51
|
MacKay M, Yang BH, Dursun SM, Baker GB. The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder. Curr Neuropharmacol 2024; 22:866-883. [PMID: 36815632 PMCID: PMC10845093 DOI: 10.2174/1570159x21666230222092029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 02/24/2023] Open
Abstract
A large body of research supports the role of stress in several psychiatric disorders in which anxiety is a prominent symptom. Other research has indicated that the gut microbiome-immune system- brain axis is involved in a large number of disorders and that this axis is affected by various stressors. The focus of the current review is on the following stress-related disorders: generalized anxiety disorder, panic disorder, social anxiety disorder, post-traumatic stress disorder and obsessivecompulsive disorder. Descriptions of systems interacting in the gut-brain axis, microbiome-derived molecules and of pro- and prebiotics are given. Preclinical and clinical studies on the relationship of the gut microbiome to the psychiatric disorders mentioned above are reviewed. Many studies support the role of the gut microbiome in the production of symptoms in these disorders and suggest the potential for pro- and prebiotics for their treatment, but there are also contradictory findings and concerns about the limitations of some of the research that has been done. Matters to be considered in future research include longer-term studies with factors such as sex of the subjects, drug use, comorbidity, ethnicity/ race, environmental effects, diet, and exercise taken into account; appropriate compositions of pro- and prebiotics; the translatability of studies on animal models to clinical situations; and the effects on the gut microbiome of drugs currently used to treat these disorders. Despite these challenges, this is a very active area of research that holds promise for more effective, precision treatment of these stressrelated disorders in the future.
Collapse
Affiliation(s)
- Marnie MacKay
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Bohan H. Yang
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
| | - Serdar M. Dursun
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen B. Baker
- Department of Psychiatry, Neurochemical Research Unit, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
52
|
Wang J, Xin J, Xu X, Chen W, Lv Y, Wei Y, Wei X, Li Z, Ding Q, Zhao H, Wen Y, Zhang X, Fang Y, Zu X. Bacopaside I alleviates depressive-like behaviors by modulating the gut microbiome and host metabolism in CUMS-induced mice. Biomed Pharmacother 2024; 170:115679. [PMID: 38113632 DOI: 10.1016/j.biopha.2023.115679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 12/21/2023] Open
Abstract
Bacopaside I (BSI) is a natural compound that is difficult to absorb orally but has been shown to have antidepressant effects. The microbiota-gut-brain axis is involved in the development of depression through the peripheral nervous system, endocrine system, and immune system and may be a key factor in the effect of BSI. Therefore, this study aimed to investigate the potential mechanism of BSI in the treatment of depression via the microbiota-gut-brain axis and to validate it in a fecal microbiota transplantation model. The antidepressant effect of BSI was established in CUMS-induced mice using behavioral tests and measurement of changes in hypothalamicpituitaryadrenal (HPA) axis-related hormones. The improvement of stress-induced gut-brain axis damage by BSI was observed by histopathological sections and enzyme-linked immunosorbent assay (ELISA). 16 S rDNA sequencing analysis indicated that BSI could modulate the abundance of gut microbiota and increase the abundance of probiotic bacteria. We also observed an increase in short-chain fatty acids, particularly acetic acid. In addition, BSI could modulate the disruption of lipid metabolism induced by CUMS. Fecal microbiota transplantation further confirmed that disruption of the microbiota-gut-brain axis is closely associated with the development of depression, and that the microbiota regulated by BSI exerts a partial antidepressant effect. In conclusion, BSI exerts antidepressant effects by remodeling gut microbiota, specifically through the Lactobacillus and Streptococcus-acetic acid-neurotrophin signaling pathways. Furthermore, BSI can repair damage to the gut-brain axis, regulate HPA axis dysfunction, and maintain immune homeostasis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jiayun Xin
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China; Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xike Xu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yanhui Lv
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanping Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xintong Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhanhong Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510640, China
| | - Qianqian Ding
- Department of Natural Medicinal Chemistry, School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Houyu Zhao
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Xiuyun Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| | - Xianpeng Zu
- Department of Natural Medicinal Chemistry, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
53
|
Pan J, Lu Y, Wang S, Ma T, Xue X, Zhang Z, Mao Q, Guo D, Ma K. Synergistic neuroprotective effects of two natural medicinal plants against CORT-induced nerve cell injury by correcting neurotransmitter deficits and inflammation imbalance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155102. [PMID: 37748389 DOI: 10.1016/j.phymed.2023.155102] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Lilium henryi Baker (Liliaceae) and Rehmannia glutinosa (Gaertn.) DC. (Plantaginaceae) were the traditional natural medicinal plants for the treatment of depression, but the antidepression mechanism of two plants co-decoction (Also known as Lily bulb and Rehmannia decoction (LBRD) drug-containing serum (LBRDDS) has not been elucidated in the in vitro model of depression. MATERIAL AND METHODS Here, UHPLC-Q-TOF/MS was used to identify the active components of LBRDDS and the potential effector substance was identified by bioinformatics analysis. CORT-induced nerve cells cytotoxicity was used to investigate the neuroprotection effect of LBRDDS and the underlying pharmacological mechanisms were explored by multiple experimental methods such as molecular docking, immunofluorescence, gain- or loss-of function experiments. RESULTS Bioactive compounds in LBRDDS absorbed from intestinal tract were transformed or metabolized by the gut microbiota including palmitic acid, adrenic acid, linoleic acid, arachidonic acid and docosapentaenoic acid. Network pharmacology analysis and molecular docking of showed fatty acid metabolism, neurotransmitter synthesis and neuroinflammation may be potential therapeutic targets of LBRDDS. LBRDDS can improve the activity of model cells, reduce cytotoxicity of lactate dehydrogenase, recover neurotransmitter imbalance, relieve inflammatory damage, down-regulate the expression of miRNA-144-3p, increase the mRNAs and protein expression level of Gad-67 and VGAT, and promote the synthesis and transport of GABA. CONCLUSION Therefore, LBRDDS exerts neuroprotective effects by correcting neurotransmitter deficits and inflammation imbalance in the CORT-induced nerve cell injury model.
Collapse
Affiliation(s)
- Jin Pan
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Yanting Lu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Sijia Wang
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ting Ma
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Xiaoyan Xue
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Zhe Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Qiancheng Mao
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Dongjing Guo
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Ke Ma
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
54
|
Liwinski T, Lang UE, Brühl AB, Schneider E. Exploring the Therapeutic Potential of Gamma-Aminobutyric Acid in Stress and Depressive Disorders through the Gut-Brain Axis. Biomedicines 2023; 11:3128. [PMID: 38137351 PMCID: PMC10741010 DOI: 10.3390/biomedicines11123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Research conducted on individuals with depression reveals that major depressive disorders (MDDs) coincide with diminished levels of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the brain, as well as modifications in the subunit composition of the primary receptors (GABAA receptors) responsible for mediating GABAergic inhibition. Furthermore, there is substantial evidence supporting the significant role of GABA in regulating stress within the brain, which is a pivotal vulnerability factor in mood disorders. GABA is readily available and approved as a food supplement in many countries. Although there is substantial evidence indicating that orally ingested GABA may affect GABA receptors in peripheral tissues, there is comparatively less evidence supporting its direct action within the brain. Emerging evidence highlights that oral GABA intake may exert beneficial effects on the brain and psyche through the gut-brain axis. While GABA enjoys wide consumer acceptance in Eastern Asian markets, with many consumers reporting favorable effects on stress regulation, mood, and sleep, rigorous independent research is still largely lacking. Basic research, coupled with initial clinical findings, makes GABA an intriguing neuro-nutritional compound deserving of clinical studies in individuals with depression and other psychological problems.
Collapse
Affiliation(s)
| | | | | | - Else Schneider
- University Psychiatric Clinics Basel, Clinic for Adults, University of Basel, CH-4002 Basel, Switzerland; (T.L.); (U.E.L.); (A.B.B.)
| |
Collapse
|
55
|
Zhou YM, Yuan JJ, Xu YQ, Gou YH, Zhu YYX, Chen C, Huang XX, Ma XM, Pi M, Yang ZX. Fecal microbiota as a predictor of acupuncture responses in patients with postpartum depressive disorder. Front Cell Infect Microbiol 2023; 13:1228940. [PMID: 38053532 PMCID: PMC10694210 DOI: 10.3389/fcimb.2023.1228940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Background There are several clinical and molecular predictors of responses to antidepressant therapy. However, these markers are either too subjective or complex for clinical use. The gut microbiota could provide an easily accessible set of biomarkers to predict therapeutic efficacy, but its value in predicting therapy responses to acupuncture in patients with depression is unknown. Here we analyzed the predictive value of the gut microbiota in patients with postpartum depressive disorder (PPD) treated with acupuncture. Methods Seventy-nine PPD patients were enrolled: 55 were treated with acupuncture and 24 did not received any treatment. The 17-item Hamilton depression rating scale (HAMD-17) was used to assess patients at baseline and after eight weeks. Patients receiving acupuncture treatment were divided into an acupuncture-responsive group or non-responsive group according to HAMD-17 scores changes. Baseline fecal samples were obtained from the patients receiving acupuncture and were analyzed by high-throughput 16S ribosomal RNA sequencing to characterize the gut microbiome. Results 47.27% patients responded to acupuncture treatment and 12.5% patients with no treatment recovered after 8-week follow-up. There was no significant difference in α-diversity between responders and non-responders. The β-diversity of non-responders was significantly higher than responders. Paraprevotella and Desulfovibrio spp. were significantly enriched in acupuncture responders, and these organisms had an area under the curve of 0.76 and 0.66 for predicting responder patients, respectively. Conclusions Paraprevotella and Desulfovibrioare may be useful predictive biomarkers to predict PPD patients likely to respond to acupuncture. Larger studies and validation in independent cohorts are now needed to validate our findings.
