51
|
Bozzo M, Lacalli TC, Obino V, Caicci F, Marcenaro E, Bachetti T, Manni L, Pestarino M, Schubert M, Candiani S. Amphioxus neuroglia: Molecular characterization and evidence for early compartmentalization of the developing nerve cord. Glia 2021; 69:1654-1678. [PMID: 33624886 DOI: 10.1002/glia.23982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
Glial cells play important roles in the development and homeostasis of metazoan nervous systems. However, while their involvement in the development and function in the central nervous system (CNS) of vertebrates is increasingly well understood, much less is known about invertebrate glia and the evolutionary history of glial cells more generally. An investigation into amphioxus glia is therefore timely, as this organism is the best living proxy for the last common ancestor of all chordates, and hence provides a window into the role of glial cell development and function at the transition of invertebrates and vertebrates. We report here our findings on amphioxus glia as characterized by molecular probes correlated with anatomical data at the transmission electron microscopy (TEM) level. The results show that amphioxus glial lineages express genes typical of vertebrate astroglia and radial glia, and that they segregate early in development, forming what appears to be a spatially separate cell proliferation zone positioned laterally, between the dorsal and ventral zones of neural cell proliferation. Our study provides strong evidence for the presence of vertebrate-type glial cells in amphioxus, while highlighting the role played by segregated progenitor cell pools in CNS development. There are implications also for our understanding of glial cells in a broader evolutionary context, and insights into patterns of precursor cell deployment in the chordate nerve cord.
Collapse
Affiliation(s)
- Matteo Bozzo
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Thurston C Lacalli
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| | - Valentina Obino
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Tiziana Bachetti
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Lucia Manni
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Pestarino
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Michael Schubert
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Villefranche-sur-Mer, France
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
52
|
Terhune EA, Cuevas MT, Monley AM, Wethey CI, Chen X, Cattell MV, Bayrak MN, Bland MR, Sutphin B, Trahan GD, Taylor MRG, Niswander LA, Jones KL, Baschal EE, Antunes L, Dobbs M, Gurnett C, Appel B, Gray R, Hadley Miller N. Mutations in KIF7 implicated in idiopathic scoliosis in humans and axial curvatures in zebrafish. Hum Mutat 2021; 42:392-407. [PMID: 33382518 DOI: 10.1002/humu.24162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Idiopathic scoliosis (IS) is a spinal disorder affecting up to 3% of otherwise healthy children. IS has a strong familial genetic component and is believed to be genetically complex due to significant variability in phenotype and heritability. Previous studies identified putative loci and variants possibly contributing to IS susceptibility, including within extracellular matrix, cilia, and actin networks, but the genetic architecture and underlying mechanisms remain unresolved. Here, we used whole-exome sequencing from three affected individuals in a multigenerational family with IS and identified 19 uncommon variants (minor allele frequency < 0.05). Genotyping of additional family members identified a candidate heterozygous variant (H1115Q, G>C, rs142032413) within the ciliary gene KIF7, a regulator within the hedgehog (Hh) signaling pathway. Resequencing of the second cohort of unrelated IS individuals and controls identified several severe mutations in KIF7 in affected individuals only. Subsequently, we generated a mutant zebrafish model of kif7 using CRISPR-Cas9. kif7co63/co63 zebrafish displayed severe scoliosis, presenting in juveniles and progressing through adulthood. We observed no deformities in the brain, Reissner fiber, or central canal cilia in kif7co63/co63 embryos, although alterations were seen in Hh pathway gene expression. This study suggests defects in KIF7-dependent Hh signaling, which may drive pathogenesis in a subset of individuals with IS.
Collapse
Affiliation(s)
- Elizabeth A Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melissa T Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anna M Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Cambria I Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaomi Chen
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Maria V Cattell
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melisa N Bayrak
- Department of Nutritional Sciences, Dell Pediatrics Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Morgan R Bland
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brittan Sutphin
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - George Devon Trahan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew R G Taylor
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lee A Niswander
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Erin E Baschal
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilian Antunes
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Matthew Dobbs
- Department of Orthopedics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christina Gurnett
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruce Appel
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Ryan Gray
- Department of Nutritional Sciences, Dell Pediatrics Research Institute, The University of Texas at Austin, Austin, Texas, USA
| | - Nancy Hadley Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
53
|
Yang S, Emelyanov A, You MS, Sin M, Korzh V. Camel regulates development of the brain ventricular system. Cell Tissue Res 2021; 383:835-852. [PMID: 32902807 PMCID: PMC7904751 DOI: 10.1007/s00441-020-03270-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/29/2020] [Indexed: 10/25/2022]
Abstract
Development of the brain ventricular system of vertebrates and the molecular mechanisms involved are not fully understood. The developmental genes expressed in the elements of the brain ventricular system such as the ependyma and circumventricular organs act as molecular determinants of cell adhesion critical for the formation of brain ventricular system. They control brain development and function, including the flow of cerebrospinal fluid. Here, we describe the novel distantly related member of the zebrafish L1-CAM family of genes-camel. Whereas its maternal transcripts distributed uniformly, the zygotic transcripts demonstrate clearly defined expression patterns, in particular in the axial structures: floor plate, hypochord, and roof plate. camel expresses in several other cell lineages with access to the brain ventricular system, including the midbrain roof plate, subcommissural organ, organum vasculosum lamina terminalis, median eminence, paraventricular organ, flexural organ, and inter-rhombomeric boundaries. This expression pattern suggests a role of Camel in neural development. Several isoforms of Camel generated by differential splicing of exons encoding the sixth fibronectin type III domain enhance cell adhesion differentially. The antisense oligomer morpholino-mediated loss-of-function of Camel affects cell adhesion and causes hydrocephalus and scoliosis manifested via the tail curled down phenotype. The subcommissural organ's derivative-the Reissner fiber-participates in the flow of cerebrospinal fluid. The Reissner fiber fails to form upon morpholino-mediated Camel loss-of-function. The Camel mRNA-mediated gain-of-function causes the Reissner fiber misdirection. This study revealed a link between Chl1a/Camel and Reissner fiber formation, and this supports the idea that CHL1 is one of the scoliosis factors.
