (iii) premature spindle elongation during metaphase/anaphase A; and (iv) an increase in the anaphase B spindle elongation rate which correlates linearly with the MT sliding rate. This is best explained by a revised "ipMT sliding/minus-end depolymerization" model for spindle length control which incorporates a coupling between ipMT plus end dynamics and the outward ipMT sliding that drives poleward flux and spindle elongation.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Molecular and Cell Biology, One Shields Avenue, University of California Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
67
|
Weinger JS, Qiu M, Yang G, Kapoor TM. A nonmotor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Curr Biol 2011; 21:154-60. [PMID: 21236672 PMCID: PMC3049310 DOI: 10.1016/j.cub.2010.12.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 01/03/2023]
Abstract
Kinesin-5, a widely conserved motor protein required for assembly of the bipolar mitotic spindle in eukaryotes, forms homotetramers with two pairs of motor domains positioned at opposite ends of a dumbbell-shaped molecule [1-3]. It has long been assumed that this configuration of motor domains is the basis of kinesin-5's ability to drive relative sliding of microtubules [2, 4, 5]. Recently, it was suggested that in addition to the N-terminal motor domain, kinesin-5 also has a nonmotor microtubule binding site in its C terminus [6]. However, it is not known how the nonmotor domain contributes to motor activity, or how a kinesin-5 tetramer utilizes a combination of four motor and four nonmotor microtubule binding sites for its microtubule organizing functions. Here we show, in single molecule assays, that kinesin-5 homotetramers require the nonmotor C terminus for crosslinking and relative sliding of two microtubules. Remarkably, this domain enhances kinesin-5's microtubule binding without substantially reducing motor activity. Our results suggest that tetramerization of kinesin-5's low-processivity motor domains is not sufficient for microtubule sliding because the motor domains alone are unlikely to maintain persistent microtubule crosslinks. Rather, kinesin-5 utilizes nonmotor microtubule binding sites to tune its microtubule attachment dynamics, enabling it to efficiently align and sort microtubules during metaphase spindle assembly and function.
Collapse
Affiliation(s)
- Joshua S. Weinger
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Minhua Qiu
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ge Yang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
68
|
Abstract
The mitotic spindle accurately segregates genetic instructions by moving chromosomes to spindle poles (anaphase A) and separating the poles (anaphase B) so that, in general, the chromosomes and poles are positioned near the centers of the nascent daughter cell products of each cell division. Because the size of different types of dividing cells, and thus the spacing of their daughter cell centers, can vary significantly, the length of the metaphase or postanaphase B spindle often scales with cell size. However, significant exceptions to this scaling rule occur, revealing the existence of cell size–independent, spindle-associated mechanisms of spindle length control. The control of spindle length reflects the action of mitotic force-generating mechanisms, and its study may illuminate general principles by which cells regulate the size of internal structures. Here we review molecules and mechanisms that control spindle length, how these mechanisms are deployed in different systems, and some quantitative models that describe the control of spindle length.
Collapse
Affiliation(s)
- Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
| | | |
Collapse
|
69
|
Affiliation(s)
- Sharyn A Endow
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | |
Collapse
|
70
|
Leduc C, Pavin N, Jülicher F, Diez S. Collective behavior of antagonistically acting kinesin-1 motors. PHYSICAL REVIEW LETTERS 2010; 105:128103. [PMID: 20867677 DOI: 10.1103/physrevlett.105.128103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Indexed: 05/29/2023]
Abstract
In many subcellular force-generating systems, groups of motor proteins act antagonistically. Here, we present an experimental study of the tug of war between superprocessive kinesin-1 motors acting on antiparallel microtubule doublets in vitro. We found distinct modes of slow and fast movements, as well as sharp transitions between these modes and regions of coexistence. We compare our experimental results to a quantitative theory based on the physical properties of individual motors. Our results show that mechanical interactions between motors can collectively generate coexisting transport regimes with distinct velocities.
Collapse
Affiliation(s)
- Cecile Leduc
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | | | | | | |
Collapse
|
71
|
Civelekoglu-Scholey G, Scholey JM. Mitotic force generators and chromosome segregation. Cell Mol Life Sci 2010; 67:2231-50. [PMID: 20221784 PMCID: PMC2883081 DOI: 10.1007/s00018-010-0326-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 10/31/2022]
Abstract
The mitotic spindle uses dynamic microtubules and mitotic motors to generate the pico-Newton scale forces that are needed to drive the mitotic movements that underlie chromosome capture, alignment and segregation. Here, we consider the biophysical and molecular basis of force-generation for chromosome movements in the spindle, and, with reference to the Drosophila embryo mitotic spindle, we briefly discuss how mathematical modeling can complement experimental analysis to illuminate the mechanisms of chromosome-to-pole motility during anaphase A and spindle elongation during anaphase B.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cell Biology, University of California at Davis, 149 Briggs Hall, One Shields Avenue, Davis, CA 95616 USA
| | - Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, 149 Briggs Hall, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
72
|
Hentrich C, Surrey T. Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 2010; 189:465-80. [PMID: 20439998 PMCID: PMC2867311 DOI: 10.1083/jcb.200910125] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During cell division, different molecular motors act synergistically to rearrange microtubules. Minus end-directed motors are thought to have a dual role: focusing microtubule ends to poles and establishing together with plus end-directed motors a balance of force between antiparallel microtubules in the spindle. We study here the competing action of Xenopus laevis kinesin-14 and -5 in vitro in situations in which these motors with opposite directionality cross-link and slide microtubules. We find that full-length kinesin-14 can form microtubule asters without additional factors, whereas kinesin-5 does not, likely reflecting an adaptation to mitotic function. A stable balance of force is not established between two antiparallel microtubules with these motors. Instead, directional instability is generated, promoting efficient motor and microtubule sorting. A nonmotor microtubule cross-linker can suppress directional instability but also impedes microtubule sorting, illustrating a conflict between stability and dynamicity of organization. These results establish the basic organizational properties of these antagonistic mitotic motors and a microtubule bundler.
