51
|
Xiao L, Liao F, Fan Y, Miwa N. Enzyme-digested Colla Corii Asini (E'jiao) accelerates wound healing and prevents ultraviolet A-induced collagen synthesis decline and wrinkle formation in three-dimensional skin equivalents. Hum Cell 2020; 33:1056-1067. [PMID: 32761322 DOI: 10.1007/s13577-020-00405-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Cutaneous wound healing delay, collagen synthesis decline and wrinkle formation are the common features of skin aging. The aim of this study is to investigate repressive effects of Colla Corii Asini (CCA) (a traditional Chinese medicine which has been used for anti-aging) on hydrogen peroxide (300 µM, 2 h) and ultraviolet A (UVA) (3.2 mJ/cm2)-induced skin aging in vitro. To simulate the in vivo condition of CCA, CCA was digested by gastrointestinal enzymes and added to human gingival fibroblasts (HGF) and three dimensional (3D) skin equivalents at different concentrations. Cell viability assay showed that the enzyme-digested CCA (CCAD) exhibited significant preventive effects on hydrogen peroxide- and UVA-induced cell death. The in vitro scratch assay showed that CCAD was able to prevent hydrogen peroxide-induced wound healing delay in HGF cell sheets. Immunostaining and imaging analysis showed that CCAD could suppress UVA-reduced expression of type IV collagen and elastin in both HGF cells and the 3D skin equivalents. Using a tissue stretching system, wrinkles were formed on UVA-irradiated 3D skin equivalents. Without CCAD-treatment, the wrinkles on the skin were deep, whereas CCAD markedly reduced the depth of wrinkles. In conclusion, CCAD could protect skin cells from oxidative stress and UVA-induced harmful effects, accelerate wound healing, promote synthesis of collagen and elastin, and reduce wrinkles formation. CCAD might be developed as an anti-skin aging reagent in the cosmetic industry.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-0071, Japan.
| | - Feng Liao
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liao Cheng, Shandong Province, China
| | - Yumei Fan
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Liao Cheng, Shandong Province, China
| | - Nobuhiko Miwa
- Faculty of Life Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| |
Collapse
|
52
|
Milionis A, Tripathy A, Donati M, Sharma CS, Pan F, Maniura-Weber K, Ren Q, Poulikakos D. Water-Based Scalable Methods for Self-Cleaning Antibacterial ZnO-Nanostructured Surfaces. Ind Eng Chem Res 2020; 59:14323-14333. [PMID: 32831473 PMCID: PMC7434054 DOI: 10.1021/acs.iecr.0c01998] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 11/28/2022]
Abstract
![]()
Bacterial
colonization poses significant health risks, such as
infestation of surfaces in biomedical applications and clean water
unavailability. If maintaining the surrounding water clean is a target,
developing surfaces with strong bactericidal action, which is facilitated
by bacterial access to the surface and mixing, can be a solution.
On the other hand, if sustenance of a surface free of bacteria is
the goal, developing surfaces with ultralow bacterial adhesion often
suffices. Here we report a facile, scalable, and environmentally benign
strategy that delivers customized surfaces for these challenges. For
bactericidal action, nanostructures of inherently antibacterial ZnO,
through simple immersion of zinc in hot water, are fabricated. The
resulting nanostructured surface exhibits extreme bactericidal effectiveness
(9250 cells cm–2 h–1) that eliminates
bacteria in direct contact and also remotely through the action of
reactive oxygen species. Remarkably, the remote bactericidal action
is achieved without the need for any illumination, otherwise required
in conventional approaches. As a result, ZnO nanostructures yield
outstanding water disinfection of >99.98%, in the dark, by inactivating
the bacteria within 3 h. Moreover, Zn2+ released to the
aqueous medium from the nanostructured ZnO surface have a concentration
of 0.73 ± 0.15 ppm, markedly below the legal limit for safe drinking
water (5–6 ppm). The same nanostructures, when hydrophobized
(through a water-based or fluorine-free spray process), exhibit strong
bacterial repulsion, thus substantially reducing bacterial adhesion.
Such environmentally benign and scalable methods showcase pathways
toward inhibiting surface bacterial colonization.
Collapse
Affiliation(s)
- Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Abinash Tripathy
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Matteo Donati
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Chander Shekhar Sharma
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
53
|
Exoenzyme C3 transferase lowers actin cytoskeleton dynamics, genomic stability and survival of malignant melanoma cells under UV-light stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 209:111947. [PMID: 32652466 DOI: 10.1016/j.jphotobiol.2020.111947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Actin cytoskeleton remodeling is the major motor of cytoskeleton dynamics driving tumor cell adhesion, migration and invasion. The typical RhoA, RhoB and RhoC GTPases are the main regulators of actin cytoskeleton dynamics. The C3 exoenzyme transferase from Clostridium botulinum is a toxin that causes the specific ADP-ribosylation of Rho-like proteins, leading to its inactivation. Here, we examine what effects the Rho GTPase inhibition and the consequent actin cytoskeleton instability would have on the emergence of DNA damage and on the recovery of genomic stability of malignant melanoma cells, as well as on their survival. Therefore, the MeWo cell line, here assumed as a melanoma cell line model for the expression of genes involved in the regulation of the actin cytoskeleton, was transiently transfected with the C3 toxin and subsequently exposed to UV-radiation. Phalloidin staining of the stress fibers revealed that actin cytoskeleton integrity was strongly disrupted by the C3 toxin in association with reduced melanoma cells survival, and further enhanced the deleterious effects of UV light. MeWo cells with actin cytoskeleton previously perturbed by the C3 toxin still showed higher levels and accumulation of UV-damaged DNA (strand breaks and cyclobutane pyrimidine dimers, CPDs). The interplay between reduced cell survival and impaired DNA repair upon actin cytoskeleton disruption can be explained by constitutive ERK1/2 activation and an inefficient phosphorylation of DDR proteins (γH2AX, CHK1 and p53) caused by C3 toxin treatment. Altogether, these results support the general idea that actin network help to protect the genome of human cells from damage caused by UV light through unknown molecular mechanisms that tie the cytoskeleton to processes of genomic stability maintenance.
Collapse
|
54
|
|
55
|
Influence of the Exposome on Skin Cancer. ACTAS DERMO-SIFILIOGRAFICAS 2020; 111:460-470. [PMID: 32507282 DOI: 10.1016/j.ad.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Skin cancer is the most frequent type of cancer in humans. While exposure to solar radiation is the most widely known and relevant causal factor, the different degrees of individual risk have not been fully elucidated. Epidemiological studies show how the risk of skin cancer is affected by other types of radiation (eg, ionizing radiation), pesticides, particulate matter in air pollution, toxins (eg, arsenic) in water and some foods. Some living entities, such as polyomavirus and human papillomavirus, can also cause specific types of cancer. Lastly, lifestyle factors such as stress, sleep, and exercise may play a role, although only a few studies shed light on these factors. The abovementioned factors make up the exposome of skin cancer, that is, the set of environmental exposures that, together with the genome and microbiome, determine the onset of disease.
Collapse
|
56
|
Douki T. Oxidative Stress and Genotoxicity in Melanoma Induction: Impact on Repair Rather Than Formation of DNA Damage? Photochem Photobiol 2020; 96:962-972. [PMID: 32367509 DOI: 10.1111/php.13278] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/21/2020] [Indexed: 12/22/2022]
Abstract
Keratinocytes and melanocytes, two cutaneous cell types located within the epidermis, are the origin of most skin cancers, namely carcinomas and melanomas. These two types of tumors differ in many ways. First, carcinomas are almost 10 times more frequent than melanomas. In addition, the affected cellular pathways, the mutated genes and the metastatic properties of the tumors are not the same. This review addresses another specificity of melanomas: the role of photo-oxidative stress. UVA efficiently produces reactive oxygen species in melanocytes, which results in more frequent oxidatively generated DNA lesions than in other cell types. The question of the respective contribution of UVB-induced pyrimidine dimers and UVA-mediated oxidatively generated lesions to mutagenesis in melanoma remains open. Recent results based on next-generation sequencing techniques strongly suggest that the mutational signature associated with pyrimidine dimers is overwhelming in melanomas like in skin carcinomas. UVA-induced oxidative stress may yet be indirectly linked to the genotoxic pathways involved in melanoma through its ability to hamper DNA repair activities.
