51
|
Yu KL, Lee XJ, Ong HC, Chen WH, Chang JS, Lin CS, Show PL, Ling TC. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115986. [PMID: 33187841 DOI: 10.1016/j.envpol.2020.115986] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
This study aims to investigate the adsorption behavior of cationic and anionic dyes of methylene blue (MB) and Congo red (CR) onto wet-torrefied Chlorella sp. microalgal biochar respectively, as an approach to generate a waste-derived and low-cost adsorbent. The wet-torrefied microalgal biochar possessed microporous properties with pore diameter less than 2 nm. The optimum adsorbent dosage of wet-torrefied microalgal biochar for MB and CR dyes removal were determined at 1 g/L and 2 g/L, respectively, with their natural pHs as the optimum adsorption pHs. The determined equilibrium contact times for MB and CR were 120 h and 4 h, respectively. Based on the equilibrium modeling, the results revealed that Langmuir isotherm showed the best model fit, based on the highest R2 coefficient, for both the adsorption processes of MB and CR using the wet-torrefied microalgal biochar, indicating that the monolayer adsorption was the dominant process. From the modeling, the maximum adsorption capacities for MB and CR were 113.00 mg/g and 164.35 mg/g, respectively. The kinetic modeling indicated the adsorption rate and mechanism of the dyes adsorption processes, which could be crucial for future modeling and application of wet-torrefied microalgal biochar. From the results, it suggests that the valorization of microalgae by utilizing wet-torrefied microalgal biochar as the effective adsorbent for the removal of toxic dyes with an approach of microalgal biorefinery and value-added application to the environment is feasible.
Collapse
Affiliation(s)
- Kai Ling Yu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia; Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Xin Jiat Lee
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia; Centre of Research in Energy Sciences (ENERGY), Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hwai Chyuan Ong
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407, Taiwan.
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Pau Loke Show
- Bioseparation Research Group, Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
52
|
Yang L, Zhan Y, Yu R, Lan J, Shang J, Dou B, Liu H, Zou R, Lin S. Facile and Scalable Fabrication of Antibacterial CO 2-Responsive Cotton for Ultrafast and Controllable Removal of Anionic Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2694-2709. [PMID: 33400496 DOI: 10.1021/acsami.0c19750] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel CO2-responsive cotton as an eco-friendly adsorbent derived from poly(4-acryloyloxybenzophenone-co-2-(dimethylamino) ethyl methacrylate) and cotton was fabricated via a facile and fast dip-coating method. As expected, upon CO2 stimulation, the protonated cotton presented CO2-induced "on-off" selective adsorption behaviors toward anionic dyes owing to electrostatic interactions. The adsorption isotherms and kinetics of the CO2-responsive cotton toward anionic dyes obeyed the Langmuir isotherm and pseudo-second-order kinetics models, respectively. It is noteworthy that the CO2-responsive cotton exhibited high adsorption capacity and ultrafast adsorption rate toward anionic dyes with the maximum adsorption capacities of 1785.71 mg g-1 for methyl orange (MO), 1108.65 mg g-1 for methyl blue (MB), and 1315.79 mg g-1 for naphthol green B (NGB), following the adsorption equilibrium times of 5 min for MO, 3 min for MB, and 4 min for NGB. Moreover, the CO2-responsive cotton also exhibited high removal efficiency toward anionic dyes in synthetic dye effluent. Additionally, the CO2-responsive cotton could be facilely regenerated via heat treatment under mild conditions and presented stable adsorption properties even after 15 cycles. Finally, the as-prepared CO2-responsive cotton exhibited outstanding antibacterial activity against E. coli and S. aureus. In summary, this novel CO2-responsive cotton can be viewed as a promising eco-friendly adsorbent material for potential scalable application in dye-contaminated wastewater remediation.
Collapse
Affiliation(s)
- Lin Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yifei Zhan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ruiquan Yu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Baojie Dou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Hongyu Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Rui Zou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
53
|
Venkatesan RA, Balachandran M. Novel carbon nano-onions from paraffinum liquidum for rapid and efficient removal of industrial dye from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43845-43864. [PMID: 32737789 DOI: 10.1007/s11356-020-09981-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/01/2020] [Indexed: 05/28/2023]
Abstract
Carbon nano-onions (CNOs) are fascinating zero-dimensional carbon materials owning distinct multi-shell architecture. Their physicochemical properties are highly related to the parent material selected and the synthesis protocol involved. In the present work, we report for the first time novel CNO structures encompassing discrete carbon allotropes, namely, H18 carbon, Rh6 carbon, and n-diamond. These structures were cost-effectively synthesized in gram scale by facile flame pyrolysis of paraffinum liquidum, a highly refined mineral oil. The as-synthesized and chemically refashioned CNOs are quasi-spherical self-assembled mesopores, manifesting remarkable stability and hydrophilicity. The CNO structures exhibit excellent dye adsorption characteristics with high removal capacity of 1397.35 mg/g and rapid adsorption kinetics with a minimal adsorbent dosage of 10 mg/L, for a low concentration of 20 mg/L methylene blue dye. The novel CNOs assure potential implementation in the remediation of low concentration and high volume of dye-contaminated wastewater.Graphical abstract.