Collapse
Affiliation(s)
- Christian Hentrich
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | | |
Collapse
|
73
|
Lakämper S, Thiede C, Düselder A, Reiter S, Korneev MJ, Kapitein LC, Peterman EJG, Schmidt CF. The effect of monastrol on the processive motility of a dimeric kinesin-5 head/kinesin-1 stalk chimera. J Mol Biol 2010; 399:1-8. [PMID: 20227420 DOI: 10.1016/j.jmb.2010.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/26/2010] [Accepted: 03/03/2010] [Indexed: 12/24/2022]
Abstract
Controlled activity of several kinesin motors is required for the proper assembly of the mitotic spindle. Eg5, a homotetrameric bipolar kinesin-5 from Xenopus laevis, can cross-link and slide anti-parallel microtubules apart by a motility mechanism comprising diffusional and directional modes. How this mechanism is regulated, possibly by the tail domains of the opposing motors, is poorly understood. In order to explore the basic unregulated kinesin-5 motor activity, we generated a stably dimeric kinesin-5 construct, Eg5Kin, consisting of the motor domain and neck linker of Eg5 and the neck coiled coil of Drosophila melanogaster kinesin-1 (DmKHC). In single-molecule motility assays, we found this chimera to be highly processive. In addition, we studied the effect of the kinesin-5-specific inhibitor monastrol using single-molecule fluorescence assays. We found that monastrol reduced the length of processive runs, but strikingly did not affect velocity. Quantitative analysis of monastrol dose dependence suggests that two bound monastrol molecules are required to be bound to an Eg5Kin dimer to terminate a run.
Collapse
Affiliation(s)
- Stefan Lakämper
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Kunwar A, Mogilner A. Robust transport by multiple motors with nonlinear force-velocity relations and stochastic load sharing. Phys Biol 2010; 7:16012. [PMID: 20147778 PMCID: PMC2858005 DOI: 10.1088/1478-3975/7/1/016012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transport by processive molecular motors plays an important role in many cell biological phenomena. In many cases, motors work together to transport cargos in the cell, so it is important to understand the mechanics of the multiple motors. Based on earlier modeling efforts, here we study effects of nonlinear force-velocity relations and stochastic load sharing on multiple motor transport. We find that when two or three motors transport the cargo, then the nonlinear and stochastic effects compensate so that the mechanical properties of the transport are robust. Similarly, the transport is insensitive to compliance of the cargo-motor links. Furthermore, the rate of movement against moderate loads is not improved by increasing the small number of motors. When the motor number is greater than 4, correlations between the motors become negligible, and the earlier analytical mean-field theory of the multiple motor transport holds. We predict that the effective diffusion of the cargo driven by the multiple motors under load increases by an order of magnitude compared to that for the single motor. Finally, our simulations predict that the stochastic effects are responsible for a significant dispersion of velocities generated by the 'tug-of-war' of the multiple opposing motors.
Collapse
Affiliation(s)
- Ambarish Kunwar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | - Alexander Mogilner
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
- Department of Mathematics, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
75
|
Civelekoglu-Scholey G, Tao L, Brust-Mascher I, Wollman R, Scholey JM. Prometaphase spindle maintenance by an antagonistic motor-dependent force balance made robust by a disassembling lamin-B envelope. ACTA ACUST UNITED AC 2010; 188:49-68. [PMID: 20065089 PMCID: PMC2812851 DOI: 10.1083/jcb.200908150] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We tested the classical hypothesis that astral, prometaphase bipolar mitotic spindles are maintained by balanced outward and inward forces exerted on spindle poles by kinesin-5 and -14 using modeling of in vitro and in vivo data from Drosophila melanogaster embryos. Throughout prometaphase, puncta of both motors aligned on interpolar microtubules (MTs [ipMTs]), and motor perturbation changed spindle length, as predicted. Competitive motility of purified kinesin-5 and -14 was well described by a stochastic, opposing power stroke model incorporating motor kinetics and load-dependent detachment. Motor parameters from this model were applied to a new stochastic force-balance model for prometaphase spindles, providing a good fit to data from embryos. Maintenance of virtual spindles required dynamic ipMTs and a narrow range of kinesin-5 to kinesin-14 ratios matching that found in embryos. Functional perturbation and modeling suggest that this range can be extended significantly by a disassembling lamin-B envelope that surrounds the prometaphase spindle and augments the finely tuned, antagonistic kinesin force balance to maintain robust prometaphase spindles as MTs assemble and chromosomes are pushed to the equator.
