51
|
Abdel-Magid AF. Targeting the Inhibition of Tryptophan 2,3-Dioxygenase (TDO-2) for Cancer Treatment. ACS Med Chem Lett 2017; 8:11-13. [PMID: 28105265 DOI: 10.1021/acsmedchemlett.6b00458] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Indexed: 12/24/2022] Open
|
52
|
Fang K, Wu S, Dong G, Wu Y, Chen S, Liu J, Wang W, Sheng C. Discovery of IDO1 and DNA dual targeting antitumor agents. Org Biomol Chem 2017; 15:9992-9995. [DOI: 10.1039/c7ob02529g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of small molecules for cancer immunotherapy is highly challenging and indoleamine 2,3-dioxygenase 1 (IDO1) represents a promising target.
Collapse
Affiliation(s)
- Kun Fang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Department of Medicinal Chemistry
| | - Shanchao Wu
- Department of Medicinal Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Guoqiang Dong
- Department of Medicinal Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Ying Wu
- Department of Medicinal Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Shuqiang Chen
- Department of Medicinal Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| | - Jianhe Liu
- Department of Urology
- Xinhua Hospital
- Shanghai Jiao Tong University
- School of Medicine
- Shanghai
| | - Wei Wang
- School of Pharmacy
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Department of Chemistry and Chemical Biology
| | - Chunquan Sheng
- Department of Medicinal Chemistry
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- P. R. China
| |
Collapse
|
53
|
Pschowski R, Pape UF, Fusch G, Fischer C, Jann H, Baur A, Arsenic R, Wiedenmann B, von Haehling S, Pavel M, Schefold JC. Increased Activity of the Immunoregulatory Enzyme Indoleamine-2,3-Dioxygenase with Consecutive Tryptophan Depletion Predicts Death in Patients with Neuroendocrine Neoplasia. Neuroendocrinology 2017; 104:135-144. [PMID: 26954941 DOI: 10.1159/000445191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Data from a considerable number of malignancies demonstrate that depletion of the essential amino acid tryptophan via induction of the immunoregulatory enzyme indoleamine-2,3-dioxygenase (IDO) serves as an important tumour escape strategy and is of prognostic importance. Here we investigate the predictive value of the activity of IDO as well as levels of tryptophan and respective downstream catabolites in a large cohort of patients with neuroendocrine neoplasms (NEN). METHODS 142 consecutive Caucasian patients (62 male, aged 60.3 ± 11.9 years) with histologically confirmed NEN were systematically analysed in a retrospective blinded end point analysis. Patients were followed up for a mean period of about 3.9 ± 1.9 years. Clinical outcome, levels of established biomarkers, and tryptophan degradation markers (assessed using tandem mass spectrometry) including estimated IDO activity were recorded. Cox proportional hazards regression models were performed for the assessment of prognostic power. RESULTS We found that baseline tryptophan levels were significantly lower and IDO activity was significantly increased in non-survivors. The risk for death inclined stepwise and was highest in patients in the upper tertile of IDO activity. Cox proportional regression models identified IDO activity as an independent predictor of death. CONCLUSIONS In this retrospective analysis, we observed that baseline activity of the immunoregulatory enzyme IDO was significantly increased in non-survivors. IDO activity was identified as an independent predictor of death in this cohort of NEN patients. Whether IDO activity or tryptophan depletion serves to guide future therapeutic interventions in NEN remains to be established.