Collapse
Affiliation(s)
- Shulan Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Translational Medicine Centre, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alexander Emelyanov
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Institute for Research on Cancer and Aging, Nice, France
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- National Health Research Institutes, Zhunan, Taiwan
| | - Melvin Sin
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
54
|
Ahn JS, Petersen M, Friedman AH, López EM, Cummings TJ, Buckley AF, López GY. Eosinophilic globules in a classic ependymoma: evidence of a possible secretory role. Ultrastruct Pathol 2020; 44:511-518. [PMID: 33148106 DOI: 10.1080/01913123.2020.1843578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A number of neoplasms of the central nervous system can demonstrate diffuse eosinophilic globules, known to be secretory products of the corresponding cell type, but they have not been a salient feature in descriptions of classic ependymoma. Here, we present a case of a posterior fossa ependymoma demonstrating glassy PAS-positive, diastase-resistant, eosinophilic globules with light microscopic and ultrastructural features resembling Reissner fiber, the secretory product of the subcommissural organ. While there has been a single published description of an ependymoma with intra- and extracellular granulofibrillary material suggested to be evidence of secretory differentiation, ours is the first case to demonstrate diffuse eosinophilic globules in an ependymoma. The extent of globules allowed full study by electron microscopy to provide new insight into the secretory material and the surrounding structures. Our findings suggest that neoplastic ependymal cells can recapitulate the secretory capacity of the subcommissural organ.
Collapse
Affiliation(s)
- Janice S Ahn
- Department of Pathology, Duke University School of Medicine , Durham, North Carolina, USA
| | - Maureen Petersen
- Department of Pathology, Duke University School of Medicine , Durham, North Carolina, USA
| | - Allan H Friedman
- Department of Neurosurgery, Duke University School of Medicine , Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina, USA
| | - Edward M López
- Triad Radiology Associates, Winston-Salem, North Carolina, USA
| | - Thomas J Cummings
- Department of Pathology, Duke University School of Medicine , Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina, USA
| | - Anne F Buckley
- Department of Pathology, Duke University School of Medicine , Durham, North Carolina, USA
| | - Giselle Y López
- Department of Pathology, Duke University School of Medicine , Durham, North Carolina, USA.,Department of Neurosurgery, Duke University School of Medicine , Durham, North Carolina, USA.,Duke Cancer Institute, Duke University School of Medicine , Durham, North Carolina, USA
| |
Collapse
|
55
|
Cantaut-Belarif Y, Orts Del'Immagine A, Penru M, Pézeron G, Wyart C, Bardet PL. Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development. eLife 2020; 9:e59469. [PMID: 33048048 PMCID: PMC7591253 DOI: 10.7554/elife.59469] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.
Collapse
Affiliation(s)
| | | | - Margot Penru
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Guillaume Pézeron
- Molecular Physiology and Adaptation (PhyMA - UMR 7221), Muséum National d’Histoire Naturelle, CNRSParisFrance
| | - Claire Wyart
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Pierre-Luc Bardet
- Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
56
|
Abstract
The vertebrate body plan is characterized by the presence of a segmented spine along its main axis. Here, we examine the current understanding of how the axial tissues that are formed during embryonic development give rise to the adult spine and summarize recent advances in the field, largely focused on recent studies in zebrafish, with comparisons to amniotes where appropriate. We discuss recent work illuminating the genetics and biological mechanisms mediating extension and straightening of the body axis during development, and highlight open questions. We specifically focus on the processes of notochord development and cerebrospinal fluid physiology, and how defects in those processes may lead to scoliosis.