Collapse
Affiliation(s)
- Yu-Mei Zhou
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jin-Jun Yuan
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yu-Qin Xu
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yan-Hua Gou
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yannas Y. X. Zhu
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Chen Chen
- Department of Acupuncture and Tuina, Shenzhen Maternal and Child Health Care Hospital, Shenzhen, China
| | - Xing-Xian Huang
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xiao-Ming Ma
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Min- Pi
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Zhuo-Xin Yang
- Department of Acupuncture, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| |
Collapse
|
56
|
Parolisi S, Montanari C, Borghi E, Cazzorla C, Zuvadelli J, Tosi M, Barone R, Bensi G, Bonfanti C, Dionisi Vici C, Biasucci G, Burlina A, Carbone MT, Verduci E. Possible role of tryptophan metabolism along the microbiota-gut-brain axis on cognitive & behavioral aspects in Phenylketonuria. Pharmacol Res 2023; 197:106952. [PMID: 37804926 DOI: 10.1016/j.phrs.2023.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cognitive and psychiatric disorders are well documented across the lifetime of patients with inborn errors of metabolism (IEMs). Gut microbiota impacts behavior and cognitive functions through the gut-brain axis (GBA). According to recent research, a broad spectrum of GBA disorders may be influenced by a perturbed Tryptophan (Trp) metabolism and are associated with alterations in composition or function of the gut microbiota. Furthermore, early-life diets may influence children's neurodevelopment and cognitive deficits in adulthood. In Phenylketonuria (PKU), since the main therapeutic intervention is based on a life-long restrictive diet, important alterations of gut microbiota have been observed. Studies on PKU highlight the impact of alterations of gut microbiota on the central nervous system (CNS), also investigating the involvement of metabolic pathways, such as Trp and kynurenine (KYN) metabolisms, involved in numerous neurodegenerative disorders. An alteration of Trp metabolism with an imbalance of the KYN pathway towards the production of neurotoxic metabolites implicated in numerous neurodegenerative and inflammatory diseases has been observed in PKU patients supplemented with Phe-free amino acid medical foods (AA-MF). The present review investigates the possible link between gut microbiota and the brain in IEMs, focusing on Trp metabolism in PKU. Considering the evidence collected, cognitive and behavioral well-being should always be monitored in routine IEMs clinical management. Further studies are required to evaluate the possible impact of Trp metabolism, through gut microbiota, on cognitive and behavioral functions in IEMs, to identify innovative dietetic strategies and improve quality of life and mental health of these patients.
Collapse
Affiliation(s)
- Sara Parolisi
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Chiara Montanari
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Elisa Borghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Chiara Cazzorla
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Juri Zuvadelli
- Clinical Department of Pediatrics, San Paolo Hospital, ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Tosi
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy
| | - Rita Barone
- Child Neuropsychiatry Unit, Department of Clinical and Experimental Medicine, AOU Policlinico "G.Rodolico-San Marco", University of Catania, Catania, Italy
| | - Giulia Bensi
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Cristina Bonfanti
- Rare metabolic disease unit, Pediatric Department, San Gerardo Hospital, Monza, Italy
| | | | - Giacomo Biasucci
- Paediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Alberto Burlina
- Division of Inherited Metabolic Diseases, DIDAS Department of Diagnostic Services, University Hospital, Padua, Italy
| | - Maria T Carbone
- UOSD Metabolic Diseases, AORN Santobono-Pausilipon, Naples, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy; Department of Health Science, University of Milan, Milan, Italy.
| |
Collapse
|
57
|
Pouranayatihosseinabad M, Taylor M, Hawrelak J, Peterson GM, Veal F, Ling T, Williams M, Whatley M, Ahdieh K, Mirkazemi C. Maternal Antibiotic Exposure and the Risk of Developing Antenatal or Postpartum Depressive Symptoms: The Maternal Experience Study Protocol. Methods Protoc 2023; 6:98. [PMID: 37888030 PMCID: PMC10609134 DOI: 10.3390/mps6050098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Limited epidemiological evidence suggests a link between antibiotic use and developing depression. This study seeks to investigate this association in depth, using a cohort of pregnant individuals. The primary aim is to explore any association between the use of antibiotics during pregnancy and the development of antenatal depressive symptoms up to the third trimester, as well as the use of antibiotics during pregnancy and within 12 months postpartum and the development of postpartum depressive symptoms. A national prospective, observational, longitudinal cohort study has been designed to examine these relationships. A sample size of 1500 pregnant individuals has been sought for this study, assuming 10 potential predictor variables (including antibiotic use) in the final multiple logistic regression model and allowing for a 30% drop-out rate. The development of depressive symptoms is considered either a diagnosis by a medical doctor and/or a scoring 13 or higher on the Edinburgh Postnatal Depression Scale. Data will be collected during the third trimester and at 6 weeks, 6 months, and 12 months postpartum. These surveys include variables previously identified as associated with antenatal and postpartum depression (e.g., level of social support, experience of intimate partner abuse, and obstetric complications), as well as antibiotic and probiotic use. This study will provide an update on the prevalence of the symptoms of depression during pregnancy and postpartum and its associated risk factors. It will also, for the first time, comprehensively explore the potential association between antibiotic use during pregnancy and up to 12 months postpartum and the development of depressive symptoms.
Collapse
Affiliation(s)
- Mahsa Pouranayatihosseinabad
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Maggie Taylor
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Jason Hawrelak
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Gregory M. Peterson
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Felicity Veal
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Tristan Ling
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Mackenzie Williams
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| | - Megan Whatley
- Department of Obstetrics and Gynaecology, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Kyan Ahdieh
- Launceston Medical Centre, Health Hub, Launceston, TAS 7250, Australia
| | - Corinne Mirkazemi
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7005, Australia
| |
Collapse
|
58
|
Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023; 9:361. [PMID: 37773196 PMCID: PMC10541886 DOI: 10.1038/s41420-023-01666-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Inflammatory Bowel Disease (IBD), a chronic nonspecific intestinal inflammatory disease, is comprised of Ulcerative Colitis (UC) and Crohn's Disease (CD). IBD is closely related to a systemic inflammatory reaction and affects the progression of many intestinal and extraintestinal diseases. As one of the representative bacteria for probiotic-assisted therapy in IBD, multiple strains of Lactobacillus have been proven to alleviate intestinal damage and strengthen the intestinal immunological barrier, epithelial cell barrier, and mucus barrier. Lactobacillus also spares no effort in the alleviation of IBD-related diseases such as Colitis-associated Colorectal cancer (CAC), Alzheimer's Disease (AD), Depression, Anxiety, Autoimmune Hepatitis (AIH), and so on via gut-brain axis and gut-liver axis. This article aims to discuss the role of Lactobacillus in IBD and IBD-related diseases, including its underlying mechanisms and related curative strategies from the present to the future.
Collapse
Affiliation(s)
- Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Long
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
59
|
Zhao Y, Kang Y, Zhao Z, Yang G, Gao Y, Gao L, Wang C, Li S. Lacticaseibacillus rhamnosus TF318 prevents depressive behavior in rats by inhibiting HPA-axis hyperactivity and upregulating BDNF expression. Neurosci Lett 2023; 814:137460. [PMID: 37619699 DOI: 10.1016/j.neulet.2023.137460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Growing evidence suggests that probiotics can ameliorate depression by regulating the microbiota-gut-brain axis. However, the mechanism of action of probiotics in depressive disorders remains incompletely understood. This study aimed to investigate the effect of Lacticaseibacillus rhamnosus TF318 in a corticosterone (CORT)-induced rat model of depression. The sucrose preference test (SPT) and Morris water maze (MWM) test showed that oral administration of L. rhamnosus TF318 for 21 d significantly prevented depressive behaviors. Administration of L. rhamnosus TF318 resulted in lower hippocampal levels of adrenocorticotropic hormone and corticotropin-releasing factor and serum levels of CORT and restoration of hippocampal levels of 5-hydroxytryptamine, dopamine, and norepinephrine. A marked increase was observed in the hippocampal concentration of brain-derived neurotrophic factor (BDNF), a change that may have involved the cyclic adenosine monophosphate (cAMP)/cAMP response element-binding (CREB)/BDNF signaling pathway. Treatment with L. rhamnosus TF318 corrected CORT-induced abnormalities in the gut microbiota, significantly increasing the relative abundance of Firmicutes. In conclusion, supplementation with L. rhamnosus TF318 prevented CORT-induced depressive behaviors by upregulating BDNF expression and modulating gut microbiota, suggesting that this strain has the potential as a novel probiotic with antidepressant effects.
Collapse
Affiliation(s)
- Yujuan Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - You Kang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Zijian Zhao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Ge Yang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Yansong Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Lei Gao
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Chao Wang
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China
| | - Shengyu Li
- Institute of Agricultural Products Processing Technology, Jilin Academy of Agricultural Sciences/National R&D Center for Milk Processing, Changchun 130033, PR China.
| |
Collapse
|
60
|
Hamid M, Zahid S. Ameliorative effects of probiotics in AlCl 3-induced mouse model of Alzheimer's disease. Appl Microbiol Biotechnol 2023; 107:5803-5812. [PMID: 37462697 DOI: 10.1007/s00253-023-12686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 08/20/2023]
Abstract
In recent years, gut microbiome alterations have been linked with complex underlying mechanisms of neurodegenerative disorders including Alzheimer's disease (AD). The gut microbiota modulates gut brain axis by facilitating development of hypothalamic-pituitary-adrenal axis and synthesis of neuromodulators. The study was designed to unravel the effect of combined consumption of probiotics; Lactobacillus rhamnosus GG (LGG®) and Bifidobacterium BB-12 (BB-12®) (1 × 109 CFU) on AlCl3-induced AD mouse model in comparison with potent acetylcholine esterase inhibitor drug for AD, donepezil. Mice were randomly allocated to six different study groups (n = 8). Behavioral tests were conducted to assess effect of AlCl3 (300 mg/kg) and probiotics treatment on cognition and anxiety through Morris Water Maze (MWM), Novel Object Recognition (NOR), Elevated Plus Maze (EPM), and Y-maze. The results indicated that the combined probiotic treatment significantly (p < 0.0001) reduced anxiety-like behavior post AlCl3 exposure. The AlCl3 + LGG® and BB-12®-treated group showed significantly improved spatial (p < 0.0001) and recognition memory (p < 0.0001) in comparison to AlCl3-treated group. The expression status of inflammatory cytokines (TNF-α and IL-1β) was also normalized upon treatment with LGG® and BB-12® post AlCl3 exposure. Our findings indicated that the probiotics LGG® and BB-12® have strong potential to overcome neuroinflammatory imbalance, cognitive deficits and anxiety-like behavior, therefore can be considered as a combination therapy for AD through modulation of gut brain axis. KEY POINTS: • Bifidobacterium BB-12 and Lactobacillus rhamnosus GG were fed to AlCl3-induced Alzheimer's disease mice. • This combination of probiotics had remarkable ameliorating effects on anxiety, neuroinflammation and cognitive deficits. • These effects may suggest that combined consumption of these probiotics instigate potential mitigation of AD associated consequences through gut brain axis modulation.