Collapse
Affiliation(s)
- René Pschowski
- Department of Hepatology and Gastroenterology, Charité Campus Mitte [CCM and Campus Virchow Clinic (CVK)], Charité, University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Harrelson JP, Lee MW. Expanding the view of breast cancer metabolism: Promising molecular targets and therapeutic opportunities. Pharmacol Ther 2016; 167:60-73. [DOI: 10.1016/j.pharmthera.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/21/2016] [Indexed: 12/23/2022]
|
55
|
Coluccia A, Passacantilli S, Famiglini V, Sabatino M, Patsilinakos A, Ragno R, Mazzoccoli C, Sisinni L, Okuno A, Takikawa O, Silvestri R, La Regina G. New Inhibitors of Indoleamine 2,3-Dioxygenase 1: Molecular Modeling Studies, Synthesis, and Biological Evaluation. J Med Chem 2016; 59:9760-9773. [PMID: 27690429 DOI: 10.1021/acs.jmedchem.6b00718] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an attractive target for anticancer therapy. Herein, we report a virtual screening study which led to the identification of compound 5 as a new IDO1 inhibitor. In order to improve the biological activity of the identified hit, arylthioindoles 6-30 were synthesized and tested. Among these, derivative 21 exhibited an IC50 value of 7 μM, being the most active compound of the series. Furthermore, compounds 5 and 21 induced a dose-dependent growth inhibition in IDO1 expressing cancer cell lines HTC116 and HT29. Three-dimensional quantitative structure-activity relationship studies were carried out in order to rationalize obtained results and suggest new chemical modifications.
Collapse
Affiliation(s)
| | | | | | | | | | - Rino Ragno
- Alchemical Dynamics s.r.l. , Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Carmela Mazzoccoli
- Laboratorio di Ricerca Pre-Clinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Centro di Riferimento Oncologico della Basilicata (CROB) , Via Padre Pio 1, I-85028 Rionero in Vulture, Italy
| | - Lorenza Sisinni
- Laboratorio di Ricerca Pre-Clinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Centro di Riferimento Oncologico della Basilicata (CROB) , Via Padre Pio 1, I-85028 Rionero in Vulture, Italy
| | - Alato Okuno
- National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | - Osamu Takikawa
- National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology 35 Gengo, Morioka, Obu, Aichi 474-8511, Japan
| | | | | |
Collapse
|
56
|
Lewis-Ballester A, Forouhar F, Kim SM, Lew S, Wang Y, Karkashon S, Seetharaman J, Batabyal D, Chiang BY, Hussain M, Correia MA, Yeh SR, Tong L. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase. Sci Rep 2016; 6:35169. [PMID: 27762317 PMCID: PMC5071832 DOI: 10.1038/srep35169] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases.
Collapse
Affiliation(s)
- Ariel Lewis-Ballester
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Farhad Forouhar
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Sung-Mi Kim
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Scott Lew
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - YongQiang Wang
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Shay Karkashon
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Jayaraman Seetharaman
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Dipanwita Batabyal
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Bing-Yu Chiang
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Munif Hussain
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| | - Maria Almira Correia
- Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco San Francisco, CA 94158, USA
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics Albert Einstein College of Medicine Bronx, NY 10461, USA
| | - Liang Tong
- Department of Biological Sciences Northeast Structural Genomics Consortium Columbia University New York, NY 10027, USA
| |
Collapse
|
57
|
Greco FA, Bournique A, Coletti A, Custodi C, Dolciami D, Carotti A, Macchiarulo A. Docking Studies and Molecular Dynamic Simulations Reveal Different Features of IDO1 Structure. Mol Inform 2016; 35:449-59. [PMID: 27546049 PMCID: PMC5215573 DOI: 10.1002/minf.201501038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Abstract
In the last decade, indoleamine 2,3‐dioxygenase 1 (IDO1) has attracted a great deal of attention being recognized as key regulator of immunosuppressive pathways in the tumor immuno‐editing process. Several classes of inhibitors have been developed as potential anticancer agents, but only few of them have advanced in clinical trials. Hence, the quest of novel potent and selective inhibitors of the enzyme is still active and mostly pursued by structure‐based drug design strategies based on early and more recent crystal structures of IDO1. Combining docking studies and molecular dynamic simulations, in this work we have comparatively investigated the structural features of each crystal structure of IDO1. The results pinpoint different features in specific crystal structures of the enzyme that may benefit the medicinal chemistry arena aiding the design of novel potent and selective inhibitors of IDO1.
