51
|
Moyle DB, Kudiersky MN, Totton MN, Sassani DM, Nichols DS, Jenkins DT, Redgrave DJ, Baig DS, Nair DKPS, Majid PA, Ali DAN. Remote ischaemic conditioning for fatigue after stroke (RICFAST): A pilot randomised controlled trial. J Stroke Cerebrovasc Dis 2023; 32:107420. [PMID: 37832270 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Post stroke fatigue (PSF) affects 50 % of stroke survivors, and can be disabling. Remote ischaemic conditioning (RIC), can preserve mitochondrial function, improve tissue perfusion and may mitigate PSF. This pilot randomised controlled trial evaluates the safety and feasibility of using RIC for PSF and evaluated measures of cellular bioenergetics. METHODS 24 people with debilitating PSF (7 item Fatigue Severity Score, FSS-7 > 4) were randomised (1:1) in this single-centre phase 2 study to RIC (blood pressure cuff inflation around the upper arm 200 mmHg for 5 min followed by 5 min of deflation), or sham (inflation pressure 20 mmHg), repeated 4 cycles, 3 times per week for 6 weeks. Primary outcomes were safety, acceptability, and compliance. Secondary outcomes included FSS-7, 6 min walking test (6MWT), peak oxygen consumption (V̇O2peak), ventilatory anaerobic threshold (VAT), and muscle adenosine triphosphate (ATP) content measured using 31-phosphorous magnetic resonance spectroscopy of tibialis anterior. RESULTS RIC was safe (no serious adverse events, adverse events mild) and adherence excellent (91 % sessions completed). Exploratory analysis revealed lower FSS-7 scores in the RIC group compared to sham at 6 weeks (between group difference FSS-7 -0.7, 95 %CI -2.0 to 0.6), 3 months (-1.0, 95 %CI -2.2 to 0.2) and 6 months (-0.9, 95 %CI -2.0 to 0.2). There were trends towards increased VAT, increased muscle ATP content and improved 6MWT in the RIC group. DISCUSSION RIC is safe and acceptable for people with PSF and may result in clinically meaningful improvements in fatigue and muscle bioenergetics that require further investigation in larger studies.
Collapse
Affiliation(s)
| | | | | | - Dr Matilde Sassani
- Translational Brain Science, Institute of Metabolism and Systems Research, UK
| | | | - Dr Tom Jenkins
- Sheffield Institute for Translational Neurology, UK; Royal Perth Hospital, Western Australia, UK
| | | | | | | | | | - Dr Ali N Ali
- Sheffield Teaching Hospitals NIHR Biomedical Research Centre, University of Sheffield, UK.
| |
Collapse
|
52
|
Xie L, He J, Mao J, Zhang Q, Bo H, Li L. The interplay between H19 and HIF-1α in mitochondrial dysfunction in myocardial infarction. Cell Signal 2023; 112:110919. [PMID: 37848100 DOI: 10.1016/j.cellsig.2023.110919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Myocardial infarction(MI) causes prolonged ischemia of infarcted myocardial tissue, which triggers a wide range of hypoxia cellular responses in cardiomyocytes. Emerging evidence has indicated the critical roles of long non-coding RNAs(lncRNAs) in cardiovascular diseases, including MI. The purpose of this study was to investigate the roles of lncRNA H19 and H19/HIF-1α pathway during MI. Results showed that cell injury and mitochondrial dysfunction were induced in hypoxia-treated H9c2 cells, accompanied by an increase in the expression of H19. H19 silencing remarkably diminishes cell injury, inhibits the dysfunctional degree of mitochondria, and decreases the injury of MI rats. Bioinformatics analysis and dual-luciferase assays revealed that H19 was the hypoxia-responsive lncRNA, and HIF-1α induced H19 transcription through direct binding to the H19 promoter. Moreover, H19 participates in the HIF-1α pathway by stabilizing the HIF-1α protein. These results indicated that H19 might be a potential biomarker and therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiabei He
- Department of Ultrasound, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongchen Bo
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
53
|
Namekata I, Tamura M, Kase J, Hamaguchi S, Tanaka H. Cardioprotective Effect against Ischemia-Reperfusion Injury of PAK-200, a Dihydropyridine Analog with an Inhibitory Effect on Cl - but Not Ca 2+ Current. Biomolecules 2023; 13:1719. [PMID: 38136589 PMCID: PMC10741401 DOI: 10.3390/biom13121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
We examined the effects of a dihydropyridine analog, PAK-200, on guinea pig myocardium during experimental ischemia and reperfusion. In isolated ventricular cardiomyocytes, PAK-200 (1 μM) had no effect on the basal peak inward and steady-state currents but inhibited the isoprenaline-induced time-independent Cl- current. In the right atria, PAK-200 had no effect on the beating rate and the chronotropic response to isoprenaline. In an ischemia-reperfusion model with coronary-perfused right ventricular tissue, a decrease in contractile force and a rise in tension were observed during a period of 30-min no-flow ischemia. Upon reperfusion, contractile force returned to less than 50% of preischemic values. PAK-200 had no effect on the decline in contractile force during the no-flow ischemia but reduced the rise in resting tension. PAK-200 significantly improved the recovery of contractile force after reperfusion to about 70% of the preischemic value. PAK-200 was also shown to attenuate the decrease in tissue ATP during ischemia. Treatment of ventricular myocytes with an ischemia-mimetic solution resulted in depolarization of the mitochondrial membrane potential and an increase in cytoplasmic and mitochondrial Ca2+ concentrations. PAK-200 significantly delayed these changes. Thus, PAK-200 inhibits the cAMP-activated chloride current in cardiac muscle and may have protective effects against ischemia-reperfusion injury through novel mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Hikaru Tanaka
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan; (I.N.); (M.T.); (J.K.); (S.H.)
| |
Collapse
|
54
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
55
|
Ciccarelli M, Pires IF, Bauersachs J, Bertrand L, Beauloye C, Dawson D, Hamdani N, Hilfiker-Kleiner D, van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Rispoli A, Visco V, Carrizzo A, Ferro MD, Stolfo D, van der Velden J, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Acute heart failure: mechanisms and pre-clinical models-a Scientific Statement of the ESC Working Group on Myocardial Function. Cardiovasc Res 2023; 119:2390-2404. [PMID: 37967390 DOI: 10.1093/cvr/cvad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 11/17/2023] Open
Abstract
While chronic heart failure (CHF) treatment has considerably improved patient prognosis and survival, the therapeutic management of acute heart failure (AHF) has remained virtually unchanged in the last decades. This is partly due to the scarcity of pre-clinical models for the pathophysiological assessment and, consequently, the limited knowledge of molecular mechanisms involved in the different AHF phenotypes. This scientific statement outlines the different trajectories from acute to CHF originating from the interaction between aetiology, genetic and environmental factors, and comorbidities. Furthermore, we discuss the potential molecular targets capable of unveiling new therapeutic perspectives to improve the outcome of the acute phase and counteracting the evolution towards CHF.
Collapse
Affiliation(s)
- Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Inês Falcão Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, 44801 Bochum, Germany
- Department of Cardiology, St.Josef-Hospital and Bergmannsheil, Ruhr University Bochum, 44801 Bochum, Germany
| | - Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Linda W van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Robert-Koch-Str. 27B, Münster 48149, Germany
| | - Ida G Lunde
- Division of Diagnostics and Technology (DDT), Akershus University Hospital, and KG Jebsen Center for Cardiac Biomarkers, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz - University of Graz, 8036 Graz, Austria
| | - Antonella Rispoli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
| | - Albino Carrizzo
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi, Italy
- Laboratory of Vascular Physiopathology-I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | - Matteo Dal Ferro
- Cardiothoracovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
- Laboratory of Cardiovascular Biology, The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria-Universitaria Giuliano Isontina (ASUGI), Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, Netherlands
| | - Serena Zacchigna
- Laboratory of Cardiovascular Biology, The International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental medicine, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Cardio-Oncology Unit, Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
56
|
Wu J, Subbaiah KCV, Hedaya O, Chen S, Munger J, Tang WHW, Yan C, Yao P. FAM210A regulates mitochondrial translation and maintains cardiac mitochondrial homeostasis. Cardiovasc Res 2023; 119:2441-2457. [PMID: 37522353 PMCID: PMC10651191 DOI: 10.1093/cvr/cvad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/15/2023] [Accepted: 06/24/2023] [Indexed: 08/01/2023] Open
Abstract
AIMS Mitochondria play a vital role in cellular metabolism and energetics and support normal cardiac function. Disrupted mitochondrial function and homeostasis cause a variety of heart diseases. Fam210a (family with sequence similarity 210 member A), a novel mitochondrial gene, is identified as a hub gene in mouse cardiac remodelling by multi-omics studies. Human FAM210A mutations are associated with sarcopenia. However, the physiological role and molecular function of FAM210A remain elusive in the heart. We aim to determine the biological role and molecular mechanism of FAM210A in regulating mitochondrial function and cardiac health in vivo. METHODS AND RESULTS Tamoxifen-induced αMHCMCM-driven conditional knockout of Fam210a in the mouse cardiomyocytes induced progressive dilated cardiomyopathy and heart failure, ultimately causing mortality. Fam210a deficient cardiomyocytes exhibit severe mitochondrial morphological disruption and functional decline accompanied by myofilament disarray at the late stage of cardiomyopathy. Furthermore, we observed increased mitochondrial reactive oxygen species production, disturbed mitochondrial membrane potential, and reduced respiratory activity in cardiomyocytes at the early stage before contractile dysfunction and heart failure. Multi-omics analyses indicate that FAM210A deficiency persistently activates integrated stress response, resulting in transcriptomic, translatomic, proteomic, and metabolomic reprogramming, ultimately leading to pathogenic progression of heart failure. Mechanistically, mitochondrial polysome profiling analysis shows that FAM210A loss of function compromises mitochondrial mRNA translation and leads to reduced mitochondrial-encoded proteins, followed by disrupted proteostasis. We observed decreased FAM210A protein expression in human ischaemic heart failure and mouse myocardial infarction tissue samples. To further corroborate FAM210A function in the heart, AAV9-mediated overexpression of FAM210A promotes mitochondrial-encoded protein expression, improves cardiac mitochondrial function, and partially rescues murine hearts from cardiac remodelling and damage in ischaemia-induced heart failure. CONCLUSION These results suggest that FAM210A is a mitochondrial translation regulator to maintain mitochondrial homeostasis and normal cardiomyocyte contractile function. This study also offers a new therapeutic target for treating ischaemic heart disease.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Omar Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Joshua Munger
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Wai Hong Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
57
|
Hernandez-Resendiz S, Prakash A, Loo SJ, Semenzato M, Chinda K, Crespo-Avilan GE, Dam LC, Lu S, Scorrano L, Hausenloy DJ. Targeting mitochondrial shape: at the heart of cardioprotection. Basic Res Cardiol 2023; 118:49. [PMID: 37955687 PMCID: PMC10643419 DOI: 10.1007/s00395-023-01019-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
There remains an unmet need to identify novel therapeutic strategies capable of protecting the myocardium against the detrimental effects of acute ischemia-reperfusion injury (IRI), to reduce myocardial infarct (MI) size and prevent the onset of heart failure (HF) following acute myocardial infarction (AMI). In this regard, perturbations in mitochondrial morphology with an imbalance in mitochondrial fusion and fission can disrupt mitochondrial metabolism, calcium homeostasis, and reactive oxygen species production, factors which are all known to be critical determinants of cardiomyocyte death following acute myocardial IRI. As such, therapeutic approaches directed at preserving the morphology and functionality of mitochondria may provide an important strategy for cardioprotection. In this article, we provide an overview of the alterations in mitochondrial morphology which occur in response to acute myocardial IRI, and highlight the emerging therapeutic strategies for targeting mitochondrial shape to preserve mitochondrial function which have the future therapeutic potential to improve health outcomes in patients presenting with AMI.