Collapse
Affiliation(s)
- Gul Civelekoglu-Scholey
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
76
|
Gatlin JC, Bloom K. Microtubule motors in eukaryotic spindle assembly and maintenance. Semin Cell Dev Biol 2010; 21:248-54. [PMID: 20109569 DOI: 10.1016/j.semcdb.2010.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/19/2010] [Indexed: 01/26/2023]
Abstract
The spindle is a microtubule-based structure that facilitates chromosome segregation during mitosis and meiosis. Spindle assembly from dynamic microtubule building blocks is a major challenge for the dividing cell and a process that critically requires microtubule motors. In this review we focus on the mechanisms by which microtubule motors shape the spindle. Specifically, we address how motors are thought to move and arrange microtubules to form the characteristic bipolar morphology shared by all eukaryotic spindles as well as motor-dependent mechanisms of microtubule length regulation.
Collapse
Affiliation(s)
- Jesse C Gatlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | | |
Collapse
|
77
|
Tao L, Scholey JM. Purification and assay of mitotic motors. Methods 2010; 51:233-41. [PMID: 20096785 DOI: 10.1016/j.ymeth.2010.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 01/11/2023] Open
Abstract
To understand how mitotic kinesins contribute to the assembly and function of the mitotic spindle, we need to purify these motors and analyze their biochemical and ultrastructural properties. Here we briefly review our use of microtubule (MT) affinity and biochemical fractionation to obtain information about the oligomeric state of native mitotic kinesin holoenzymes from eggs and early embryos. We then detail the methods we use to purify full length recombinant Drosophila embryo mitotic kinesins, using the baculovirus expression system, in sufficient yields for detailed in vitro assays. These two approaches provide complementary biochemical information on the basic properties of these key mitotic proteins, and permit assays of critical motor activities, such as MT-MT crosslinking and sliding, that are not revealed by assaying motor domain subfragments.
Collapse
Affiliation(s)
- Li Tao
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
78
|
|
79
|
Abstract
It is clear that the main cellular mission of the molecular motor kinesin-5 (known as Eg5 in vertebrates) is to cross-link antiparallel microtubules and to slide them apart, thus playing a critical role during bipolar spindle formation. Nonetheless, important questions about the cell biological and biophysical mechanisms of Eg5 remain unanswered. With the 20th 'birthday' of Eg5 approaching, we discuss recent insights into the in vitro and in vivo functions of Eg5, in the context of our own recent work.
Collapse
|
80
|
Tyrosines in the kinesin-5 head domain are necessary for phosphorylation by Wee1 and for mitotic spindle integrity. Curr Biol 2009; 19:1670-6. [PMID: 19800237 DOI: 10.1016/j.cub.2009.08.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/05/2009] [Accepted: 08/07/2009] [Indexed: 11/23/2022]
Abstract
Mitotic spindle assembly and maintenance relies on kinesin-5 motors that act as bipolar homotetramers to crosslink microtubules. Kinesin-5 motors have been the subject of extensive structure-function analysis, but the regulation of their activity in the context of mitotic progression remains less well understood. We report here that Drosophila kinesin-5 (KLP61F) is regulated by Drosophila Wee1 (dWee1). Wee1 tyrosine kinases are known to regulate mitotic entry via inhibitory phosphorylation of Cdk1. Recently, we showed that dWee1 also plays a role in mitotic spindle positioning through gamma-tubulin and spindle fidelity through an unknown mechanism. Here, we investigated whether a KLP61F-dWee1 interaction could explain the latter role of dWee1. We found that dWee1 phosphorylates KLP61F in vitro on three tyrosines within the head domain, the catalytic region that mediates movement along microtubules. In vivo, KLP61F with tyrosine-->phenylalanine mutations fails to complement a klp61f mutant and dominantly induces spindle defects similar to ones seen in dwee1 mutants. We propose that phosphorylation of the KLP61F catalytic domain by dWee1 is important for the motor's function. This study identifies a second substrate for a Wee1 kinase and provides evidence for phosphoregulation of a kinesin in the head domain.
Collapse
|
81
|
Gillo D, Gur B, Bernheim-Groswasser A, Farago O. Cooperative molecular motors moving back and forth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:021929. [PMID: 19792173 DOI: 10.1103/physreve.80.021929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Indexed: 05/28/2023]
Abstract
We use a two-state ratchet model to study the cooperative bidirectional motion of molecular motors on cytoskeletal tracks with randomly alternating polarities. Our model is based on a previously proposed model [Badoual, Proc. Natl. Acad. Sci. U.S.A. 99, 6696 (2002)] for collective motor dynamics and, in addition, takes into account the cooperativity effect arising from the elastic tension that develops in the cytoskeletal track due to the joint action of the walking motors. We show, both computationally and analytically, that this additional cooperativity effect leads to a dramatic reduction in the characteristic reversal time of the bidirectional motion, especially in systems with a large number of motors. We also find that bidirectional motion takes place only on (almost) apolar tracks, while on even slightly polar tracks the cooperative motion is unidirectional. We argue that the origin of these observations is the sensitive dependence of the cooperative dynamics on the difference between the number of motors typically working in and against the instantaneous direction of motion.