Collapse
Affiliation(s)
- Francesco Antonio Greco
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Answald Bournique
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Alice Coletti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Chiara Custodi
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Daniela Dolciami
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Andrea Carotti
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Antonio Macchiarulo
- Dipartimento di Scienze Farmaceutiche, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy, .
| |
Collapse
|
58
|
Bortolotti P, Hennart B, Thieffry C, Jausions G, Faure E, Grandjean T, Thepaut M, Dessein R, Allorge D, Guery BP, Faure K, Kipnis E, Toussaint B, Le Gouellec A. Tryptophan catabolism in Pseudomonas aeruginosa and potential for inter-kingdom relationship. BMC Microbiol 2016; 16:137. [PMID: 27392067 PMCID: PMC4938989 DOI: 10.1186/s12866-016-0756-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (Pa) is a Gram-negative bacteria frequently involved in healthcare-associated pneumonia with poor clinical outcome. To face the announced post-antibiotic era due to increasing resistance and lack of new antibiotics, new treatment strategies have to be developed. Immunomodulation of the host response involved in outcome could be an alternative therapeutic target in Pa-induced lung infection. Kynurenines are metabolites resulting from tryptophan catabolism and are known for their immunomodulatory properties. Pa catabolizes tryptophan through the kynurenine pathway. Interestingly, many host cells also possess the kynurenine pathway, whose metabolites are known to control immune system homeostasis. Thus, bacterial metabolites may interfere with the host's immune response. However, the kynurenine pathway in Pa, including functional enzymes, types and amounts of secreted metabolites remains poorly known. Using liquid chromatography coupled to mass spectrometry and different strains of Pa, we determined types and levels of metabolites produced by Pa ex vivo in growth medium, and the relevance of this production in vivo in a murine model of acute lung injury. RESULTS Ex vivo, Pa secretes clinically relevant kynurenine levels (μM to mM). Pa also secretes kynurenic acid and 3-OH-kynurenine, suggesting that the bacteria possess both a functional kynurenine aminotransferase and kynurenine monooxygenase. The bacterial kynurenine pathway is the major pathway leading to anthranilate production both ex vivo and in vivo. In the absence of the anthranilate pathway, the kynurenine pathway leads to kynurenic acid production. CONCLUSION Pa produces and secretes several metabolites of the kynurenine pathway. Here, we demonstrate the existence of new metabolic pathways leading to synthesis of bioactive molecules, kynurenic acid and 3-OH-kynurenine in Pa. The kynurenine pathway in Pa is critical to produce anthranilate, a crucial precursor of some Pa virulence factors. Metabolites (anthranilate, kynurenine, kynurenic acid) are produced at sustained levels both ex vivo and in vivo leading to a possible immunomodulatory interplay between bacteria and host. These data may imply that pulmonary infection with bacteria highly expressing the kynurenine pathway enzymes could influence the equilibrium of the host's tryptophan metabolic pathway, known to be involved in the immune response to infection. Further studies are needed to explore the effects of these metabolic changes on the pathophysiology of Pa infection.
Collapse
Affiliation(s)
- Perrine Bortolotti
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Benjamin Hennart
- Laboratoire de Toxicologie - Pôle de Biologie-Pathologie-Génétique - CHRU de Lille - France, EA4483 - IMPECS, Université Lille Nord de France, Lille, France
| | - Camille Thieffry
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Guillaume Jausions
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Emmanuel Faure
- Université Lille CHU Lille, EA 7366 - Recherche translationnelle: relations hôte pathogènes, F-59000, Lille, France
| | - Teddy Grandjean
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Marion Thepaut
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Rodrigue Dessein
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Delphine Allorge
- Laboratoire de Toxicologie - Pôle de Biologie-Pathologie-Génétique - CHRU de Lille - France, EA4483 - IMPECS, Université Lille Nord de France, Lille, France
| | - Benoit P Guery
- Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Karine Faure
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Eric Kipnis
- Translational host pathogen research group, Faculté de Médecine de Lille UDSL, Univ Lille Nord de France, Lille, France
| | - Bertrand Toussaint
- Laboratoire TIMC-TheREx (UMR5525 CNRS-UGA) Université Grenoble Alpes, Faculté de médecine, La Tronche, France.,Unité médicale de Biochimie des enzymes et des protéines, CHUGA de Grenoble , CS10207, Grenoble, 38043, Rhone alpes, France
| | - Audrey Le Gouellec
- Laboratoire TIMC-TheREx (UMR5525 CNRS-UGA) Université Grenoble Alpes, Faculté de médecine, La Tronche, France. .,Unité médicale de Biochimie des enzymes et des protéines, CHUGA de Grenoble , CS10207, Grenoble, 38043, Rhone alpes, France.