Collapse
Affiliation(s)
- Sauri Hernandez-Resendiz
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Aishwarya Prakash
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Sze Jie Loo
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | | | - Kroekkiat Chinda
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Gustavo E Crespo-Avilan
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Linh Chi Dam
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Shengjie Lu
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Derek J Hausenloy
- Duke-NUS Medical School, Cardiovascular and Metabolic Disorders Programme, Singapore, Singapore.
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.
- National University Singapore, Yong Loo Lin School of Medicine, Singapore, Singapore.
- University College London, The Hatter Cardiovascular Institute, London, UK.
| |
Collapse
|
58
|
Araujo AMD, Cerqueira SVSD, Menezes-Filho JERD, Heimfarth L, Matos KKDOG, Mota KO, Conceição MRDL, Marques LP, Roman-Campos D, Santos-Neto AGD, Albuquerque-Júnior RLCD, Santos VCDO, Vasconcelos CMLD. Naringin improves post-ischemic myocardial injury by activation of K ATP channels. Eur J Pharmacol 2023; 958:176069. [PMID: 37741428 DOI: 10.1016/j.ejphar.2023.176069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Naringin (NRG) is a flavonoid with recognized cardioprotective effects. Then, it was investigated the cardioprotective mechanisms of NRG against ischemia-reperfusion (I/R) injury. The rats were pretreated for 7 days (v.o.) with NRG (25 mg/kg) or n-acetylcysteine (NAC, 100 mg/kg) and their isolated hearts were subjected to global ischemia (30 min) and reperfusion (60 min). Furthermore, isolated hearts were perfused with 5 μM NRG in the presence of 10 μM glibenclamide (GLI) and subjected to I/R protocol. In healthy ventricular cardiomyocyte, it was evaluated the acute effect of 5 μM NRG on the GLI sensitive current. The results showed that NRG pretreatment restored the cardiac function and electrocardiogram (ECG) alterations induced by I/R injury, decreasing arrhythmia scores and the occurrence of severe arrhythmias. Lactate dehydrogenase and infarct area were decreased while superoxide dismutase (SOD), catalase and citrate synthase activities increased. Expression of SOD CuZn and SOD Mn not was altered. NRG treatment decreased reactive oxygen species (ROS) generation and lipid peroxidation without alter sulfhydryl groups and protein carbonylation. Also, NRG (5 μM) increased the glibenclamide sensitive current in isolated cardiomyocytes. In isolated heart, the cardioprotection of NRG was significantly reduced by GLI. Furthermore, NRG promoted downregulation of Bax expression and Bax/Bcl-2. Histopathological analysis showed that NRG decreased cell edema, cardiomyocytes and nucleus diameter. Thus, NRG has a cardioprotective effect against cardiac I/R injury which is mediated by its antioxidant and antiapoptotic actions and KATP channels activation.
Collapse
Affiliation(s)
| | | | | | - Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Karina Oliveira Mota
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | - Danilo Roman-Campos
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
59
|
Wang X, Ling G, Wei Y, Li W, Zhang Y, Tan N, Li W, Li H, Qiu Q, Wang W, Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155042. [PMID: 37659296 DOI: 10.1016/j.phymed.2023.155042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Although the development of therapies for heart failure (HF) continues apace, clinical outcomes are often far from ideal. Unc51-like-kinase 1 (ULK1)-mediated mitophagy prevents pathological cardiac remodeling and heart failure (HF). Molecularly ULK1-targeted agent to enhance mitophagy is scanty. HYPOTHESIS/PURPOSE This study aimed to investigate whether Ginsenoside Rg3 (Rg3) can activate ULK1 to trigger FUNDC1-mediated mitophagy for protecting heart failure. METHODS Molecular docking and surface plasmon resonance were used to detect the ULK1 binding behavior of Rg3. Established HF model in rats and transcriptome sequencing were used to evaluate the therapeutic effect and regulatory mechanism of Rg3. Loss-of-function approaches in vivo and in vitro were performed to determine the role of ULK1 in Rg3-elicited myocardial protection against HF. FUNDC1 recombinant plasmid of site mutation was applied to elucidate more in-depth mechanisms. RESULTS Structurally, a good binding mode was unveiled between ULK1 and Rg3. In vivo, Rg3 improved cardiac dysfunction, adverse remodeling, and mitochondrial damage in HF rats. Furthermore, Rg3 promoted Ulk1-triggered mitophagy both in vivo and in vitro, manifested by the impetus of downstream Fundc1-Lc3 interaction. Of note, the protective effects conferred by Rg3 against mitophagy defects, pathological remodeling, and cardiac dysfunction were compromised by Ulk1 gene silencing both in vivo and in vitro. Mechanistically, Rg3 activated mitophagy by inducing ULK1-mediated phosphorylation of FUNDC1 at the Ser17 site, not the Ser13 site. CONCLUSION Together these observations demonstrated that Rg3 acts as a ULK1 activator for the precise treatment of HF, which binds to ULK1 to activate FUNDC1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guanjing Ling
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haijing Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
60
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
61
|
Qin D, Jia XF, Hanna A, Lee J, Pekson R, Elrod JW, Calvert JW, Frangogiannis NG, Kitsis RN. BAK contributes critically to necrosis and infarct generation during reperfused myocardial infarction. J Mol Cell Cardiol 2023; 184:1-12. [PMID: 37709008 PMCID: PMC10841630 DOI: 10.1016/j.yjmcc.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
At least seven cell death programs are activated during myocardial infarction (MI), but which are most important in causing heart damage is not understood. Two of these programs are mitochondrial-dependent necrosis and apoptosis. The canonical function of the pro-cell death BCL-2 family proteins BAX and BAK is to mediate permeabilization of the outer mitochondrial membrane during apoptosis allowing apoptogen release. BAX has also been shown to sensitize cells to mitochondrial-dependent necrosis, although the underlying mechanisms remain ill-defined. Genetic deletion of Bax or both Bax and Bak in mice reduces infarct size following reperfused myocardial infarction (MI/R), but the contribution of BAK itself to cardiomyocyte apoptosis and necrosis and infarction has not been investigated. In this study, we use Bak-deficient mice and isolated adult cardiomyocytes to delineate the role of BAK in the pathogenesis of infarct generation and post-infarct remodeling during MI/R and non-reperfused MI. Generalized homozygous deletion of Bak reduced infarct size ∼50% in MI/R in vivo, which was attributable primarily to decreases in necrosis. Protection from necrosis was also observed in BAK-deficient isolated cardiomyocytes suggesting that the cardioprotection from BAK loss in vivo is at least partially cardiomyocyte-autonomous. Interestingly, heterozygous Bak deletion, in which the heart still retains ∼28% of wild type BAK levels, reduced infarct size to a similar extent as complete BAK absence. In contrast to MI/R, homozygous Bak deletion did not attenuate acute infarct size or long-term scar size, post-infarct remodeling, cardiac dysfunction, or mortality in non-reperfused MI. We conclude that BAK contributes significantly to cardiomyocyte necrosis and infarct generation during MI/R, while its absence does not appear to impact the pathogenesis of non-reperfused MI. These observations suggest BAK may be a therapeutic target for MI/R and that even partial pharmacological antagonism may provide benefit.
Collapse
Affiliation(s)
- Dongze Qin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Xiaotong F Jia
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Anis Hanna
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jaehoon Lee
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - John W Elrod
- Department of Cardiovascular Sciences and Cardiovascular Research Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States of America
| | - John W Calvert
- Department of Surgery Emory University School of Medicine, Atlanta, GA, United States of America
| | - Nikolaos G Frangogiannis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States of America; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
62
|
Zhang M, Yang Y, Zhu Z, Chen Z, Huang D. Implications of Activating the ANT2/mTOR/PGC-1α Feedback Loop: Insights into Mitochondria-Mediated Injury in Hypoxic Myocardial Cells. Curr Issues Mol Biol 2023; 45:8633-8651. [PMID: 37998720 PMCID: PMC10670450 DOI: 10.3390/cimb45110543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Mitochondrial dysfunction is known to play a critical role in the development of cardiomyocyte death during acute myocardial infarction (AMI). However, the exact mechanisms underlying this dysfunction are still under investigation. Adenine nucleotide translocase 2 (ANT2) is a key functional protein in mitochondria. We aimed at exploring the potential benefits of ANT2 inhibition against AMI. We utilized an oxygen-glucose deprivation (OGD) cell model and an AMI mice model to detect cardiomyocyte injury. We observed elevated levels of reactive oxygen species (ROS), disrupted mitochondrial membrane potential (MMP), and increased apoptosis due to the overexpression of ANT2. Additionally, we discovered that ANT2 is involved in myocardial apoptosis by activating the mTOR (mechanistic target of rapamycin kinase)-dependent PGC-1α (PPARG coactivator 1 alpha) pathway, establishing a novel feedback loop during AMI. In our experiments with AC16 cells under OGD conditions, we observed protective effects when transfected with ANT2 siRNA and miR-1203. Importantly, the overexpression of ANT2 counteracted the protective effect resulting from miR-1203 upregulation in OGD-induced AC16 cells. All these results supported that the inhibition of ANT2 could alleviate myocardial cell injury under OGD conditions. Based on these findings, we propose that RNA interference (RNAi) technology, specifically miRNA and siRNA, holds therapeutic potential by activating the ANT2/mTOR/PGC-1α feedback loop. This activation could help mitigate mitochondria-mediated injury in the context of AMI. These insights may contribute to the development of future clinical strategies for AMI.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China;
| | - Yuanzhan Yang
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.Y.); (Z.C.)
| | - Zhu Zhu
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China;
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Zixuan Chen
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Y.Y.); (Z.C.)
| | - Dongyang Huang
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, China;
| |
Collapse
|
63
|
Wang R, Dong S, Xia R, Sun M, Sun Y, Ren H, Zhang Y, Xia Z, Yao S, Wang T. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway. Eur J Pharmacol 2023; 956:175985. [PMID: 37572943 DOI: 10.1016/j.ejphar.2023.175985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Ischemia-induced myocardial infarction is regarded as one of the major killers of humans worldwide. Kinsenoside (KD), a primary active ingredient derived from Anoectochilus roxburghii, shows antioxidant and vascular protective properties. Myocardial ischemia/reperfusion (I/R) injury is associated with oxidative damage and could be regulated by KD. However, its targets and the exact mechanism by which it operates remains unclear. The aim of this study was to investigate the role of KD in myocardial I/R injury and to define the mechanism by which it works. We established both myocardial I/R model in vivo and hypoxia/reoxygenation (H/R) cardiomyocyte model in vitro in this study. KD can attenuate I/R-induced myocardial injury in vivo and inhibit H/R-induced injury in vitro in a dose-dependent manner. KD increased mitochondrial membrane potential, SOD activity, and GSH activity in cardiomyocytes, whereas MDA accumulation, iron accumulation, and Mito-ROS production were decreased. We intersected differentially expressed genes (DEGs) from RNA-seq results with ferroptosis-related genes, and found KD significantly downregulated COX2 expression and upregulated GPX4 expression. These findings were further confirmed by Western blot analysis. Additionally, KD increased AKT phosphorylation and Nrf2 translocation into the nucleus, as well as HO-1 expression. When Akt or Nrf2 were inhibited in the KD group, the anti-ferroptosis properties of KD were nullified. Thus, Kinsenoside may exert anti-ferroptosis effect in myocardial I/R injury by decreasing mitochondrial dysfunction and increasing anti-oxidation through the Akt/Nrf2/HO-1 signaling pathway, suggesting it could be used as a potential therapeutic agent for myocardial reperfusion injury.