Collapse
Affiliation(s)
- Maryam Hamid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
61
|
Vicariotto F, Malfa P, Torricelli M, Lungaro L, Caio G, De Leo V. Beneficial Effects of Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 on Mood Imbalance, Self-Confidence, and Breastfeeding in Women during the First Trimester Postpartum. Nutrients 2023; 15:3513. [PMID: 37630704 PMCID: PMC10458832 DOI: 10.3390/nu15163513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Background: The post-delivery period could be characterized by psychological distress (e.g., anxiety, sadness, and irritability), leading to postpartum depression (PPD). Objective: The present clinical study assesses the effect of probiotic supplementation containing Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 (4 × 109 CFU/day) on the mother's mood and breastfeeding quality during the first trimester after delivery. Methods: A Randomized, Double-Blind, Controlled (RDBPC) trial was carried out on 200 healthy new mothers divided into an active group taking a supplement containing Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 (4 × 109 CFU/day) plus multivitamins and a control group (multivitamin complex only) for 90 days. Symptoms related to maternal depression and breastfeeding quality were evaluated at days 45 and 90 using the Edinburgh Postnatal Depression Scale (EPDS) and the Breastfeeding Self-Efficacy Scale-Short Form (BSES-SF). Results: At days 45 and 90, the probiotic treatment significantly ameliorated the mothers' mood compared to the control treatment (p < 0.001). Likewise, the breastfeeding quality and the baby's cries significantly improved in the probiotic group (p < 0.001). Conclusions: Microbiota alterations could influence a post-delivery woman's mental state. According to our results, L. reuteri PBS072 and B. breve BB077 are potential candidates that are able to improve stress resilience in the postpartum period.
Collapse
Affiliation(s)
| | | | - Michela Torricelli
- Obstetrics and Gynecology, Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, 53100 Siena, SI, Italy;
| | - Lisa Lungaro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, FE, Italy; (L.L.); (G.C.)
| | - Giacomo Caio
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, FE, Italy; (L.L.); (G.C.)
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital-Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
62
|
Dong H, Tang X, Ye J, Xiao W. 16S rRNA gene sequencing reveals the effect of fluoxetine on gut microbiota in chronic unpredictable stress-induced depressive-like rats. Ann Gen Psychiatry 2023; 22:27. [PMID: 37537583 PMCID: PMC10398965 DOI: 10.1186/s12991-023-00458-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
OBJECTIVES Gut microbiota is relevant to the pathogenesis of mental disorders including depression. This study aimed to investigate the influence of fluoxetine (FLX) on the gut microbiota in rats with Chronic Unpredictable Mild Stresses (CUMS)-induced depression. RESULTS We confirmed that the 28-day CUMS-induced depression rat model. Chronic FLX administration weakly improved depressive-like behaviors in rats. Illumina 16S rRNA gene sequencing on rat feces showed CUMS increased the relative abundance of Firmicutes (60.31% vs. 48.09% in Control, p < 0.05) and Lactobacillus genus (21.06% vs. 6.82% in control, p < 0.05); FLX and CUMS increased Bacilli class (20.00% ~ 24.08% vs. 10.31% in control, p < 0.05). CONCLUSION Collectively, our study showed that both CUMS and FLX changed the compositions of gut microbiota in rats. FLX and CUMS distinctly regulated the gut microbiota in depressed rats.
Collapse
Affiliation(s)
- Hui Dong
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China.
| | - Xiaowei Tang
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Jie Ye
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| | - Wenhuan Xiao
- Teaching hospital of Yangzhou University, Wutaishan Hospital, Yangzhou, Jiangsu Province, China
| |
Collapse
|
63
|
Dalvand M, Mirhosseini SA, Amini K, Khani S, Mahmoodzadeh Hosseini H, Mansoori K. Evaluation of anti-biofilm activity of Lactobacillus rhamnosus GG and Nisin on the expression of aap, ica-A and ica-D as biofilm-associated genes of Staphylococcus epidermidis. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:550-556. [PMID: 38045711 PMCID: PMC10692973 DOI: 10.18502/ijm.v15i4.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives In the present study, the anti-biofilm activity of Lactobacillus rhamnosus GG and Nisin was investigated on biofilm-forming abilities of Staphylococcus epidermidis strains and the expression of the biofilm-associated genes. Materials and Methods In this study, the standard strain of L. rhamnosus GG (ATCC 53103) and Nisin were used to assess their anti-microbial and anti-biofilm effects on S. epidermidis (RP62A). Results The MIC and MBC analysis showed that Nisin at 256 μg/mL and 512 μg/mL, and L. rhamnosus GG at 1×107 CFU/mL and 1×108 CFU/mL have anti-microbial activity compared to the negative control respectively. L. rhamnosus GG bacteria and Nisin inhibited the biofilm formation of S. epidermidis based on optical density of at 570 nm (P <0.001). The relative mRNA expression of aap, icaA, and icaD genes was significantly reduced compared to the negative control after treating S. epidermidis with sub-MIC of Nisin (0.44, 0.25 and 0.6 fold, respectively) (P>0.05). In addition, the relative expression of aap and icaA genes, but not icaD (P>0.05), was significantly lower than the negative control (0.62 and 0.7 fold, respectively) (P>0.05), after exposure to the sub MIC of L. rhamnosus GG. Conclusion Nisin and L. rhamnosus GG exhibit potent activity against biofilm-forming abilities of S. epidermidis and these agents could be utilized as an anti-biofilm agents against S. epidermidis infections.
Collapse
Affiliation(s)
- Mohammad Dalvand
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kiumarss Amini
- Department of Microbiology, Faculty of Basic Sciences, Saveh Branch, Islamic Azad University, Saveh, Iran
| | - Soghra Khani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kowsar Mansoori
- New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Ma J, Chen Y, Wang Z, Wang R, Dong Y. Lactiplantibacillus plantarum CR12 attenuates chronic unforeseeable mild stress induced anxiety and depression-like behaviors by modulating the gut microbiota-brain axis. J Funct Foods 2023; 107:105710. [DOI: 10.1016/j.jff.2023.105710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
|
65
|
Bistas KG, Tabet JP. The Benefits of Prebiotics and Probiotics on Mental Health. Cureus 2023; 15:e43217. [PMID: 37692658 PMCID: PMC10490379 DOI: 10.7759/cureus.43217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
In individuals with depression and anxiety, the composition or alteration of their gut microbiota can significantly affect their psychological symptoms. Articles for this study were selected using PubMed and NCBI (National Center for Biotechnology Information) with the following search terms: "gut microbiota," "depression," "anxiety," "probiotics," and "prebiotics." These studies evaluated the composition of the gut microbiota and the decrease in symptoms of depression and anxiety due to treatment with probiotics and prebiotics. Only papers published after 2015 were included. There was a significant relationship between the composition and alteration of the gut microbiota and the presence or variation of symptoms of depression and anxiety. Treatment with probiotics or prebiotics improved the symptoms of these mental health conditions. This literature review examines how different prebiotics and probiotics affect mental health and how altering individuals' gut microbiota correlates with depression and anxiety. Treatment with probiotics or prebiotics may decrease the severity of these mental disorders by altering the gut microbiota.
Collapse
Affiliation(s)
- Karlyle G Bistas
- Psychiatry and Behavioral Sciences, Wayne State University Detroit Medical Center, Detroit, USA
| | - Jean Paul Tabet
- School of Medicine, Medical University of the Americas, Charlestown, KNA
| |
Collapse
|
66
|
Al KF, Allen L, Bedell S, Burton JP, de Vrijer B. Assessing the impact of pregnancy and birth factors on the maternal and infant microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:29. [PMID: 38045923 PMCID: PMC10688794 DOI: 10.20517/mrr.2023.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023]
Abstract
Background: The microbiota acquired at birth is known to play an intimate role in later life health and disease and has been shown to be affected by the mode of birth. There has been recent interest in microbiota correction by maternal vaginal seeding in Cesarean section-born infants; however, the safety of this practice has been debated. The aim of this study was to assess how other factors, such as timing of sampling, maternal obesity, vaginal Group B Streptococcus colonization (GBS), and antibiotic exposure, affect the maternal and infant microbiota. Methods: Maternal vaginal and saliva samples were collected at three time periods: 35-37 weeks gestation (prenatal), within 24-36 hours after birth (birth), and at ~6 weeks postpartum. Infant saliva and stool samples were collected at ~6 weeks postpartum. 16S rRNA amplicon sequencing was utilized to assess the taxonomic and inferred functional compositions of the bacterial communities from both mothers and infants. Results: Samples from 36 mothers and 32 infants were obtained. Gestational age, breastfeeding, mode of birth, and gravidity were associated with taxonomic alterations in the infant samples, while obesity, antibiotic use, and GBS status were not. Maternal samples were predominantly affected by time, whereby significant alterations including increased microbial diversity were seen at birth and persisted to 6 weeks postpartum. Conclusion: This study provides information on the relationship between health and delivery factors and changes in vaginal and infant microbiota. These results may better direct clinicians and mothers in optimizing the infant microbiota towards health during infancy and later life.
Collapse
Affiliation(s)
- Kait F Al
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
| | - Laura Allen
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Samantha Bedell
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Jeremy P Burton
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario N6A4V2, Canada
| | - Barbra de Vrijer
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
- Children’s Health Research Institute, London, Ontario N6C 4V3, Canada
| |
Collapse
|
67
|
Xiong RG, Li J, Cheng J, Zhou DD, Wu SX, Huang SY, Saimaiti A, Yang ZJ, Gan RY, Li HB. The Role of Gut Microbiota in Anxiety, Depression, and Other Mental Disorders as Well as the Protective Effects of Dietary Components. Nutrients 2023; 15:3258. [PMID: 37513676 PMCID: PMC10384867 DOI: 10.3390/nu15143258] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The number of individuals experiencing mental disorders (e.g., anxiety and depression) has significantly risen in recent years. Therefore, it is essential to seek prevention and treatment strategies for mental disorders. Several gut microbiota, especially Firmicutes and Bacteroidetes, are demonstrated to affect mental health through microbiota-gut-brain axis, and the gut microbiota dysbiosis can be related to mental disorders, such as anxiety, depression, and other mental disorders. On the other hand, dietary components, including probiotics (e.g., Lactobacillus and Bifidobacterium), prebiotics (e.g., dietary fiber and alpha-lactalbumin), synbiotics, postbiotics (e.g., short-chain fatty acids), dairy products, spices (e.g., Zanthoxylum bungeanum, curcumin, and capsaicin), fruits, vegetables, medicinal herbs, and so on, could exert protective effects against mental disorders by enhancing beneficial gut microbiota while suppressing harmful ones. In this paper, the mental disorder-associated gut microbiota are summarized. In addition, the protective effects of dietary components on mental health through targeting the gut microbiota are discussed. This paper can be helpful to develop some dietary natural products into pharmaceuticals and functional foods to prevent and treat mental disorders.