Collapse
Affiliation(s)
- David Gillo
- Department of Chemical Engineering, Ben Gurion University, Be'er Sheva 84105, Israel
| | | | | | | |
Collapse
|
82
|
Scholey JM. Kinesin-5 in Drosophila embryo mitosis: sliding filament or spindle matrix mechanism? CELL MOTILITY AND THE CYTOSKELETON 2009; 66:500-8. [PMID: 19291760 PMCID: PMC2778298 DOI: 10.1002/cm.20349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Drosophila syncytial embryo uses multiple astral mitotic spindles that are specialized for rapid mitosis. The homotetrameric kinesin-5, KLP61F contributes to various aspects of mitosis in this system, all of which are consistent with it exerting outward forces on spindle poles. In principle, kinesin-5 could accomplish this by (i) sliding microtubules (MTs), minus end leading, relative to a static spindle matrix or (ii) crosslinking and sliding apart adjacent pairs of antiparallel interpolar (ip) MTs. Here, I critically review data on the biochemistry of purified KLP61F, its localization and dynamic properties within spindles, and quantitative modeling of KLP61F function. While a matrix-based mechanism may operate in some systems, the work tends to support the latter "sliding filament" mechanism for KLP61F action in Drosophila embryo spindles. Cell Motil. Cytoskeleton 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, California, USA.
| |
Collapse
|
83
|
|
84
|
|
85
|
Bicek AD, Tüzel E, Demtchouk A, Uppalapati M, Hancock WO, Kroll DM, Odde DJ. Anterograde microtubule transport drives microtubule bending in LLC-PK1 epithelial cells. Mol Biol Cell 2009; 20:2943-53. [PMID: 19403700 PMCID: PMC2695801 DOI: 10.1091/mbc.e08-09-0909] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/23/2009] [Accepted: 04/16/2009] [Indexed: 01/01/2023] Open
Abstract
Microtubules (MTs) have been proposed to act mechanically as compressive struts that resist both actomyosin contractile forces and their own polymerization forces to mechanically stabilize cell shape. To identify the origin of MT bending, we directly observed MT bending and F-actin transport dynamics in the periphery of LLC-PK1 epithelial cells. We found that F-actin is nearly stationary in these cells even as MTs are deformed, demonstrating that MT bending is not driven by actomyosin contractility. Furthermore, the inhibition of myosin II activity through the use of blebbistatin results in microtubules that are still dynamically bending. In addition, as determined by fluorescent speckle microscopy, MT polymerization rarely results, if ever, in bending. We suppressed dynamic instability using nocodazole, and we observed no qualitative change in the MT bending dynamics. Bending most often results from anterograde transport of proximal portions of the MT toward a nearly stationary distal tip. Interestingly, we found that in an in vitro kinesin-MT gliding assay, MTs buckle in a similar manner. To make quantitative comparisons, we measured curvature distributions of observed MTs and found that the in vivo and in vitro curvature distributions agree quantitatively. In addition, the measured MT curvature distribution is not Gaussian, as expected for a thermally driven semiflexible polymer, indicating that thermal forces play a minor role in MT bending. We conclude that many of the known mechanisms of MT deformation, such as polymerization and acto-myosin contractility, play an inconsequential role in mediating MT bending in LLC-PK1 cells and that MT-based molecular motors likely generate most of the strain energy stored in the MT lattice. The results argue against models in which MTs play a major mechanical role in LLC-PK1 cells and instead favor a model in which mechanical forces control the spatial distribution of the MT array.
Collapse
Affiliation(s)
| | - Erkan Tüzel
- Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, MN 55455
| | | | - Maruti Uppalapati
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802; and
| | - William O. Hancock
- Department of Bioengineering, The Pennsylvania State University, University Park, PA 16802; and
| | - Daniel M. Kroll
- Department of Physics, North Dakota State University, Fargo, ND 58105
| | | |
Collapse
|
86
|
Gillo D, Gilboa B, Gurka R, Bernheim-Groswasser A. The fusion of actin bundles driven by interacting motor proteins. Phys Biol 2009; 6:036003. [PMID: 19411736 DOI: 10.1088/1478-3975/6/3/036003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cooperative action of many molecular motors is essential for dynamic processes such as cell motility and mitosis. This action can be studied by using motility assays which track the motion of cytoskeletal filaments over a surface coated with motor proteins. Here, we propose to use a motility assay consisting of a-polar actin bundles subjected to the action of myosin II motors where no external loading is applied. In this work we focus on those bundles undergoing fusion with other nearby bundles. Specifically, we investigate the role of the bundles' dimension on the transition from bidirectional to directional motion and on the properties of their motion during fusion. Our experimental data reveal that only small bundles exhibit dynamic transition to directional motion, implying that the forces acting on them exceed the threshold value necessary to induce the transition. Moreover, these bundles accelerate along their trajectory, suggesting that the forces acting on them increase while approaching each other. We show that these forces do not originate from external loading but rather arise from the action of the motors on the bundles. These forces are transmitted through the medium over micron-scale distances without being cut off. Moreover, we show that the forces propagate to distances that are proportional to the size of the bundles, or equivalently, to the number of motors, which they interact with.