Collapse
Affiliation(s)
- Rong Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Siwei Dong
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Rui Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China; Department of Critical Care Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Meng Sun
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yi Sun
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hong Ren
- Biobank, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, HK SAR, China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| | - Tingting Wang
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
64
|
Li Y, Feng L, Xie D, Luo Y, Lin M, Gao J, Zhang Y, He Z, Zhu YZ, Gong Q. Icariside II mitigates myocardial infarction by balancing mitochondrial dynamics and reducing oxidative stress through the activation of Nrf2/SIRT3 signaling pathway. Eur J Pharmacol 2023; 956:175987. [PMID: 37572941 DOI: 10.1016/j.ejphar.2023.175987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2)/silent mating type information regulation 2 homolog 3 (SIRT3) signaling pathway plays a pivotal role in regulating mitochondrial dynamics and oxidative stress, which are considered to be the principal pathogenesis of myocardial infarction (MI). Our previous study proved that pretreatment with icariside II (ICS II), a major active ingredient of Herbal Epimedii, exerts cardioprotective effect on MI, however, whether post-treatment with ICS II can alleviate MI and its underlying mechanism are still uncertain. Therefore, the present study was designed to investigate the therapeutic effect and the possible mechanism of ICS II on MI both in vivo and in vitro. The results revealed that post-treatment with ICS II markedly ameliorated myocardial injury in MI-induced mice and mitigated oxygen and glucose deprivation (OGD)-elicited cardiomyocyte injury. Further researches showed that ICS II promoted mitochondrial fusion, and suppressed mitochondrial fission and oxidative stress, which were achieved by facilitating the nuclear translocation of Nrf2 and activation of SIRT3. In summary, our findings indicate that ICS II mitigates MI-induced mitochondrial dynamics disorder and oxidative stress via activating the Nrf2/SIRT3 signaling pathway.
Collapse
Affiliation(s)
- Yeli Li
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Linying Feng
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Dianyou Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Yunmei Luo
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Mu Lin
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Jianmei Gao
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuandong Zhang
- Department of Clinical Pharmacotherapeutics, School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China.
| | - Qihai Gong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
65
|
Zarei M, Sarihi A, Zamani A, Raoufi S, Karimi SA, Ramezani-Aliakbari F. Mitochondrial biogenesis and apoptosis as underlying mechanisms involved in the cardioprotective effects of Gallic acid against D-galactose-induced aging. Mol Biol Rep 2023; 50:8005-8014. [PMID: 37540458 DOI: 10.1007/s11033-023-08670-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Aging is a main risk factor for the development of cardiovascular diseases (CVDs). Gallic acid (GA) is a phenolic compound derived from a wide range of fruits. GA has a wide spectrum of pharmacological properties, including anti-oxidative, anti-inflammatory, and cardioprotective effects. This research was conducted to determine the cardioprotective effect of GA on cardiac hypertrophy in aged rats. METHODS AND RESULTS Following histological evaluation and through observing the heart, we found that GA improved the cardiac hypertrophy induced by D-galactose (D-GAL) in cardiac cells. To clarify the causes for this anti-aging effect, we evaluated the malonic dialdehyde levels and antioxidant enzyme activity in rat cardiac tissue. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK-MB) in serum were measured. The levels of genes related to mitochondrial biogenesis, mitophagy, and apoptosis in cardiac tissue were surveyed. The findings represented that GA ameliorated antioxidant enzyme activity while significantly decreasing the malonic dialdehyde levels. Real-time PCR analysis proposed that GA effectively improved mitochondrial biogenesis in the heart via regulating the expression levels of Sirtuin 1 (SIRT1), PPARγ coactivator 1α (PGC1-α), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitochondrial transcription factor A (TFAM). GA also mitigated apoptosis in the heart by modulating the expression levels of B-cell lymphoma protein 2 (Bcl-2) and Bcl-2-associated X (Bax). In addition, GA improved serum LDH and CK-MB levels. CONCLUSIONS GA may alleviate aging-induced cardiac hypertrophy via anti-oxidative, mitoprotective, and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Mohammad Zarei
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Zamani
- Department of Immunology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neuroscience, School of Sciences and Advanced Technology in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Ramezani-Aliakbari
- Department of Physiology, School of medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
66
|
Liu Y, Wang J, Zhao X, Li W, Liu Y, Li X, Zhao D, Yu J, Ji H, Shao B, Li Z, Wang J, Yang Y, Hao Y, Wu Y, Yuan Y, Du Z. CDR1as promotes arrhythmias in myocardial infarction via targeting the NAMPT-NAD + pathway. Biomed Pharmacother 2023; 165:115267. [PMID: 37542851 DOI: 10.1016/j.biopha.2023.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/07/2023] Open
Abstract
Cardiac ventricular arrhythmia triggered by acute myocardial infarction (AMI) is a major cause of sudden cardiac death. We have reported previously that an increased serum level of circular RNA CDR1as is a potential biomarker of AMI. However, the possible role of CDR1as in post-infarct arrhythmia remains unclear. This study in MI mice investigated the effects and underlying mechanism of CDR1as in ventricular arrhythmias associated with MI. We showed that knockdown of CDR1as abbreviated the duration of the abnormally prolonged QRS complex and QTc intervals and decreased susceptibility to ventricular arrhythmias. Optical mapping demonstrated knockdown of CDR1as also reduced post-infarct arrhythmia by increasing the conduction velocity and decreasing dispersion of repolarization. Mechanistically, CDR1as led to the depletion of NAD+ and caused mitochondrial dysfunction by directly targeting the NAMPT protein and repressing its expression. Moreover, CDR1as aggravated dysregulation of the NaV1.5 and Kir6.2 channels in cardiomyocytes, a change which was alleviated by the replenishment of NAD+. These findings suggest that anti-CDR1as is a potential therapeutic approach for ischemic arrhythmias.
Collapse
Affiliation(s)
- Yunqi Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Wen Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yaohua Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xingda Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Dan Zhao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jie Yu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongyu Ji
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Bing Shao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhendong Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia Wang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yilian Yang
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Hao
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yuting Wu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin 150086, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; National key laboratory of frigid cardiovascular disease, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
67
|
Pardo AC, Díaz Zegarra LA, González Arbeláez LF, Aiello EA, Mosca SM. Is N-methylacetazolamide a possible new therapy against ischemia-reperfusion injury? Front Pharmacol 2023; 14:1223132. [PMID: 37637427 PMCID: PMC10448815 DOI: 10.3389/fphar.2023.1223132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
The increase of intracellular Ca2+ concentration, produced principally by its influx through the L-type Ca2+ channels, is one of the major contributors to the ischemia-reperfusion injury. The inhibition of those channels in different experimental models was effective to ameliorate the post-ischemic damage. However, at a clinical level, the results were contradictory. Recent results of our group obtained in an ¨ex vivo¨ heart model demonstrated that a chemical derived from acetazolamide, the N-methylacetazolamide (NMA) protected the heart against ischemia-reperfusion injury, diminishing the infarct size and improving the post-ischemic recovery of myocardial function and mitochondrial dynamic. A significant inhibitory action on L-type Ca2+ channels was also detected after NMA treatment, suggesting this action as responsible for the beneficial effects on myocardium exerted by this compound. Although these results were promising, the effectiveness of NMA in the treatment of ischemic heart disease in humans as well as the advantages or disadvantages in comparison to the classic calcium antagonists needs to be investigated.
Collapse
Affiliation(s)
- Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares “Dr Horacio E Cingolani”, CCT-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata. La Plata, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
68
|
Bernardi P, Gerle C, Halestrap AP, Jonas EA, Karch J, Mnatsakanyan N, Pavlov E, Sheu SS, Soukas AA. Identity, structure, and function of the mitochondrial permeability transition pore: controversies, consensus, recent advances, and future directions. Cell Death Differ 2023; 30:1869-1885. [PMID: 37460667 PMCID: PMC10406888 DOI: 10.1038/s41418-023-01187-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
The mitochondrial permeability transition (mPT) describes a Ca2+-dependent and cyclophilin D (CypD)-facilitated increase of inner mitochondrial membrane permeability that allows diffusion of molecules up to 1.5 kDa in size. It is mediated by a non-selective channel, the mitochondrial permeability transition pore (mPTP). Sustained mPTP opening causes mitochondrial swelling, which ruptures the outer mitochondrial membrane leading to subsequent apoptotic and necrotic cell death, and is implicated in a range of pathologies. However, transient mPTP opening at various sub-conductance states may contribute several physiological roles such as alterations in mitochondrial bioenergetics and rapid Ca2+ efflux. Since its discovery decades ago, intensive efforts have been made to identify the exact pore-forming structure of the mPT. Both the adenine nucleotide translocase (ANT) and, more recently, the mitochondrial F1FO (F)-ATP synthase dimers, monomers or c-subunit ring alone have been implicated. Here we share the insights of several key investigators with different perspectives who have pioneered mPT research. We critically assess proposed models for the molecular identity of the mPTP and the mechanisms underlying its opposing roles in the life and death of cells. We provide in-depth insights into current controversies, seeking to achieve a degree of consensus that will stimulate future innovative research into the nature and role of the mPTP.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Christoph Gerle
- Laboratory of Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Japan
| | - Andrew P Halestrap
- School of Biochemistry and Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Elizabeth A Jonas
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, CT, USA
| | - Jason Karch
- Department of Integrative Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, College of Medicine, Penn State University, State College, PA, USA
| | - Evgeny Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, USA
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Alexander A Soukas
- Department of Medicine, Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
69
|
Li W, Luo Y, Huang Z, Shen S, Dai C, Shen S, Qi X, Liang G, Luo W. Costunolide Protects Myocardium From Ischemia Reperfusion Injury by Inhibiting Oxidative Stress Through Nrf2/Keap1 Pathway Activation. J Cardiovasc Pharmacol 2023; 82:117-127. [PMID: 37000981 DOI: 10.1097/fjc.0000000000001422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
ABSTRACT Costunolide (Cos) is a naturally occurring sesquiterpene lactone that exhibits antioxidative properties. In this study, we demonstrate the protective mechanism of Cos against ischemia/reperfusion (I/R)-induced myocardial injury. Cos significantly decreased levels of reactive oxygen species and ameliorated apoptosis of I/R cardiomyocytes both in vitro and in vivo. Further investigation revealed that Cos increased expression of the antioxidant proteins HO-1 and NQO-1 and decreased the Bax/Bcl-2 ratio, thus protecting cardiac cells. NF-E2-related factor 2 (Nrf2) silencing significantly attenuated the protective effects of Cos in tert-butyl hydroperoxide (TBHP)-treated H9C2 cells. Additionally, Cos significantly intensified the I/R- or TBHP-induced dissociation of the Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex both in vitro and in vivo. These results suggest that activation of Nrf2/Keap1 using Cos may be a therapeutic strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Weixin Li
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuqi Huang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Siyuan Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengyi Dai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sirui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoxiao Qi
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; and
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wu Luo
- Medical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
70
|
Miao M, Cao S, Tian Y, Liu D, Chen L, Chai Q, Wei M, Sun S, Wang L, Xin S, Liu G, Zheng M. Potential diagnostic biomarkers: 6 cuproptosis- and ferroptosis-related genes linking immune infiltration in acute myocardial infarction. Genes Immun 2023; 24:159-170. [PMID: 37422588 PMCID: PMC10435388 DOI: 10.1038/s41435-023-00209-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The current diagnostic biomarkers of acute myocardial infarction (AMI), troponins, lack specificity and exist as false positives in other non-cardiac diseases. Previous studies revealed that cuproptosis, ferroptosis, and immune infiltration are all involved in the development of AMI. We hypothesize that combining the analysis of cuproptosis, ferroptosis, and immune infiltration in AMI will help identify more precise diagnostic biomarkers. The results showed that a total of 19 cuproptosis- and ferroptosis-related genes (CFRGs) were differentially expressed between the healthy and AMI groups. Functional enrichment analysis showed that the differential CFRGs were mostly enriched in biological processes related to oxidative stress and the inflammatory response. The immune infiltration status analyzed by ssGSEA found elevated levels of macrophages, neutrophils, and CCR in AMI. Then, we screened 6 immune-related CFRGs (CXCL2, DDIT3, DUSP1, CDKN1A, TLR4, STAT3) to construct a nomogram for predicting AMI and validated it in the GSE109048 dataset. Moreover, we also identified 5 pivotal miRNAs and 10 candidate drugs that target the 6 feature genes. Finally, RT-qPCR analysis verified that all 6 feature genes were upregulated in both animals and patients. In conclusion, our study reveals the significance of immune-related CFRGs in AMI and provides new insights for AMI diagnosis and treatment.