Collapse
Affiliation(s)
- Ruo-Gu Xiong
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China;
| | - Jin Cheng
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Dan-Dan Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Xia Wu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Si-Yu Huang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Adila Saimaiti
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Zhi-Jun Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore
| | - Hua-Bin Li
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (R.-G.X.); (J.C.); (D.-D.Z.); (S.-X.W.); (S.-Y.H.); (A.S.); (Z.-J.Y.)
| |
Collapse
|
68
|
Naufel MF, Truzzi GDM, Ferreira CM, Coelho FMS. The brain-gut-microbiota axis in the treatment of neurologic and psychiatric disorders. ARQUIVOS DE NEURO-PSIQUIATRIA 2023. [PMID: 37402401 PMCID: PMC10371417 DOI: 10.1055/s-0043-1767818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
The human gut microbiota is a complex ecosystem made of trillions of microorganisms. The composition can be affected by diet, metabolism, age, geography, stress, seasons, temperature, sleep, and medications. The increasing evidence about the existence of a close and bi-directional correlation between the gut microbiota and the brain indicates that intestinal imbalance may play a vital role in the development, function, and disorders of the central nervous system. The mechanisms of interaction between the gut-microbiota on neuronal activity are widely discussed. Several potential pathways are involved with the brain-gut-microbiota axis, including the vagus nerve, endocrine, immune, and biochemical pathways. Gut dysbiosis has been linked to neurological disorders in different ways that involve activation of the hypothalamic-pituitary-adrenal axis, imbalance in neurotransmitter release, systemic inflammation, and increase in the permeability of the intestinal and the blood-brain barrier. Mental and neurological diseases have become more prevalent during the coronavirus disease 2019pandemic and are an essential issue in public health globally. Understanding the importance of diagnosing, preventing, and treating dysbiosis is critical because gut microbial imbalance is a significant risk factor for these disorders. This review summarizes evidence demonstrating the influence of gut dysbiosis on mental and neurological disorders.
Collapse
Affiliation(s)
| | | | | | - Fernando Morgadinho Santos Coelho
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brazil
- Universidade Federal de São Paulo, Departamento de Neurologia e Neurocirurgia, São Paulo SP, Brazil
| |
Collapse
|
69
|
Rubinstein MR, Burgueño AL, Quiroga S, Wald MR, Genaro AM. Current Understanding of the Roles of Gut-Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells 2023; 12:1735. [PMID: 37443769 PMCID: PMC10340286 DOI: 10.3390/cells12131735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The term 'perinatal environment' refers to the period surrounding birth, which plays a crucial role in brain development. It has been suggested that dynamic communication between the neuro-immune system and gut microbiota is essential in maintaining adequate brain function. This interaction depends on the mother's status during pregnancy and/or the newborn environment. Here, we show experimental and clinical evidence that indicates that the perinatal period is a critical window in which stress-induced immune activation and altered microbiota compositions produce lasting behavioral consequences, although a clear causative relationship has not yet been established. In addition, we discuss potential early treatments for preventing the deleterious effect of perinatal stress exposure. In this sense, early environmental enrichment exposure (including exercise) and melatonin use in the perinatal period could be valuable in improving the negative consequences of early adversities. The evidence presented in this review encourages the realization of studies investigating the beneficial role of melatonin administration and environmental enrichment exposure in mitigating cognitive alteration in offspring under perinatal stress exposure. On the other hand, direct evidence of microbiota restoration as the main mechanism behind the beneficial effects of this treatment has not been fully demonstrated and should be explored in future studies.
Collapse
Affiliation(s)
- Mara Roxana Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| | | | | | | | - Ana María Genaro
- Laboratorio de Psiconeuroendocrinoinmunologia, Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Pontificia Universidad Católica Argentina, Buenos Aires C1107AFF, Argentina; (A.L.B.); (S.Q.); (M.R.W.)
| |
Collapse
|
70
|
Dalziel JE, Zobel G, Dewhurst H, Hurst C, Olson T, Rodriguez-Sanchez R, Mace L, Parkar N, Thum C, Hannaford R, Fraser K, MacGibbon A, Bassett SA, Dekker J, Anderson RC, Young W. A Diet Enriched with Lacticaseibacillus rhamnosus HN001 and Milk Fat Globule Membrane Alters the Gut Microbiota and Decreases Amygdala GABA a Receptor Expression in Stress-Sensitive Rats. Int J Mol Sci 2023; 24:10433. [PMID: 37445611 DOI: 10.3390/ijms241310433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Brain signalling pathways involved in subclinical anxiety and depressed mood can be modulated via the gut brain axis (GBA), providing the potential for diet and dietary components to affect mood. We investigated behavioural, physiological and gut microbiome responses to the Lacticaseibacillus rhamnosus strain HN001 (LactoB HN001™), which has been shown to reduce postpartum anxiety and depression, and a milk fat globule membrane-enriched product, Lipid 70 (SurestartTM MFGM Lipid 70), which has been implicated in memory in stress-susceptible Wistar Kyoto rats. We examined behaviour in the open field, elevated plus maze and novel object recognition tests in conjunction with the expression of host genes in neuro-signalling pathways, and we also assessed brain lipidomics. Treatment-induced alterations in the caecal microbiome and short-chain fatty acid (SCFA) profiles were also assessed. Neither ingredient induced behavioural changes or altered the brain lipidome (separately or when combined). However, with regard to brain gene expression, the L. rhamnosus HN001 + Lipid 70 combination produced a synergistic effect, reducing GABAA subunit expression in the amygdala (Gabre, Gat3, Gabrg1) and hippocampus (Gabrd). Treatment with L. rhamnosus HN001 alone altered expression of the metabotropic glutamate receptor (Grm4) in the amygdala but produced only minor changes in gut microbiota composition. In contrast, Lipid 70 alone did not alter brain gene expression but produced a significant shift in the gut microbiota profile. Under the conditions used, there was no observed effect on rat behaviour for the ingredient combination. However, the enhancement of brain gene expression by L. rhamnosus HN001 + Lipid 70 implicates synergistic actions on region-specific neural pathways associated with fear, anxiety, depression and memory. A significant shift in the gut microbiota profile also occurred that was mainly attributable to Lipid 70.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Gosia Zobel
- Ethical Agriculture, AgResearch, Hamilton 3240, New Zealand
| | - Hilary Dewhurst
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Charlotte Hurst
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Trent Olson
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | | | - Louise Mace
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Nabil Parkar
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Caroline Thum
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Rina Hannaford
- Digital Agriculture, AgResearch, Palmerston North 4442, New Zealand
| | - Karl Fraser
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Alastair MacGibbon
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - Shalome A Bassett
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - James Dekker
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - Rachel C Anderson
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Wayne Young
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| |
Collapse
|
71
|
Fish-Williamson A, Hahn-Holbrook J. Nutritional factors and cross-national postpartum depression prevalence: an updated meta-analysis and meta-regression of 412 studies from 46 countries. Front Psychiatry 2023; 14:1193490. [PMID: 37398595 PMCID: PMC10311512 DOI: 10.3389/fpsyt.2023.1193490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
Background Postpartum depression (PPD) is the most common complication associated with childbirth and can lead to adverse outcomes for both mothers and their children. A previous meta-analysis found that PPD prevalence varies widely across countries. One potential underexplored contributor to this cross-national variation in PPD is diet, which contributes to mental health and varies significantly around the world. Here, we sought to update the global and national estimates of PPD prevalence using systematic review and meta-analysis. Further, we examined whether cross-national variation in PPD prevalence is associated with cross-national variation in diet using meta-regression. Methods To estimate national rates of PPD prevalence, we conducted an updated systematic review of all papers reporting PPD prevalence using the Edinburgh Postnatal Depression Scale between 2016-2021 and combined our findings with a previous meta-analysis of articles published between 1985-2015. PPD prevalence and methods were extracted from each study. Random effects meta-analysis was used to estimate global and national PPD prevalence. To examine dietary predictors, we extracted data on sugar-sweetened beverage, fruit, vegetable, total fiber, yogurt, and seafood consumption from the Global Dietary Database. Random effects meta-regression was used to test whether between-country and within-country variation in dietary factors predicted variation in PPD prevalence, controlling for economic and methodological variables. Results 412 studies of 792,055 women from 46 countries were identified. The global pooled prevalence of PPD was 19.18% (95% confidence interval: 18.02 to 20.34%), ranging from 3% in Singapore to 44% in South Africa. Countries that consumed more sugar-sweetened beverages (SSBs) had higher rates of PPD (Coef. = 0.325, p = 0.044, CI:0.010-0.680); Moreover, in years when higher rates of sugar-sweetened beverages were consumed in a country, there were correspondingly higher rates of PPD in that country (Coef. = 0.129, p = 0.026, CI: 0.016-0.242). Conclusion The global prevalence of PPD is greater than previous calculations, and drastically varies by country. Sugar-sweetened beverage consumption explained some of the national variation in PPD prevalence.