Collapse
Affiliation(s)
- David Gillo
- Department of Chemical Engineering Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
87
|
Cahu J, Surrey T. Motile microtubule crosslinkers require distinct dynamic properties for correct functioning during spindle organization in Xenopus egg extract. J Cell Sci 2009; 122:1295-300. [PMID: 19351717 DOI: 10.1242/jcs.044248] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organization of the microtubule cytoskeleton depends crucially on crosslinking motors that arrange microtubules in space. Kinesin-5 is such an essential motile crosslinker. It is unknown whether its organizing capacity during bipolar spindle formation depends on its characteristic kinetic properties, or whether simply crosslinking combined with any plus-end-directed motility is sufficient for its function in a physiological context. To address this question, we replaced the motor domain of Xenopus Kinesin-5 by motor domains of kinesins belonging to other kinesin subfamilies, without changing the overall architecture of the molecule. This generated novel microtubule crosslinkers with altered kinetic properties. The chimeric crosslinkers mislocalized in spindles and consequently caused spindle collapse into tightly bundled microtubule arrays. This demonstrates that plus-end directionality and microtubule crosslinking are not the only characteristics required for proper functioning of Kinesin-5 during spindle assembly in Xenopus egg extract. Instead, its motor domain properties appear to be fine-tuned for the specific function of this kinesin.
Collapse
Affiliation(s)
- Julie Cahu
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
88
|
Brust-Mascher I, Sommi P, Cheerambathur DK, Scholey JM. Kinesin-5-dependent poleward flux and spindle length control in Drosophila embryo mitosis. Mol Biol Cell 2009; 20:1749-62. [PMID: 19158379 DOI: 10.1091/mbc.e08-10-1033] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We used antibody microinjection and genetic manipulations to dissect the various roles of the homotetrameric kinesin-5, KLP61F, in astral, centrosome-controlled Drosophila embryo spindles and to test the hypothesis that it slides apart interpolar (ip) microtubules (MT), thereby controlling poleward flux and spindle length. In wild-type and Ncd null mutant embryos, anti-KLP61F dissociated the motor from spindles, producing a spatial gradient in the KLP61F content of different spindles, which was visible in KLP61F-GFP transgenic embryos. The resulting mitotic defects, supported by gene dosage experiments and time-lapse microscopy of living klp61f mutants, reveal that, after NEB, KLP61F drives persistent MT bundling and the outward sliding of antiparallel MTs, thereby contributing to several processes that all appear insensitive to cortical disruption. KLP61F activity contributes to the poleward flux of both ipMTs and kinetochore MTs and to the length of the metaphase spindle. KLP61F activity maintains the prometaphase spindle by antagonizing Ncd and another unknown force-generator and drives anaphase B, although the rate of spindle elongation is relatively insensitive to the motor's concentration. Finally, KLP61F activity contributes to normal chromosome congression, kinetochore spacing, and anaphase A rates. Thus, a KLP61F-driven sliding filament mechanism contributes to multiple aspects of mitosis in this system.
Collapse
Affiliation(s)
- Ingrid Brust-Mascher
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
89
|
van den Wildenberg SM, Tao L, Kapitein LC, Schmidt CF, Scholey JM, Peterman EJ. The homotetrameric kinesin-5 KLP61F preferentially crosslinks microtubules into antiparallel orientations. Curr Biol 2008; 18:1860-4. [PMID: 19062285 PMCID: PMC2657206 DOI: 10.1016/j.cub.2008.10.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 10/06/2008] [Accepted: 10/08/2008] [Indexed: 01/15/2023]
Abstract
The segregation of genetic material during mitosis is coordinated by the mitotic spindle, whose action depends upon the polarity patterns of its microtubules (MTs). Homotetrameric mitotic kinesin-5 motors can crosslink and slide adjacent spindle MTs, but it is unknown whether they or other motors contribute to establishing these MT polarity patterns. Here, we explored whether the Drosophila embryo kinesin-5 KLP61F, which plausibly crosslinks both parallel and antiparallel MTs, displays a preference for parallel or antiparallel MT orientation. In motility assays, KLP61F was observed to crosslink and slide adjacent MTs, as predicted. Remarkably, KLP61F displayed a 3-fold higher preference for crosslinking MTs in the antiparallel orientation. This polarity preference was observed in the presence of ADP or ATP plus AMPPNP, but not AMPPNP alone, which induces instantaneous rigor binding. Also, a purified motorless tetramer containing the C-terminal tail domains displayed an antiparallel orientation preference, confirming that motor activity is not required. The results suggest that, during morphogenesis of the Drosophila embryo mitotic spindle, KLP61F's crosslinking and sliding activities could facilitate the gradual accumulation of KLP61F within antiparallel interpolar MTs at the equator, where the motor could generate force to drive poleward flux and pole-pole separation.