Collapse
Affiliation(s)
- Mengdan Miao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Shanhu Cao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Yifei Tian
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Lixia Chen
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Qiaoying Chai
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Mei Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Hebei Medical University, 050017, Shijiazhuang, China
| | - Le Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Shuanli Xin
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
71
|
Lu C, Jiang B, Xu J, Zhang X, Jiang N. Neferine protected cardiomyocytes against hypoxia/oxygenation injury through SIRT1/Nrf2/HO-1 signaling. J Biochem Mol Toxicol 2023; 37:e23398. [PMID: 37421224 DOI: 10.1002/jbt.23398] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/18/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Acute myocardial infarction is regarded as myocardial necrosis resulting from myocardial ischemia/reperfusion (I/R) damage and retains a major cause of mortality. Neferine, which was extracted from the green embryos of mature seeds of Nelumbo nucifera Gaertn., has been reported to possess a broad range of biological activities. However, its underlying mechanism on the protective effect of I/R has not been fully clarified. A hypoxia/reoxygenation (H/R) model with H9c2 cells closely simulating myocardial I/R injury was used as a cellular model. This study intended to research the effects and mechanism underlying neferine on H9c2 cells in response to H/R stimulation. Cell Counting Kit-8 and lactate dehydrogenase (LDH) release assays were employed to measure cell viability and LDH, respectively. Apoptosis and reactive oxygen species (ROS) were determined by flow cytometry analysis. Oxidative stress was evaluated by detecting malondialdehyde, superoxide dismutase, and catalase. Mitochondrial function was assessed by mitochondrial membrane potential, ATP content, and mitochondrial ROS. Western blot analysis was performed to examine the expression of related proteins. The results showed that hypoxia/reoxygenation (H/R)-induced cell damage, all of which were distinctly reversed by neferine. Moreover, we observed that neferine inhibited oxidative stress and mitochondrial dysfunction induced by H/R in H9c2 that were concomitant with increased sirtuin-1 (SITR1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 expression. On the contrary, silencing the SIRT1 gene with its small interferingRNA eliminated the beneficial effects of neferine. It is concluded that neferine preconditioning attenuated H/R-induced cardiac damage via suppressing apoptosis, oxidative stress, and mitochondrial dysfunction, which may be partially ascribed to the activation of SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianxin Jiang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
72
|
Bassiouni W, Valencia R, Mahmud Z, Seubert JM, Schulz R. Matrix metalloproteinase-2 proteolyzes mitofusin-2 and impairs mitochondrial function during myocardial ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:29. [PMID: 37495895 DOI: 10.1007/s00395-023-00999-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
During myocardial ischemia and reperfusion (IR) injury matrix metalloproteinase-2 (MMP-2) is rapidly activated in response to oxidative stress. MMP-2 is a multifunctional protease that cleaves both extracellular and intracellular proteins. Oxidative stress also impairs mitochondrial function which is regulated by different proteins, including mitofusin-2 (Mfn-2), which is lost in IR injury. Oxidative stress and mitochondrial dysfunction trigger the NLRP3 inflammasome and the innate immune response which invokes the de novo expression of an N-terminal truncated isoform of MMP-2 (NTT-MMP-2) at or near mitochondria. We hypothesized that MMP-2 proteolyzes Mfn-2 during myocardial IR injury, impairing mitochondrial function and enhancing the inflammasome response. Isolated hearts from mice subjected to IR injury (30 min ischemia/40 min reperfusion) showed a significant reduction in left ventricular developed pressure (LVDP) compared to aerobically perfused hearts. IR injury increased MMP-2 activity as observed by gelatin zymography and increased degradation of troponin I, an intracellular MMP-2 target. MMP-2 preferring inhibitors, ARP-100 or ONO-4817, improved post-ischemic recovery of LVDP compared to vehicle perfused IR hearts. In muscle fibers isolated from IR hearts the rates of mitochondrial oxygen consumption and ATP production were impaired compared to those from aerobic hearts, whereas ARP-100 or ONO-4817 attenuated these reductions. IR hearts showed higher levels of NLRP3, cleaved caspase-1 and interleukin-1β in the cytosolic fraction, while the mitochondria-enriched fraction showed reduced levels of Mfn-2, compared to aerobic hearts. ARP-100 or ONO-4817 attenuated these changes. Co-immunoprecipitation showed that MMP-2 is associated with Mfn-2 in aerobic and IR hearts. ARP-100 or ONO-4817 also reduced infarct size and cell death in hearts subjected to 45 min ischemia/120 min reperfusion. Following myocardial IR injury, impaired contractile function and mitochondrial respiration and elevated inflammasome response could be attributed, at least in part, to MMP-2 activation, which targets and cleaves mitochondrial Mfn-2. Inhibition of MMP-2 activity protects against cardiac contractile dysfunction in IR injury in part by preserving Mfn-2 and suppressing inflammation.
Collapse
Affiliation(s)
- Wesam Bassiouni
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Robert Valencia
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Zabed Mahmud
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - John M Seubert
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, Faculty of Medicine and Dentistry, 4-62 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
73
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
74
|
Ahn D, Go RE, Choi KC. Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes. Toxicol Res 2023; 39:333-339. [PMID: 37398565 PMCID: PMC10313613 DOI: 10.1007/s43188-023-00183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
The increase in the types and complexity of diseases has led to significant advances in diagnostic techniques and the availability of effective therapies. Recent studies have focused on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases (CVDs). Mitochondria are important organelles in cells that generate energy. Besides the production of adenosine triphosphate (ATP), the energy currency of cells, mitochondria are also involved in thermogenesis, control of intracellular calcium ions (Ca2+), apoptosis, regulation of reactive oxygen species (ROS), and inflammation. Mitochondrial dysfunction has been implicated in several diseases including cancer, diabetes, some genetic diseases, and neurogenerative and metabolic diseases. Furthermore, the cardiomyocytes of the heart are rich in mitochondria due to the large energy requirement for optimal cardiac function. One of the main causes of cardiac tissue injuries is believed to be mitochondrial dysfunction, which occurs via complicated pathways which have not yet been completely elucidated. There are various types of mitochondrial dysfunction including mitochondrial morphological change, unbalanced levels of substances to maintain mitochondria, mitochondrial damage by drugs, and mitochondrial deletion and synthesis errors. Most of mitochondrial dysfunctions are linked with symptoms and diseases, thus we focus on parts of mitochondrial dysfunction about fission and fusion in cardiomyocytes, and ways to understand the mechanism of cardiomyocyte damage by detecting oxygen consumption levels in the mitochondria.
Collapse
Affiliation(s)
- Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Ryeo-Eun Go
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea
| |
Collapse
|
75
|
Yu F, Cong S, Yap EP, Hausenloy DJ, Ramachandra CJ. Unravelling the Interplay between Cardiac Metabolism and Heart Regeneration. Int J Mol Sci 2023; 24:10300. [PMID: 37373444 PMCID: PMC10299184 DOI: 10.3390/ijms241210300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of heart failure (HF) and is a significant cause of morbidity and mortality globally. An ischemic event induces cardiomyocyte death, and the ability for the adult heart to repair itself is challenged by the limited proliferative capacity of resident cardiomyocytes. Intriguingly, changes in metabolic substrate utilisation at birth coincide with the terminal differentiation and reduced proliferation of cardiomyocytes, which argues for a role of cardiac metabolism in heart regeneration. As such, strategies aimed at modulating this metabolism-proliferation axis could, in theory, promote heart regeneration in the setting of IHD. However, the lack of mechanistic understanding of these cellular processes has made it challenging to develop therapeutic modalities that can effectively promote regeneration. Here, we review the role of metabolic substrates and mitochondria in heart regeneration, and discuss potential targets aimed at promoting cardiomyocyte cell cycle re-entry. While advances in cardiovascular therapies have reduced IHD-related deaths, this has resulted in a substantial increase in HF cases. A comprehensive understanding of the interplay between cardiac metabolism and heart regeneration could facilitate the discovery of novel therapeutic targets to repair the damaged heart and reduce risk of HF in patients with IHD.
Collapse
Affiliation(s)
- Fan Yu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - En Ping Yap
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Derek J. Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Chrishan J. Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 169609, Singapore
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| |
Collapse
|
76
|
Tao W, Yang X, Zhang Q, Bi S, Yao Z. Optimal treatment for post-MI heart failure in rats: dapagliflozin first, adding sacubitril-valsartan 2 weeks later. Front Cardiovasc Med 2023; 10:1181473. [PMID: 37383701 PMCID: PMC10296765 DOI: 10.3389/fcvm.2023.1181473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023] Open
Abstract
Background Based on previous research, both dapagliflozin (DAPA) and sacubitril-valsartan (S/V) improve the prognosis of patients with heart failure (HF). Our study aims to investigate whether the early initiation of DAPA or the combination of DAPA with S/V in different orders would exert a greater protective effect on heart function than that of S/V alone in post-myocardial infarction HF (post-MI HF). Methods Rats were randomized into six groups: (A) Sham; (B) MI; (C) MI + S/V (1st d); (D) MI + DAPA (1st d); (E) MI + S/V (1st d) + DAPA (14th d); (F) MI + DAPA (1st d) + S/V (14th d). The MI model was established in rats via surgical ligation of the left anterior descending coronary artery. Histology, Western blotting, RNA-seq, and other approaches were used to explore the optimal treatment to preserve the heart function in post-MI HF. A daily dose of 1 mg/kg DAPA and 68 mg/kg S/V was administered. Results The results of our study revealed that DAPA or S/V substantially improved the cardiac structure and function. DAPA and S/V monotherapy resulted in comparable reduction in infarct size, fibrosis, myocardium hypertrophy, and apoptosis. The administration of DAPA followed by S/V results in a superior improvement in heart function in rats with post-MI HF than those in other treatment groups. The administration of DAPA following S/V did not result in any additional improvement in heart function as compared to S/V monotherapy in rats with post-MI HF. Our findings further suggest that the combination of DAPA and S/V should not be administered within 3 days after acute myocardial infarction (AMI), as it resulted in a considerable increase in mortality. Our RNA-Seq data revealed that DAPA treatment after AMI altered the expression of genes related to myocardial mitochondrial biogenesis and oxidative phosphorylation. Conclusions Our study revealed no notable difference in the cardioprotective effects of singular DAPA or S/V in rats with post-MI HF. Based on our preclinical investigation, the most effective treatment strategy for post-MI HF is the administration of DAPA during the 2 weeks, followed by the addition of S/V to DAPA later. Conversely, adopting a therapeutic scheme whereby S/V was administered first, followed by later addition of DAPA, failed to further improve the cardiac function compared to S/V monotherapy.