Collapse
|
72
|
Ma X, Shin YJ, Park HS, Jeong JW, Kim JY, Shim JJ, Lee JL, Kim DH. Lactobacillus casei and Its Supplement Alleviate Stress-Induced Depression and Anxiety in Mice by the Regulation of BDNF Expression and NF-κB Activation. Nutrients 2023; 15:nu15112488. [PMID: 37299451 DOI: 10.3390/nu15112488] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Stress-induced depression and anxiety (DA) are closely connected to gastrointestinal inflammation and dysbiosis, which can suppress brain-derived neurotrophic factor (BDNF) in the brain. Herein, we isolated the BDNF expression-inducing probiotics Lactobacillus casei HY2782 and Bifidobacterium lactis HY8002 in lipopolysaccharide-stimulated SH-SY5Y cells. Then, we investigated the effects of HY2782, HY8002, anti-inflammatory L-theanine, and their supplement (PfS, probiotics-fermented L-theanine-containing supplement) on DA in mice exposed to restraint stress (RS) or the fecal microbiota of patients with inflammatory bowel disease and depression (FMd). Oral administration of HY2782, HY8002, or L-theanine alleviated RS-induced DA-like behaviors. They also decreased RS-induced hippocampal interleukin (IL)-1β and IL-6 levels, as well as NF-κB-positive cell numbers, blood corticosterone level, and colonic IL-1β and IL-6 levels and NF-κB-positive cell numbers. L-theanine more potently suppressed DA-like behaviors and inflammation-related marker levels than probiotics. However, these probiotics more potently increased RS-suppressed hippocampal BDNF level and BDNF+NeuN+ cell numbers than L-theanine. Furthermore, HY2782 and HY8002 suppressed RS-increased Proteobacteria and Verrucomicrobia populations in gut microbiota. In particular, they increased Lachnospiraceae and Lactobacillacease populations, which are closely positively associated with hippocampal BDNF expression, and suppressed Sutterellaceae, Helicobacteriaceae, Akkermansiaceae, and Enterobacteriaceae populations, which are closely positively associated with hippocampal IL-1β expression. HY2782 and HY8002 potently alleviated FMd-induced DA-like behaviors and increased FMd-suppressed BDNF, serotonin levels, and BDNF-positive neuronal cell numbers in the brain. They alleviated blood corticosterone level and colonic IL-1β α and IL-6 levels. However, L-theanine weakly, but not significantly, alleviated FMd-induced DA-like behaviors and gut inflammation. BDNF expression-inducing probiotic (HY2782, HY8002, Streptococcus thermophilus, and Lactobacillus acidophilus)-fermented and anti-inflammatory L-theanine-containing supplement PfS alleviated DA-like behaviors, inflammation-related biomarker levels, and gut dysbiosis more than probiotics or L-theanine. Based on these findings, a combination of BDNF expression-inducing probiotics with anti-inflammatory L-theanine may additively or synergistically alleviate DA and gut dysbiosis by regulating gut microbiota-mediated inflammation and BDNF expression, thereby being beneficial for DA.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Woong Jeong
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Joo Yun Kim
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Jae-Jung Shim
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Jung-Lyoul Lee
- R&BD Department, hy Co., Ltd., Seoul 06530, Republic of Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- PBLbiolab, Seoul 02823, Republic of Korea
| |
Collapse
|
73
|
Zheng Q, Wang S, Tian X, Liu W, Gao P. Fecal microbiota transplantation confirmed that 919 Syrup reduced the ratio of erucamide to 5-AVAB in hippocampus to alleviate postpartum depression by regulating gut microbes. Front Immunol 2023; 14:1203015. [PMID: 37292211 PMCID: PMC10244653 DOI: 10.3389/fimmu.2023.1203015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Abstract
Background Postpartum depression has a crucial impact on the physical and psychological comfort and the work of postnatal women, the growth and development of infants and mental health in adulthood. Finding a safe and effective anti-postnatal depression drug is currently an important research goal in this field. Methods In this study, the forced swimming test (FST) and tail suspension test (TST) were used to evaluated the depressive behaviors of mice, and the changes of metabolites and intestinal microflora in mice with postpartum depression were examined through non-target metabolomics and 16S RNA sequencing respectively. Results We found that traditional Chinese medicine compound 919 Syrup could alleviate postpartum depression in mice and inhibit the elevated erucamide level in depressive hippocampus. However, mice treated with antibiotics were not sensitive to the anti-postnatal depression effect of 919 Syrup, and the level of 5-aminovaleric acid betaine (5-AVAB) in their hippocampus was significantly decreased. Transplanting fecal microflora treated with 919 Syrup could effectively improve the depressive behaviors of mice, upregulate the level of gut-derived 5-AVAB in the hippocampus, and downregulate the level of erucamide. Erucamide was significantly negatively correlated with increased Bacteroides in intestine after 919 Syrup treatment or fecal transplantation, and significantly positively correlated with Ruminococcaceae UCG-014 which was increased in feces of mice with postpartum depression. The increase of Bacteroides, Lactobacillus, and Ruminiclostridium in intestine after fecal transplantation had a clearly positive correlation with 5-AVAB. Conclusion In brief, 919 Syrup may downregulate the ratio of hippocampal metabolites erucamide to 5-AVAB by regulating intestinal flora to alleviate postpartum depression, laying a scientific foundation for future pathological research and development of therapeutic drugs for postpartum depression.
Collapse
Affiliation(s)
- Qiaoqi Zheng
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shusheng Wang
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xinyun Tian
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Wen Liu
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Pengfei Gao
- Department of Traditional Chinese Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
74
|
Rosas-Val P, Adhami M, Brotons-Canto A, Gamazo C, Irache JM, Larrañeta E. 3D printing of microencapsulated Lactobacillus rhamnosus for oral delivery. Int J Pharm 2023; 641:123058. [PMID: 37207858 DOI: 10.1016/j.ijpharm.2023.123058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
3D Printing is an innovative technology within the pharma and food industries that allows the design and manufacturing of novel delivery systems. Orally safe delivery of probiotics to the gastrointestinal tract faces several challenges regarding bacterial viability, in addition to comply with commercial and regulatory standpoints. Lactobacillus rhamnosus CNCM I-4036 (Lr) was microencapsulated in generally recognised as safe (GRAS) proteins, and then assessed for robocasting 3D printing. Microparticles (MP-Lr) were developed and characterised, prior to being 3D printed with pharmaceutical excipients. MP-Lr showed a size of 12.3 ± 4.1 µm and a non-uniform wrinkled surface determined by Scanning Electron Microscopy (SEM). Bacterial quantification by plate counting accounted for 8.68 ±0.6 CFU/g of live bacteria encapsulated within. Formulations were able to keep the bacterial dose constant upon contact with gastric and intestinal pH. Printlets consisted in oval-shape formulations (15 mm × 8 mm × 3.2 mm) of ca. 370 mg of total weight, with a uniform surface. After the 3D printing process, bacterial viability remained even as MP-Lr protected bacteria alongside the process (log reduction of 0.52, p>0.05) in comparison with non-encapsulated probiotic (log reduction of 3.05). Moreover, microparticle size was not altered during the 3D printing process. We confirmed the success of this technology for developing an orally safe formulation, GRAS category, of microencapsulated Lr for gastrointestinal vehiculation.
Collapse
Affiliation(s)
- Pablo Rosas-Val
- Nucaps Nanotechnology S.L., Spain; Department of Microbiology & Parasitology, University of Navarra, Spain
| | | | | | - Carlos Gamazo
- Department of Microbiology & Parasitology, University of Navarra, Spain
| | - Juan M Irache
- Department of Technology & Pharmaceutical Chemistry, University of Navarra, Spain
| | | |
Collapse
|
75
|
Halemani K, Shetty AP, Thimmappa L, Issac A, Dhiraaj S, Radha K, Mishra P, Mathias EG. Impact of probiotic on anxiety and depression symptoms in pregnant and lactating women and microbiota of infants: A systematic review and meta-analysis. J Glob Health 2023; 13:04038. [PMID: 37218177 PMCID: PMC10173681 DOI: 10.7189/jogh.13.04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Probiotics are non-invasive therapies composed of live bacteria and yeast. Administration of prebiotics improved the health status of pregnant and lactating women, as well as newborns. This review aimed to appraise the evidence concerning the effectiveness of probiotics on the mental health of pregnant women, lactating mother and the microbiota of the newborn. Methods This systematic review and meta-analysis ascertained quantitative studies published in Medline (PubMed), Clinical Key, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, and Google scholar. Two authors independently screened and extracted the data from the primary studies that analysed the efficacy of probiotics on the mental health of pregnant and lactating women and the microbiota of the newborn. We adopted Cochrane Collaboration guidelines and reported using the Preferred Reporting Items for Systematic review and Meta-Analysis (PRISMA) statement. The qualities of included trials were assessed by Cochrane collaboration's risk of bias tool (ROB-2). Results Sixteen trials comprised 946 pregnant women, 524 were lactating mothers, and 1678 were infants. The sample size of primary studies ranged from 36 to 433. Probiotics were administered as interventions, using either a single strain of Bifidobacterium or Lactobacillus or a double-strain combination of Lactobacillus and Bifidobacterium. Probiotics supplementation reduced anxiety in pregnant (n = 676, standardised mean difference (SMD) = 0.01; 95% confidence interval (CI) = -0.28,0.30, P = 0.04, I2 = 70) and lactating women (n = 514, SMD = -0.17; 95% CI = -1.62,1.27, P = 0.98, I2 = 0). Similarly, probiotics decreased depression in pregnant (n = 298, SMD = 0.05; 95% CI = -0.24,0.35, P = 0.20, I2 = 40) and lactating women (n = 518, SMD = -0.10; 95% CI = -1.29,-1.05, P = 0.11, I2 = 60%). Similarly, probiotics supplementation improved the gut microbiota and reduced the duration of crying, abdominal distension, abdominal colic and diarrhoea. Conclusion Non-invasive probiotic therapies are more useful to pregnant and lactating women and newborns. Registration The review protocol was registered with PROSPERO (CRD42022372126).
Collapse
Affiliation(s)
- Kurvatteppa Halemani
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Asha P Shetty
- All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Latha Thimmappa
- All India Institute of Medical Sciences, Kalyani, West- Bengal, India
| | - Alwin Issac
- All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sanjay Dhiraaj
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - K Radha
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Prabhaker Mishra
- Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | | |
Collapse
|
76
|
Merchak AR, Wachamo S, Brown LC, Thakur A, Moreau B, Brown RM, Rivet-Noor C, Raghavan T, Gaultier A. Lactobacillus maintains IFNγ homeostasis to promote behavioral stress resilience. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540223. [PMID: 37214985 PMCID: PMC10197651 DOI: 10.1101/2023.05.10.540223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The gut microbiome consists of the trillions of bacteria, fungi, and viruses that inhabit the digestive tract. These communities are sensitive to disruption from environmental exposures ranging from diet changes to illness. Disruption of the community of lactic acid producing bacteria, Lactobaccillacea , has been well documented in mood disorders and stress exposure. In fact, oral supplement with many Lactobacillus species can ameliorate these effects, preventing depression- and anxiety-like behavior. Here, for the first time, we utilize a gnotobiotic mouse colonized with the Altered Schaedler Flora to remove the two native species of Lactobaccillacea . Using this novel microbial community, we found that the Lactobacillus species themselves, and not the disrupted microbial communities are protective from environmental stressors. Further, we determine that Lactobaccillacea are maintaining homeostatic IFNγ levels which are mediating these behavioral and circuit level responses. By utilizing the Altered Schaedler Flora, we have gained new insight into how probiotics influence behavior and give novel methods to study potential therapies developed to treat mood disorders.
Collapse
|
77
|
Gao J, Zhao L, Cheng Y, Lei W, Wang Y, Liu X, Zheng N, Shao L, Chen X, Sun Y, Ling Z, Xu W. Probiotics for the treatment of depression and its comorbidities: A systemic review. Front Cell Infect Microbiol 2023; 13:1167116. [PMID: 37139495 PMCID: PMC10149938 DOI: 10.3389/fcimb.2023.1167116] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Depression is one of the most common psychiatric conditions, characterized by significant and persistent depressed mood and diminished interest, and often coexists with various comorbidities. The underlying mechanism of depression remain elusive, evidenced by the lack of an appreciate therapy. Recent abundant clinical trials and animal studies support the new notion that the gut microbiota has emerged as a novel actor in the pathophysiology of depression, which partakes in bidirectional communication between the gut and the brain through the neuroendocrine, nervous, and immune signaling pathways, collectively known as the microbiota-gut-brain (MGB) axis. Alterations in the gut microbiota can trigger the changes in neurotransmitters, neuroinflammation, and behaviors. With the transition of human microbiome research from studying associations to investigating mechanistic causality, the MGB axis has emerged as a novel therapeutic target in depression and its comorbidities. These novel insights have fueled idea that targeting on the gut microbiota may open new windows for efficient treatment of depression and its comorbidities. Probiotics, live beneficial microorganisms, can be used to modulate gut dysbiosis into a new eubiosis and modify the occurrence and development of depression and its comorbidities. In present review, we summarize recent findings regarding the MGB axis in depression and discuss the potential therapeutic effects of probiotics on depression and its comorbidities.