Collapse
Affiliation(s)
- Ramya Athiyanam Venkatesan
- Materials Science Research Laboratory, Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India
| | - Manoj Balachandran
- Materials Science Research Laboratory, Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
54
|
Unravelling the Environmental Application of Biochar as Low-Cost Biosorbent: A Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217810] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this age, a key target for enhancing the competitiveness of the chemical, environmental and biotechnology industries is to manufacture high-value products more efficiently and especially with significantly reduced environmental impact. Under this premise, the conversion of biomass waste to a high-value added product, biochar, is an interesting approach under the circular economy principles. Thus, the improvements in the biochar production and its new and innovative uses are hot points of interest, which are the focus of vast efforts of the scientific community. Biochar has been recognized as a material of great potential, and its use as an adsorbent is becoming a reliable strategy for the removal of pollutants of different streams, according to its high adsorption capacity and potential to eliminate recalcitrant compounds. In this review, a succinct overview of current actions developed to improve the adsorption capability of biochar, mainly of heavy metal and organic pollutants (dyes, pharmaceuticals and personal care products), is summarized and discussed, and the principal adsorption mechanisms are described. The feedstock and the production procedure are revealed as key factors that provide the appropriate physicochemical characteristics for the good performance of biochar as an adsorbent. In addition, the modification of the biochar by the different described approaches proved their feasibility and became a good strategy for the design of selective adsorbents. In the last part of this review, the novel prospects in the regeneration of the biochar are presented in order to achieve a clean technology for alleviating the water pollution challenge.
Collapse
|
55
|
Shi H, Dong C, Yang Y, Han Y, Wang F, Wang C, Men J. Preparation of sulfonate chitosan microspheres and study on its adsorption properties for methylene blue. Int J Biol Macromol 2020; 163:2334-2345. [DOI: 10.1016/j.ijbiomac.2020.09.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
|
56
|
Al-Ghouti MA, Al-Absi RS. Mechanistic understanding of the adsorption and thermodynamic aspects of cationic methylene blue dye onto cellulosic olive stones biomass from wastewater. Sci Rep 2020; 10:15928. [PMID: 32985568 PMCID: PMC7522081 DOI: 10.1038/s41598-020-72996-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/20/2020] [Indexed: 11/28/2022] Open
Abstract
In the current study, the mechanistic understanding of the adsorption isotherm and thermodynamic aspects of cationic methylene blue (MB) dye adsorption onto cellulosic olive stones biomass from wastewater were investigated. The batch adsorption of MB onto the olive stones (black and green olive stones) was tested at a variety of pH, dye concentrations, temperatures, and biomass particle sizes. The adsorption thermodynamics such as Gibbs free energy, enthalpy, and entropy changes were also calculated. Moreover, the desorption studies of MB from the spent olive stones were studied to explore the re-usability of the biomasses. The results revealed that under the optimum pH of 10, the maximum MB uptake was achieved i.e. 80.2% for the green olive stones and 70.9% for the black olive stones. The green olive stones were found to be more efficient in remediating higher MB concentrations from water than the black olive stones. The highest MB removal of the green olive stones was achieved at 600 ppm of MB, while the highest MB removal of the black olive stones was observed at 50 ppm of MB. Furthermore, for almost all the concentrations studied (50-1000 ppm), the MB adsorption was the highest at the temperature of 45 °C (P value < 0.05). It was shown by the Fourier transform infrared that the electrostatic interaction and hydrogen bonding were proposed as dominant adsorption mechanisms at basic and acidic pH, respectively. While the hydrophobic-hydrophobic interaction was a dominant mechanism at neutral pH. The thermodynamic studies revealed that the adsorption process was endothermic, spontaneous, and favorable. Moreover, the real wastewater experiment and the desorption studies showed that the green and black olive stones were a cost-effective and promising adsorbents for MB remediation from wastewater on account of their high adsorption and desorption removal capacities.
Collapse
Affiliation(s)
- Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, State of Qatar.
| | - Rana S Al-Absi
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, State of Qatar
| |
Collapse
|
57
|
Li F, Zimmerman AR, Hu X, Yu Z, Huang J, Gao B. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl 2. CHEMOSPHERE 2020; 254:126866. [PMID: 32348923 DOI: 10.1016/j.chemosphere.2020.126866] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Hydrochar, the product of hydrothermal carbonization of biomass, is a sustainable alternative to other carbonaceous environmental sorbents. However, its use has been limited due to its low surface area. A one-pot biomass/metal salt co-hydrothermal synthesis method might improve its sorptive properties while retaining its efficient production characteristic. Thus, bamboo sawdust and zinc chloride (ZnCl2) were combined in a hydrothermal reactor (200 °C, 7 h) for preparing modified hydrochar. Compared to the non-modified hydrochar, the hydrochar produced with the addition of ZnCl2 during hydrothermal treatment was more fully carbonized (C content increased from 54% to 64%), of higher surface area after acid washing (30 versus 1.7 m2 g-1), and enriched in O-containing functional groups and of greater aromaticity (according to FTIR and XRD analysis). Because of these improved properties, Methylene blue adsorption capacity of the modified hydrochar increased by nearly 90% and by 257% after it was rinsed with acid. This study highlights the potential of this one-pot co-hydrothermal treatment of biomass in presence of metal salt to provide a simple and effective hydrochar with properties suitable for environmental remediation and water treatment.