Collapse
Affiliation(s)
- Wenqi Tao
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Yang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Qing Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Shuli Bi
- School of Medicine, Nankai University, Tianjin, China
| | - Zhuhua Yao
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| |
Collapse
|
77
|
Zeng M, Wei X, He YL, Chen JX, Lin WT. TFAP2C inhibits cell autophagy to alleviate myocardial ischemia/reperfusion injury by regulating miR-23a-5p/SFRP5/Wnt5a axis. FASEB J 2023; 37:e22959. [PMID: 37191968 DOI: 10.1096/fj.202201962r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury contributes to severe injury for cardiomyocytes. In this study, we aimed to explore the underlying mechanism of TFAP2C on cell autophagy in MI/R injury. MTT assay measured cell viability. The cells injury was evaluated by commercial kits. IF detected the level of LC3B. Dual luciferase reporter gene assay, ChIP or RIP assay were performed to verify the interactions between crucial molecules. We found that TFAP2C and SFRP5 expression were decreased while miR-23a-5p and Wnt5a increased in AC16 cells in response to H/R condition. H/R induction led to cell injury and induced autophagy, which were reversed by TFAP2C overexpression or 3-MA treatment (an autophagy inhibitor). Mechanistically, TFAP2C suppressed miR-23a expression through binding to miR-23a promoter, and SFRP5 was a target gene of miR-23a-5p. Moreover, miR-23a-5p overexpression or rapamycin reversed the protective impacts of TFAP2C overexpression on cells injury and autophagy upon H/R condition. In conclusion, TFAP2C inhibited autophagy to improve H/R-induced cells injury by mediating miR-23a-5p/SFRP5/Wnt5a axis.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Yang-Li He
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Ji-Xiong Chen
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Wen-Ting Lin
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
78
|
Wu L, Fan Z, Gu L, Liu J, Cui Z, Yu B, Kou J, Li F. QiShenYiQi dripping pill alleviates myocardial ischemia-induced ferroptosis via improving mitochondrial dynamical homeostasis and biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116282. [PMID: 36806343 DOI: 10.1016/j.jep.2023.116282] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QiShenYiQi is a Chinese herbal formula composed of Astragalus membranaceus Fisch. ex Bunge, root; Slauia miltiorrhiza Bunge, root and rhizome; Panax notoginseng (Burkill) F.H.Chen, root; and Dalbergia odorifera T.C.Chen, heartwood of trunk and root with a proportion of 10:5:1:0.067. Its dripping pills were approved by the National Medical Products Administration (NMPA) in 2003 and could be used in the clinical treatment of ischemic heart diseases. Ferroptosis is an important pathological mechanism in the process of myocardial ischemia (MI). Whether QSYQ can improve ferroptosis induced by myocardial ischemia is still unclear. AIM OF THE STUDY In this study, the potential mechanisms of QSYQ against ferroptosis in MI-induced injury were investigated. MATERIALS AND METHODS The main components of QSYQ were analyzed by HPLC-Q-TOF-MS/MS. MI model was established by ligation of the left anterior descending coronary artery and then treated with QSYQ dropping pills for 14 days. The cardiac function of mice was evaluated by echocardiography. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to detect the pathological changes in heart tissue. Serum biochemical indexes were analyzed by biochemical kit. Transmission electron microscope (TEM) was used to observe the mitochondria ultrastructure and mitochondrial ROS was detected by immunofluorescence. Then, photoacoustic imaging was used to observe the redox status of the mice' hearts. Finally, the mitochondrial dynamics and biogenesis related proteins and the proteins of ferroptosis were analyzed by western blotting. RT-PCR was used to detect the mRNA expression changes of ferroptosis. RESULTS A total of 20 principal components of QSYQ were characterized by HPLC-Q-TOF-MS/MS. QSYQ significantly improved cardiac function and myocardial injury in MI mice. Furthermore, the lipid peroxidation change levels (MDA, 4-HNE, and GSH) in serum were attenuated and myocardial iron content was reduced after QSYQ treatment. On this basis, QSYQ also improved the expression changes of ferroptosis related mRNA and proteins. In addition, QSYQ promoted mitochondrial biogenesis (PGC-1α, Nrf1, and TFAM) and mitochondrial fusion (MFN-2 and OPA1) and inhibited mitochondrial excessive fission (Phosphorylation of Drp1 at ser616) in vitro and in vivo, indicating that the cardioprotection of QSYQ might be related to promoting mitochondrial biogenesis and dynamic homeostasis. CONCLUSION In summary, QSYQ could alleviate MI-induced ferroptosis by improving mitochondrial biogenesis and dynamic homeostasis.
Collapse
Affiliation(s)
- Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhaoyang Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China.
| | - Jincheng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
79
|
Wu J, Subbaiah KCV, Hedaya O, Chen S, Munger J, Tang WHW, Yan C, Yao P. FAM210A Regulates Mitochondrial Translation and Maintains Cardiac Mitochondrial Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.20.541585. [PMID: 37293097 PMCID: PMC10245825 DOI: 10.1101/2023.05.20.541585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aims Mitochondria play a vital role in cellular metabolism and energetics and support normal cardiac function. Disrupted mitochondrial function and homeostasis cause a variety of heart diseases. Fam210a (family with sequence similarity 210 member A), a novel mitochondrial gene, is identified as a hub gene in mouse cardiac remodeling by multi-omics studies. Human FAM210A mutations are associated with sarcopenia. However, the physiological role and molecular function of FAM210A remain elusive in the heart. We aim to determine the biological role and molecular mechanism of FAM210A in regulating mitochondrial function and cardiac health in vivo . Methods and Results Tamoxifen-induced αMHC MCM -driven conditional knockout of Fam210a in the mouse cardiomyocytes induced progressive dilated cardiomyopathy and heart failure, ultimately causing mortality. Fam210a deficient cardiomyocytes exhibit severe mitochondrial morphological disruption and functional decline accompanied by myofilament disarray at the late stage of cardiomyopathy. Furthermore, we observed increased mitochondrial reactive oxygen species production, disturbed mitochondrial membrane potential, and reduced respiratory activity in cardiomyocytes at the early stage before contractile dysfunction and heart failure. Multi-omics analyses indicate that FAM210A deficiency persistently activates integrated stress response (ISR), resulting in transcriptomic, translatomic, proteomic, and metabolomic reprogramming, ultimately leading to pathogenic progression of heart failure. Mechanistically, mitochondrial polysome profiling analysis shows that FAM210A loss of function compromises mitochondrial mRNA translation and leads to reduced mitochondrial encoded proteins, followed by disrupted proteostasis. We observed decreased FAM210A protein expression in human ischemic heart failure and mouse myocardial infarction tissue samples. To further corroborate FAM210A function in the heart, AAV9-mediated overexpression of FAM210A promotes mitochondrial-encoded protein expression, improves cardiac mitochondrial function, and partially rescues murine hearts from cardiac remodeling and damage in ischemia-induced heart failure. Conclusion These results suggest that FAM210A is a mitochondrial translation regulator to maintain mitochondrial homeostasis and normal cardiomyocyte contractile function. This study also offers a new therapeutic target for treating ischemic heart disease. Translational Perspective Mitochondrial homeostasis is critical for maintaining healthy cardiac function. Disruption of mitochondrial function causes severe cardiomyopathy and heart failure. In the present study, we show that FAM210A is a mitochondrial translation regulator required for maintaining cardiac mitochondrial homeostasis in vivo . Cardiomyocyte-specific FAM210A deficiency leads to mitochondrial dysfunction and spontaneous cardiomyopathy. Moreover, our results indicate that FAM210A is downregulated in human and mouse ischemic heart failure samples and overexpression of FAM210A protects hearts from myocardial infarction induced heart failure, suggesting that FAM210A mediated mitochondrial translation regulatory pathway can be a potential therapeutic target for ischemic heart disease.
Collapse
|
80
|
Gao T, Shi R, Liu Z, De D, Li R, Chen Y, Pei J, Ding M. Ischemia/reperfusion-induced MiD51 upregulation recruits Drp1 to mitochondria and contributes to myocardial injury. Biochem Biophys Res Commun 2023; 665:78-87. [PMID: 37149986 DOI: 10.1016/j.bbrc.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/03/2023] [Indexed: 05/09/2023]
Abstract
The translocation of Drp1 from the cytosol to mitochondria leads to Drp1 activation and mitochondrial fission in myocardial ischemia/reperfusion (MI/R). However, the molecular mechanism underlying mitochondrial Drp1 translocation remains poorly understood. Mitochondrial Drp1 recruitment relies on 4 binding partners including MiD49, MiD51, Mff and Fis1. This study was to elucidate which one facilitate mitochondrial Drp1 translocation and its role in MI/R injury. MI/R was induced by ligating the left anterior descending coronary artery for 30 min and subsequent reperfusion for 3 h. Primary neonatal cardiomyocytes were subjected to hypoxia for 2 h and reoxygenation for 4 h. SiRNA or Adeno-associated virus (AAV) expressing shRNA was used to knock down the key binding partner in vitro or in vivo respectively. The expression of MiD51 rather than other binding partners (MiD49, Mff or Fis1) was increased after MI/R. MiD51 knockdown inhibited hypoxia/reoxygenation (H/R) or ischemia/reperfusion (I/R)-induced mitochondrial Drp1 translocation. SiRNA-induced knockdown of MiD51 suppressed mitochondrial oxidative stress, improved mitochondrial function and alleviate cellular injury in H/R cardiomyocytes. AAV-mediated knockdown of MiD51 reduced myocardial injury and improved cardiac function in the I/R hearts, while mitochondrial Drp1 translocation and cardiac function were not affected by MiD51 knockdown in the hearts without I/R. MiD51 is identified as the binding partner that promotes mitochondrial Drp1 translocation and contributes to MI/R injury. Inhibition of MiD51 may be a potential therapeutic target to alleviate MI/R injury.
Collapse
Affiliation(s)
- Tian Gao
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, China
| | - Dema De
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Runjing Li
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Yunan Chen
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, China.
| |
Collapse
|
81
|
Xia JG, Li B, Zhang H, Li QX, Lam SM, Yin CL, Tian H, Shui G. Precise Metabolomics Defines Systemic Metabolic Dysregulation Distinct to Acute Myocardial Infarction Associated With Diabetes. Arterioscler Thromb Vasc Biol 2023; 43:581-596. [PMID: 36727520 DOI: 10.1161/atvbaha.122.318871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a leading cause of death and disability. Diabetes is an important risk factor and a common comorbidity in AMI patients. The higher mortality risk of diabetes-AMI relative to nondiabetes-AMI indicates a need for specific treatment to improve clinical outcome. However, the global metabolic dysregulation of AMI complicated with diabetes is still unclear. We aim to systematically interrogate changes in the metabolic microenvironment immediate to AMI episodes in the absence or presence of diabetes. METHODS In this work, quantitative metabolomics was used to investigate plasma metabolic differences between diabetes-AMI (n=59) and nondiabetes-AMI (n=59) patients. A diverse array of perturbed metabolic pathways involving carbohydrate metabolism, lipid metabolism, glycolysis, tricarboxylic acid cycle, and amino acid metabolism emerged. RESULTS In all, our omics-oriented approach defined a metabolic signature of afflicted mitochondrial function aggravated by concurrent diabetes in AMI patients. In particular, our analyses uncovered N-lactoyl-phenylalanine and lysophosphatidylcholines as key functional metabolites that skewed the metabolic picture of diabetes-AMI relative to nondiabetes-AMI. N-lactoyl-phenylalanine was strongly associated with metabolic indicators reflective of mitochondrial overload and negatively correlated with HbA1c (glycosylated hemoglobin, type A1C) specifically in hyperglycemic AMI, suggestive of its central role in glucose utilization and mitochondrial energy production instrumental to the clinical outcome of diabetes-AMI. Reductions in lysophosphatidylcholines, which were negatively correlated with blood glucose and inflammatory markers, might further compromise glucose expenditure and aggravate inflammation leading to poorer prognosis in diabetes-AMI. CONCLUSIONS As circulating metabolite levels are amenable to therapeutic intervention, such shifts in metabolic signatures provide new clues and potential therapeutic targets specific to the treatment of diabetes-AMI.