Collapse
Affiliation(s)
- Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yu Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xulei Chen
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Yilai Sun
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| | - Weijie Xu
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, Zhejiang, China
| |
Collapse
|
78
|
Radford-Smith DE, Anthony DC. Prebiotic and Probiotic Modulation of the Microbiota-Gut-Brain Axis in Depression. Nutrients 2023; 15:nu15081880. [PMID: 37111100 PMCID: PMC10146605 DOI: 10.3390/nu15081880] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging evidence demonstrates that alterations to the gut microbiota can affect mood, suggesting that the microbiota-gut-brain (MGB) axis contributes to the pathogenesis of depression. Many of these pathways overlap with the way in which the gut microbiota are thought to contribute to metabolic disease progression and obesity. In rodents, prebiotics and probiotics have been shown to modulate the composition and function of the gut microbiota. Together with germ-free rodent models, probiotics have provided compelling evidence for a causal relationship between microbes, microbial metabolites, and altered neurochemical signalling and inflammatory pathways in the brain. In humans, probiotic supplementation has demonstrated modest antidepressant effects in individuals with depressive symptoms, though more studies in clinically relevant populations are needed. This review critically discusses the role of the MGB axis in depression pathophysiology, integrating preclinical and clinical evidence, as well as the putative routes of communication between the microbiota-gut interface and the brain. A critical overview of the current approaches to investigating microbiome changes in depression is provided. To effectively translate preclinical breakthroughs in MGB axis research into novel therapies, rigorous placebo-controlled trials alongside a mechanistic and biochemical understanding of prebiotic and probiotic action are required from future research.
Collapse
Affiliation(s)
- Daniel E Radford-Smith
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX3 7JX, UK
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
79
|
Toh MPS, Yang CY, Lim PC, Loh HLJ, Bergonzelli G, Lavalle L, Mardhy E, Samuel TM, Suniega-Tolentino E, Silva Zolezzi I, Fries LR, Chan SY. A Probiotic Intervention With Bifidobacterium longum NCC3001 on Perinatal Mood Outcomes (PROMOTE Study): Protocol for a Decentralized Randomized Controlled Trial. JMIR Res Protoc 2023; 12:e41751. [PMID: 37018024 PMCID: PMC10131660 DOI: 10.2196/41751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Perinatal mood disorders such as depression and anxiety are common, with subclinical symptomology manifesting as perinatal mood disturbances being even more prevalent. These could potentially affect breastfeeding practices and infant development. Pregnant and lactating women usually limit their exposure to medications, including those for psychological symptoms. Interestingly, the naturally occurring probiotic Bifidobacterium longum (BL) NCC3001 has been shown to reduce anxious behavior in preclinical models and feelings of low mood in nonpregnant human adults. During the COVID-19 pandemic, mental health issues increased, and conventionally conducted clinical trials were restricted by social distancing regulations. OBJECTIVE This study, Probiotics on Mothers' Mood and Stress (PROMOTE), aimed to use a decentralized clinical trial design to test whether BL NCC3001 can reduce symptoms of depression, anxiety, and stress over the perinatal period. METHODS This double-blind, placebo-controlled, randomized, and 3-parallel-arm study aimed to recruit 180 women to evaluate the efficacy of the probiotic taken either during pregnancy and post partum (from 28-32 weeks' gestation until 12 weeks after delivery; n=60, 33.3%) or post partum only (from birth until 12 weeks after delivery; n=60, 33.3%) in comparison with a placebo control group (n=60, 33.3%). Participants consumed the probiotic or matched placebo in a drink once daily. Mood outcomes were measured using the State-Trait Anxiety Inventory and Edinburgh Postnatal Depression Scale questionnaires, captured electronically at baseline (28-32 weeks' gestation) and during e-study sessions over 5 further time points (36 weeks' gestation; 9 days post partum; and 4, 8, and 12 weeks post partum). Saliva and stool samples were collected longitudinally at home to provide mechanistic insights. RESULTS In total, 520 women registered their interest on our website, of whom 184 (35.4%) were eligible and randomized. Of these 184 participants, 5 (2.7%) withdrew after randomization, leaving 179 (97.3%) who completed the study. Recruitment occurred between November 7, 2020, and August 20, 2021. Advertising on social media brought in 46.9% (244/520) of the prospective participants, followed by parenting-specific websites (116/520, 22.3%). Nationwide recruitment was achieved. Data processing is ongoing, and there are no outcomes to report yet. CONCLUSIONS Multiple converging factors contributed to speedy recruitment and retention of participants despite COVID-19-related restrictions. This decentralized trial design sets a precedent for similar studies, in addition to potentially providing novel evidence on the impact of BL NCC3001 on symptoms of perinatal mood disturbances. This study was ideal for remote conduct: because of the high digital literacy and public trust in digital security in Singapore, the intervention could be self-administered without regular clinical monitoring, and the eligibility criteria and outcomes were measured using electronic questionnaires and self-collected biological samples. This design was particularly suited for a group considered vulnerable-pregnant women-during the challenging times of COVID-19-related social restrictions. TRIAL REGISTRATION ClinicalTrials.gov NCT04685252; https://clinicaltrials.gov/ct2/show/NCT04685252. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/41751.
Collapse
Affiliation(s)
- Melissa P S Toh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chui Yuen Yang
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Phei Cze Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hui Li J Loh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Luca Lavalle
- Nestle Research, Lausanne, Lausanne, Switzerland
| | - Elias Mardhy
- Nestle Research, Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Shiao Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
80
|
Jach ME, Serefko A, Szopa A, Sajnaga E, Golczyk H, Santos LS, Borowicz-Reutt K, Sieniawska E. The Role of Probiotics and Their Metabolites in the Treatment of Depression. Molecules 2023; 28:molecules28073213. [PMID: 37049975 PMCID: PMC10096791 DOI: 10.3390/molecules28073213] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
Depression is a common and complex mental and emotional disorder that causes disability, morbidity, and quite often mortality around the world. Depression is closely related to several physical and metabolic conditions causing metabolic depression. Studies have indicated that there is a relationship between the intestinal microbiota and the brain, known as the gut–brain axis. While this microbiota–gut–brain connection is disturbed, dysfunctions of the brain, immune system, endocrine system, and gastrointestinal tract occur. Numerous studies show that intestinal dysbiosis characterized by abnormal microbiota and dysfunction of the microbiota–gut–brain axis could be a direct cause of mental and emotional disorders. Traditional treatment of depression includes psychotherapy and pharmacotherapy, and it mainly targets the brain. However, restoration of the intestinal microbiota and functions of the gut–brain axis via using probiotics, their metabolites, prebiotics, and healthy diet may alleviate depressive symptoms. Administration of probiotics labeled as psychobiotics and their metabolites as metabiotics, especially as an adjuvant to antidepressants, improves mental disorders. It is a new approach to the prevention, management, and treatment of mental and emotional illnesses, particularly major depressive disorder and metabolic depression. For the effectiveness of antidepressant therapy, psychobiotics should be administered at a dose higher than 1 billion CFU/day for at least 8 weeks.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| | - Ewa Sajnaga
- Department of Biomedicine and Environmental Research, The John Paul II Catholic University of Lublin, Konstantynów Street 1J, 20-708 Lublin, Poland
| | - Hieronim Golczyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Leandro Soares Santos
- Department of Animal and Rural Technology, State University of Southwest Bahia, Itapetinga 45700-000, BA, Brazil
| | - Kinga Borowicz-Reutt
- Independent Unit of Experimental Neuropathophysiology, Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland
| |
Collapse
|
81
|
Birmann PT, Casaril AM, Pesarico AP, Rodrigues RR, Conceição FR, Sousa FSS, Collares T, Seixas FK, Savegnago L. Komagataella pastoris KM71H Mitigates Depressive-Like Phenotype, Preserving Intestinal Barrier Integrity and Modulating the Gut Microbiota in Mice. Mol Neurobiol 2023; 60:4017-4029. [PMID: 37016046 DOI: 10.1007/s12035-023-03326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
The role of intestinal microbiota in the genesis of mental health has received considerable attention in recent years, given that probiotics are considered promising therapeutic agents against major depressive disorder. Komagataella pastoris KM71H is a yeast with probiotic properties and antidepressant-like effects in animal models of depression. Hence, we evaluated the antidepressant-like effects of K. pastoris KM71H in a model of antibiotic-induced intestinal dysbiosis in male Swiss mice. The mice received clindamycin (200 μg, intraperitoneal) and, after 24 h, were treated with K. pastoris KM71H at a dose of 8 log CFU/animal by intragastric administration (ig) or PBS (vehicle, ig) for 14 consecutive days. Afterward, the animals were subjected to behavioral tests and biochemical analyses. Our results showed that K. pastoris KM71H administration decreased the immobility time in the tail suspension test and increased grooming activity duration in the splash test in antibiotic-treated mice, thereby characterizing its antidepressant-like effect. We observed that these effects of K. pastoris KM71H were accompanied by the modulation of the intestinal microbiota, preservation of intestinal barrier integrity, and restoration of the mRNA levels of occludin, zonula occludens-1, zonula occludens-2, and toll-like receptor-4 in the small intestine, and interleukin-1β in the hippocampi of mice. Our findings provide solid evidence to support the development of K. pastoris KM71H as a new probiotic with antidepressant-like effects.