Collapse
Affiliation(s)
- Thierry Douki
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, Grenoble, France
| |
Collapse
|
57
|
Choi YJ. Shedding Light on the Effects of Calorie Restriction and its Mimetics on Skin Biology. Nutrients 2020; 12:nu12051529. [PMID: 32456324 PMCID: PMC7284700 DOI: 10.3390/nu12051529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
During the aging process of an organism, the skin gradually loses its structural and functional characteristics. The skin becomes more fragile and vulnerable to damage, which may contribute to age-related diseases and even death. Skin aging is aggravated by the fact that the skin is in direct contact with extrinsic factors, such as ultraviolet irradiation. While calorie restriction (CR) is the most effective intervention to extend the lifespan of organisms and prevent age-related disorders, its effects on cutaneous aging and disorders are poorly understood. This review discusses the effects of CR and its alternative dietary intake on skin biology, with a focus on skin aging. CR structurally and functionally affects most of the skin and has been reported to rescue both age-related and photo-induced changes. The anti-inflammatory, anti-oxidative, stem cell maintenance, and metabolic activities of CR contribute to its beneficial effects on the skin. To the best of the author’s knowledge, the effects of fasting or a specific nutrient-restricted diet on skin aging have not been evaluated; these strategies offer benefits in wound healing and inflammatory skin diseases. In addition, well-known CR mimetics, including resveratrol, metformin, rapamycin, and peroxisome proliferator-activated receptor agonists, show CR-like prevention against skin aging. An overview of the role of CR in skin biology will provide valuable insights that would eventually lead to improvements in skin health.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Department of Biopharmaceutical Engineering, Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 38066, Korea
| |
Collapse
|
58
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
59
|
Anticatabolic and Anti-Inflammatory Effects of Myricetin 3-O-β-d-Galactopyranoside in UVA-Irradiated Dermal Cells via Repression of MAPK/AP-1 and Activation of TGFβ/Smad. Molecules 2020; 25:molecules25061331. [PMID: 32183404 PMCID: PMC7144112 DOI: 10.3390/molecules25061331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
UV irradiation is one of the main causes of extrinsic skin aging. UV-mediated skin aging, also known as photoaging, causes excessive breakdown of extracellular matrix which leads skin to lose its elasticity and strength. Several phytochemicals are known to exert anti-photoaging effects via different mechanisms, partly due to their antioxidant properties. The current study has been carried out to determine the potential anti-photoaging properties of myricetin 3-O-β-d-galacto-pyranoside (M3G), a flavonol glycoside isolated from L. tetragonum, in UVA-irradiated in vitro models; HaCaT keratinocytes and human dermal fibroblasts (HDFs). UVA-induced changes in MMP-1 and collagen production have been observed in HaCaT keratinocytes and HDFs. Further, UVA-induced activation of MAPK signaling, and pro-inflammatory cytokine production have been investigated. TGFβ/Smad pathway has also been analyzed in UVA-irradiated HDFs. Treatment with M3G reversed the UVA-induced changes in MMP-1 and collagen production both in HaCaT keratinocytes and HDFs. UVA-mediated activation of p38, ERK and JNK MAPK activation was also inhibited by M3G treatment in HaCaT keratinocytes. In HDFs, M3G was able to upregulate the TGFβ/Smad pathway activation. In addition, M3G downregulated the UVA-induced pro-inflammatory cytokines in keratinocytes and HDFs. It has been suggested that the M3G has exerted potential antiphotoaging properties in vitro, by attenuating UVA-induced changes in MMP-1 and collagen production in keratinocytes and dermal fibroblasts.
Collapse
|
60
|
Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 2020; 43:e20190104. [PMID: 32141475 PMCID: PMC7198027 DOI: 10.1590/1678-4685-gmb-2019-0104] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/25/2019] [Indexed: 02/06/2023] Open
Abstract
Base and nucleotide excision repair (BER and NER) pathways are normally associated with removal of specific types of DNA damage: small base modifications (such as those induced by DNA oxidation) and bulky DNA lesions (such as those induced by ultraviolet or chemical carcinogens), respectively. However, growing evidence indicates that this scenario is much more complex and these pathways exchange proteins and cooperate with each other in the repair of specific lesions. In this review, we highlight studies discussing the involvement of NER in the repair of DNA damage induced by oxidative stress, and BER participating in the removal of bulky adducts on DNA. Adding to this complexity, UVA light experiments revealed that oxidative stress also causes protein oxidation, directly affecting proteins involved in both NER and BER. This reduces the cell’s ability to repair DNA damage with deleterious implications to the cells, such as mutagenesis and cell death, and to the organisms, such as cancer and aging. Finally, an interactome of NER and BER proteins is presented, showing the strong connection between these pathways, indicating that further investigation may reveal new functions shared by them, and their cooperation in maintaining genome stability.
Collapse
Affiliation(s)
- Namrata Kumar
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natália C Moreno
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bruno C Feltes
- Universidade Federal do Rio Grande do Sul, Instituto de Informática, Porto Alegre, RS, Brazil
| | - Carlos Fm Menck
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Bennett Van Houten
- University of Pittsburgh, School of Medicine, Department of Microbiology and Molecular Genetics, Pittsburgh, PA, USA.,University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,University of Pittsburgh, School of Medicine, Department of Pharmacology and Chemical Biology, Pittsburgh, PA, USA
| |
Collapse
|
61
|
Schöneich C. Photo-Degradation of Therapeutic Proteins: Mechanistic Aspects. Pharm Res 2020; 37:45. [DOI: 10.1007/s11095-020-2763-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022]
|
62
|
Inactivation of Salmonella spp. in wheat flour by 395 nm pulsed light emitting diode (LED) treatment and the related functional and structural changes of gluten. Food Res Int 2020; 127:108716. [DOI: 10.1016/j.foodres.2019.108716] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 11/23/2022]
|
63
|
Souza C, Mônico DA, Tedesco AC. Implications of dichlorofluorescein photoinstability for detection of UVA-induced oxidative stress in fibroblasts and keratinocyte cells. Photochem Photobiol Sci 2020; 19:40-48. [DOI: 10.1039/c9pp00415g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pre-incubation with 10 μM DCFDA for 30 min in PBS was sufficient to generate a sensitive and reproducible standard curve for detection of UVA-induced ROS in HaCaT and HPF cells, with no effects on cell viability or morphology.
Collapse
Affiliation(s)
- Carla Souza
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| | - Danielli Azevedo Mônico
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| | - Antonio Claudio Tedesco
- University of São Paulo; School of Philosophy
- Sciences
- and Literature of Ribeirão Preto
- Chemistry Department
- Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group
| |
Collapse
|
64
|
Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8135985. [PMID: 31915514 PMCID: PMC6930764 DOI: 10.1155/2019/8135985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
Autophagy is an essential cellular process that maintains balanced cell life. Restriction in autophagy may induce degenerative changes in humans. Natural or pathological aging of susceptible tissues has been linked with reduced autophagic activity. Skin photoaging is an example of such pathological condition caused by ambient solar UV radiation exposure. The UV-induced production of reaction oxygen species (ROS) has been linked to the promotion and progression of the photoaging process in exposed tissues. Accordingly, it has been suggested that autophagy is capable of delaying the skin photoaging process caused by solar ultraviolet (UV), although the underlying mechanism is still under debate. This review highlights several plausible mechanisms by which UV-induced ROS activates the cellular signaling pathways and modulates the autophagy. More specifically, the UV-mediated regulation of autophagy and age-related transcription factors is discussed to pinpoint the contribution of autophagy to antiphotoaging effects in the skin. The outcome of this review will provide insights into design intervention strategies for delaying the phenomenon of sunlight-induced photodamage, photoaging, and other aging-related chronic diseases based on factors that activate the autophagy process in the skin.
Collapse
|
65
|
von Koschembahr A, Youssef A, Béal D, Gudimard L, Giot JP, Douki T. Toxicity and DNA repair in normal human keratinocytes co-exposed to benzo[a]pyrene and sunlight. Toxicol In Vitro 2019; 63:104744. [PMID: 31836489 DOI: 10.1016/j.tiv.2019.104744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/21/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
Abstract
Skin has the potential to be exposed to both solar UV radiation and polycyclic aromatic hydrocarbons, especially in occupational environments. In the present work, we investigated how benzo[a]pyrene (B[a]P) modulates cellular phototoxicity and impacts formation and repair of pyrimidine dimers induced by simulated sunlight (SSL) in normal human keratinocytes (NHK). We were especially interested in determining whether the aryl hydrocarbon receptor (AhR) was involved since it was recently shown to negatively impact repair. Addition of 1 μM B[a]P after exposure to 2 minimal erythemal doses of SSL had little impact on NHK. The inverse protocol involving incubation with B[a]P followed by irradiation led to a strong increase in phototoxicity. Repair of DNA photoproducts was drastically impaired. Using agonists and antagonists of AhR allowed us to conclude that this factor was not involved in these results. Observation of a strong increase in the level of the oxidative marker 8-oxo-7,8-dihydroguanine in the protocol involving B[a]P treatment followed by exposure to SSL strongly suggested that a photosensitized oxidative stress was responsible for cell death and inhibition of DNA repair. Accordingly, both adverse effects were diminished with a lower concentration of B[a]P and a lower SSL dose, leading to less oxidative stress.