| |
Collapse
|
59
|
Choy DF, Jia G, Abbas AR, Morshead KB, Lewin-Koh N, Dua R, Rivera P, Moonsamy P, Fontecha M, Balasubramanyam A, Santini C, Bassett E, Ray JM, Cabanski CR, Bradley MS, Maciuca R, Mosesova S, Scheerens H, Arron JR. Peripheral blood gene expression predicts clinical benefit from anti-IL-13 in asthma. J Allergy Clin Immunol 2016; 138:1230-1233.e8. [PMID: 27474124 DOI: 10.1016/j.jaci.2016.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | - Rajiv Dua
- Roche Molecular Diagnostics, Pleasanton, Calif
| | | | | | | | | | | | | | - Jill M Ray
- Genentech, Inc, South San Francisco, Calif
| | | | | | | | | | | | | |
Collapse
|
60
|
Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A, Hoeller S. The immune system and cancer evasion strategies: therapeutic concepts. J Intern Med 2016; 279:541-62. [PMID: 26748421 DOI: 10.1111/joim.12470] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The complicated interplay between cancer and the host immune system has been studied for decades. New insights into the human immune system as well as the mechanisms by which tumours evade immune control have led to the new and innovative therapeutic strategies that are considered amongst the medical breakthroughs of the last few years. Here, we will review the current understanding of cancer immunology in general, including immune surveillance and immunoediting, with a detailed look at immune cells (T cells, B cells, natural killer cells, macrophages and dendritic cells), immune checkpoints and regulators, sialic acid-binding immunoglobulin-like lectins (Siglecs) and other mechanisms. We will also present examples of new immune therapies able to reverse immune evasion strategies of tumour cells. Finally, we will focus on therapies that are already used in daily oncological practice such as the blockade of immune checkpoints cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed death-1 (PD-1) in patients with metastatic melanoma or advanced lung cancer, or therapies currently being tested in clinical trials such as adoptive T-cell transfer.
Collapse
Affiliation(s)
- S Muenst
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - H Läubli
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, Cancer Immunology Laboratory, University of Basel, Basel, Switzerland
| | - S D Soysal
- Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - A Zippelius
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, Cancer Immunology Laboratory, University of Basel, Basel, Switzerland
| | - A Tzankov
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - S Hoeller
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
61
|
Serum Metabolomics Reveals Serotonin as a Predictor of Severe Dengue in the Early Phase of Dengue Fever. PLoS Negl Trop Dis 2016; 10:e0004607. [PMID: 27055163 PMCID: PMC4824427 DOI: 10.1371/journal.pntd.0004607] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Effective triage of dengue patients early in the disease course for in- or out-patient management would be useful for optimal healthcare resource utilization while minimizing poor clinical outcome due to delayed intervention. Yet, early prognosis of severe dengue is hampered by the heterogeneity in clinical presentation and routine hematological and biochemical measurements in dengue patients that collectively correlates poorly with eventual clinical outcome. Herein, untargeted liquid-chromatography mass spectrometry metabolomics of serum from patients with dengue fever (DF) and dengue hemorrhagic fever (DHF) in the febrile phase (<96 h) was used to globally probe the serum metabolome to uncover early prognostic biomarkers of DHF. We identified 20 metabolites that are differentially enriched (p<0.05, fold change >1.5) in the serum, among which are two products of tryptophan metabolism-serotonin and kynurenine. Serotonin, involved in platelet aggregation and activation decreased significantly, whereas kynurenine, an immunomodulator, increased significantly in patients with DHF, consistent with thrombocytopenia and immunopathology in severe dengue. To sensitively and accurately evaluate serotonin levels as prognostic biomarkers, we implemented stable-isotope dilution mass spectrometry and used convalescence samples as their own controls. DHF serotonin was significantly 1.98 fold lower in febrile compared to convalescence phase, and significantly 1.76 fold lower compared to DF in the febrile phase of illness. Thus, serotonin alone provided good prognostic utility (Area Under Curve, AUC of serotonin = 0.8). Additionally, immune mediators associated with DHF may further increase the predictive ability than just serotonin alone. Nine cytokines, including IFN-γ, IL-1β, IL-4, IL-8, G-CSF, MIP-1β, FGF basic, TNFα and RANTES were significantly different between DF and DHF, among which IFN-γ ranked top by multivariate statistics. Combining serotonin and IFN-γ improved the prognosis performance (AUC = 0.92, sensitivity = 77.8%, specificity = 95.8%), suggesting this duplex panel as accurate metrics for the early prognosis of DHF.