Collapse
Affiliation(s)
| | - Li Tao
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| | - Lukas C. Kapitein
- Department of Physics and Astronomy and Laser Centre, VU University Amsterdam, The Netherlands
| | | | - Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| | - Erwin J.G. Peterman
- Department of Physics and Astronomy and Laser Centre, VU University Amsterdam, The Netherlands
| |
Collapse
|
90
|
Gardner MK, Bouck DC, Paliulis LV, Meehl JB, O’Toole ET, Haase J, Soubry A, Joglekar AP, Winey M, Salmon ED, Bloom K, Odde DJ. Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 2008; 135:894-906. [PMID: 19041752 PMCID: PMC2683758 DOI: 10.1016/j.cell.2008.09.046] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/29/2008] [Accepted: 09/23/2008] [Indexed: 12/18/2022]
Abstract
During mitosis, sister chromatids congress to the spindle equator and are subsequently segregated via attachment to dynamic kinetochore microtubule (kMT) plus ends. A major question is how kMT plus-end assembly is spatially regulated to achieve chromosome congression. Here we find in budding yeast that the widely conserved kinesin-5 sliding motor proteins, Cin8p and Kip1p, mediate chromosome congression by suppressing kMT plus-end assembly of longer kMTs. Of the two, Cin8p is the major effector and its activity requires a functional motor domain. In contrast, the depolymerizing kinesin-8 motor Kip3p plays a minor role in spatial regulation of yeast kMT assembly. Our analysis identified a model where kinesin-5 motors bind to kMTs, move to kMT plus ends, and upon arrival at a growing plus end promote net kMT plus-end disassembly. In conclusion, we find that length-dependent control of net kMT assembly by kinesin-5 motors yields a simple and stable self-organizing mechanism for chromosome congression.
Collapse
Affiliation(s)
- Melissa K Gardner
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David C. Bouck
- Dept. of Biology, University of North Carolina at Chapel Hill
| | | | | | | | - Julian Haase
- Dept. of Biology, University of North Carolina at Chapel Hill
| | - Adelheid Soubry
- Dept. of Biology, University of North Carolina at Chapel Hill
| | | | - Mark Winey
- MCD Biology, University of Colorado, Boulder, Colorado
| | | | - Kerry Bloom
- Dept. of Biology, University of North Carolina at Chapel Hill
| | - David J. Odde
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
91
|
Abstract
The Ncd kinesin-14 motor is required for meiotic spindle assembly in Drosophila oocytes and produces force in mitotic spindles that opposes other motors. Despite extensive studies, the way the motor binds to the spindle to perform its functions is not well understood. By analyzing Ncd deleted for the conserved head or the positively charged tail, we found that the tail is essential for binding to spindles and centrosomes, but both the head and tail are needed for normal spindle assembly and function. Fluorescence photobleaching assays to analyze binding interactions with the spindle yielded data for headless and full-length Ncd that did not fit well to previous recovery models. We report a new model that accounts for Ncd transport towards the equator revealed by fluorescence flow analysis of early mitotic spindles and gives rate constants that confirm the dominant role the Ncd tail plays in binding to the spindle. By contrast, the head binds weakly to spindles based on analysis of the tailless fluorescence recovery data. Minus-end Ncd thus binds tightly to spindles and is transported in early metaphase towards microtubule plus-ends, the opposite direction to that in which the motor moves, to produce force in the spindle later in mitosis.
Collapse
Affiliation(s)
- Mark A. Hallen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Zhang-Yi Liang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Sharyn A. Endow
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
92
|
Furuta K, Edamatsu M, Maeda Y, Toyoshima YY. Diffusion and directed movement: in vitro motile properties of fission yeast kinesin-14 Pkl1. J Biol Chem 2008; 283:36465-73. [PMID: 18984586 DOI: 10.1074/jbc.m803730200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fission yeast Pkl1 is a kinesin-14A family member that is known to be localized at the cellular spindle and is capable of hydrolyzing ATP. However, its motility has not been detected. Here, we show that Pkl1 is a slow, minus end-directed microtubule motor with a maximum velocity of 33+/-9 nm/s. The Km,MT value of steady-state ATPase activity of Pkl1 was as low as 6.4+/-1.1 nM, which is 20-30 times smaller than that of kinesin-1 and another kinesin-14A family member, Ncd, indicating a high affinity of Pkl1 for microtubules. However, the duty ratio of 0.05 indicates that Pkl1 spends only a small fraction of the ATPase cycle strongly associated with a microtubule. By using total internal reflection fluorescence microscopy, we demonstrated that single molecules of Pkl1 were not highly processive but only exhibited biased one-dimensional diffusion along microtubules, whereas several molecules of Pkl1, probably fewer than 10 molecules, cooperatively moved along microtubules and substantially reduced the diffusive component in the movement. Our results suggest that Pkl1 molecules work in groups to move and generate forces in a cooperative manner for their mitotic functions.