Collapse
Affiliation(s)
- Anne von Koschembahr
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - Antonia Youssef
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - Leslie Gudimard
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France
| | - Jean-Philippe Giot
- Service de Chirurgie Plastique et Maxillo-faciale, Centre Hospitalier Universitaire Grenoble Alpes, La Tronche, France
| | - Thierry Douki
- Univ. Grenoble Alpes, SyMMES/CIBEST UMR 5819 UGA-CNRS-CEA, INAC/CEA-Grenoble LAN, F-38000 Grenoble, France.
| |
Collapse
|
66
|
Wang X, Hong H, Wu J. Hen collagen hydrolysate alleviates UVA-induced damage in human dermal fibroblasts. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
67
|
Luo WR, Chen FH, Huang RJ, Chen YP, Hsiao YY. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB inductions and conversions induced by therapeutic proton beams. Int J Radiat Biol 2019; 96:187-196. [PMID: 31682784 DOI: 10.1080/09553002.2020.1688883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: This study evaluated the DNA double strand breaks (DSBs) induced by indirect actions and its misrepairs to estimate the relative biological effectiveness (RBE) of proton beams.Materials and methods: From experimental data, DSB induction was evaluated in cells irradiated by 62 MeV proton beams in the presence of dimethylsulphoxide (DMSO) and under hypoxic conditions. The DNA damage yields for calculating the RBE were estimated using Monte Carlo Damage Simulation (MCDS) software. The repair outcomes (correct repairs, mutations and DSB conversions) were estimated using Monte Carlo Excision Repair (MCER) simulations.Results: The values for RBE of 62 MeV protons (LET = 1.051 keV/μm) for DSB induction and enzymatic DSB under aerobic condition (21% O2) was 1.02 and 0.94, respectively, as comparing to 60Co γ-rays (LET = 2.4 keV/μm). DMSO mitigated the inference of indirect action and reduced DSB induction to a greater extent when damaged by protons rather than γ-rays, resulting in a decreased RBE of 0.86. DMSO also efficiently prevented enzymatic DSB yields triggered by proton irradiation and reduced the RBE to 0.83. However, hypoxia (2% O2) produced a similar level of DSB induction with respect to the protons and γ-rays, with a comparable RBE of 1.02.Conclusions: The RBE values of proton beams estimated from DSB induction and enzymatic DSB decreased by 16% and 12%, respectively, in the presence of DMSO. Our findings indicate that the overall effects of DSB induction and enzymatic DSB could intensify the tumor killing, while alleviate normal tissue damage when indirect actions are effectively interrupted.
Collapse
Affiliation(s)
- Wei-Ren Luo
- Department of Radiology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Kweishan, Taiwan.,Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Radiation Oncology, Chang Gung Memorial Hospital-Linkou Branch, Taoyuan, Taiwan
| | - Ren-Jing Huang
- Department of Radiology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Pin Chen
- Department of Radiology, Taipei Manicipal Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Ya-Yun Hsiao
- Department of Radiology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
68
|
Fricano A, Librizzi F, Rao E, Alfano C, Vetri V. Blue autofluorescence in protein aggregates “lighted on” by UV induced oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140258. [DOI: 10.1016/j.bbapap.2019.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
|
69
|
Violet-Blue Light Arrays at 405 Nanometers Exert Enhanced Antimicrobial Activity for Photodisinfection of Monomicrobial Nosocomial Biofilms. Appl Environ Microbiol 2019; 85:AEM.01346-19. [PMID: 31444205 PMCID: PMC6803304 DOI: 10.1128/aem.01346-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
This study reports the efficacy of VBL and blue light (BL) and their antimicrobial activity against mature biofilms of a range of important nosocomial pathogens. While this study investigated the antibacterial activity of a range of wavelengths of between 375 and 450 nm and identified a specific wavelength region (∼405 nm) with increased antibacterial activity, decontamination was dependent on the bacterial species, strain, irradiation parameters, and experimental conditions. Further research with controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology. Light-emitting diodes (LEDs) demonstrate therapeutic effects for a range of biomedical applications, including photodisinfection. Bands of specific wavelengths (centered at 405 nm) are reported to be the most antimicrobial; however, there remains no consensus on the most effective irradiation parameters for optimal photodisinfection. The aim of this study was to assess decontamination efficiency by direct photodisinfection of monomicrobial biofilms using a violet-blue light (VBL) single-wavelength array (SWA) and multiwavelength array (MWA). Mature biofilms of nosocomial bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) were grown on 96-well polypropylene PCR plates. The biofilms were then exposed to VBL for 2,700 s (SWA) and 1,170 s (MWA) to deliver 0 to 670 J/cm2, and the antibacterial activity of VBL was assessed by comparing the seeding of the irradiated and the nonirradiated biofilms. Nonirradiated groups were used as controls. The VBL arrays were characterized optically (spectral irradiance and beam profile) and thermally. The SWA delivered 401-nm VBL and the MWA delivered between 379-nm and 452-nm VBL, albeit at different irradiances and with different beam profiles. In both arrays, the irradiated groups were exposed to increased temperatures compared to the nonirradiated controls. All bacterial isolates were susceptible to VBL and demonstrated reductions in the seeding of exposed biofilms compared with the nonirradiated controls. VBL at 405 nm exerted the most antimicrobial activity, exhibiting reductions in seeding of up to 94%. Decontamination efficiency is dependent on the irradiation parameters, bacterial species and strain, and experimental conditions. Controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology. IMPORTANCE This study reports the efficacy of VBL and blue light (BL) and their antimicrobial activity against mature biofilms of a range of important nosocomial pathogens. While this study investigated the antibacterial activity of a range of wavelengths of between 375 and 450 nm and identified a specific wavelength region (∼405 nm) with increased antibacterial activity, decontamination was dependent on the bacterial species, strain, irradiation parameters, and experimental conditions. Further research with controlled experiments that ameliorate the heating effects and improve the optical properties are required to optimize the dosing parameters to advance the successful clinical translation of this technology.
Collapse
|
70
|
Wu S, Hu Y, Bai W, Zhao J, Huang C, Wen C, Deng L, Lu D. Cyanidin-3-o-glucoside inhibits UVA-induced human dermal fibroblast injury by upregulating autophagy. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2019; 35:360-368. [PMID: 31166622 DOI: 10.1111/phpp.12493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/13/2019] [Accepted: 06/02/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND/PURPOSE Ultraviolet (UV) A (315-400 nm) is the UV light that most frequently reaches the Earth's surface and can penetrate the epidermis through to the dermis, causing various issues, including skin aging and skin cancer. The results of our previous studies have shown that the flavonoid monomer cyanidin-3-o-glucoside (C3G) can effectively inhibit primary human dermal fibroblast (HDF) oxidative damage and apoptosis caused by UVA radiation. Many flavonoids can regulate the level of autophagy. However, whether C3G inhibits UVA-induced oxidative damage to primary HDFs by regulating autophagy levels remains unclear. METHODS AND RESULTS In this study, we used different doses (0-12 J/cm2 ) of UVA to irradiate cells and showed that the expression levels of autophagy-related gene 5 (Atg5) and microtubule-associated protein 1 light chain 3 (LC3)-II in primary HDFs first increased and then decreased. The expression of Atg5 and LC3-II was significantly decreased under 12 J/cm2 (light-damage model). C3G increased the levels of Atg5 and LC3-II. Primary HDFs were pretreated with C3G, followed by treatment with the autophagy inhibitor 3-methyladenine (3-MA) after 12 J/cm2 UVA irradiation. The inhibitory effects of C3G on morphological changes, oxidative damage, and apoptosis in primary HDFs induced by UVA were significantly decreased. CONCLUSION C3G can inhibit UVA-induced damage to primary HDFs by inducing autophagy. These results provide a theoretical basis for the application of natural compounds to resist light damage to the skin in the future.