Collapse
|
62
|
Prell RA, Halpern WG, Rao GK. Perspective on a Modified Developmental and Reproductive Toxicity Testing Strategy for Cancer Immunotherapy. Int J Toxicol 2016; 35:263-73. [DOI: 10.1177/1091581815625596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intent of cancer immunotherapy (CIT) is to generate and enhance T-cell responses against tumors. The tumor microenvironment establishes several inhibitory pathways that lead to suppression of the local immune response, which is permissive for tumor growth. The efficacy of different CITs, alone and in combination, stems from reinvigorating the tumor immune response via several mechanisms, including costimulatory agonists, checkpoint inhibitors, and vaccines. However, immune responses to other antigens (self and foreign) may also be enhanced, resulting in potentially undesired effects. In outbred mammalian pregnancies, the fetus expresses paternally derived alloantigens that are recognized as foreign by the maternal immune system. If unchecked or enhanced, maternal immunity to these alloantigens represents a developmental and reproductive risk and thus is a general liability for cancer immunotherapeutic molecules. We propose a tiered approach to confirm this mechanistic reproductive liability for CIT molecules. A rodent allopregnancy model is based on breeding 2 different strains of mice so that paternally derived alloantigens are expressed by the fetus. When tested with a cross-reactive biotherapeutic, small molecule drug, or surrogate molecule, this model should reveal on-target reproductive liabilities if the pathway is involved in maintaining pregnancy. Alternatively, allopregnancy models with genetically modified mice can be interrogated for exquisitely specific biotherapeutics with restricted species reactivity. The allopregnancy model represents a relatively straightforward approach to confirm an expected on-target reproductive risk for CIT molecules. For biotherapeutics, it could potentially replace more complex developmental and reproductive toxicity testing in nonhuman primates when a pregnancy hazard is confirmed or expected.
Collapse
Affiliation(s)
- Rodney A. Prell
- Department of Safety Assessment, Genentech Inc, South San Francisco, CA, USA
| | - Wendy G. Halpern
- Department of Safety Assessment, Genentech Inc, South San Francisco, CA, USA
| | - Gautham K. Rao
- Department of Safety Assessment, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
63
|
Santhanam S, Alvarado DM, Ciorba MA. Therapeutic targeting of inflammation and tryptophan metabolism in colon and gastrointestinal cancer. Transl Res 2016; 167:67-79. [PMID: 26297050 PMCID: PMC4684437 DOI: 10.1016/j.trsl.2015.07.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/23/2015] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer death in the United States. Cytotoxic therapies cause significant adverse effects for most patients and do not offer cure in many advanced cases of CRC. Immunotherapy is a promising new approach to harness the body's own immune system and inflammatory response to attack and clear the cancer. Tryptophan metabolism along the kynurenine pathway (KP) is a particularly promising target for immunotherapy. Indoleamine 2,3-dioxygenase 1 (IDO1) is the most well studied of the enzymes that initiate this pathway and it is commonly overexpressed in CRC. Herein, we provide an in-depth review of how tryptophan metabolism and KP metabolites shape factors important to CRC pathogenesis including the host mucosal immune system, pivotal transcriptional pathways of neoplastic growth, and luminal microbiota. This pathway's role in other gastrointestinal (GI) malignancies such as gastric, pancreatic, esophageal, and GI stromal tumors is also discussed. Finally, we highlight how currently available small molecule inhibitors and emerging methods for therapeutic targeting of IDO1 might be applied to colon, rectal, and colitis-associated cancer.