Collapse
Affiliation(s)
- Ken'ya Furuta
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
93
|
Hallen MA, Ho J, Yankel CD, Endow SA. Fluorescence recovery kinetic analysis of gamma-tubulin binding to the mitotic spindle. Biophys J 2008; 95:3048-58. [PMID: 18567627 PMCID: PMC2527240 DOI: 10.1529/biophysj.108.134593] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/02/2008] [Indexed: 11/18/2022] Open
Abstract
Fluorescence recovery after photobleaching has been widely used to study dynamic processes in the cell, but less frequently to analyze binding interactions and extract binding constants. Here we use it to analyze gamma-tubulin binding to the mitotic spindle and centrosomes to determine the role of gamma-tubulin in microtubule nucleation in the spindle. We find rapid gamma-tubulin turnover in mitotic spindles of Drosophila early embryos, characterized by diffusional interactions and weak binding, differing from centrosomes with tight binding interactions. The diffusion coefficient of gamma-tubulin is consistent with a major species existing in the cytoplasm as the less efficiently nucleating gamma-tubulin small complex (gammaTuSC) or gamma-tubulin, rather than gamma-tubulin ring complex (gammaTuRC). The fluorescence recovery kinetics we observe implies that gamma-tubulin functions by binding weakly to spindle microtubules. gamma-Tubulin may interact transiently with the spindle, nucleating microtubules very rapidly, differing from centrosomes, where gamma-tubulin binds tightly to nucleate microtubules.
Collapse
Affiliation(s)
- Mark A Hallen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
94
|
Kapitein LC, Kwok BH, Weinger JS, Schmidt CF, Kapoor TM, Peterman EJG. Microtubule cross-linking triggers the directional motility of kinesin-5. ACTA ACUST UNITED AC 2008; 182:421-8. [PMID: 18678707 PMCID: PMC2500128 DOI: 10.1083/jcb.200801145] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although assembly of the mitotic spindle is known to be a precisely controlled process, regulation of the key motor proteins involved remains poorly understood. In eukaryotes, homotetrameric kinesin-5 motors are required for bipolar spindle formation. Eg5, the vertebrate kinesin-5, has two modes of motion: an adenosine triphosphate (ATP)–dependent directional mode and a diffusive mode that does not require ATP hydrolysis. We use single-molecule experiments to examine how the switching between these modes is controlled. We find that Eg5 diffuses along individual microtubules without detectable directional bias at close to physiological ionic strength. Eg5's motility becomes directional when bound between two microtubules. Such activation through binding cargo, which, for Eg5, is a second microtubule, is analogous to known mechanisms for other kinesins. In the spindle, this might allow Eg5 to diffuse on single microtubules without hydrolyzing ATP until the motor is activated by binding to another microtubule. This mechanism would increase energy and filament cross-linking efficiency.
Collapse
Affiliation(s)
- Lukas C Kapitein
- Department of Physics and Astronomy, Vrije Universiteit, 1081 HV Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
Kinesin-5 family members cross-link and slide parallel microtubules of opposite polarity, an activity that is essential for the formation of a bipolar spindle during mitosis. In this issue, Kapitein et al. (Kapitein, L.C., B.H. Kwok, J.S. Weinger, C.F. Schmidt, T.M. Kapoor, and E.J.G. Peterman. 2008. J. Cell Biol. 182:421–428) demonstrate that microtubule cross-linking triggers the conversion of kinesin-5 motility from a diffusive mode to a directional mode, initiating antiparallel microtubule sliding.
Collapse
Affiliation(s)
- Michio Tomishige
- Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
96
|
Cheerambathur DK, Brust-Mascher I, Civelekoglu-Scholey G, Scholey JM. Dynamic partitioning of mitotic kinesin-5 cross-linkers between microtubule-bound and freely diffusing states. ACTA ACUST UNITED AC 2008; 182:429-36. [PMID: 18678711 PMCID: PMC2500124 DOI: 10.1083/jcb.200804100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dynamic behavior of homotetrameric kinesin-5 during mitosis is poorly understood. Kinesin-5 may function only by binding, cross-linking, and sliding adjacent spindle microtubules (MTs), or, alternatively, it may bind to a stable “spindle matrix” to generate mitotic movements. We created transgenic Drosophila melanogaster expressing fluorescent kinesin-5, KLP61F-GFP, in a klp61f mutant background, where it rescues mitosis and viability. KLP61F-GFP localizes to interpolar MT bundles, half spindles, and asters, and is enriched around spindle poles. In fluorescence recovery after photobleaching experiments, KLP61F-GFP displays dynamic mobility similar to tubulin, which is inconsistent with a substantial static pool of kinesin-5. The data conform to a reaction–diffusion model in which most KLP61F is bound to spindle MTs, with the remainder diffusing freely. KLP61F appears to transiently bind MTs, moving short distances along them before detaching. Thus, kinesin-5 motors can function by cross-linking and sliding adjacent spindle MTs without the need for a static spindle matrix.