Collapse
Affiliation(s)
- Shi Wu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunfeng Hu
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weibin Bai
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jiayi Zhao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Cuiqin Huang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Caiyan Wen
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Liehua Deng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Daxiang Lu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
71
|
Affiliation(s)
- I M Leigh
- Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 8AT, U.K
- Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, U.K
| | - C M Proby
- Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, U.K
| | - G J Inman
- Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, U.K
| | - C A Harwood
- Barts & the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 8AT, U.K
| |
Collapse
|
72
|
Park C, Cha HJ, Hong SH, Kim GY, Kim S, Kim HS, Kim BW, Jeon YJ, Choi YH. Protective Effect of Phloroglucinol on Oxidative Stress-Induced DNA Damage and Apoptosis through Activation of the Nrf2/HO-1 Signaling Pathway in HaCaT Human Keratinocytes. Mar Drugs 2019; 17:md17040225. [PMID: 31013932 PMCID: PMC6520966 DOI: 10.3390/md17040225] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
Phloroglucinol (PG) is a component of phlorotannins, which are abundant in marine brown alga species. Recent studies have shown that PG is beneficial in protecting cells from oxidative stress. In this study, we evaluated the protective efficacy of PG in HaCaT human skin keratinocytes stimulated with oxidative stress (hydrogen peroxide, H2O2). The results showed that PG significantly inhibited the H2O2-induced growth inhibition in HaCaT cells, which was associated with increased expression of heme oxygenase-1 (HO-1) by the activation of nuclear factor erythroid 2-related factor-2 (Nrf2). PG remarkably reversed H2O2-induced excessive ROS production, DNA damage, and apoptosis. Additionally, H2O2-induced mitochondrial dysfunction was related to a decrease in ATP levels, and in the presence of PG, these changes were significantly impaired. Furthermore, the increases of cytosolic release of cytochrome c and ratio of Bax to Bcl-2, and the activation of caspase-9 and caspase-3 by the H2O2 were markedly abolished under the condition of PG pretreatment. However, the inhibition of HO-1 function using zinc protoporphyrin, a HO-1 inhibitor, markedly attenuated these protective effects of PG against H2O2. Overall, our results suggest that PG is able to protect HaCaT keratinocytes against oxidative stress-induced DNA damage and apoptosis through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
73
|
St-Pierre A, Blondeau D, Boivin M, Beaupré V, Boucher N, Desgagné-Penix I. Study of antioxidant properties of thylakoids and application in UV protection and repair of UV-induced damage. J Cosmet Dermatol 2019; 18:1980-1991. [PMID: 30933421 DOI: 10.1111/jocd.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skin is affected by environmental stress such as ultraviolet exposure. Topically applied antioxidants confer protection against this stress. Spinach thylakoid extracts are plant samples known as photosynthetic membranes containing antioxidant molecules able to dissipate excess of energy and oxidative stress. METHODS Antioxidant contents and activities were tested in thylakoid extracts stored for different periods at 4°C to compare their efficacities. Cytotoxicity of thylakoids was tested on human THP-1 cells along with the capacity to protect from oxidative stress using flow cytometry. Protection of thylakoids against ultraviolet was tested on engineered human skin using two formulations and evaluated by electronic microscopy. RESULTS Results indicate that thylakoid extracts possess antioxidant molecules that were not significantly affected by storage at 4°C whereas photosynthetic activity was storage-dependent. Thylakoid extracts were not cytotoxic to human THP-1 cells, and three extracts protected cells against reactive oxygen species. Moreover, formulation comprising 0.1% or 0.01% of thylakoids and sunscreen provided a synergetic protection against UV exposure. Thylakoid extracts mixed with a neutral cream were also able to repair UV damages on engineered human skin. CONCLUSIONS Thylakoid extracts contained various antioxidant molecules, and their properties were maintained in over storage at 4°C for more than 72 months. Molecules and enzymes present in thylakoid extracts are involved in protecting and restoring the harmful effects of UV exposure. The involvement of antioxidant molecules such as carotenoids, SOD, and Fe-S clusters in cellular and regulatory metabolic reactions may explain the observed protective effects.
Collapse
Affiliation(s)
- Annabelle St-Pierre
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Dorian Blondeau
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Michelle Boivin
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Vickie Beaupré
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
74
|
Zhu Y, Li L, Reinach PS, Li Y, Ge C, Qu J, Chen W. Corneal Collagen Cross-Linking With Riboflavin and UVA Regulates Hemangiogenesis and Lymphangiogenesis in Rats. Invest Ophthalmol Vis Sci 2019; 59:3702-3712. [PMID: 30029257 DOI: 10.1167/iovs.17-23036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to determine whether corneal collagen crosslinking (CXL) inhibits hemangiogenesis and lymphangiogenesis during acute corneal inflammation in an in vivo rat model. Methods Inflammatory corneal neovascularization was induced by suture placement into a rat cornea. At day 3 after suture, a CXL protocol using riboflavin and UVA was administered after mechanical epithelial debridement. Hemangiogenesis and lymphangiogenesis were analyzed morphometrically. CD45 and CD68 immunostaining evaluated corneal leucocyte and macrophage immune cell infiltration, respectively. A TUNEL assay detected stromal cell apoptosis. Quantitative RT-PCR analysis identified angiogenic and lymphangiogenic genes as well as proinflammatory cytokine expression. Western blot analysis characterized vascular endothelial cell CD31 and lymphatic vessel endothelial hyaluronan receptor (LYVE-1) protein expression. Results CXL treatment significantly reduced corneal pathologic suture-induced hemangiogenesis and lymphangiogenesis 7 days after suture emplacement, but this procedure failed to affect hemangiogenesis and lymphangiogenesis 14 days after suture. Increased cell apoptosis and reduced CD45+ and CD68+ cell infiltration were evident in CXL-treated rats on days 7 and 14 after suture emplacement. CXL treatment significantly decreased angiogenic and lymphangiogenic mRNA expression levels and both CD31 and LYVE-1 protein expression levels, whereas it increased proinflammatory cytokine levels on day 7 after suture emplacement. However, on day 14 after corneal neovascularization, angiogenic and lymphangiogenic mRNA gene expression levels were upregulated along with hematic CD31 and lymphatic LYVE-1 protein expression. Conclusions CXL treatment only temporarily inhibits corneal inflammatory-associated hemangiogenesis and lymphangiogenesis in vivo. Such insight suggests that future studies are warranted to develop novel CXL strategies with longer-lasting effectiveness in attenuating hemantic- and lymphatic-related corneal diseases.
Collapse
Affiliation(s)
- Yirui Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Ling Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Peter S Reinach
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Yun Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Chaoxiang Ge
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| | - Wei Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Zhejiang, China
| |
Collapse
|
75
|
Calzavara-Pinton P, Arisi M, Wolf P. Sunbeds and carcinogenesis: the need for new regulations and restrictions in Europe from the Euromelanoma perspective. J Eur Acad Dermatol Venereol 2019; 33 Suppl 2:104-109. [DOI: 10.1111/jdv.15314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/20/2018] [Indexed: 12/27/2022]
Affiliation(s)
- P.G. Calzavara-Pinton
- Dermatology Department; University of Brescia; ASST Spedali Civili di Brescia; Brescia Italy
| | - M. Arisi
- Dermatology Department; University of Brescia; ASST Spedali Civili di Brescia; Brescia Italy
| | - P. Wolf
- Research Unit for Photodermatology; Department of Dermatology and Venereology; Medical University of Graz; Graz Austria
| |
Collapse
|
76
|
Moreno NC, Garcia CCM, Munford V, Rocha CRR, Pelegrini AL, Corradi C, Sarasin A, Menck CFM. The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radic Biol Med 2019; 131:432-442. [PMID: 30553972 DOI: 10.1016/j.freeradbiomed.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Abstract
The UVA component of sunlight induces DNA damage, which are basically responsible for skin cancer formation. Xeroderma Pigmentosum Variant (XP-V) patients are defective in the DNA polymerase pol eta that promotes translesion synthesis after sunlight-induced DNA damage, implying in a clinical phenotype of increased frequency of skin cancer. However, the role of UVA-light in the carcinogenesis of these patients is not completely understood. The goal of this work was to characterize UVA-induced DNA damage and the consequences to XP-V cells, compared to complemented cells. DNA damage were induced in both cells by UVA, but lesion removal was particularly affected in XP-V cells, possibly due to the oxidation of DNA repair proteins, as indicated by the increase of carbonylated proteins. Moreover, UVA irradiation promoted replication fork stalling and cell cycle arrest in the S-phase for XP-V cells. Interestingly, when cells were treated with the antioxidant N-acetylcysteine, all these deleterious effects were consistently reverted, revealing the role of oxidative stress in these processes. Together, these results strongly indicate the crucial role of oxidative stress in UVA-induced cytotoxicity and are of interest for the protection of XP-V patients.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Alessandra Luiza Pelegrini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, University Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
77
|
Red Raspberry Extract Protects the Skin against UVB-Induced Damage with Antioxidative and Anti-inflammatory Properties. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9529676. [PMID: 30723535 PMCID: PMC6339709 DOI: 10.1155/2019/9529676] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/29/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Abstract
Extensive exposure to UVB (280–320 nm) is the major risk responsible for various skin injuries. Numerous reports have shown that natural products could demonstrate photochemopreventive efficacy against UVB damage. We investigated the preventive effects and associated molecular mechanisms of red raspberry extract upon UVB-caused damage in human epidermal keratinocytes and a nude mouse model. The protein profiles and immunohistological study on a nude mouse skin indicated that red raspberry extract could prevent UVB-caused cell death and protect the skin against UVB-exposed injury manifested by wrinkling, scaling, tanning, and water loss as well as epidermal thickening. In addition, red raspberry extract application effectively abolished oxidative damage in DNA and attenuated the carbonylation level of proteins, which attributed to the activation of SOD, Nrf2 and its target genes, and HO-1. Red raspberry extract also altered the cells' apoptotic signaling pathways including caspase-3 as well as the inflammatory cascade such as c-jun and attenuated UVB-induced activation of NF-κB and COX-2. Red raspberry extract could alleviate direct photodamage to the skin caused by UVB exposure through the ROS scavenger and protection against inflammatory responses, which may allow the development of novel strategies in protecting the skin subjected to UVB radiation.
Collapse
|
78
|
Cadet J, Douki T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem Photobiol Sci 2018; 17:1816-1841. [PMID: 29405222 DOI: 10.1039/c7pp00395a] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UV-induced DNA damage plays a key role in the initiation phase of skin cancer. When left unrepaired or when damaged cells are not eliminated by apoptosis, DNA lesions express their mutagneic properties, leading to the activation of proto-oncogene or the inactivation of tumor suppression genes. The chemical nature and the amount of DNA damage strongly depend on the wavelength of the incident photons. The most energetic part of the solar spectrum at the Earth's surface (UVB, 280-320 nm) leads to the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (64PPs). Less energetic but 20-times more intense UVA (320-400 nm) also induces the formation of CPDs together with a wide variety of oxidatively generated lesions such as single strand breaks and oxidized bases. Among those, 8-oxo-7,8-dihydroguanine (8-oxoGua) is the most frequent since it can be produced by several mechanisms. Data available on the respective yield of DNA photoproducts in cells and skin show that exposure to sunlight mostly induces pyrimidine dimers, which explains the mutational signature found in skin tumors, with lower amounts of 8-oxoGua and strand breaks. The present review aims at describing the basic photochemistry of DNA and discussing the quantitative formation of the different UV-induced DNA lesions reported in the literature. Additional information on mutagenesis, repair and photoprotection is briefly provided.