Collapse
Affiliation(s)
- Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC, 27710, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, University of Texas at Austin, Dell Pediatrics Research Institute, Austin, TX, 78723, USA
| |
Collapse
|
57
|
Bordoni B, Walkowski S, Ducoux B, Tobbi F. The Cranial Bowl in the New Millennium and Sutherland's Legacy for Osteopathic Medicine: Part 1. Cureus 2020; 12:e10410. [PMID: 33062527 PMCID: PMC7550223 DOI: 10.7759/cureus.10410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
A theoretical model that does not evolve with new information deriving from scientific research, by changing the assumptions from which it was born, becomes a philosophy; the scientist becomes a scholarch. Cranial manual osteopathic medicine is very controversial, although it is commonly practiced, from the clinician to the nonmedical health worker. The article, divided into two parts, reviews the assumptions with which the cranial model was created, highlighting the scientific innovations and new anatomical-physiological reflections. In the first part we will review the synthesis and movement of cerebrospinal fluid (CSF), the movement of the central and peripheral nervous system; we will highlight the mechanical characteristics of the meninges. The aim of the article is to highlight the need to renew the existing cranial model.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Stevan Walkowski
- Osteopathic Manipulative Medicine, Heritage College of Osteopathic Medicine-Dublin, Ohio, USA
| | - Bruno Ducoux
- Osteopathy, Formation Recherche Osteopathie Prévention, Bordeaux, FRA
| | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| |
Collapse
|
58
|
Daems M, Peacock HM, Jones EAV. Fluid flow as a driver of embryonic morphogenesis. Development 2020; 147:147/15/dev185579. [PMID: 32769200 DOI: 10.1242/dev.185579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluid flow is a powerful morphogenic force during embryonic development. The physical forces created by flowing fluids can either create morphogen gradients or be translated by mechanosensitive cells into biological changes in gene expression. In this Primer, we describe how fluid flow is created in different systems and highlight the important mechanosensitive signalling pathways involved for sensing and transducing flow during embryogenesis. Specifically, we describe how fluid flow helps establish left-right asymmetry in the early embryo and discuss the role of flow of blood, lymph and cerebrospinal fluid in sculpting the embryonic cardiovascular and nervous system.
Collapse
Affiliation(s)
- Margo Daems
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Hanna M Peacock
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
59
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
60
|
Bearce EA, Grimes DT. On being the right shape: Roles for motile cilia and cerebrospinal fluid flow in body and spine morphology. Semin Cell Dev Biol 2020; 110:104-112. [PMID: 32693941 DOI: 10.1016/j.semcdb.2020.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
How developing and growing organisms attain their proper shape is a central problem of developmental biology. In this review, we investigate this question with respect to how the body axis and spine form in their characteristic linear head-to-tail fashion in vertebrates. Recent work in the zebrafish has implicated motile cilia and cerebrospinal fluid flow in axial morphogenesis and spinal straightness. We begin by introducing motile cilia, the fluid flows they generate and their roles in zebrafish development and growth. We then describe how cilia control body and spine shape through sensory cells in the spinal canal, a thread-like extracellular structure called the Reissner fiber, and expression of neuropeptide signals. Last, we discuss zebrafish mutants in which spinal straightness breaks down and three-dimensional curves form. These curves resemble the common but little-understood human disease Idiopathic Scoliosis. Zebrafish research is therefore poised to make progress in our understanding of this condition and, more generally, how body and spine shape is acquired and maintained through development and growth.
Collapse
Affiliation(s)
- Elizabeth A Bearce
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| | - Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
61
|
Lu H, Shagirova A, Goggi JL, Yeo HL, Roy S. Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biol Open 2020; 9:9/5/bio052027. [PMID: 32409296 PMCID: PMC7240301 DOI: 10.1242/bio.052027] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Reissner fibre (RF), discovered by the 19th-century German anatomist Ernst Reissner, is a filamentous structure present in cerebrospinal fluid (CSF). RF forms by aggregation of a glycoprotein called SCO-spondin (Sspo), but its function has remained enigmatic. Recent studies have shown that zebrafish sspo mutants develop a curved embryonic body axis. Zebrafish embryos with impaired cilia motility also develop curved bodies, which arises from failure of expression of urotensin related peptide (urp) genes in CSF-contacting neurons (CSF-cNs), impairing downstream signalling in trunk muscles. Here, we show that sspo mutants can survive into adulthood, but display severe curvatures of the vertebral column, resembling the common human spine disorder idiopathic scoliosis (IS). sspo mutants also exhibit significant reduction of urp gene expression from CSF-cNs. Consistent with epinephrine in CSF being bound by RF and required for urp expression, treating sspo mutants with this catecholamine rescued expression of the urp genes and axial defects. More strikingly, providing Urp2, specifically in the CSF-cNs, rescued body curvature of sspo homozygotes during larval stages as well as in the adult. These findings bridge existing gaps in our knowledge between cilia motility, RF, Urp signalling and spine deformities, and suggest that targeting the Urotensin pathway could provide novel therapeutic avenues for IS. Summary: Reissner fibre (RF) is a glycoprotein filament suspended in cerebrospinal fluid (CSF). We show that RF regulates zebrafish spine morphogenesis by regulating Urotensin signalling from CSF-contacting neurons of the spinal cord.