Collapse
Affiliation(s)
- Srikanth Santhanam
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo
| | - David M Alvarado
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo
| | - Matthew A Ciorba
- Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Mo.
| |
Collapse
|
64
|
Lin SY, Yeh TK, Kuo CC, Song JS, Cheng MF, Liao FY, Chao MW, Huang HL, Chen YL, Yang CY, Wu MH, Hsieh CL, Hsiao W, Peng YH, Wu JS, Lin LM, Sun M, Chao YS, Shih C, Wu SY, Pan SL, Hung MS, Ueng SH. Phenyl Benzenesulfonylhydrazides Exhibit Selective Indoleamine 2,3-Dioxygenase Inhibition with Potent in Vivo Pharmacodynamic Activity and Antitumor Efficacy. J Med Chem 2015; 59:419-30. [PMID: 26653033 DOI: 10.1021/acs.jmedchem.5b01640] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tryptophan metabolism has been recognized as an important mechanism in immune tolerance. Indoleamine 2,3-dioxygenase plays a key role in local tryptophan metabolism via the kynurenine pathway and has emerged as a therapeutic target for cancer immunotherapy. Our prior study identified phenyl benzenesulfonyl hydrazide 2 as a potent in vitro (though not in vivo) inhibitor of indoleamine 2,3-dioxygenase. Further lead optimization to improve in vitro potencies and pharmacokinetic profiles resulted in N'-(4-bromophenyl)-2-oxo-2,3-dihydro-1H-indole-5-sulfonyl hydrazide 40, which demonstrated 59% oral bioavailability and 73% of tumor growth delay without apparent body weight loss in the murine CT26 syngeneic model, after oral administration of 400 mg/kg. Accordingly, 40, is proposed as a potential drug lead worthy of advanced preclinical evaluation.
Collapse
Affiliation(s)
- Shu-Yu Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Ming-Fu Cheng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Fang-Yu Liao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Min-Wu Chao
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
| | - Han-Li Huang
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
| | - Yi-Lin Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
| | - Chun-Yu Yang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Chia-Ling Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Wenchi Hsiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Yi-Hui Peng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Jian-Sung Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Li-Mei Lin
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Manwu Sun
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Chuan Shih
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Su-Ying Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Shiow-Lin Pan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University , No. 250, Wu-Hsing Street, Taipei 11031, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| | - Shau-Hua Ueng
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes , Miaoli County 35053, Taiwan
| |
Collapse
|
65
|
The Janus-faced nature of IDO1 in infectious diseases: challenges and therapeutic opportunities. Future Med Chem 2015; 8:39-54. [PMID: 26692277 DOI: 10.4155/fmc.15.165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inhibition of IDO1 is a strategy pursued to develop novel therapeutic treatments for cancer. Recent years have witnessed growing evidence that the enzyme plays a pivotal role in viral, bacterial and fungal infections. These studies have underscored the Janus-faced nature of IDO1 in the regulation of host-pathogen interactions and commensalism. Starting with an outlook on the advances in the structural features of IDO1, herein we report recent findings that pinpoint the involvement of IDO1 in infectious diseases. Then, we present an overview of IDO1 inhibitors that have been enrolled in clinical trials as well as other distinct modulators of the enzyme that may enable further investigations of IDO1 and its role in infectious disease.