Collapse
Affiliation(s)
- Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, Québec JIH 5N4, Canada.
| | | |
Collapse
|
79
|
Moreno NC, Garcia CCM, Rocha CRR, Munford V, Menck CFM. ATR/Chk1 Pathway is Activated by Oxidative Stress in Response to UVA Light in Human Xeroderma Pigmentosum Variant Cells. Photochem Photobiol 2018; 95:345-354. [PMID: 30362123 DOI: 10.1111/php.13041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
The crucial role of DNA polymerase eta in protecting against sunlight-induced tumors is evidenced in Xeroderma Pigmentosum Variant (XP-V) patients, who carry mutations in this protein and present increased frequency of skin cancer. XP-V cellular phenotypes may be aggravated if proteins of DNA damage response (DDR) pathway are blocked, as widely demonstrated by experiments with UVC light and caffeine. However, little is known about the participation of DDR in XP-V cells exposed to UVA light, the wavelengths patients are mostly exposed. Here, we demonstrate the participation of ATR kinase in protecting XP-V cells after receiving low UVA doses using a specific inhibitor, with a remarkable increase in sensitivity and γH2AX signaling. Corroborating ATR participation in UVA-DDR, a significant increase in Chk1 protein phosphorylation, as well as S-phase cell cycle arrest, is also observed. Moreover, the participation of oxidative stress is supported by the antioxidant action of N-acetylcysteine (NAC), which significantly protects XP-V cells from UVA light, even in the presence of the ATR inhibitor. These findings indicate that the ATR/Chk1 pathway is activated to control UVA-induced oxidatively generated DNA damage and emphasizes the role of ATR kinase as a mediator of genomic stability in pol eta defective cells.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
80
|
Aldehyde-mediated protein degradation is responsible for the inhibition of nucleotide excision repair by cigarette sidestream smoke. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 834:42-50. [DOI: 10.1016/j.mrgentox.2018.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 08/10/2018] [Indexed: 12/28/2022]
|
81
|
Inman GJ, Wang J, Nagano A, Alexandrov LB, Purdie KJ, Taylor RG, Sherwood V, Thomson J, Hogan S, Spender LC, South AP, Stratton M, Chelala C, Harwood CA, Proby CM, Leigh IM. The genomic landscape of cutaneous SCC reveals drivers and a novel azathioprine associated mutational signature. Nat Commun 2018; 9:3667. [PMID: 30202019 PMCID: PMC6131170 DOI: 10.1038/s41467-018-06027-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) has a high tumour mutational burden (50 mutations per megabase DNA pair). Here, we combine whole-exome analyses from 40 primary cSCC tumours, comprising 20 well-differentiated and 20 moderately/poorly differentiated tumours, with accompanying clinical data from a longitudinal study of immunosuppressed and immunocompetent patients and integrate this analysis with independent gene expression studies. We identify commonly mutated genes, copy number changes and altered pathways and processes. Comparisons with tumour differentiation status suggest events which may drive disease progression. Mutational signature analysis reveals the presence of a novel signature (signature 32), whose incidence correlates with chronic exposure to the immunosuppressive drug azathioprine. Characterisation of a panel of 15 cSCC tumour-derived cell lines reveals that they accurately reflect the mutational signatures and genomic alterations of primary tumours and provide a valuable resource for the validation of tumour drivers and therapeutic targets.
Collapse
Affiliation(s)
- Gareth J Inman
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| | - Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| | - Ai Nagano
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine and Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karin J Purdie
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Richard G Taylor
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Victoria Sherwood
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Jason Thomson
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Sarah Hogan
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Lindsay C Spender
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Andrew P South
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michael Stratton
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Charlotte M Proby
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Irene M Leigh
- Division of Cancer Research, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
82
|
Lin YC, Lin CF, Alalaiwe A, Wang PW, Fang YP, Fang JY. UV filter entrapment in mesoporous silica hydrogel for skin protection against UVA with minimization of percutaneous absorption. Eur J Pharm Sci 2018; 122:185-194. [DOI: 10.1016/j.ejps.2018.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 01/11/2023]
|
83
|
Emri G, Paragh G, Tósaki Á, Janka E, Kollár S, Hegedűs C, Gellén E, Horkay I, Koncz G, Remenyik É. Ultraviolet radiation-mediated development of cutaneous melanoma: An update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 185:169-175. [PMID: 29936410 DOI: 10.1016/j.jphotobiol.2018.06.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Ultraviolet (UV) light is absorbed by nucleic acids, proteins or other endogenous chromophores, such as porphyrins, flavins and melanin, triggering biological processes in skin cells. Both UV-induced mutations in melanocytes and changes in the immune microenvironment are understood to play a role in the development of cutaneous melanoma. The degree of UV-induced stress and the protection against this stress are influenced by both intracellular and intercellular molecular interactions. The present review summarizes the known major molecular biological changes induced by UV light in the skin that play a role in melanoma initiation and promotion. Nevertheless, cutaneous melanoma is not a homogenous disease, and the interaction of variable environmental exposure and different genetic susceptibility and other host factors lead to the formation of melanomas with different biological behavior and clinical characteristics. This review highlights the challenges in the understanding of how UV radiation contributes to the formation of cutaneous melanoma, and reviews the new results of photobiology and their link to tumor genetics and tumor immunology with potential implications on melanoma prevention and therapeutic strategies. The information presented here is expected to add clarity to ongoing research efforts in this field to aid the development of novel strategies to prevent and treat melanoma.
Collapse
Affiliation(s)
- Gabriella Emri
- Department of Dermatology, University of Debrecen, Debrecen, Hungary.
| | - György Paragh
- Department of Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Ágnes Tósaki
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Eszter Janka
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Sándor Kollár
- Department of Pathology, Kenézy Gyula Hospital, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Emese Gellén
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Irén Horkay
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Éva Remenyik
- Department of Dermatology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
84
|
Tom EF, Molineux IJ, Paff ML, Bull JJ. Experimental evolution of UV resistance in a phage. PeerJ 2018; 6:e5190. [PMID: 30013847 PMCID: PMC6042481 DOI: 10.7717/peerj.5190] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
The dsDNA bacteriophage T7 was subjected to 30 cycles of lethal ultraviolet light (UV) exposure to select increased resistance to UV. The exposure effected a 0.9999 kill of the ancestral population, and survival of the ending population was nearly 50-fold improved. At the end point, a 2.1 kb deletion of early genes and three substitutions in structural-genes were the only changes observed at high frequency throughout the 40 kb genome; no changes were observed in genes affecting DNA metabolism. The deletion accounted for only a two-fold improvement in survival. One possible explanation of its benefit is that it represents an error catastrophe, whereby the genome experiences a reduced mutation rate. The mechanism of benefit provided by the three structural-gene mutations remains unknown. The results offer some hope of artificially evolving greater protection against sunlight damage in applications of phage therapy to plants, but the response of T7 is weak compared to that observed in bacteria selected to resist ionizing radiation. Because of the weak response, mathematical analysis of the selection process was performed to determine how the protocol might have been modified to achieve a greater response, but the greatest protection may well come from evolving phages to bind materials that block the UV.
Collapse
Affiliation(s)
- Eric F Tom
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Ian J Molineux
- Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Matthew L Paff
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - James J Bull
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
85
|
Golemis EA, Scheet P, Beck TN, Scolnick EM, Hunter DJ, Hawk E, Hopkins N. Molecular mechanisms of the preventable causes of cancer in the United States. Genes Dev 2018; 32:868-902. [PMID: 29945886 PMCID: PMC6075032 DOI: 10.1101/gad.314849.118] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Annually, there are 1.6 million new cases of cancer and nearly 600,000 cancer deaths in the United States alone. The public health burden associated with these numbers has motivated enormous research efforts into understanding the root causes of cancer. These efforts have led to the recognition that between 40% and 45% of cancers are associated with preventable risk factors and, importantly, have identified specific molecular mechanisms by which these exposures modify human physiology to induce or promote cancer. The increasingly refined knowledge of these mechanisms, which we summarize here, emphasizes the need for greater efforts toward primary cancer prevention through mitigation of modifiable risk factors. It also suggests exploitable avenues for improved secondary prevention (which includes the development of therapeutics designed for cancer interception and enhanced techniques for noninvasive screening and early detection) based on detailed knowledge of early neoplastic pathobiology. Such efforts would complement the current emphasis on the development of therapeutic approaches to treat established cancers and are likely to result in far greater gains in reducing morbidity and mortality.