Collapse
Affiliation(s)
- Jing-Gang Xia
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China (J.-g.X., H.Z., C.-l.Y.)
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China (B.L., S.M.L.)
| | - Hao Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China (J.-g.X., H.Z., C.-l.Y.)
| | - Qin-Xue Li
- Department of Cardiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Q.-x.L.)
| | - Sin Man Lam
- LipidALL Technologies Company Limited, Changzhou, Jiangsu Province, China (B.L., S.M.L.)
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (S.M.L., H.T., G.S.)
| | - Chun-Lin Yin
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Centre for Geriatric Diseases, Beijing, China (J.-g.X., H.Z., C.-l.Y.)
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (S.M.L., H.T., G.S.)
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (S.M.L., H.T., G.S.)
| |
Collapse
|
82
|
Nah J. The Role of Alternative Mitophagy in Heart Disease. Int J Mol Sci 2023; 24:ijms24076362. [PMID: 37047336 PMCID: PMC10094432 DOI: 10.3390/ijms24076362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Autophagy is essential for maintaining cellular homeostasis through bulk degradation of subcellular constituents, including misfolded proteins and dysfunctional organelles. It is generally governed by the proteins Atg5 and Atg7, which are critical regulators of the conventional autophagy pathway. However, recent studies have identified an alternative Atg5/Atg7-independent pathway, i.e., Ulk1- and Rab9-mediated alternative autophagy. More intensive studies have identified its essential role in stress-induced mitochondrial autophagy, also known as mitophagy. Alternative mitophagy plays pathophysiological roles in heart diseases such as myocardial ischemia and pressure overload. Here, this review discusses the established and emerging mechanisms of alternative autophagy/mitophagy that can be applied in therapeutic interventions for heart disorders.
Collapse
Affiliation(s)
- Jihoon Nah
- Department of Biochemistry, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
83
|
Guan X, Li W, Wang Y, Zhao Q, Yu X, Jiang J, Bian W, Xu C, Sun Y, Zhang C. The mechanism of rh-endostatin-induced cardiotoxicity and its protection by dihydromyricetin[in vivo/in vitro, C57BL/6 mice, AC16 and hiPSC-CMs]. Toxicol Lett 2023; 377:29-37. [PMID: 36739041 DOI: 10.1016/j.toxlet.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Recombinant human endostatin (rh-endostatin) is an anti-angiogenic drug, which is used for the treatment of advanced non-small-cell lung cancer (NSCLC) and other cancers. However, its side effects, especially the cardiotoxicity with unclear mechanisms limit its wide application in clinical practice. In this study, human cardiomyocyte cell line AC16 and human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) treated with different doses of rh-endostatin were used to analyze its effect on cardiac cell toxicity. The results revealed that rh-endostatin dose-dependently enhanced cardiomyocyte apoptosis through Apaf-1 apoptotic factor and apoptosis-related proteins such as p53. rh-endostatin-induced changes of mitochondrial function and mitophagy were involved in rh-endostatin-mediated cardiac cell toxicity. Rh-endostatin-induced cardiotoxicity was further verified in vivo in mice. Interestingly, Rh-endostatin-induced cardiotoxicity was inhibited by dihydromyricetin (DHM) both in cultured cells in vitro and in mouse hearts in vivo. The study provides new inside into rh-endostatin-induced cardiotoxicity and identified a novel potential medication DHM to overcome the serious adverse effect.
Collapse
Affiliation(s)
- Xiaoran Guan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qun Zhao
- Shandong Simcere Bio-Pharmaceutical Co., Ltd, Yantai 264006, China
| | - Xinru Yu
- School of Medical Imaging, Binzhou Medical University, Yantai 264003, China
| | - Jing Jiang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weihua Bian
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Cong Xu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Chunxiang Zhang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Nucleic Acid Medicine of Luzhou Key Laboratory, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
84
|
Zhou J, Liu H, Zhang T, Wang Z, Zhang J, Lu Y, Li Z, Kong W, Zhao J. MORN4 protects cardiomyocytes against ischemic injury via MFN2-mediated mitochondrial dynamics and mitophagy. Free Radic Biol Med 2023; 196:156-170. [PMID: 36682578 DOI: 10.1016/j.freeradbiomed.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
The imbalance of mitochondrial fission and fusion dynamics causes ischemic cardiomyocyte apoptosis and heart injury by affecting mitophagy. Regulation of mitochondrial dynamics is an important therapeutic strategy for ischemic heart diseases. Considering the important roles of MORN motifs in heart diseases and chloroplast fission, we aimed to investigate the possible role of MORN repeat-containing protein 4 (MORN4) in the progression of myocardial infarction (MI), ischemic cardiomyocyte apoptosis, mitochondrial dynamics, and mitophagy. We found that in the MI mouse, MORN4 knockdown remarkably accelerated cardiac injury and fibrosis with deteriorating cardiac dysfunction. Sphingosylphosphorylcholine (SPC) alleviated ischemic cardiomyocyte apoptosis and heart injury through increased level of MORN4, indicating a vital function of MORN4 in heart with SPC used to clarify the molecular mechanisms underlying the functions of MORN4. Mechanistically, we found that MORN4 directly binds to MFN2 and promotes the phosphorylation of MFN2 S442 through Rho-associated protein kinase 2 (ROCK2), which mediates beneficial mitophagy induced by mitochondrial dynamics, while SPC promoted the binding of MORN4 and MFN2 and the process. Taken together, our data reveal a new perspective role of MORN4 in ischemic heart injury, and report that SPC could regulate myocardial mitochondrial homeostasis by activating the MORN4-MFN2 axis during the ischemic situation, this finding provides novel targets for improving myocardial ischemia tolerance and rescue of acute myocardial infarction.
Collapse
Affiliation(s)
- Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Honghong Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China; Experimental Center for Medical Research, Weifang Medical University, Weifang, 261000, PR China
| | - Zhaohui Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jiaojiao Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Yao Lu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Zhiliang Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Weihua Kong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
85
|
Mokhtari B, Høilund-Carlsen PF, Chodari L, Yasami M, Badalzadeh R, Ghaffari S. Melatonin/nicotinamide mononucleotide/ubiquinol: a cocktail providing superior cardioprotection against ischemia/reperfusion injury in a common co-morbidities modelled rat. Mol Biol Rep 2023; 50:3525-3537. [PMID: 36787055 DOI: 10.1007/s11033-022-08189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/07/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND The metabolic and intracellular abnormalities in aging and diabetes cause loss of cardioprotection by routine interventions against myocardial ischemia/reperfusion (I/R) injury. We aimed to evaluate the possible interaction of aging and type-2 diabetes mellitus with cardioprotection and the potential protective effect of a mitochondrial cocktail (melatonin/nicotinamide mononucleotide (NMN)/ubiquinol) on myocardial I/R injury in aged diabetic rats. METHODS Male Wistar rats (n = 108, 22-24 months old, 400-450 g) received high-fat diet/low dose of streptozotocin to induce type-2 diabetes, then were randomized into 9 groups of 12 rats each with/without I/R and/or melatonin, NMN, and ubiquinol, alone or in dual or triple combinations. Myocardial I/R was induced by LAD occlusion for 30 min followed by 24 h reperfusion. NMN (100 mg/kg/48 h, intraperitoneally) was administered for 28 days before I/R operation. Melatonin (10 mg/kg, intraperitoneally) and/or ubiquinol (30 mg/kg, intravenously) were administered at early reperfusion. Finally, hemodynamic index changes, infarct size, CK-MB levels, mitochondrial functional endpoints, and expression of mitochondrial biogenesis genes (SIRT-1/PGC-1α/NRF-2/TFAM) were assessed. RESULTS The solo and dual applications of melatonin, NMN, and ubiquinol did not exert remarkable cardioprotective impacts. However, the triple combination improved myocardial function and decreased infarct size and CK-MB levels following myocardial I/R (P < .05 to P < .01). It also improved mitochondrial function and restored mitochondrial biogenesis genes (P < .01). CONCLUSIONS Combination therapy with melatonin, NMN, and ubiquinol exerted significant cardioprotection and improved mitochondrial function and biogenesis via upregulation of SIRT-1/PGC-1α/NRF-2/TFAM profiles in aged diabetic rats and, thus, offers a promising strategy for providing noticeable cardioprotection against I/R injury also in aged diabetic patients.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Alavi Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoud Yasami
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Samad Ghaffari
- Alavi Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
86
|
Insights into research on myocardial ischemia/reperfusion injury from 2012 to 2021: a bibliometric analysis. Eur J Med Res 2023; 28:17. [PMID: 36624514 PMCID: PMC9827672 DOI: 10.1186/s40001-022-00967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Numerous studies on myocardial ischemia/reperfusion (MI/R) injury have been undertaken in recent years. Hotspots and developmental trends in MI/R research are being rapidly updated. However, there has been no bibliometric analysis that systematically evaluates existing literature on MI/R injury. Our study explores developments in MI/R research over the past decade, and provides a reference for future research. MATERIALS AND METHODS Both experimental and clinical publications on MI/R injury from 2012 to 2021 were retrieved from the Web of Science Core Collection database. The CiteSpace and VOSviewer tools were used to perform a bibliometric analysis. RESULTS A total of 8419 papers were analyzed. The number of annual publications demonstrated an overall upward trend, rising from 629 publications in 2012 to 1024 publications in 2021. China, the USA, Germany, England, and Italy were the top five contributors to MI/R studies. The Fourth Military Medical University in China contributed the most publications (188, 2.23%), while the University College London in England cooperated the most with relevant research institutions. Derek J Hausenloy (University College London), Derek M Yellon (University College London), and Gerd Heusch (University of Essen Medical School) were the top three most active and influential scholars according to the H-index. Among the top 10 journals with the most publications, Basic Research in Cardiology had the highest impact factors. The top three co-cited journals were Circulation, Circulation Research, and Cardiovascular Research. According to a co-cited reference analysis, MI/R research can be divided across 10 major subfields of mitophagy, cardioprotection, inflammation, remote ischemic preconditioning, long non-coding RNA, melatonin, postconditioning, mitochondria, microvascular obstruction, and ferroptosis. After 2018, the keywords with strongest citation bursts included extracellular vesicles, long non-coding RNA, cell proliferation, microRNA, mitochondrial quality control, mitophagy, biomarker, and mitochondrial biogenesis. CONCLUSIONS The present study reveals the influential authors, cooperating institutions, and main research foci in the field of MI/R injury in the past decade. The latest hotspots are a more in-depth insight into the molecular mechanisms underlying MI/R injury, such as mitochondrial quality control, non-coding RNAs, cell proliferation, and extracellular vesicles.
Collapse
|
87
|
Ma L, Liao L, Zhou N, Tao H, Zhou H, Tan Y, Chen W, Cao F, Chen X. Transmembrane BAX inhibitor motif containing 6 suppresses presenilin-2 to preserve mitochondrial integrity after myocardial ischemia-reperfusion injury. Int J Biol Sci 2023; 19:1228-1240. [PMID: 36923943 PMCID: PMC10008687 DOI: 10.7150/ijbs.81100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/21/2023] [Indexed: 03/13/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) damage is characterized by mitochondrial damage in cardiomyocytes. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) and presenilin-2 (PS2) participate in multiple mitochondrial pathways; thus, we investigated the impact of these proteins on mitochondrial homeostasis during an acute reperfusion injury. Myocardial post-ischemic reperfusion stress impaired myocardial function, induced structural abnormalities and promoted cardiomyocyte death by disrupting the mitochondrial integrity in wild-type mice, but not in TMBIM6 transgenic mice. We found that TMBIM6 bound directly to PS2 and promoted its post-transcriptional degradation. Knocking out PS2 in mice reduced I/R injury-induced cardiac dysfunction, inflammatory responses, myocardial swelling and cardiomyocyte death by improving the mitochondrial integrity. These findings demonstrate that sufficient TMBIM6 expression can prevent PS2 accumulation during cardiac I/R injury, thus suppressing reperfusion-induced mitochondrial damage. Therefore, TMBIM6 and PS2 are promising therapeutic targets for the treatment of cardiac reperfusion damage.