Collapse
Affiliation(s)
- Paloma T Birmann
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Angela M Casaril
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Ana Paula Pesarico
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil
| | - Rafael R Rodrigues
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Applied Immunology Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda Severo Sabedra Sousa
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Graduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Graduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, (UFPel), Pelotas, RS, CEP 96010-900, Brazil.
| |
Collapse
|
82
|
Tsai Z, Shah N, Tahir U, Mortaji N, Owais S, Perreault M, Van Lieshout RJ. Dietary interventions for perinatal depression and anxiety: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2023:S0002-9165(23)46315-0. [PMID: 37019362 DOI: 10.1016/j.ajcnut.2023.03.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Dietary interventions are a widely available intervention for depression and anxiety among pregnant and/or postpartum (i.e., perinatal) persons but their effectiveness is not well known. OBJECTIVE We performed a systematic review and meta-analysis to assess the effectiveness of dietary interventions for the treatment of perinatal depression and/or anxiety. DESIGN We searched Medline, EMBASE, PsycINFO, CINAHL, and Web of Science from their inception to November 2, 2022. Studies were included if they were available in English and examined the effectiveness of a dietary intervention for perinatal depression and/or anxiety in a randomized controlled trial. RESULTS Our search identified 4,246 articles, 36 of which were included and 28 were eligible for meta-analysis. Random effects meta-analyses were performed. Polyunsaturated fatty acids (PUFAs) were not found to improve symptoms of perinatal depression compared to control conditions (SMD -0.11; 95% CI -0.26 to 0.04). These results did not change when examined during pregnancy or the postpartum period separately, nor did they vary according to fatty acid ratio. Elemental metals (iron, zinc, and magnesium) were also not found to be superior to placebo (SMD, -0.42; 95% CI, -1.05 to 0.21), though, vitamin D yielded a small to medium effect size improvements (SMD, -0.52; 95% CI, -0.84 to -0.20) in postpartum depression. Iron may help in those with confirmed iron deficiency. Narrative synthesis was performed for studies ineligible for meta-analyses. CONCLUSIONS Despite their widespread popularity, PUFAs and elemental metals do not appear to effectively reduce perinatal depression. Vitamin D taken in doses of 1800 to 3500 International Units (IU) per day may have some promise. Additional high-quality, large-scale randomized controlled trials (RCTs) are needed to determine the true effectiveness of dietary interventions on perinatal depression and/or anxiety. PROSPERO REGISTRATION DATE AND NUMBER July 5th 2020, CRD42020208830.
Collapse
Affiliation(s)
- Zoe Tsai
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada.
| | - Nirmay Shah
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Umair Tahir
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Neda Mortaji
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Sawayra Owais
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Maude Perreault
- Faculty of Medicine, University of Montreal, Montreal, Québec, Canada
| | - Ryan J Van Lieshout
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
83
|
Liu L, Wang H, Chen X, Zhang Y, Zhang H, Xie P. Gut microbiota and its metabolites in depression: from pathogenesis to treatment. EBioMedicine 2023; 90:104527. [PMID: 36963238 PMCID: PMC10051028 DOI: 10.1016/j.ebiom.2023.104527] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Major depressive disorder is one of the most disabling mental disorders worldwide. Increasing preclinical and clinical studies have highlighted that compositional and functional (e.g., metabolite) changes in gut microbiota, known as dysbiosis, are associated with the onset and progression of depression via regulating the gut-brain axis. However, the gut microbiota and their metabolites present a double-edged sword in depression. Dysbiosis is involved in the pathogenesis of depression while, at the same time, offering a novel therapeutic target. In this review, we describe the association between dysbiosis and depression, drug-microbiota interactions in antidepressant treatment, and the potential health benefits of microbial-targeted therapeutics in depression, including dietary interventions, fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and postbiotics. With the emergence of microbial research, we describe a new direction for future research and clinical treatment of depression.
Collapse
Affiliation(s)
- Lanxiang Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
84
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
85
|
Donoso F, Cryan JF, Olavarría-Ramírez L, Nolan YM, Clarke G. Inflammation, Lifestyle Factors, and the Microbiome-Gut-Brain Axis: Relevance to Depression and Antidepressant Action. Clin Pharmacol Ther 2023; 113:246-259. [PMID: 35278334 PMCID: PMC10084001 DOI: 10.1002/cpt.2581] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
Depression is considered a major public health concern, where existing pharmacological treatments are not equally effective across all patients. The pathogenesis of depression involves the interaction of complex biological components, such as the immune system and the microbiota-gut-brain axis. Adjunctive lifestyle-oriented approaches for depression, including physical exercise and special diets are promising therapeutic options when combined with traditional antidepressants. However, the mechanisms of action of these strategies are incompletely understood. Accumulating evidence suggests that physical exercise and specific dietary regimens can modulate both the immune system and gut microbiota composition. Here, we review the current information about the strategies to alleviate depression and their crosstalk with both inflammatory mechanisms and the gut microbiome. We further discuss the role of the microbiota-gut-brain axis as a possible mediator for the adjunctive therapies for depression through inflammatory mechanisms. Finally, we review existing and future adjunctive strategies to manipulate the gut microbiota with potential use for depression, including physical exercise, dietary interventions, prebiotics/probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Francisco Donoso
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | | | - Yvonne M Nolan
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry & Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
86
|
Vasiliu O. The current state of research for psychobiotics use in the management of psychiatric disorders-A systematic literature review. Front Psychiatry 2023; 14:1074736. [PMID: 36911130 PMCID: PMC9996157 DOI: 10.3389/fpsyt.2023.1074736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The need to find new therapeutic interventions in patients diagnosed with psychiatric disorders is supported by the data suggesting high rates of relapse, chronic evolution, therapeutic resistance, or lack of adherence and disability. The use of pre-, pro-, or synbiotics as add-ons in the therapeutic management of psychiatric disorders has been explored as a new way to augment the efficacy of psychotropics and to improve the chances for these patients to reach response or remission. This systematic literature review focused on the efficacy and tolerability of psychobiotics in the main categories of psychiatric disorders and it has been conducted through the most important electronic databases and clinical trial registers, using the PRISMA 2020 guidelines. The quality of primary and secondary reports was assessed using the criteria identified by the Academy of Nutrition and Diabetics. Forty-three sources, mostly of moderate and high quality, were reviewed in detail, and data regarding the efficacy and tolerability of psychobiotics was assessed. Studies exploring the effects of psychobiotics in mood disorders, anxiety disorders, schizophrenia spectrum disorders, substance use disorders, eating disorders, attention deficit hyperactivity disorder (ADHD), neurocognitive disorders, and autism spectrum disorders (ASD) were included. The overall tolerability of the interventions assessed was good, but the evidence to support their efficacy in specific psychiatric disorders was mixed. There have been identified data in favor of probiotics for patients with mood disorders, ADHD, and ASD, and also for the association of probiotics and selenium or synbiotics in patients with neurocognitive disorders. In several domains, the research is still in an early phase of development, e.g., in substance use disorders (only three preclinical studies being found) or eating disorders (one review was identified). Although no well-defined clinical recommendation could yet be formulated for a specific product in patients with psychiatric disorders, there is encouraging evidence to support further research, especially if focused on the identification of specific sub-populations that may benefit from this intervention. Several limitations regarding the research in this field should be addressed, i.e., the majority of the finalized trials are of short duration, there is an inherent heterogeneity of the psychiatric disorders, and the diversity of the explored Philae prevents the generalizability of the results from clinical studies.
Collapse
Affiliation(s)
- Octavian Vasiliu
- Department of Psychiatry, Dr. Carol Davila University Emergency Central Military Hospital, Bucharest, Romania
| |
Collapse
|
87
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
88
|
Mayer E, Horn J, Mayer E, Chen S. Role of the gut microbiome in the pathophysiology of brain disorders. NEUROBIOLOGY OF BRAIN DISORDERS 2023:913-928. [DOI: 10.1016/b978-0-323-85654-6.00058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
89
|
Serafini G, Costanza A, Aguglia A, Amerio A, Trabucco A, Escelsior A, Sher L, Amore M. The Role of Inflammation in the Pathophysiology of Depression and Suicidal Behavior: Implications for Treatment. Med Clin North Am 2023; 107:1-29. [PMID: 36402492 DOI: 10.1016/j.mcna.2022.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Depression and suicidal behavior are 2 complex psychiatric conditions of significant public health concerns due to their debilitating nature. The need to enhance contemporary treatments and preventative approaches for these illnesses not only calls for distillation of current views on their pathogenesis but also provides an impetus for further elucidation of their novel etiological determinants. In this regard, inflammation has recently been recognized as a potentially important contributor to the development of depression and suicidal behavior. This review highlights key evidence that supports the presence of dysregulated neurometabolic and immunologic signaling and abnormal interaction with microbial species as putative etiological hallmarks of inflammation in depression as well as their contribution to the development of suicidal behavior. Furthermore, therapeutic insights addressing candidate mechanisms of pathological inflammation in these disorders are proposed.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy.
| | - Alessandra Costanza
- Department of Psychiatry, Faculty of Medicine, University of Geneva (UNIGE), Geneva, Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland; Department of Psychiatry, Faculty of Biomedical Sciences, University of Italian Switzerland (USI), Lugano, Switzerland
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Alice Trabucco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Andrea Escelsior
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| | - Leo Sher
- James J. Peters VA Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Psychiatry, New York, NY, USA
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genoa 16132, Italy
| |
Collapse
|
90
|
Lynch CMK, O’Riordan KJ, Clarke G, Cryan JF. Gut Microbes: The Gut Brain Connection. CLINICAL UNDERSTANDING OF THE HUMAN GUT MICROBIOME 2023:33-59. [DOI: 10.1007/978-3-031-46712-7_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
91
|
Bozzi Cionci N, Reggio M, Baffoni L, Di Gioia D. Probiotic Administration for the Prevention and Treatment of Gastrointestinal, Metabolic and Neurological Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:219-250. [DOI: 10.1007/978-3-031-19564-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
92
|
Updates on the Role of Probiotics against Different Health Issues: Focus on Lactobacillus. Int J Mol Sci 2022; 24:ijms24010142. [PMID: 36613586 PMCID: PMC9820606 DOI: 10.3390/ijms24010142] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This review article is built on the beneficial effects of Lactobacillus against different diseases, and a special focus has been made on its effects against neurological disorders, such as depression, multiple sclerosis, Alzheimer's, and Parkinson's disease. Probiotics are live microbes, which are found in fermented foods, beverages, and cultured milk and, when administered in an adequate dose, confer health benefits to the host. They are known as "health-friendly bacteria", normally residing in the human gut and involved in maintaining homeostatic conditions. Imbalance in gut microbiota results in the pathophysiology of several diseases entailing the GIT tract, skin, immune system, inflammation, and gut-brain axis. Recently, the use of probiotics has gained tremendous interest, because of their profound effects on the management of these disease conditions. Recent findings suggest that probiotics enrichment in different human and mouse disease models showed promising beneficial effects and results in the amelioration of disease symptoms. Thus, this review focuses on the current probiotics-based products, different disease models, variable markers measured during trials, and evidence obtained from past studies on the use of probiotics in the prevention and treatment of different diseases, covering the skin to the central nervous system diseases.