Collapse
Affiliation(s)
- Erica A Golemis
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Paul Scheet
- Department of Epidemiology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Tim N Beck
- Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | - Eward M Scolnick
- Eli and Edythe L. Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - David J Hunter
- Nuffield Department of Population Health, University of Oxford, Medical Sciences Division, Oxford OX3 7LF, United Kingdom
| | - Ernest Hawk
- Division of Cancer Prevention and Population Sciences, University of Texas M.D. Anderson Cancer Center, Houston Texas 77030, USA
| | - Nancy Hopkins
- Koch Institute for Integrative Cancer Research, Biology Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
86
|
Niculiţe CM, Nechifor MT, Urs AO, Olariu L, Ceafalan LC, Leabu M. Keratinocyte Motility Is Affected by UVA Radiation-A Comparison between Normal and Dysplastic Cells. Int J Mol Sci 2018; 19:E1700. [PMID: 29880745 PMCID: PMC6032280 DOI: 10.3390/ijms19061700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 01/17/2023] Open
Abstract
UVA radiation induces multiple and complex changes in the skin, affecting epidermal cell behavior. This study reports the effects of UVA exposure on normal (HaCaT) and dysplastic (DOK) keratinocytes. The adherence, spreading and proliferation were investigated by time-lapse measurement of cell layer impedance on different matrix proteins. Prior to UVA exposure, the time required for adherence and spreading did not differ significantly for HaCaT and DOK cells, while spreading areas were larger for HaCaT cells. Under UVA exposure, HaCaT and DOK cells behavior differed in terms of movement and proliferation. The cells' ability to cover the denuded surface and individual cell trajectories were recorded by time-lapse videomicroscopy, during wound healing experiments. Dysplastic keratinocytes showed more sensitivity to UVA, exhibiting transient deficiencies in directionality of movement and a delay in re-coating the denuded area. The actin cytoskeleton displayed a cortical organization immediately after irradiation, in both cell lines, similar to mock-irradiated cells. Post-irradiation, DOK cells displayed a better organization of stress fibers, persistent filopodia, and new, stronger focal contacts. In conclusion, after UVA exposure HaCaT and DOK cells showed a different behavior in terms of adherence, spreading, motility, proliferation, and actin cytoskeleton dynamics, with the dyplastic keratinocytes being more sensitive.
Collapse
Affiliation(s)
- Cristina M Niculiţe
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
- Department of Morphological Sciences, University of Medicine and Pharmacy Carol Davila, 8, Blvd. Eroilor Sanitari, 050474 Bucharest, Romania.
| | - Marina T Nechifor
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95, Splaiul Independentei, 050095 Bucharest, Romania.
| | - Andreea O Urs
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
| | - Laura Olariu
- SC Biotehnos SA, 3-5, Gorunului Street, 075100 Otopeni, Romania.
| | - Laura C Ceafalan
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
- Department of Morphological Sciences, University of Medicine and Pharmacy Carol Davila, 8, Blvd. Eroilor Sanitari, 050474 Bucharest, Romania.
| | - Mircea Leabu
- Victor Babeș National Institute of Pathology, 99-101, Splaiul Independentei, 050096 Bucharest, Romania.
- Department of Morphological Sciences, University of Medicine and Pharmacy Carol Davila, 8, Blvd. Eroilor Sanitari, 050474 Bucharest, Romania.
| |
Collapse
|
87
|
Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:438-460. [PMID: 29466611 PMCID: PMC6031472 DOI: 10.1002/em.22176] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 05/10/2023]
Abstract
The growing incidence of melanoma is a serious public health issue that merits a thorough understanding of potential causative risk factors, which includes exposure to ultraviolet radiation (UVR). Though UVR has been classified as a complete carcinogen and has long been recognized for its ability to damage genomic DNA through both direct and indirect means, the precise mechanisms by which the UVA and UVB components of UVR contribute to the pathogenesis of melanoma have not been clearly defined. In this review, we therefore highlight recent studies that have addressed roles for UVA radiation in the generation of DNA damage and in modulating the subsequent cellular responses to DNA damage in melanocytes, which are the cell type that gives rise to melanoma. Recent research suggests that UVA not only contributes to the direct formation of DNA lesions but also impairs the removal of UV photoproducts from genomic DNA through oxidation and damage to DNA repair proteins. Moreover, the melanocyte microenvironment within the epidermis of the skin is also expected to impact melanomagenesis, and we therefore discuss several paracrine signaling pathways that have been shown to impact the DNA damage response in UV-irradiated melanocytes. Lastly, we examine how alterations to the immune microenvironment by UVA-associated DNA damage responses may contribute to melanoma development. Thus, there appear to be multiple avenues by which UVA may elevate the risk of melanoma. Protective strategies against excess exposure to UVA wavelengths of light therefore have the potential to decrease the incidence of melanoma. Environ. Mol. Mutagen. 59:438-460, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aiman Q Khan
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
- Dayton Veterans Affairs Medical Center, Dayton, Ohio
| | - Michael G Kemp
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, Ohio
| |
Collapse
|
88
|
Garre A, Narda M, Valderas-Martinez P, Piquero J, Granger C. Antiaging effects of a novel facial serum containing L-Ascorbic acid, proteoglycans, and proteoglycan-stimulating tripeptide: ex vivo skin explant studies and in vivo clinical studies in women. Clin Cosmet Investig Dermatol 2018; 11:253-263. [PMID: 29881301 PMCID: PMC5985795 DOI: 10.2147/ccid.s161352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND With age, decreasing dermal levels of proteoglycans, collagen, and elastin lead to the appearance of aged skin. Oxidation, largely driven by environmental factors, plays a central role. AIM The aim of this study was to assess the antiaging efficacy of a topical serum containing L-Ascorbic acid, soluble proteoglycans, low molecular weight hyaluronic acid, and a tripeptide in ex vivo and in vivo clinical studies. METHODS Photoaging and photo-oxidative damage were induced in human skin explants by artificial solar radiation. Markers of oxidative stress - reactive oxygen species (ROS), total glutathione (GSH), and cyclobutane pyrimidine dimers (CPDs) - were measured in serum-treated explants and untreated controls. Chronological aging was simulated using hydrocortisone. In both ex vivo studies, collagen, elastin, and proteoglycans were determined as measures of dermal matrix degradation. In women aged 21-67 years, hydration was measured up to 24 hours after a single application of serum, using Corneometer and hygrometer. Subjects' perceptions of efficacy and acceptability were assessed via questionnaire after once-daily serum application for 4 weeks. Studies were performed under the supervision of a dermatologist. RESULTS In the photoaging study, irradiation induced changes in ROS, CPD, GSH, collagen, and elastin levels; these changes were reversed by topical serum application. The serum also protected against hydrocortisone-induced reduction in collagen, elastin, and proteoglycan levels, which were significantly higher in the serum-treated group vs untreated hydrocortisone-control explants. In clinical studies, serum application significantly increased skin moisture for 6 hours. Healthy volunteers perceived the product as efficient in making the skin brighter, more hydrated, and decreasing wrinkles and wished to continue using it. The serum was well tolerated and noncomedogenic. CONCLUSION The serum protected against oxidative damage and dermal protein loss caused by photo- and chronological aging in human skin explants. In-vivo, the serum hydrated skin for 6 hours, and users perceived increased skin brightness, hydration, and fewer wrinkles.
Collapse
Affiliation(s)
- Aurora Garre
- Innovation and Development, ISDIN SA, Barcelona, Spain
| | | | | | | | | |
Collapse
|
89
|
Choi M, Jeon S. Antiapoptotic effects of scutellarin on ultraviolet A-irradiated HaCaT human keratinocytes. BIOMEDICAL DERMATOLOGY 2018. [DOI: 10.1186/s41702-018-0022-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
90
|
Meimeti E, Kafanas A, Pavlou P, Evangelatou A, Tsouparelou P, Kanellopoulos S, Kipouros P, Koliarakis N, Leonis G, Ioannou E, Roussis V, Rallis M. Topical Treatment of Skin Injury Inflicted in Mice by X-Ray Irradiation. Skin Pharmacol Physiol 2018; 31:175-183. [PMID: 29617695 DOI: 10.1159/000487404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/02/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND/AIMS There is no treatment, without side effects, efficiently preventing or curing skin burns, caused by radiotherapy. A new experimental topical treatment protocol was assessed in mice receiving orthovoltage X-rays at an equivalent dose to that applied to human breast cancer patients in conventional radiotherapy. METHODS SKH-HR2 female hairless mice were irradiated on their dorsum with a total dose of 4,300 cGy during a 1-month period (20 fractions). The treatment group received a combination of 3 topical products, an oil-in-water cream, a gel containing Pinus halepensis bark aqueous extract, and an ointment containing olive oil extract of the marine isopod Ceratothoa oestroides. The positive control group was treated with a conventionally used commercial gel, whereas the negative control group did not receive any topical treatment. Skin alterations were evaluated by macroscopic examinations, measurements of transepidermal water loss (TEWL), melanin content, erythema intensity, hydration, and histopathology assessment. RESULTS Sixty days after radiation, TEWL and hydration values were abnormal and elements of acute, chronic, and granulomatous inflammation were present in all cases. The severest damage was detected in the deeper dermis. Treatment showed a comparatively beneficial effect on chronic and granulomatous inflammation while positive control was beneficial on acute inflammation. CONCLUSION Skin anti-inflammatory treatment was the most effective but must be applied for several months. Further preclinical studies should be conducted, assimilating a human cancer radiation therapeutic schema with the aim of optimizing skin inflammation treatment.