Collapse
Affiliation(s)
- Li Ma
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- ✉ Corresponding author: Dr. Li Ma, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Dr. Xinxin Chen, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lihan Liao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Na Zhou
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huikang Tao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100037, China
| | - Ying Tan
- Department of Cardiology, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100037, China
| | - Weidan Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan Cao
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinxin Chen
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- ✉ Corresponding author: Dr. Li Ma, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. Dr. Xinxin Chen, E-mail: . Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Heart Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
88
|
Lupu M, Tudor D, Filip A. Iron metabolism and cardiovascular disease: Basic to translational purviews and therapeutical approach. Rev Port Cardiol 2022; 41:1037-1046. [PMID: 36228833 DOI: 10.1016/j.repc.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022] Open
Abstract
Iron interactions with the cardiovascular system were proposed about half a century ago, yet a clear-cut understanding of this micronutrient and its intricacies with acute and chronic events is still lacking. In chronic heart failure, patients with decreased iron stores appear to benefit from intravenous administration of metallic formulations, whereas acute diseases (e.g., myocardial infarction, stroke) are barely studied in randomized controlled trials in humans. However, proof-of-concept studies have indicated that the dual redox characteristics of iron could be involved in atherosclerosis, necrosis, and ferroptosis. To this end, we sought to review the currently available body of literature pertaining to these temporal profiles of heart diseases, as well as the pathophysiologic mechanism by which iron enacts, underlining key points related to treatment options.
Collapse
Affiliation(s)
- Mihai Lupu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania.
| | - Diana Tudor
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| | - Adriana Filip
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, Cluj-Napoca, Romania
| |
Collapse
|
89
|
Zhou F, Zhang Z, Wang M, Zhu W, Ruan J, Long H, Zhang Y, Gu N. Guanxin V attenuates myocardial ischaemia reperfusion injury through regulating iron homeostasis. PHARMACEUTICAL BIOLOGY 2022; 60:1884-1898. [PMID: 36215067 PMCID: PMC9553176 DOI: 10.1080/13880209.2022.2123934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Guanxin V (GX), a traditional Chinese medicine formula, is safe and effective in the treatment of coronary artery disease. However, its protective effect on myocardial ischaemia reperfusion injury (MIRI) is unclear. OBJECTIVE To investigate the cardioprotective effect of GX on MIRI and explore the potential mechanism. MATERIALS AND METHODS Sprague-Dawley male rats were divided into Sham, MIRI and MIRI + GX groups. GX (6 g/kg) was administered to rats via intragastric administration for seven days before ischaemia reperfusion (IR) surgery. The infarct size, histopathology, serum enzyme activities, ultrastructure of the cardiac mitochondria were assessed. H9c2 cells were pre-treated with GX (0.5 mg/mL), and then exposed to hypoxia/reoxygenation (HR). The cell viability and LDH levels were measured. Network pharmacology was conducted to predict the potential mechanism. The related targets of GX were predicted using the TCMSP database, DrugBank database, etc. Finally, pharmacological experiments were used to validate the predicted results. RESULTS In vivo, GX significantly reduced the myocardial infarct size from 56.33% to 17.18%, decreased the levels of AST (239.32 vs. 369.18 U/L), CK-MB (1324.61 vs. 2066.47 U/L) and LDH (1245.26 vs. 1969.62 U/L), and reduced mitochondrial damage. In vitro, GX significantly increased H9c2 cell viability (IC50 = 3.913 mg/mL) and inhibited the release of LDH (207.35 vs. 314.33). In addition, GX could maintain iron homeostasis and reduce oxidative stress level by regulating iron metabolism-associated proteins. CONCLUSIONS GX can attenuate MIRI via regulating iron homeostasis, indicating that GX may act as a potential candidate for the treatment of MIRI.
Collapse
Affiliation(s)
- Fuqiong Zhou
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengguang Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyuan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weina Zhu
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Ruan
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongyan Long
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Department of Cardiovascular Disease, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
90
|
Yan J, Guo J, Wang Y, Xing X, Zhang X, Zhang G, Dong Z. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded; mitochondrion-targeted tetrapeptide and cyclic arginyl-glycyl-aspartic acid peptide co-modified lipid-polymer hybrid nano-system: preparation, characterization, and anti myocardial infarction activity assessment. Drug Deliv 2022; 29:2815-2823. [PMID: 36047255 PMCID: PMC9487946 DOI: 10.1080/10717544.2022.2118401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the most common ischemic heart diseases. However, lack of sufficient drug concentration (in the ischemic heart) is the major factor of treatment failure. It is urgent for researchers to engineer novel drug delivery systems to enhance the targeted delivery of cardioprotective agents. The aim of the present study was to investigate the anti-AMI ability of calycosin (CAL) and tanshinone (TAN) co-loaded; mitochondrion-targeted tetrapeptide (MTP) and cyclic arginyl-glycyl-aspartic acid (RGD) peptide co-modified nano-system.: We prepared CAL and TAN combined lipid-polymer hybrid nano-system, and RGD was modified to the system to achieve RGD-CAL/TAN NS. MTP-131 was conjugated with PEG and modified onto the nanoparticles to achieve dual ligands co-modified MTP/RGD-CAL/TAN NS. The physicochemical properties of nano-systems were characterized. The AMI therapy ability of the systems was investigated in AMI rats' model. The size of MTP/RGD-CAL/TAN NS was 170.2 ± 5.6 nm, with a surface charge of -18.9 ± 1.9 mV. The area under the curve (AUC) and blood circulation half-life (T1/2) of MTP/RGD-CAL/TAN NS was 178.86 ± 6.62 μg·min/mL and 0.47 h, respectively. MTP/RGD-CAL/TAN NS exhibited the most significant infarct size reduction effect of 22.9%. MTP/RGD-CAL/TAN NS exhibited the highest heart accumulation and best infarct size reduction effect, which could be used as a promising system for efficient treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jieke Yan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji’nan, Shandong Province, PR China
| | - Jing Guo
- Department of Gynaecology, The Second Hospital of Shandong University, Ji’nan, Shandong Province, PR China
| | - Yuzhen Wang
- Clinical Department, Jinan Vocation College of Nursing, Ji’nan, Shandong Province, PR China
| | - Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, Shandong Province, PR China
| | - Xuguang Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, Shandong Province, PR China
| | - Guanghao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, Shandong Province, PR China
| | - Zhaoqiang Dong
- Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, Shandong Province, PR China,CONTACT Zhaoqiang Dong Department of Cardiology, The Second Hospital of Shandong University, Ji’nan, 250033, Shandong Province, PR China
| |
Collapse
|
91
|
Liu XC, Zhou PK. Tissue Reactions and Mechanism in Cardiovascular Diseases Induced by Radiation. Int J Mol Sci 2022; 23:ijms232314786. [PMID: 36499111 PMCID: PMC9738833 DOI: 10.3390/ijms232314786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The long-term survival rate of cancer patients has been increasing as a result of advances in treatments and precise medical management. The evidence has accumulated that the incidence and mortality of non-cancer diseases have increased along with the increase in survival time and long-term survival rate of cancer patients after radiotherapy. The risk of cardiovascular disease as a radiation late effect of tissue damage reactions is becoming a critical challenge and attracts great concern. Epidemiological research and clinical trials have clearly shown the close association between the development of cardiovascular disease in long-term cancer survivors and radiation exposure. Experimental biological data also strongly supports the above statement. Cardiovascular diseases can occur decades post-irradiation, and from initiation and development to illness, there is a complicated process, including direct and indirect damage of endothelial cells by radiation, acute vasculitis with neutrophil invasion, endothelial dysfunction, altered permeability, tissue reactions, capillary-like network loss, and activation of coagulator mechanisms, fibrosis, and atherosclerosis. We summarize the most recent literature on the tissue reactions and mechanisms that contribute to the development of radiation-induced cardiovascular diseases (RICVD) and provide biological knowledge for building preventative strategies.
Collapse
|
92
|
Liu Z, Wang L, Xing Q, Liu X, Hu Y, Li W, Yan Q, Liu R, Huang N. Identification of GLS as a cuproptosis-related diagnosis gene in acute myocardial infarction. Front Cardiovasc Med 2022; 9:1016081. [PMID: 36440046 PMCID: PMC9691691 DOI: 10.3389/fcvm.2022.1016081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Acute myocardial infarction (AMI) has the characteristics of sudden onset, rapid progression, poor prognosis, and so on. Therefore, it is urgent to identify diagnostic and prognostic biomarkers for it. Cuproptosis is a new form of mitochondrial respiratory-dependent cell death. However, studies are limited on the clinical significance of cuproptosis-related genes (CRGs) in AMI. In this study, we systematically assessed the genetic alterations of CRGs in AMI by bioinformatics approach. The results showed that six CRGs (LIAS, LIPT1, DLAT, PDHB, MTF1, and GLS) were markedly differentially expressed between stable coronary heart disease (stable_CAD) and AMI. Correlation analysis indicated that CRGs were closely correlated with N6-methyladenosine (m6A)-related genes through R language “corrplot” package, especially GLS was positively correlated with FMR1 and MTF1 was negatively correlated with HNRNPA2B1. Immune landscape analysis results revealed that CRGs were closely related to various immune cells, especially GLS was positively correlated with T cells CD4 memory resting and negatively correlated with monocytes. Kaplan–Meier analysis demonstrated that the group with high DLAT expression had a better prognosis. The area under curve (AUC) certified that GLS had good diagnostic value, in the training set (AUC = 0.87) and verification set (ACU = 0.99). Gene set enrichment analysis (GSEA) suggested that GLS was associated with immune- and hypoxia-related pathways. In addition, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, competing endogenous RNA (ceRNA) analysis, transcription factor (TF), and compound prediction were performed to reveal the regulatory mechanism of CRGs in AMI. Overall, our study can provide additional information for understanding the role of CRGs in AMI, which may provide new insights into the identification of therapeutic targets for AMI.