Collapse
Affiliation(s)
- Dhanya K Cheerambathur
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
97
|
Disruption of the mitotic kinesin Eg5 gene (Knsl1) results in early embryonic lethality. Biochem Biophys Res Commun 2008; 372:513-9. [PMID: 18474226 DOI: 10.1016/j.bbrc.2008.04.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 04/24/2008] [Indexed: 11/24/2022]
Abstract
Eg5, a member of the widely conserved kinesin-5 family, is a plus-end-directed motor involved in separation of centrosomes, and in bipolar spindle formation and maintenance during mitosis in vertebrates. To investigate the requirement for Eg5 in mammalian development, we have generated Eg5 deficient mice by gene targeting. Heterozygous mice are healthy, fertile, and show no detectable phenotype, whereas Eg5(-/-) embryos die during early embryogenesis, prior to the implantation stage. This result shows that Eg5 is essential during early mouse development and cannot be compensated by another molecular motor.
Collapse
|
98
|
Reverse engineering of force integration during mitosis in the Drosophila embryo. Mol Syst Biol 2008; 4:195. [PMID: 18463619 PMCID: PMC2424291 DOI: 10.1038/msb.2008.23] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 03/07/2008] [Indexed: 11/30/2022] Open
Abstract
The mitotic spindle is a complex macromolecular machine that coordinates accurate chromosome segregation. The spindle accomplishes its function using forces generated by microtubules (MTs) and multiple molecular motors, but how these forces are integrated remains unclear, since the temporal activation profiles and the mechanical characteristics of the relevant motors are largely unknown. Here, we developed a computational search algorithm that uses experimental measurements to ‘reverse engineer' molecular mechanical machines. Our algorithm uses measurements of length time series for wild-type and experimentally perturbed spindles to identify mechanistic models for coordination of the mitotic force generators in Drosophila embryo spindles. The search eliminated thousands of possible models and identified six distinct strategies for MT–motor integration that agree with available data. Many features of these six predicted strategies are conserved, including a persistent kinesin-5-driven sliding filament mechanism combined with the anaphase B-specific inhibition of a kinesin-13 MT depolymerase on spindle poles. Such conserved features allow predictions of force–velocity characteristics and activation–deactivation profiles of key mitotic motors. Identified differences among the six predicted strategies regarding the mechanisms of prometaphase and anaphase spindle elongation suggest future experiments.
Collapse
|
99
|
Zou J, Hallen MA, Yankel CD, Endow SA. A microtubule-destabilizing kinesin motor regulates spindle length and anchoring in oocytes. J Cell Biol 2008; 180:459-66. [PMID: 18250200 PMCID: PMC2234233 DOI: 10.1083/jcb.200711031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 01/04/2008] [Indexed: 11/22/2022] Open
Abstract
The kinesin-13 motor, KLP10A, destabilizes microtubules at their minus ends in mitosis and binds to polymerizing plus ends in interphase, regulating spindle and microtubule dynamics. Little is known about kinesin-13 motors in meiosis. In this study, we report that KLP10A localizes to the unusual pole bodies of anastral Drosophila melanogaster oocyte meiosis I spindles as well as spindle fibers, centromeres, and cortical microtubules. We frequently observe the pole bodies attached to cortical microtubules, indicating that KLP10A could mediate spindle anchoring to the cortex via cortical microtubules. Oocytes treated with drugs that suppress microtubule dynamics exhibit spindles that are reoriented more vertically to the cortex than untreated controls. A dominant-negative klp10A mutant shows both reoriented and shorter oocyte spindles, implying that, unexpectedly, KLP10A may stabilize rather than destabilize microtubules, regulating spindle length and positioning the oocyte spindle. By altering microtubule dynamics, KLP10A could promote spindle reorientation upon oocyte activation.
Collapse
Affiliation(s)
- Jianwei Zou
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
100
|
Krzysiak TC, Grabe M, Gilbert SP. Getting in sync with dimeric Eg5. Initiation and regulation of the processive run. J Biol Chem 2008; 283:2078-87. [PMID: 18037705 PMCID: PMC2265775 DOI: 10.1074/jbc.m708354200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eg5/KSP is the kinesin-related motor protein that generates the major plus-end directed force for mitotic spindle assembly and dynamics. Recent work using a dimeric form of Eg5 has found it to be a processive motor; however, its mechanochemical cycle is different from that of conventional Kinesin-1. Dimeric Eg5 appears to undergo a conformational change shortly after collision with the microtubule that primes the motor for its characteristically short processive runs. To better understand this conformational change as well as head-head communication during processive stepping, equilibrium and transient kinetic approaches have been used. By contrast to the mechanism of Kinesin-1, microtubule association triggers ADP release from both motor domains of Eg5. One motor domain releases ADP rapidly, whereas ADP release from the other occurs after a slow conformational change at approximately 1 s(-1). Therefore, dimeric Eg5 begins its processive run with both motor domains associated with the microtubule and in the nucleotide-free state. During processive stepping however, ATP binding and potentially ATP hydrolysis signals rearward head advancement 16 nm forward to the next microtubule-binding site. This alternating cycle of processive stepping is proposed to terminate after a few steps because the head-head communication does not sufficiently control the timing to prevent both motor domains from entering the ADP-bound state simultaneously.
Collapse
Affiliation(s)
- Troy C. Krzysiak
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Michael Grabe
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Susan P. Gilbert
- From the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|