Collapse
Affiliation(s)
- Evangelia Meimeti
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Panagoula Pavlou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonia Evangelatou
- Department of Radiation Oncology, Andreas Syggros Hospital of Dermatology and Venereology, Athens, Greece
| | - Panagiota Tsouparelou
- Department of Radiation Oncology, Andreas Syggros Hospital of Dermatology and Venereology, Athens, Greece
| | - Stelios Kanellopoulos
- Department of Radiation Oncology, Andreas Syggros Hospital of Dermatology and Venereology, Athens, Greece
| | - Panagiotis Kipouros
- Department of Radiation Oncology, Andreas Syggros Hospital of Dermatology and Venereology, Athens, Greece
| | - Nikolaos Koliarakis
- Department of Radiation Oncology, Andreas Syggros Hospital of Dermatology and Venereology, Athens, Greece
| | - Georgios Leonis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathia Ioannou
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Vassilios Roussis
- Department of Pharmacognosy and Chemistry of Natural Products, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Michail Rallis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
91
|
Aparici-Espert I, Miranda MA, Lhiaubet-Vallet V. Sunscreen-Based Photocages for Topical Drugs: A Photophysical and Photochemical Study of A Diclofenac-Avobenzone Dyad. Molecules 2018; 23:molecules23030673. [PMID: 29547525 PMCID: PMC6017856 DOI: 10.3390/molecules23030673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 02/05/2023] Open
Abstract
Photosensitization by drugs is a problem of increasing importance in modern life. This phenomenon occurs when a chemical substance in the skin is exposed to sunlight. Photosensitizing drugs are reported to cause severe skin dermatitis, and indeed, it is generally advised to avoid sunbathing and to apply sunscreen. In this context, the nonsteroidal anti-inflammatory drug (NSAID) diclofenac is a photosensitive drug, especially when administered in topical form. In this work, efforts have been made to design and study an innovative pro-drug/pro-filter system containing diclofenac and the UVA filter avobenzone in order to develop a safer use of this topical drug. The design is based on the presence of a well-established photoremovable phenacyl group in the avobenzone structure. Steady-state photolysis of the dyad in hydrogen-donor solvents, monitored by UV-Vis spectrophotometry and HPLC, confirms the simultaneous photorelease of diclofenac and avobenzone. Laser flash photolysis and phosphorescence emission experiments allow us to gain insight into the photoactive triplet excited-state properties of the dyad. Finally, it is shown that avobenzone provides partial photoprotection to diclofenac from photocyclization to carbazole derivatives.
Collapse
Affiliation(s)
- Isabel Aparici-Espert
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| | - Miguel A Miranda
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| | - Virginie Lhiaubet-Vallet
- Instituto Universitario Mixto de Tecnología Química, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Avda de los Naranjos, s/n, 46022 Valencia, Spain.
| |
Collapse
|
92
|
Wu S, Hu Y, Li Z, Bai W, Zhao J, Huang C, Li Q, Fan C, Deng L, Lu D. The effect of Cyanidin-3-o-glucoside on UVA-induced damage in human dermal fibroblasts. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2018; 34:224-231. [PMID: 29235191 DOI: 10.1111/phpp.12374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Shi Wu
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Yunfeng Hu
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Zhen Li
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Weibin Bai
- Department of Food Science and Engineering; Jinan University; Guangzhou Guangdong China
| | - Jiayi Zhao
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Cuiqin Huang
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Qin Li
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Chongzhu Fan
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| | - Liehua Deng
- Department of Dermatology; The First Affiliated Hospital; Jinan University; Guangzhou Guangdong China
| | - Daxiang Lu
- Department of Pathophysiology; School of Medicine; Jinan University; Guangzhou Guangdong China
| |
Collapse
|
93
|
Yang G, Ibuki Y. α,β-Unsaturated Aldehyde-Induced Delays in Nucleotide Excision Repair and the Contribution of Reactive Oxygen Species. Chem Res Toxicol 2018; 31:145-155. [DOI: 10.1021/acs.chemrestox.7b00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guang Yang
- Graduate Division of Nutritional
and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional
and Environmental Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan
| |
Collapse
|
94
|
Delinasios GJ, Karbaschi M, Cooke MS, Young AR. Vitamin E inhibits the UVAI induction of "light" and "dark" cyclobutane pyrimidine dimers, and oxidatively generated DNA damage, in keratinocytes. Sci Rep 2018; 8:423. [PMID: 29323251 PMCID: PMC5764969 DOI: 10.1038/s41598-017-18924-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Solar ultraviolet radiation (UVR)-induced DNA damage has acute, and long-term adverse effects in the skin. This damage arises directly by absorption of UVR, and indirectly via photosensitization reactions. The aim of the present study was to assess the effects of vitamin E on UVAI-induced DNA damage in keratinocytes in vitro. Incubation with vitamin E before UVAI exposure decreased the formation of oxidized purines (with a decrease in intracellular oxidizing species), and cyclobutane pyrimidine dimers (CPD). A possible sunscreening effect was excluded when similar results were obtained following vitamin E addition after UVAI exposure. Our data showed that DNA damage by UVA-induced photosensitization reactions can be inhibited by the introduction of vitamin E either pre- or post-irradiation, for both oxidized purines and CPD (including so-called "dark" CPDs). These data validate the evidence that some CPD are induced by UVAI initially via photosensitization, and some via chemoexcitation, and support the evidence that vitamin E can intervene in this pathway to prevent CPD formation in keratinocytes. We propose the inclusion of similar agents into topical sunscreens and aftersun preparations which, for the latter in particular, represents a means to mitigate on-going DNA damage formation, even after sun exposure has ended.
Collapse
Affiliation(s)
- George J Delinasios
- King's College London, St John's Institute of Dermatology, 9th Floor, Tower Wing, Guy's Hospital; Great Maze Pond, London, SE1 9RT, UK
- International Institute of Anticancer Research, Kapandriti, 19014, Greece
| | - Mahsa Karbaschi
- Oxidative Stress Group, Department of Cancer Studies, University Hospitals of Leicester NHS Trust, Leicester, UK
- Oxidative Stress Group, Department of Environmental Health Sciences; and Biomolecular Sciences Institute, Florida International University, University Park, 11200 SW 8th Street, Miami, Fl, 33199, USA
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cancer Studies, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Department of Genetics, University of Leicester, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK.
- Oxidative Stress Group, Department of Environmental Health Sciences; and Biomolecular Sciences Institute, Florida International University, University Park, 11200 SW 8th Street, Miami, Fl, 33199, USA.
| | - Antony R Young
- King's College London, St John's Institute of Dermatology, 9th Floor, Tower Wing, Guy's Hospital; Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
95
|
Harwood CA, Toland AE, Proby CM, Euvrard S, Hofbauer GFL, Tommasino M, Bouwes Bavinck JN. The pathogenesis of cutaneous squamous cell carcinoma in organ transplant recipients. Br J Dermatol 2017; 177:1217-1224. [PMID: 29086420 DOI: 10.1111/bjd.15956] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Abstract
The pathogenesis of keratinocyte carcinoma following organ transplantation is multifactorial, and recent evidence suggests a complex and often synergistic interplay between the carcinogenic effects of ultraviolet radiation, compromised immune surveillance, direct pro- and anticarcinogenic effects of drugs, oncogenic viruses (in particular, beta-genus human papillomaviruses) and host genetic susceptibility factors. We present an overview of those factors for which there is currently the most convincing evidence and highlight important gaps in our knowledge. In particular, a clear understanding of the interdependence and relative contributions of these co-factors is currently lacking, yet has important implications for rational development of clinically relevant biomarkers and targeted strategies for treatment and prevention of post-transplant keratinocyte cancers.
Collapse
Affiliation(s)
- C A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, U.K
| | - A E Toland
- Cancer Biology and Genetics, The Ohio State University, Columbus, OH, U.S.A
| | - C M Proby
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, U.K
| | - S Euvrard
- Hospices Civils de Lyon, Department of Dermatology, Edouard Herriot Hospital, Lyon, France
| | - G F L Hofbauer
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | - M Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - J N Bouwes Bavinck
- Department of Dermatology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
96
|
dos Santos CM, Campos JF, dos Santos HF, Balestieri JBP, Silva DB, de Picoli Souza K, Carollo CA, Estevinho LM, dos Santos EL. Chemical Composition and Pharmacological Effects of Geopropolis Produced by Melipona quadrifasciata anthidioides. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8320804. [PMID: 29213354 PMCID: PMC5682095 DOI: 10.1155/2017/8320804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/24/2017] [Indexed: 12/24/2022]
Abstract
Stingless bees produce geopropolis, which is popularly described for its medicinal properties, but for which few scientific studies have demonstrated pharmacological effects. The objective of this study was to investigate the chemical composition of the geopropolis of Melipona quadrifasciata anthidioides and to evaluate its antioxidant, antimutagenic, anti-inflammatory, and antimicrobial activities. The composition of the hydroethanolic extract of geopropolis (HEG) included di- and trigalloyl and phenylpropanyl heteroside derivatives, flavanones, diterpenes, and triterpenes. HEG showed antioxidant action via the direct capture of free radicals and by inhibiting the levels of oxidative hemolysis and malondialdehyde in human erythrocytes under oxidative stress. HEG also reduced the frequency of gene conversion and the number of mutant colonies of S. cerevisiae. The anti-inflammatory action of HEG was demonstrated by the inhibition of hyaluronidase enzyme activity. In addition, HEG induced cell death in all evaluated gram-positive bacteria, gram-negative bacteria, and yeasts, including clinical isolates with antimicrobial drug resistance. Collectively, these results demonstrate the potential of M. q. anthidioides geopropolis for the prevention and treatment of various diseases related to oxidative stress, mutagenesis, inflammatory processes, and microbial infections.