Collapse
|
66
|
Boulet L, Flore P, Le Gouellec A, Toussaint B, Pépin J, Faure P. Is tryptophan metabolism involved in sleep apnea-related cardiovascular co-morbidities and cancer progression? Med Hypotheses 2015; 85:415-23. [DOI: 10.1016/j.mehy.2015.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/21/2015] [Indexed: 01/13/2023]
|
67
|
Learning from other diseases: protection and pathology in chronic fungal infections. Semin Immunopathol 2015; 38:239-48. [DOI: 10.1007/s00281-015-0523-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
|
68
|
Bosnyák E, Kamson DO, Guastella AR, Varadarajan K, Robinette NL, Kupsky WJ, Muzik O, Michelhaugh SK, Mittal S, Juhász C. Molecular imaging correlates of tryptophan metabolism via the kynurenine pathway in human meningiomas. Neuro Oncol 2015; 17:1284-92. [PMID: 26092774 DOI: 10.1093/neuonc/nov098] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/06/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Increased tryptophan metabolism via the kynurenine pathway (KP) is a key mechanism of tumoral immune suppression in gliomas. However, details of tryptophan metabolism in meningiomas have not been elucidated. In this study, we evaluated in vivo tryptophan metabolism in meningiomas and compared it with gliomas using α-[(11)C]-methyl-L-tryptophan (AMT)-PET. We also explored expression patterns of KP enzymes in resected meningiomas. METHODS Forty-seven patients with MRI-detected meningioma (n = 16) and glioma (n = 31) underwent presurgical AMT-PET scanning. Tumoral AMT uptake and tracer kinetic parameters (including K and k3' evaluating unidirectional uptake and trapping, respectively) were measured, correlated with meningioma grade, and compared between meningiomas and gliomas. Patterns of KP enzyme expression were assessed by immunohistochemistry in all meningiomas. RESULTS Meningioma grade showed a positive correlation with AMT k3' tumor/cortex ratio (r = 0.75, P = .003), and this PET parameter distinguished grade I from grade II/III meningiomas with 92% accuracy. Kinetic AMT parameters could differentiate meningiomas from both low-grade gliomas (97% accuracy by k3' ratios) and high-grade gliomas (83% accuracy by K ratios). Among 3 initial KP enzymes (indoleamine 2,3-dioxygenase 1/2, and tryptophan 2,3-dioxygenase 2 [TDO2]), TDO2 showed the strongest immunostaining, particularly in grade I meningiomas. TDO2 also showed a strong negative correlation with AMT k3' ratios (P = .001). CONCLUSIONS PET imaging of tryptophan metabolism can provide quantitative imaging markers for differentiating grade I from grade II/III meningiomas. TDO2 may be an important driver of in vivo tryptophan metabolism in these tumors. These results can have implications for pharmacological targeting of the KP in meningiomas.
Collapse
Affiliation(s)
- Edit Bosnyák
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - David O Kamson
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Anthony R Guastella
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Kaushik Varadarajan
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Natasha L Robinette
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - William J Kupsky
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Otto Muzik
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Sharon K Michelhaugh
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Sandeep Mittal
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Department of Neurology, Wayne State University, Detroit, Michigan (C.J.); Department of Neurosurgery, Wayne State University, Detroit, Michigan (A.R.G., K.V., S.K.M., S.M.); Department of Oncology, Wayne State University, Detroit, Michigan (A.R.G., S.M.); Department of Radiology, Wayne State University, , Detroit, Michigan (N.L.R., O.M.); Department of Pathology, Wayne State University, Detroit, Michigan (W.J.K.); PET Center, Children's Hospital of Michigan, Detroit, Michigan (E.B., D.O.K., O.M., C.J.); Karmanos Cancer Institute, Detroit, Michigan (N.L.R., W.J.K., S.M., C.J.)
| |
Collapse
|
69
|
Changing the face of kynurenines and neurotoxicity: therapeutic considerations. Int J Mol Sci 2015; 16:9772-93. [PMID: 25938971 PMCID: PMC4463617 DOI: 10.3390/ijms16059772] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/14/2022] Open
Abstract
Kynurenines are the products of tryptophan metabolism. Among them, kynurenine and kynurenic acid are generally thought to have neuroprotective properties, while 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid are considered neurotoxic. They participate in immunoregulation and inflammation and possess pro- or anti-excitotoxic properties, and their involvement in oxidative stress has also been suggested. Consequently, it is not surprising that kynurenines have been closely related to neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and multiple sclerosis. More information about the less-known metabolites, picolinic and cinnabarinic acid, evaluation of new receptorial targets, such as aryl-hydrocarbon receptors, and intensive research on the field of the immunomodulatory function of kynurenines delineated the high importance of this pathway in general homeostasis. Emerging knowledge about the kynurenine pathway provides new target points for the development of therapeutical solutions against neurodegenerative diseases.