Collapse
Affiliation(s)
- Zheng Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Lei Wang
- Department of Cardiovascular Medicine, Xiangtan Center Hospital, Xiangtan, China
| | - Qichang Xing
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Xiang Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Yixiang Hu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Wencan Li
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Qingzi Yan
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Renzhu Liu
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- Zhou Honghao Research Institute Xiangtan, Xiangtan, China
| | - Nan Huang
- Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, China
- *Correspondence: Nan Huang,
| |
Collapse
|
93
|
Wu J, Cai H, Lei Z, Li C, Hu Y, Zhang T, Zhu H, Lu Y, Cao J, Hu X. Expression pattern and diagnostic value of ferroptosis-related genes in acute myocardial infarction. Front Cardiovasc Med 2022; 9:993592. [PMID: 36407421 PMCID: PMC9669064 DOI: 10.3389/fcvm.2022.993592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/19/2022] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Ferroptosis is a form of regulatory cell death (RCD) caused by iron-dependent lipid peroxidation. The role of ferroptosis in the process of acute myocardial infarction (AMI) is still unclear and requires further study. Therefore, it is helpful to identify ferroptosis related genes (FRGs) involved in AMI and explore their expression patterns and molecular mechanisms. METHODS The AMI-related microarray datasets GSE66360 and GSE61144 were obtained using the Gene Expression Omnibus (GEO) online database. GO annotation, KEGG pathway enrichment analysis and Protein-protein interaction (PPI) analysis were performed for the common significant differential expression genes (CoDEGs) in these two datasets. The FRGs were obtained from the FerrDb V2 and the differentially expressed FRGs were used to identify potential biomarkers by receiver operating characteristic (ROC) analysis. The expression of these FRGs was verified using external dataset GSE60993 and GSE775. Finally, the expression of these FRGs was further verified in myocardial hypoxia model. RESULTS A total of 131 CoDEGs were identified and these genes were mainly enriched in the pathways of "inflammatory response," "immune response," "plasma membrane," "receptor activity," "protein homodimerization activity," "calcium ion binding," "Phagosome," "Cytokine-cytokine receptor interaction," and "Toll-like receptor signaling pathway." The top 7 hub genes ITGAM, S100A12, S100A9, TLR2, TLR4, TLR8, and TREM1 were identified from the PPI network. 45 and 14 FRGs were identified in GSE66360 and GSE61144, respectively. FRGs ACSL1, ATG7, CAMKK2, GABARAPL1, KDM6B, LAMP2, PANX2, PGD, PTEN, SAT1, STAT3, TLR4, and ZFP36 were significantly differentially expressed in external dataset GSE60993 with AUC ≥ 0.7. Finally, ALOX5, CAMKK2, KDM6B, LAMP2, PTEN, PTGS2, and ULK1 were identified as biomarkers of AMI based on the time-gradient transcriptome dataset of AMI mice and the cellular hypoxia model. CONCLUSION In this study, based on the existing datasets, we identified differentially expressed FRGs in blood samples from patients with AMI and further validated these FRGs in the mouse time-gradient transcriptome dataset of AMI and the cellular hypoxia model. This study explored the expression pattern and molecular mechanism of FRGs in AMI, providing a basis for the accurate diagnosis of AMI and the selection of new therapeutic targets.
Collapse
Affiliation(s)
- Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Zhe Lei
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Chenze Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yushuang Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Tong Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Haoyan Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Yi Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Jianlei Cao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, China
| |
Collapse
|
94
|
Yan J, Guo J, Wang Y, Xing X, Zhang X, Zhang G, Dong Z. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded mitochondria targeted lipid-polymer hybrid nano-system: Preparation, characterization, and anti myocardial infarction activity assessment. Biomed Pharmacother 2022; 155:113650. [PMID: 36130421 DOI: 10.1016/j.biopha.2022.113650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/01/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the most common ischemic heart diseases. However, lack of sufficient drug concentrations in the ischemic heart may led to treatment failure. It is urgent for researchers to engineer novel drug delivery systems to enhance the targeted delivery of cardioprotective agents. OBJECTIVE The aim of the present study was to investigate the anti-AMI ability of calycosin (CAL) and tanshinone (TAN) co-loaded mitochondria targeted lipid-polymer hybrid nano-system. METHODS CAL and TAN combined lipid-polymer hybrid nano-systems were prepared and MTP-131 was conjugated with PEG and modified onto the nanoparticles to achieve MTP-CAL/TAN NS. The physicochemical properties of nano-systems were characterized, the AMI therapy ability of the systems was investigated in AMI rats' model. RESULTS The size of MTP-CAL/TAN NS was 168.7 ± 5.1 nm, with a surface charge of - 21.3 ± 2.3 mV. The area under the curve (AUC) and blood circulation half-life (T1/2) of MTP-CAL/TAN NS was 178.86 ± 6.62 μg·min/mL and 0.47 h, respectively. MTP-CAL/TAN NS exhibited the most significant infarct size reduction effect of 23.9 %. CONCLUSION MTP-CAL/TAN NS exhibited the highest heart accumulation and best infarct size reduction effect, which could be used as a promising system for efficient treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jieke Yan
- Department of Renal Transplantation, The Second Hospital of Shandong University, Ji'nan, 250033 Shandong Province, PR China
| | - Jing Guo
- Department of Gynaecology, The Second Hospital of Shandong University, Ji'nan, 250033 Shandong Province, PR China
| | - Yuzhen Wang
- Clinical Department, Jinan Vocation College of Nursing, Ji'nan, 250033 Shandong Province, PR China
| | - Xiaowei Xing
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033 Shandong Province, PR China
| | - Xuguang Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033 Shandong Province, PR China
| | - Guanghao Zhang
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033 Shandong Province, PR China
| | - Zhaoqiang Dong
- Department of Cardiology, The Second Hospital of Shandong University, Ji'nan, 250033 Shandong Province, PR China.
| |
Collapse
|
95
|
Liu YZ, Li ZX, Zhang LL, Wang D, Liu YP. Phenotypic plasticity of vascular smooth muscle cells in vascular calcification: Role of mitochondria. Front Cardiovasc Med 2022; 9:972836. [PMID: 36312244 PMCID: PMC9597684 DOI: 10.3389/fcvm.2022.972836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification (VC) is an important hallmark of cardiovascular disease, the osteo-/chondrocyte phenotype differentiation of vascular smooth muscle cells (VSMCs) is the main cause of vascular calcification. Accumulating evidence shows that mitochondrial dysfunction may ultimately be more detrimental in the VSMCs calcification. Mitochondrial participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular calcium homeostasis, apoptosis, and signal transduction. Mitochondrial dysfunction under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and metabolic disorders, which further lead to abnormal phenotypic differentiation of VSMCs. In this review, we summarize existing studies targeting mitochondria as a treatment for VC, and focus on VSMCs, highlighting recent progress in determining the roles of mitochondrial processes in regulating the phenotype transition of VSMCs, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, mitochondrial energy metabolism, and mitochondria/ER interactions. Along these lines, the impact of mitochondrial homeostasis on VC is discussed.
Collapse
|
96
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
97
|
Ischemic Preconditioning and Postconditioning Protect the Heart by Preserving the Mitochondrial Network. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6889278. [PMID: 36203484 PMCID: PMC9532115 DOI: 10.1155/2022/6889278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022]
Abstract
Background Mitochondria fuse to form elongated networks which are more tolerable to stress and injury. Ischemic pre- and postconditioning (IPC and IPost, respectively) are established cardioprotective strategies in the preclinical setting. Whether IPC and IPost modulates mitochondrial morphology is unknown. We hypothesize that the protective effects of IPC and IPost may be conferred via preservation of mitochondrial network. Methods IPC and IPost were applied to the H9c2 rat myoblast cells, isolated adult primary murine cardiomyocytes, and the Langendorff-isolated perfused rat hearts. The effects of IPC and IPost on cardiac cell death following ischemia-reperfusion injury (IRI), mitochondrial morphology, and gene expression of mitochondrial-shaping proteins were investigated. Results IPC and IPost successfully reduced cardiac cell death and myocardial infarct size. IPC and IPost maintained the mitochondrial network in both H9c2 and isolated adult primary murine cardiomyocytes. 2D-length measurement of the 3 mitochondrial subpopulations showed that IPC and IPost significantly increased the length of interfibrillar mitochondria (IFM). Gene expression of the pro-fusion protein, Mfn1, was significantly increased by IPC, while the pro-fission protein, Drp1, was significantly reduced by IPost in the H9c2 cells. In the primary cardiomyocytes, gene expression of both Mfn1 and Mfn2 were significantly upregulated by IPC and IPost, while Drp1 was significantly downregulated by IPost. In the Langendorff-isolated perfused heart, gene expression of Drp1 was significantly downregulated by both IPC and IPost. Conclusion IPC and IPost-mediated upregulation of pro-fusion proteins (Mfn1 and Mfn2) and downregulation of pro-fission (Drp1) promote maintenance of the interconnected mitochondrial network, ultimately conferring cardioprotection against IRI.
Collapse
|
98
|
De D, Fu F, Ding M. Letter by De et al Regarding Article, "MicroRNA-210 Controls Mitochondrial Metabolism and Protects Heart Function in Myocardial Infarction". Circulation 2022; 146:e170. [PMID: 36121910 DOI: 10.1161/circulationaha.122.060858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dema De
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China (D.D., M.D.)
| | - Feng Fu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China (F.F.)
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China (D.D., M.D.)
| |
Collapse
|
99
|
Zhu C, Zuo Z, Xu C, Ji M, He J, Li J. Tumstatin (69-88) alleviates heart failure via attenuating oxidative stress in rats with myocardial infarction. Heliyon 2022; 8:e10582. [PMID: 36158078 PMCID: PMC9489976 DOI: 10.1016/j.heliyon.2022.e10582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to elucidate the effects of tumstatin (69–88) on heart failure and the underlying mechanism. Materials and methods Myocardial infarction (MI) was induced by ligating the left coronary artery in rats to trigger heart failure. Results Tumstatin (69–88) can reduce cardiac insufficiency in rats with heart failure. The increased cardiac fibrosis in MI rat was attenuated by tumstatin (69–88). Increase of cardiac atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in rats with myocardial infarction, and Ang II-treated NRCMs or H9C2 cells was inhibited by tumstatin (69–88). In the heart of MI rats, and Ang II-treated NRCMs or H9C2 cells, the superoxide anions and NADPH oxidase (Nox) activity rose and the superoxide dismutase (SOD) activity was reduced, which was inhibited by tumstatin (69–88). Diethyldithiocarbamate, an SOD inhibitor, increased the ANP and BNP in NRCMs or H9C2 cells. Tumstatin (69–88) inhibited the Ang II-induced raises of ANP and BNP in NRCMs or H9C2 cells, which was reversed by DETC. Conclusions These results indicate that tumstatin (69–88) alleviates cardiac dysfunction of heart failure. Tumstatin (69–88) improves the hypertrophy of cardiomyocytes via attenuation of oxidative stress. Tumstatin (69–88) may be a potential drug for heart failure in the future.
Collapse
Affiliation(s)
- Congfei Zhu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Junjie He
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Suqian, China
| |
Collapse
|
100
|
Li H, Zhang M, Wang Y, Gong K, Yan T, Wang D, Meng X, Yang X, Chen Y, Han J, Duan Y, Zhang S. Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway. Food Funct 2022; 13:9576-9588. [PMID: 36000402 DOI: 10.1039/d2fo00772j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is a clinical syndrome characterized by typical symptoms that usually occur at the end stage of various heart diseases and lead to death. Daidzein (DAI), an isoflavone found in soy foods, is widely used to treat menopausal syndrome, prostate cancer, breast cancer, heart disease, cardiovascular disease, and osteoporosis, and has anti-oxidant and anti-inflammatory properties. However, the effects of DAI in HF remain unknown. In this study, doxorubicin (DOX) was used to establish HF models of C57BL/6J mice and H9c2 cells with DAI treatment. Our results showed that DAI markedly improved the DOX-induced decline in cardiac function, and decreased the left ventricular ejection fraction, cardiac inflammation, oxidative stress, apoptosis, and fibrosis. Mechanistically, DAI affects cardiac energy metabolism by regulating SIRT3, and meets the ATP demand of the heart by improving glucose, lipid, and ketone body metabolism as well as restoring mitochondrial dysfunction in vivo and in vitro. Additionally, DAI can exert an antioxidant function and alleviate HF through the SIRT3/FOXO3a pathway. In conclusion, we demonstrate that DAI alleviates DOX-induced cardiotoxicity by regulating cardiac energy metabolism as well as reducing inflammation, oxidative stress, apoptosis and fibrosis, indicating its potential application for HF treatment.
Collapse
Affiliation(s)
- Huaxin Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Mengxue Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanyu Wang
- Beijing Institute of Biomedicine, Beijing, China
| | - Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Tengteng Yan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Xianshe Meng
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Xiaoxiao Yang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Yuanli Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| | - Jihong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China. .,Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China.
| | - Shuang Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|