Collapse
Affiliation(s)
- Cintia Miranda dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Jaqueline Ferreira Campos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Helder Freitas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - José Benedito Perrella Balestieri
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Kely de Picoli Souza
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratory of Natural Products and Mass Spectrometry, Federal University of Mato Grosso do Sul, Cidade Universitária, 79070-900 Campo Grande, MS, Brazil
| | - Leticia M. Estevinho
- Agricultural College of Bragança, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal
- Molecular and Environmental Biology Centre (CBMA), Universidade do Minho, Campus de Gualtar, 4710 057 Braga, Portugal
| | - Edson Lucas dos Santos
- Research Group on Biotechnology and Bioprospecting Applied to Metabolism (GEBBAM), Federal University of Grande Dourados, Rodovia Dourados Itahum, Km 12, 79804-970 Dourados, MS, Brazil
| |
Collapse
|
97
|
Zhang L, Duan X, He N, Chen X, Shi J, Li W, Xu L, Li H. Exposure to lethal levels of benzo[a]pyrene or cadmium trigger distinct protein expression patterns in earthworms (Eisenia fetida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:733-742. [PMID: 28407590 DOI: 10.1016/j.scitotenv.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 06/07/2023]
Abstract
UNLABELLED Different pollutants induce distinct toxic responses in earthworms (Eisenia fetida). Here, we used proteomics techniques to compare the responses of E. fetida to exposure to the 10% lethal concentration (14d-LC10) of benzo[a]pyrene (BaP) or cadmium (Cd) in natural red soil (China). BaP exposure markedly induced the expression of oxidation-reduction proteins, whereas Cd exposure mainly induced the expression of proteins involved in transcription- and translation-related processes. Furthermore, calmodulin-binding proteins were differentially expressed upon exposure to different pollutants. The calcium (Ca2+)-binding cytoskeletal element myosin was down-regulated upon BaP treatment, whereas the Ca2+-binding cytoskeletal element tropomyosin-1 was up-regulated upon Cd treatment. Some proteins exhibited opposite responses to the two pollutants. For instance, catalase (CAT) and heat shock protein 70 were up-regulated upon BaP treatment and down-regulated upon Cd treatment. A significant (p<0.05, one-way ANOVA with least-significant difference (LSD) test) increase in the level of reactive oxygen species (ROS) and CAT activity further showed that BaP mainly induces oxidative stress. Real-time PCR analysis showed that mRNA expression often did not correlate well with protein expression in earthworms subjected to Cd or BaP treatment. In addition, the expression of the gene encoding the protein metallothionein, which was not detected in the protein analysis, was induced upon Cd treatment, but slightly reduced upon BaP treatment. Therefore, BaP and Cd have distinct effects on the protein profile of E. Fetida with BaP markedly inducing ROS activity, and Cd mainly triggering genotoxicity. CAPSULE SUMMARY Distinct patterns of protein expression are induced in earthworms upon exposure to different pollutants; BaP markedly induces high levels of ROS, while Cd resultes in genotoxicity.
Collapse
Affiliation(s)
- Lihao Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Xiaochen Duan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; College of Resources, Environment, and Planning, Dezhou University, Dezhou 253023, People's Republic of China
| | - Nannan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jinli Shi
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Weiming Li
- Nanjing Scientific Institute of Vegetables and Flowers, Nanjing 210095, People's Republic of China
| | - Li Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China.
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
98
|
Holliman G, Lowe D, Cohen H, Felton S, Raj K. Ultraviolet Radiation-Induced Production of Nitric Oxide:A multi-cell and multi-donor analysis. Sci Rep 2017; 7:11105. [PMID: 28894213 PMCID: PMC5593895 DOI: 10.1038/s41598-017-11567-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
Increasing evidence regarding positive effects of exposure to sunlight has led to suggestions that current advice may be overly weighted in favour of avoidance. UV-A has been reported to lower blood pressure, possibly through nitric oxide (NO) production in skin. Here, we set out to investigate effects of UV-A and solar-simulated radiation on the potential source of dermal NO, the effective doses and wavelengths, the responsiveness of different human skin cells, the magnitude of inter-individual differences and the potential influence of age. We utilised isogenic keratinocytes, microvascular endothelial cells, melanocytes and fibroblasts isolated from 36 human skins ranging from neonates to 86 years old. We show that keratinocytes and microvascular endothelial cells show greatest NO release following biologically relevant doses of UV-A. This was consistent across multiple neonatal donors and the effect is maintained in adult keratinocytes. Our observations are consistent with a bi-phasic mechanism by which UV-A can trigger vasodilatory effects. Analyses of NO-production spectra adds further evidence that nitrites in skin cells are the source of UV-mediated NO release. These potentially positive effects of ultraviolet radiation lend support for objective assessment of environmental influence on human health and the idea of “healthy sun exposure”.
Collapse
Affiliation(s)
- Graham Holliman
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards,Public Health England (PHE), Chilton, Oxfordshire, OX11 0RQ, United Kingdom.
| | - Donna Lowe
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards,Public Health England (PHE), Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| | - Howard Cohen
- Elizabeth House, 515 Limpsfield Road, Warlingham, Surrey, CR6 9LF, United Kingdom
| | - Sarah Felton
- Oxford University Hospitals NHS Foundation Trust, Old Road, Oxford, OX3 7LJ, United Kingdom
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards,Public Health England (PHE), Chilton, Oxfordshire, OX11 0RQ, United Kingdom
| |
Collapse
|
99
|
Meyskens FL, Liu-Smith F. Redox-Redux and NADPH Oxidase (NOX): Even More Complicated than We Thought it Might Be. J Invest Dermatol 2017; 137:1208-1210. [DOI: 10.1016/j.jid.2017.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/25/2017] [Indexed: 10/19/2022]
|
100
|
Gayen M, Gupta P, Morazzani EM, Gaidamakova EK, Knollmann-Ritschel B, Daly MJ, Glass PJ, Maheshwari RK. Deinococcus Mn 2+-peptide complex: A novel approach to alphavirus vaccine development. Vaccine 2017; 35:3672-3681. [PMID: 28576570 DOI: 10.1016/j.vaccine.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
Abstract
Over the last ten years, Chikungunya virus (CHIKV), an Old World alphavirus has caused numerous outbreaks in Asian and European countries and the Americas, making it an emerging pathogen of great global health importance. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, on the other hand, has been developed as a bioweapon in the past due to its ease of preparation, aerosol dispersion and high lethality in aerosolized form. Currently, there are no FDA approved vaccines against these viruses. In this study, we used a novel approach to develop inactivated vaccines for VEEV and CHIKV by applying gamma-radiation together with a synthetic Mn-decapeptide-phosphate complex (MnDpPi), based on manganous-peptide-orthophosphate antioxidants accumulated in the extremely radiation-resistant bacterium Deinococcus radiodurans. Classical gamma-irradiated vaccine development approaches are limited by immunogenicity-loss due to oxidative damage to the surface proteins at the high doses of radiation required for complete virus-inactivation. However, addition of MnDpPi during irradiation process selectively protects proteins, but not the nucleic acids, from the radiation-induced oxidative damage, as required for safe and efficacious vaccine development. Previously, this approach was used to develop a bacterial vaccine. In the present study, we show that this approach can successfully be applied to protecting mice against viral infections. Irradiation of VEEV and CHIKV in the presence of MnDpPi resulted in substantial epitope preservation even at supra-lethal doses of gamma-rays (50,000Gy). Irradiated viruses were found to be completely inactivated and safe in vivo (neonatal mice). Upon immunization, VEEV inactivated in the presence of MnDpPi resulted in drastically improved protective efficacy. Thus, the MnDpPi-based gamma-inactivation approach described here can readily be applied to developing vaccines against any pathogen of interest in a fast and cost-effective manner.
Collapse
Affiliation(s)
- Manoshi Gayen
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation, Bethesda, MD 20817, USA
| | - Paridhi Gupta
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation, Bethesda, MD 20817, USA.
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Elena K Gaidamakova
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Henry M. Jackson Foundation, Bethesda, MD 20817, USA
| | | | - Michael J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Radha K Maheshwari
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|