Collapse
|
70
|
Puccetti P, Fallarino F, Italiano A, Soubeyran I, MacGrogan G, Debled M, Velasco V, Bodet D, Eimer S, Veldhoen M, Prendergast GC, Platten M, Bessede A, Guillemin GJ. Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers. PLoS One 2015; 10:e0122046. [PMID: 25881064 PMCID: PMC4400104 DOI: 10.1371/journal.pone.0122046] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/06/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor immune escape mechanisms are being regarded as suitable targets for tumor therapy. Among these, tryptophan catabolism plays a central role in creating an immunosuppressive environment, leading to tolerance to potentially immunogenic tumor antigens. Tryptophan catabolism is initiated by either indoleamine 2,3-dioxygenase (IDO-1/-2) or tryptophan 2,3-dioxygenase 2 (TDO2), resulting in biostatic tryptophan starvation and l-kynurenine production, which participates in shaping the dynamic relationship of the host's immune system with tumor cells. Current immunotherapy strategies include blockade of IDO-1/-2 or TDO2, to restore efficient antitumor responses. Patients who might benefit from this approach are currently identified based on expression analyses of IDO-1/-2 or TDO2 in tumor tissue and/or enzymatic activity assessed by kynurenine/tryptophan ratios in the serum. We developed a monoclonal antibody targeting l-kynurenine as an in situ biomarker of IDO-1/-2 or TDO2 activity. Using Tissue Micro Array technology and immunostaining, colorectal and breast cancer patients were phenotyped based on l-kynurenine production. In colorectal cancer l-kynurenine was not unequivocally associated with IDO-1 expression, suggesting that the mere expression of tryptophan catabolic enzymes is not sufficiently informative for optimal immunotherapy.
Collapse
Affiliation(s)
- Paolo Puccetti
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | | | - Gaetan MacGrogan
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Marc Debled
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - Valerie Velasco
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | | | - Sandrine Eimer
- Histology and Molecular Pathology of Tumors Laboratory EA 2406, University Bordeaux Segalen, Bordeaux, France
| | - Marc Veldhoen
- Laboratory for Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| | - Georges C. Prendergast
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United states of America
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurooncology, University Hospital, Heidelberg, Germany
| | | | - Gilles J. Guillemin
- Macquarie University, Faculty of Medicine, Neuroinflammation group, Sydney, New South Wales, Australia
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St Vincent’s Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
- * E-mail: (GJG); (AB)
| |
Collapse
|
71
|
Grohmann U, Puccetti P. The Coevolution of IDO1 and AhR in the Emergence of Regulatory T-Cells in Mammals. Front Immunol 2015; 6:58. [PMID: 25729384 PMCID: PMC4325913 DOI: 10.3389/fimmu.2015.00058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 01/29/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ursula Grohmann
- Department of Experimental Medicine, University of Perugia , Perugia , Italy ; Department of Pathology, Albert Einstein College of Medicine , New York, NY , USA
| | - Paolo Puccetti
- Department of Experimental Medicine, University of Perugia , Perugia , Italy
| |
Collapse
|
72
|
Austin CJD, Moir M, Kahlert J, Smith JR, Jamie JF, Kassiou M, Rendina LM. Carborane-Containing Hydroxyamidine Scaffolds as Novel Inhibitors of Indoleamine 2,3-Dioxygenase 1 (IDO1). Aust J Chem 2015. [DOI: 10.1071/ch15489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two new carborane-containing hydroxyamidines were prepared as potential inhibitors of the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. One compound (3) displayed low micromolar (1.90 μM) inhibition of IDO1, with the related compound (4) displaying >5-fold lower inhibitory activity, i.e. subtle differences in structure between the two carborane compounds led to dramatic changes in inhibitor binding. In silico docking experiments unravel a possible molecular mechanism that is consistent with the observed difference in IDO1 binding for 3 and 4 and also for the phenyl bioisosteres 1 and 2.
Collapse
|