Collapse
|
93
|
Alashmali S, Almasaudi AS, Zedan HS, Baattaiah BA, Alashmali Y. The Effect of Dairy Products and Nutrient Intake after Childbirth on the Risk of Postpartum Depression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16624. [PMID: 36554501 PMCID: PMC9779133 DOI: 10.3390/ijerph192416624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/19/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Previous studies have shown an association between the intake of dairy products during pregnancy and reduced symptoms of postpartum depression (PPD). However, the effect of postpartum intake of dairy products on PPD is not fully understood. This study evaluates the effects of dairy products and nutrient intake after childbirth on the risk of PPD. A cross-sectional survey-based study was conducted asking participants to fill out a food frequency questionnaire (FFQ) to assess intake of dairy products and other nutrients. The Edinburgh Postnatal Depression Scale (EPDS) was used to screen for PPD symptoms. Out of 530 participants, almost three-quarters subjectively reported PPD (N = 395, 74.11%). The risk of PPD was relatively high for a Q1 level of consumption of all four dairy products and other nutrients, and from Q2 to Q4 there appeared to be an increase in the risk of PPD as consumption increased. However, after adjustment for confounding factors, there was no significant association between postpartum intake of dairy products and other nutrients and PPD. The results indicate that the potential of dairy products and nutrient intake to reduce PPD are minimal. Further longitudinal and intervention studies of dairy products and other (particularly anti-depressants) nutrients are required to draw firm conclusions about their associations with the risk of PPD.
Collapse
Affiliation(s)
- Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Arwa S. Almasaudi
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haya S. Zedan
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 13316, Saudi Arabia
| | - Baian A. Baattaiah
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | |
Collapse
|
94
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
95
|
Liu G, Khan I, Li Y, Yang Y, Lu X, Wang Y, Li J, Zhang C. Overcoming Anxiety Disorder by Probiotic Lactiplantibacillus plantarum LZU-J-TSL6 through Regulating Intestinal Homeostasis. Foods 2022; 11:foods11223596. [PMID: 36429192 PMCID: PMC9689226 DOI: 10.3390/foods11223596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Lactiplantibacillus plantarum LZU-J-TSL6 with high γ-aminobutyric acid (GABA) production (3.838 g/L) was screened and isolated from the Chinese fermented food snack “Jiangshui”. The improvement effect on anxiety disorder was explored using mice as animal models. In vitro results revealed that LZU-J-TSL6 had the potential to colonize the intestine (p < 0.01) and the anxiety-like behavior of the mice after seven days’ gavage with LZU-J-TSL6 was significantly improved (p < 0.01) when compared to the model group. LZU-J-TSL6 was able to effectively increase the GABA content in the mice hippocampus (p < 0.0001) and restore some markers related to anxiety such as brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), and 5-hydroxytryptamine (5-HT). Simultaneously, it had a certain repair effect on Nissl bodies and colon tissue in mice hippocampus. In addition, LZU-J-TSL6 increased the relative abundance of beneficial bacteria Bacteroides and Muribaculum, thereby regulating the imbalance of intestinal microbiota caused by anxiety disorder. It also affects the nerve pathway and intestinal mucosal barrier by increasing the content of glutamine and γ-aminobutyric acid and other related metabolites, thereby improving anxiety. Therefore, the GABA-producing Lactobacillus plantus LZU-J-TSL6 can be used as a probiotic to exert an indirect or direct anti-anxiety effect by maintaining the balance of the intestinal environment, producing related metabolites that affect nerve pathways and repair the intestinal mucosal barrier. It can be used as an adjuvant treatment to improve anxiety disorders.
Collapse
Affiliation(s)
- Guanlan Liu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Israr Khan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yuxi Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
| | - Yun Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xuerui Lu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yafei Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou 730000, China
- Gansu Key Laboratory of Functional Genomics and Molecular Diagnosis, Lanzhou University, Lanzhou 730000, China
- Correspondence:
| |
Collapse
|
96
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
97
|
Accettulli A, Corbo MR, Sinigaglia M, Speranza B, Campaniello D, Racioppo A, Altieri C, Bevilacqua A. Psycho-Microbiology, a New Frontier for Probiotics: An Exploratory Overview. Microorganisms 2022; 10:2141. [PMID: 36363733 PMCID: PMC9696884 DOI: 10.3390/microorganisms10112141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/28/2023] Open
Abstract
Probiotics are gradually gaining importance in the field of psychiatry in the form of psychobiotics. Psychobiotics' studies examine the existing relationship between gut microbiota and mental phenomena; the intake of certain strains of probiotics, such as Bifidobacterium and Lactobacillus, for example, allow the gut microbial system to be modified in order to provide benefits at the psychic, immune, hormonal, and mental levels. Those who suffer from forms of depression, anxiety disorders, chronic stress, low mood, but also people who do not suffer from such disorders, can therefore benefit from the use of psychobiotics. Thanks to probiotics, neurochemicals can in fact be produced within the gut microbiota and interact with receptors of the enteric nervous system that innervate the entire gastrointestinal tract. Once they enter the portal circulation, these substances go on to influence components of the nervous system and ultimately the brain, through what is called the gut-brain axis. This article proposes an exploratory overview of the proven effects of probiotics on brain activity and psycho-related diseases, focusing on clinical studies and measurable outcomes. The search was conducted using two different online tools: ClinicalTrials.gov and PubMed.
Collapse
|
98
|
Young W, Maclean P, Dunstan K, Ryan L, Peters J, Armstrong K, Anderson R, Dewhurst H, van Gendt M, Dilger RN, Dekker J, Haggarty N, Roy N. Lacticaseibacillus rhamnosus HN001 alters the microbiota composition in the cecum but not the feces in a piglet model. Front Nutr 2022; 9:1002369. [PMID: 36386940 PMCID: PMC9650270 DOI: 10.3389/fnut.2022.1002369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
The probiotic Lacticaseibacillus rhamnosus strain HN001 has been shown to have several beneficial health effects for both pediatric and maternal groups, including reduced risk of eczema in infants and gestational diabetes and postnatal depression in mothers. While L. rhamnosus HN001 appears to modify immune and gut barrier biomarkers, its mode of action remains to be fully elucidated. To gain insights into the role of HN001 on the infant microbiome, the impacts of L. rhamnosus HN001 supplementation was studied in 10-day old male piglets that were fed either infant formula, or infant formula with L. rhamnosus HN001 at a low (1.3 × 105 CFU/ml) or high dose (7.9 × 106 CFU/ml) daily for 24 days. The cecal and fecal microbial communities were assessed by shotgun metagenome sequencing and host gene expression in the cecum and colon tissue was assessed by RNA-seq. Piglet fecal samples showed only modest differences between controls and those receiving dietary L. rhamnosus HN001. However, striking differences between the three groups were observed for cecal samples. While total lactobacilli were significantly increased only in the high dose L. rhamnosus HN001 group, both high and low dose groups showed an up to twofold reduction across the Firmicutes phylum and up to fourfold increase in Prevotella compared to controls. Methanobrevibacter was also decreased in HN001 fed piglets. Microbial genes involved in carbohydrate and vitamin metabolism were among those that differed in relative abundance between those with and without L. rhamnosus HN001. Changes in the cecal microbiome were accompanied by increased expression of tight junction pathway genes and decreased autophagy pathway genes in the cecal tissue of piglets fed the higher dose of L. rhamnosus HN001. Our findings showed supplementation with L. rhamnosus HN001 caused substantial changes in the cecal microbiome with likely consequences for key microbial metabolic pathways. Host gene expression changes in the cecum support previous research showing L. rhamnosus HN001 beneficially impacts intestinal barrier function. We show that fecal samples may not adequately reflect microbiome composition higher in the gastrointestinal tract, with the implication that effects of probiotic consumption may be missed by examining only the fecal microbiome.
Collapse
Affiliation(s)
- Wayne Young
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- *Correspondence: Wayne Young,
| | - Paul Maclean
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Kelly Dunstan
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Leigh Ryan
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Jason Peters
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Kelly Armstrong
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Rachel Anderson
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | - Hilary Dewhurst
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
| | | | - Ryan N. Dilger
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - James Dekker
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Neill Haggarty
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - Nicole Roy
- AgResearch, Te Ohu Rangahau Kai, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
99
|
Dekker J, Quilter M, Qian H. Comparison of two probiotics in follow-on formula: Bifidobacterium animalis subsp. lactis HN019 reduced upper respiratory tract infections in Chinese infants. Benef Microbes 2022; 13:341-354. [PMID: 36004715 DOI: 10.3920/bm2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A randomised, double-blind, placebo-controlled trial was performed to investigate the health benefits of probiotic bacteria in infants when delivered in a follow-on infant formula. The study was conducted in Fuyang (Anhui Province, China) during winter and enrolled 192 healthy infants aged six to 12 months. Infants received one of three follow-on formulae daily for 12 weeks: supplemented with 106 cfu/g Bifidobacterium animalis subsp. lactis HN019 (n=64); 106 cfu/g Lacticaseibacillus rhamnosus HN001 (n=64); or without added probiotics (n=64). The primary endpoint was physician-confirmed bacterial or viral infections during the treatment period. Secondary endpoints included parentally reported (confirmed and unconfirmed) infections; antiviral or antibiotic treatments, and hospitalisation; stool frequency and consistency; infant growth; infant temperament; and adverse events. There were 8 cases of confirmed infection, all upper respiratory tract infections (URTIs). Confirmed URTIs were observed in 9.4% of the control group, compared to 3.1% in the HN001 group (P=0.273), and 0.0% in the HN019 group (P=0.028). A similar trend was observed for parentally reported URTIs, with 25.0% in the control group, compared with 14.1% in the HN001 group (P=0.119) and 9.4% in the HN019 group (P=0.019). No infants in the HN019 group were prescribed antibiotics or antivirals, compared with 3 (4.7%) in the HN001 group and 7 (10.9%) in the control group. No infants required hospitalisation. The probiotic-containing formulae were well-tolerated: there were no cases of diarrhoea or differences in stool frequency or characteristics, no differences in infant growth or temperament, and no treatment-related adverse events. This study directly compared the benefits of two different probiotics when added to follow-on infant formula at 106 cfu/g and consumed over a 12-week period. While HN001 showed trends toward reduced infections, HN019 showed better performance in terms of significantly reduced incidence of both physician-confirmed and parentally reported URTIs, and antibiotic/antiviral use compared to a control in Chinese infants. The trial is registered at ClinicalTrials.gov (NCT01724203).
Collapse
Affiliation(s)
- J Dekker
- Fonterra Research and Development Centre, Palmerston North, Private Bag 11029, 4442 Palmerston North, New Zealand
| | - M Quilter
- Fonterra Research and Development Centre, Palmerston North, Private Bag 11029, 4442 Palmerston North, New Zealand
| | - H Qian
- School of Public Health, Anhui Medical University, Hefei, China P.R
| |
Collapse
|
100
|
Zeng W, Yang F, Shen WL, Zhan C, Zheng P, Hu J. Interactions between central nervous system and peripheral metabolic organs. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1929-1958. [PMID: 35771484 DOI: 10.1007/s11427-021-2103-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.
Collapse
Affiliation(s)
- Wenwen Zeng
- Institute for Immunology, and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China. .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| | - Fan Yang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Cheng Zhan
- Department of Hematology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,National Institute of Biological Sciences, Beijing, 102206, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China.
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China. .,Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|