Collapse
Affiliation(s)
- Hao Lu
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | - Aidana Shagirova
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Julian L Goggi
- Singapore Bioimaging Consortium, Helios, 11 Biopolis Way, Singapore 138667
| | - Hui Li Yeo
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673 .,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543.,Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore 119288
| |
Collapse
|
62
|
Rose CD, Pompili D, Henke K, Van Gennip JLM, Meyer-Miner A, Rana R, Gobron S, Harris MP, Nitz M, Ciruna B. SCO-Spondin Defects and Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across Genetic Models of Idiopathic Scoliosis. Curr Biol 2020; 30:2363-2373.e6. [PMID: 32386528 DOI: 10.1016/j.cub.2020.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) affects 3% to 4% of children between the ages of 11 and 18 [1, 2]. This disorder, characterized by abnormal three-dimensional spinal curvatures that typically develop during periods of rapid growth, occurs in the absence of congenital vertebral malformations or neuromuscular defects [1]. Genetic heterogeneity [3] and a historical lack of appropriate animal models [4] have confounded basic understanding of AIS biology; thus, treatment options remain limited [5, 6]. Recently, genetic studies using zebrafish have linked idiopathic-like scoliosis to irregularities in motile cilia-mediated cerebrospinal fluid flow [7-9]. However, because loss of cilia motility in human primary ciliary dyskinesia patients is not fully associated with scoliosis [10, 11], other pathogenic mechanisms remain to be determined. Here, we demonstrate that zebrafish scospondin (sspo) mutants develop late-onset idiopathic-like spinal curvatures in the absence of obvious cilia motility defects. Sspo is a large secreted glycoprotein functionally associated with the subcommissural organ and Reissner's fiber [12]-ancient and enigmatic organs of the brain ventricular system reported to govern cerebrospinal fluid homeostasis [13, 14], neurogenesis [12, 15-18], and embryonic morphogenesis [19]. We demonstrate that irregular deposition of Sspo within brain ventricles is associated with idiopathic-like scoliosis across diverse genetic models. Furthermore, Sspo defects are sufficient to induce oxidative stress and neuroinflammatory responses implicated in AIS pathogenesis [9]. Through screening for chemical suppressors of sspo mutant phenotypes, we also identify potent agents capable of blocking severe juvenile spine deformity. Our work thus defines a new preclinical model of AIS and provides tools to realize novel therapeutic strategies.
Collapse
Affiliation(s)
- Chloe D Rose
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Pompili
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Katrin Henke
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenica L M Van Gennip
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anne Meyer-Miner
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Rahul Rana
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Matthew P Harris
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Mark Nitz
- Department of Chemistry, The University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Brian Ciruna
- Program in Developmental & Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
63
|
The Reissner Fiber Is Highly Dynamic In Vivo and Controls Morphogenesis of the Spine. Curr Biol 2020; 30:2353-2362.e3. [PMID: 32386529 DOI: 10.1016/j.cub.2020.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/29/2020] [Accepted: 04/06/2020] [Indexed: 01/08/2023]
Abstract
Cerebrospinal fluid (CSF) physiology is important for the development and homeostasis of the central nervous system, and its disruption has been linked to scoliosis in zebrafish [1, 2]. Suspended in the CSF is an extracellular structure called the Reissner fiber, which extends from the brain through the central canal of the spinal cord. Zebrafish scospondin-null mutants are unable to assemble a Reissner fiber and fail to form a straight body axis during embryonic development [3]. Here, we describe hypomorphic missense mutations of scospondin, which allow Reissner fiber assembly and extension of a straight axis. However, during larval development, these mutants display progressive Reissner fiber disassembly, which is concomitant with the emergence of axial curvatures and scoliosis in adult animals. Using a scospondin-GFP knockin zebrafish line, we demonstrate several dynamic properties of the Reissner fiber in vivo, including embryonic fiber assembly, the continuous rostral to caudal movement of the fiber within the brain and central canal, and subcommissural organ (SCO)-spondin-GFP protein secretion from the floor plate to merge with the fiber. Finally, we show that disassembly of the Reissner fiber is also associated with the progression of axial curvatures in distinct scoliosis mutant zebrafish models. Together, these data demonstrate a critical role for the Reissner fiber for the maintenance of a straight body axis and spine morphogenesis in adult zebrafish. Our study establishes a framework for future investigations to address the cellular effectors responsible for Reissner-fiber-dependent regulation of axial morphology. VIDEO ABSTRACT.
Collapse
|
64
|
Busse B, Galloway JL, Gray RS, Harris MP, Kwon RY. Zebrafish: An Emerging Model for Orthopedic Research. J Orthop Res 2020; 38:925-936. [PMID: 31773769 PMCID: PMC7162720 DOI: 10.1002/jor.24539] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/16/2019] [Indexed: 02/04/2023]
Abstract
Advances in next-generation sequencing have transformed our ability to identify genetic variants associated with clinical disorders of the musculoskeletal system. However, the means to functionally validate and analyze the physiological repercussions of genetic variation have lagged behind the rate of genetic discovery. The zebrafish provides an efficient model to leverage genetic analysis in an in vivo context. Its utility for orthopedic research is becoming evident in regard to both candidate gene validation as well as therapeutic discovery in tissues such as bone, tendon, muscle, and cartilage. With the development of new genetic and analytical tools to better assay aspects of skeletal tissue morphology, mineralization, composition, and biomechanics, researchers are emboldened to systematically approach how the skeleton develops and to identify the root causes, and potential treatments, of skeletal disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:925-936, 2020.
Collapse
Affiliation(s)
- Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany,all authors contributed equally to this work and are listed in alphabetical order
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street Boston, MA 02114, United States of America,all authors contributed equally to this work and are listed in alphabetical order
| | - Ryan S. Gray
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, Texas, United States of America,all authors contributed equally to this work and are listed in alphabetical order
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School; Department of Orthopedic Research, Boston Children’s Hospital, 300 Longwood Avenue, Boston, MA, 02115, United States of America.,all authors contributed equally to this work and are listed in alphabetical order
| | - Ronald Y. Kwon
- Department of Orthopaedics and Sports Medicine; Department of Mechanical Engineering; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America,all authors contributed equally to this work and are listed in alphabetical order
| |
Collapse
|
65
|
Fame RM, Cortés-Campos C, Sive HL. Brain Ventricular System and Cerebrospinal Fluid Development and Function: Light at the End of the Tube: A Primer with Latest Insights. Bioessays 2020; 42:e1900186. [PMID: 32078177 DOI: 10.1002/bies.201900186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/02/2020] [Indexed: 12/12/2022]
Abstract
The brain ventricular system is a series of connected cavities, filled with cerebrospinal fluid (CSF), that forms within the vertebrate central nervous system (CNS). The hollow neural tube is a hallmark of the chordate CNS, and a closed neural tube is essential for normal development. Development and function of the ventricular system is examined, emphasizing three interdigitating components that form a functional system: ventricle walls, CSF fluid properties, and activity of CSF constituent factors. The cellular lining of the ventricle both can produce and is responsive to CSF. Fluid properties and conserved CSF components contribute to normal CNS development. Anomalies of the CSF/ventricular system serve as diagnostics and may cause CNS disorders, further highlighting their importance. This review focuses on the evolution and development of the brain ventricular system, associated function, and connected pathologies. It is geared as an introduction for scholars with little background in the field.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | - Hazel L Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
66
|
Sensory Neurons Contacting the Cerebrospinal Fluid Require the Reissner Fiber to Detect Spinal Curvature In Vivo. Curr Biol 2020; 30:827-839.e4. [PMID: 32084399 DOI: 10.1016/j.cub.2019.12.071] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/28/2019] [Accepted: 12/24/2019] [Indexed: 02/04/2023]
Abstract
Recent evidence indicates active roles for the cerebrospinal fluid (CSF) on body axis development and morphogenesis of the spine, implying CSF-contacting neurons (CSF-cNs) in the spinal cord. CSF-cNs project a ciliated apical extension into the central canal that is enriched in the channel PKD2L1 and enables the detection of spinal curvature in a directional manner. Dorsolateral CSF-cNs ipsilaterally respond to lateral bending although ventral CSF-cNs respond to longitudinal bending. Historically, the implication of the Reissner fiber (RF), a long extracellular thread in the CSF, to CSF-cN sensory functions has remained a subject of debate. Here, we reveal, using electron microscopy in zebrafish larvae, that the RF is in close vicinity with cilia and microvilli of ventral and dorsolateral CSF-cNs. We investigate in vivo the role of cilia and the RF in the mechanosensory functions of CSF-cNs by combining calcium imaging with patch-clamp recordings. We show that disruption of cilia motility affects CSF-cN sensory responses to passive and active curvature of the spinal cord without affecting the Pkd2l1 channel activity. Because ciliary defects alter the formation of the RF, we investigated whether the RF contributes to CSF-cN mechanosensitivity in vivo. Using a hypomorphic mutation in the scospondin gene that forbids the aggregation of SCO-spondin into a fiber, we demonstrate in vivo that the RF per se is critical for CSF-cN mechanosensory function. Our study uncovers that neurons contacting the cerebrospinal fluid functionally interact with the RF to detect spinal curvature in the vertebrate spinal cord.
Collapse
|
67
|
Thouvenin O, Keiser L, Cantaut-Belarif Y, Carbo-Tano M, Verweij F, Jurisch-Yaksi N, Bardet PL, van Niel G, Gallaire F, Wyart C. Origin and role of the cerebrospinal fluid bidirectional flow in the central canal. eLife 2020; 9:e47699. [PMID: 31916933 PMCID: PMC6989091 DOI: 10.7554/elife.47699] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/07/2020] [Indexed: 12/22/2022] Open
Abstract
Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.
Collapse
Affiliation(s)
- Olivier Thouvenin
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
- ESPCI Paris, PSL University, CNRS, Institut LangevinParisFrance
| | - Ludovic Keiser
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yasmine Cantaut-Belarif
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Martin Carbo-Tano
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Frederik Verweij
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
- Department of Clinical and Molecular Medicine, The Faculty of MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Pierre-Luc Bardet
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| | - Guillaume van Niel
- Institute of Psychiatry and Neuroscience of Paris, Hôpital Saint-Anne, Université Descartes, INSERM U1266ParisFrance
| | - Francois Gallaire
- Laboratory of Fluid Mechanics and InstabilitiesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Universités, UPMC Univ Paris 06, Inserm, CNRS, AP-HP, Hôpital Pitié-SalpêtrièreParisFrance
| |
Collapse
|
68
|
Ringers C, Olstad EW, Jurisch-Yaksi N. The role of motile cilia in the development and physiology of the nervous system. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190156. [PMID: 31884916 DOI: 10.1098/rstb.2019.0156] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Motile cilia are miniature, whip-like organelles whose beating generates a directional fluid flow. The flow generated by ciliated epithelia is a subject of great interest, as defective ciliary motility results in severe human diseases called motile ciliopathies. Despite the abundance of motile cilia in diverse organs including the nervous system, their role in organ development and homeostasis remains poorly understood. Recently, much progress has been made regarding the identity of motile ciliated cells and the role of motile-cilia-mediated flow in the development and physiology of the nervous system. In this review, we will discuss these recent advances from sensory organs, specifically the nose and the ear, to the spinal cord and brain ventricles. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
- Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway
| |
Collapse
|
69
|
Bueno D, Parvas M, Nabiuni M, Miyan J. Embryonic cerebrospinal fluid formation and regulation. Semin Cell Dev Biol 2019; 102:3-12. [PMID: 31615690 DOI: 10.1016/j.semcdb.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The vertebrate brain is organized, from its embryonic origin and throughout adult life, around a dynamic and complex fluid, the cerebrospinal fluid (CSF). There is growing interest in the composition, dynamics and function of the CSF in brain development research. It has been demonstrated in higher vertebrates that CSF has key functions in delivering diffusible signals and nutrients to the developing brain, contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the patterning of the brain. It has also been shown that the composition and the homeostasis of CSF are tightly regulated following the closure of the anterior neuropore, just before the initiation of primary neurogenesis in the neural tissue surrounding brain cavities, before the formation of functional choroid plexus. In this review we draw together existing literature about the composition and formation of embryonic cerebrospinal fluid in birds and mammals, from the closure of the anterior neuropore to the formation of functional fetal choroid plexus, including mechanisms regulating its composition and homeostasis. The significance of CSF regulation within embryonic brain is also discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- David Bueno
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain.
| | - Maryam Parvas
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain
| | - Mohammad Nabiuni
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| | - Jaleel Miyan
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| |
Collapse
|
70
|
Driever W. Developmental Biology: Reissner's Fiber and Straightening of the Body Axis. Curr Biol 2019; 28:R833-R835. [PMID: 30086316 DOI: 10.1016/j.cub.2018.05.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A straight longitudinal body axis supports efficient directed locomotion of fish and other vertebrates. New research demonstrates that Reissner's fiber, an enigmatic structure within the spinal central canal, is essential for development of an extended trunk to tail axis.
Collapse
Affiliation(s)
- Wolfgang Driever
- Developmental Biology, Institute of Biology I, and BIOSS, Albert Ludwig University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
71
|
Abstract
Consistent asymmetries between the left and right sides of animal bodies are common. For example, the internal organs of vertebrates are left-right (L-R) asymmetric in a stereotyped fashion. Other structures, such as the skeleton and muscles, are largely symmetric. This Review considers how symmetries and asymmetries form alongside each other within the embryo, and how they are then maintained during growth. I describe how asymmetric signals are generated in the embryo. Using the limbs and somites as major examples, I then address mechanisms for protecting symmetrically forming tissues from asymmetrically acting signals. These examples reveal that symmetry should not be considered as an inherent background state, but instead must be actively maintained throughout multiple phases of embryonic patterning and organismal growth.
Collapse
Affiliation(s)
- Daniel T Grimes
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
72
|
Thierer JH, Ekker SC, Farber SA. The LipoGlo reporter system for sensitive and specific monitoring of atherogenic lipoproteins. Nat Commun 2019; 10:3426. [PMID: 31366908 PMCID: PMC6668417 DOI: 10.1038/s41467-019-11259-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein-B (ApoB) is the structural component of atherogenic lipoproteins, lipid-rich particles that drive atherosclerosis by accumulating in the vascular wall. As atherosclerotic cardiovascular disease is the leading cause of death worldwide, there is an urgent need to develop new strategies to prevent lipoproteins from causing vascular damage. Here we report the LipoGlo system, which uses a luciferase enzyme (NanoLuc) fused to ApoB to monitor several key determinants of lipoprotein atherogenicity including particle abundance, size, and localization. Using LipoGlo, we comprehensively characterize the lipoprotein profile of individual larval zebrafish and collect images of atherogenic lipoprotein localization in an intact organism. We report multiple extravascular lipoprotein localization patterns, as well as identify Pla2g12b as a potent regulator of lipoprotein size. ApoB-fusion proteins thus represent a sensitive and specific approach to study atherogenic lipoproteins and their genetic and small molecule modifiers. Atherosclerosis results from the accumulation of lipoproteins in the vascular wall. Here, Thierer et al. report the design of a chemiluminescent reporter for atherogenic lipoproteins using fusion of apolipoprotein-B to a luciferase enzyme, and find it bears potential for the identification of regulators of lipoprotein metabolism in vivo.
Collapse
Affiliation(s)
- James H Thierer
- Carnegie Institution for Science Department of Embryology, 3520 San Martin Drive, Baltimore, MD, 21218, USA.,Johns Hopkins University Department of Biology, 3400N Charles Street, Baltimore, MD, 21218, USA
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Steven A Farber
- Carnegie Institution for Science Department of Embryology, 3520 San Martin Drive, Baltimore, MD, 21218, USA. .,Johns Hopkins University Department of Biology, 3400N Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
73
|
Patel-King RS, Sakato-Antoku M, Yankova M, King SM. WDR92 is required for axonemal dynein heavy chain stability in cytoplasm. Mol Biol Cell 2019; 30:1834-1845. [PMID: 31116681 PMCID: PMC6727741 DOI: 10.1091/mbc.e19-03-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
WDR92 associates with a prefoldin-like cochaperone complex and known dynein assembly factors. WDR92 has been very highly conserved and has a phylogenetic signature consistent with it playing a role in motile ciliary assembly or activity. Knockdown of WDR92 expression in planaria resulted in ciliary loss, reduced beat frequency and dyskinetic motion of the remaining ventral cilia. We have now identified a Chlamydomonas wdr92 mutant that encodes a protein missing the last four WD repeats. The wdr92-1 mutant builds only ∼0.7-μm cilia lacking both inner and outer dynein arms, but with intact doublet microtubules and central pair. When cytoplasmic extracts prepared by freeze/thaw from a control strain were fractionated by gel filtration, outer arm dynein components were present in several distinct high molecular weight complexes. In contrast, wdr92-1 extracts almost completely lacked all three outer arm heavy chains, while the IFT dynein heavy chain was present in normal amounts. A wdr92-1 tpg1-2 double mutant builds ∼7-μm immotile flaccid cilia that completely lack dynein arms. These data indicate that WDR92 is a key assembly factor specifically required for the stability of axonemal dynein heavy chains in cytoplasm and suggest that cytoplasmic/IFT dynein heavy chains use a distinct folding pathway.
Collapse
Affiliation(s)
- Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
- Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
74
|
Ayad NME, Kaushik S, Weaver VM. Tissue mechanics, an important regulator of development and disease. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180215. [PMID: 31431174 DOI: 10.1098/rstb.2018.0215] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A growing body of work describes how physical forces in and around cells affect their growth, proliferation, migration, function and differentiation into specialized types. How cells receive and respond biochemically to mechanical signals is a process termed mechanotransduction. Disease may arise if a disruption occurs within this mechanism of sensing and interpreting mechanics. Cancer, cardiovascular diseases and developmental defects, such as during the process of neural tube formation, are linked to changes in cell and tissue mechanics. A breakdown in normal tissue and cellular forces activates mechanosignalling pathways that affect their function and can promote disease progression. The recent advent of high-resolution techniques enables quantitative measurements of mechanical properties of the cell and its extracellular matrix, providing insight into how mechanotransduction is regulated. In this review, we will address the standard methods and new technologies available to properly measure mechanical properties, highlighting the challenges and limitations of probing different length-scales. We will focus on the unique environment present throughout the development and maintenance of the central nervous system and discuss cases where disease, such as brain cancer, arises in response to changes in the mechanical properties of the microenvironment that disrupt homeostasis. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Nadia M E Ayad
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, USA
| | - Shelly Kaushik
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Valerie M Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California San Francisco, San Francisco, CA, USA.,Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA.,UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
75
|
Cilia and development. Curr Opin Genet Dev 2019; 56:15-21. [DOI: 10.1016/j.gde.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 01/01/2023]
|
76
|
Reilly ML, Benmerah A. Ciliary kinesins beyond IFT: Cilium length, disassembly, cargo transport and signalling. Biol Cell 2019; 111:79-94. [PMID: 30720881 DOI: 10.1111/boc.201800074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
Cilia and flagella are microtubule-based antenna which are highly conserved among eukaryotes. In vertebrates, primary and motile cilia have evolved to exert several key functions during development and tissue homoeostasis. Ciliary dysfunction in humans causes a highly heterogeneous group of diseases called ciliopathies, a class of genetic multisystemic disorders primarily affecting kidney, skeleton, retina, lung and the central nervous system. Among key ciliary proteins, kinesin family members (KIF) are microtubule-interacting proteins involved in many diverse cellular functions, including transport of cargo (organelles, proteins and lipids) along microtubules and regulating the dynamics of cytoplasmic and spindle microtubules through their depolymerising activity. Many KIFs are also involved in diverse ciliary functions including assembly/disassembly, motility and signalling. We here review these ciliary kinesins in vertebrates and focus on their involvement in ciliopathy-related disorders.
Collapse
Affiliation(s)
- Madeline Louise Reilly
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France.,Paris Diderot University, Paris, 75013, France
| | - Alexandre Benmerah
- Laboratory of Hereditary Kidney Diseases, INSERM UMR 1163, Paris Descartes University, Imagine Institute, Paris, 75015, France
| |
Collapse
|
77
|
|
78
|
Olstad EW, Ringers C, Hansen JN, Wens A, Brandt C, Wachten D, Yaksi E, Jurisch-Yaksi N. Ciliary Beating Compartmentalizes Cerebrospinal Fluid Flow in the Brain and Regulates Ventricular Development. Curr Biol 2019; 29:229-241.e6. [PMID: 30612902 PMCID: PMC6345627 DOI: 10.1016/j.cub.2018.11.059] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/31/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Motile cilia are miniature, propeller-like extensions, emanating from many cell types across the body. Their coordinated beating generates a directional fluid flow, which is essential for various biological processes, from respiration to reproduction. In the nervous system, ependymal cells extend their motile cilia into the brain ventricles and contribute to cerebrospinal fluid (CSF) flow. Although motile cilia are not the only contributors to CSF flow, their functioning is crucial, as patients with motile cilia defects develop clinical features, like hydrocephalus and scoliosis. CSF flow was suggested to primarily deliver nutrients and remove waste, but recent studies emphasized its role in brain development and function. Nevertheless, it remains poorly understood how ciliary beating generates and organizes CSF flow to fulfill these roles. Here, we study motile cilia and CSF flow in the brain ventricles of larval zebrafish. We identified that different populations of motile ciliated cells are spatially organized and generate a directional CSF flow powered by ciliary beating. Our investigations revealed that CSF flow is confined within individual ventricular cavities, with little exchange of fluid between ventricles, despite a pulsatile CSF displacement caused by the heartbeat. Interestingly, our results showed that the ventricular boundaries supporting this compartmentalized CSF flow are abolished during bodily movement, highlighting that multiple physiological processes regulate the hydrodynamics of CSF flow. Finally, we showed that perturbing cilia reduces hydrodynamic coupling between the brain ventricles and disrupts ventricular development. We propose that motile-cilia-generated flow is crucial in regulating the distribution of CSF within and across brain ventricles. Spatially organized motile cilia with rotational beats create directional CSF flow Ciliary beating, heartbeat, and locomotion generate distinct components of CSF flow Joint action of these components balances CSF compartmentalization and dispersion Disruption of ciliary beating leads to ventricular defects during brain development
Collapse
Affiliation(s)
- Emilie W Olstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Christa Ringers
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Jan N Hansen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Adinda Wens
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Cecilia Brandt
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Dagmar Wachten
- Institute of Innate Immunity, Department of Biophysical Imaging, University Hospital, University of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, The Faculty of Medicine, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St. Olavs University Hospital, Edvard Griegs Gate 8, 7030 Trondheim, Norway.
| |
Collapse
|
79
|
Zhang X, Jia S, Chen Z, Chong YL, Xie H, Feng D, Wu X, Song DZ, Roy S, Zhao C. Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nat Genet 2018; 50:1666-1673. [DOI: 10.1038/s41588-018-0260-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/21/2018] [Indexed: 01/27/2023]
|
80
|
Pkd2l1 is required for mechanoception in cerebrospinal fluid-contacting neurons and maintenance of spine curvature. Nat Commun 2018; 9:3804. [PMID: 30228263 PMCID: PMC6143598 DOI: 10.1038/s41467-018-06225-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/20/2018] [Indexed: 02/07/2023] Open
Abstract
Defects in cerebrospinal fluid (CSF) flow may contribute to idiopathic scoliosis. However, the mechanisms underlying detection of CSF flow in the central canal of the spinal cord are unknown. Here we demonstrate that CSF flows bidirectionally along the antero-posterior axis in the central canal of zebrafish embryos. In the cfap298tm304 mutant, reduction of cilia motility slows transport posteriorly down the central canal and abolishes spontaneous activity of CSF-contacting neurons (CSF-cNs). Loss of the sensory Pkd2l1 channel nearly abolishes CSF-cN calcium activity and single channel opening. Recording from isolated CSF-cNs in vitro, we show that CSF-cNs are mechanosensory and require Pkd2l1 to respond to pressure. Additionally, adult pkd2l1 mutant zebrafish develop an exaggerated spine curvature, reminiscent of kyphosis in humans. These results indicate that CSF-cNs are mechanosensory cells whose Pkd2l1-driven spontaneous activity reflects CSF flow in vivo. Furthermore, Pkd2l1 in CSF-cNs contributes to maintenance of natural curvature of the spine. Alteration of cerebrospinal fluid (CSF) flow and cilia defects are clinically associated with idiopathic scoliosis. This study shows that transient receptor potential channel Pkd2l1 is required for mechanosensory function of neurons detecting CSF flow and normal spine curvature development in zebrafish.
Collapse
|