Collapse
Affiliation(s)
- Feiyue Li
- College of Resources and Environment Science, Anhui Science and Technology University, Fengyang, 233100, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Andrew R Zimmerman
- Department of Geological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Xin Hu
- Center of Material Analysis, Nanjing University, Nanjing, 210093, China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Jun Huang
- Hualan Design & Consulting Group Co. Ltd., Nanning, 530011, China; College of Civil Engineering and Architecture Guangxi University, Nanning, 530004, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
58
|
Hydrothermal Carbonization as a Valuable Tool for Energy and Environmental Applications: A Review. ENERGIES 2020. [DOI: 10.3390/en13164098] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrothermal carbonization (HTC) represents an efficient and valuable pre-treatment technology to convert waste biomass into highly dense carbonaceous materials that could be used in a wide range of applications between energy, environment, soil improvement and nutrients recovery fields. HTC converts residual organic materials into a solid high energy dense material (hydrochar) and a liquid residue where the most volatile and oxygenated compounds (mainly furans and organic acids) concentrate during reaction. Pristine hydrochar is mainly used for direct combustion, to generate heat or electricity, but highly porous carbonaceous media for energy storage or for adsorption of pollutants applications can be also obtained through a further activation stage. HTC process can be used to enhance recovery of nutrients as nitrogen and phosphorous in particular and can be used as soil conditioner, to favor plant growth and mitigate desertification of soils. The present review proposes an outlook of the several possible applications of hydrochar produced from any sort of waste biomass sources. For each of the applications proposed, the main operative parameters that mostly affect the hydrochar properties and characteristics are highlighted, in order to match the needs for the specific application.
Collapse
|
59
|
Al-Ghouti MA, Dib SS. Utilization of nano-olive stones in environmental remediation of methylene blue from water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:63-77. [PMID: 32399221 PMCID: PMC7203364 DOI: 10.1007/s40201-019-00438-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 12/30/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND The use of agricultural waste as a low-cost adsorbent for the removal of hazardous methylene blue (MB) from aqueous solution was investigated. In this research, the potentiality of using black nano olive stones (black NOS) and green nano olive stones (green NOS) for MB adsorption was conducted. METHODS Various remediation parameters such as initial MB concentration, pH, and temperature were investigated. Thermodynamic study was carried out to determine the homogeneity of the adsorbent and spontaneity of the adsorption process. Different physical and chemical characterizations were studied using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Brunauer-Emmett-Teller (BET) surface area, pore radius and pore volume. RESULTS It was found that NOS exhibits an acidic nature, however the highest MB removal efficiency was recorded at pH 10; reaching up to 71%. The negative value of the heat of the adsorption process (∆H ° ) indicated the reaction followed an exothermic pathway while the negative value of Gibbs adsorption (∆G ° ) further suggested its spontaneous nature. The results indicated that the Freundlich model described well the adsorption process with 99.5% correlation coefficient for green NOS. FTIR was used to analyze functional groups on the adsorbents' surfaces that could play vital roles in the remediation process. SEM analysis revealed that the adsorbents comprised of abundant spherical deep cavities and porous nature. CONCLUSION The result obtained successfully demonstrated the potential of using black and green NOS as suitable adsorbents for the removal of MB from water.
Collapse
Affiliation(s)
- Mohammad A. Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Samah S. Dib
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| |
Collapse
|
60
|
Williams NE, Aydinlik NP. KOH ratio effect, characterization, and kinetic modeling of methylene blue from aqueous medium using activated carbon from Thevetia peruviana shell. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1765161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ndifreke Etuk Williams
- Department of Basic Sciences and Humanities, Faculty of Arts and Science, Cyprus International University, Turkey
| | - Nur Pasaoglulari Aydinlik
- Department of Basic Sciences and Humanities, Faculty of Arts and Science, Cyprus International University, Turkey
| |
Collapse
|
61
|
Sewage Sludge Hydrochar: An Option for Removal of Methylene Blue from Wastewater. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103445] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Municipal sewage sludge was subjected to a hydrothermal carbonization (HTC) process for developing a hydrochar with high adsorption capacity for water remediation in terms of dye removal. Three hydrochars were produced from municipal sewage sludge by performing HTC at 190, 220 and 250 °C, with a 3 h reaction time. Moreover, a portion of each hydrochar was subjected to a post-treatment with KOH in order to increase the adsorption capacity. Physicochemical properties of sludge samples, raw hydrochars and KOH-modified hydrochars were measured and batch adsorption studies were performed using methylene blue (MB) as a reference dye. Data revealed that both raw and modified hydrochars reached good MB removal efficiency for solutions with low MB concentrations; on the contrary, MB in high concentration solutions was efficiently removed only by modified hydrochars. Interestingly, the KOH treatment greatly improved the MB adsorption rate; the modified hydrochars were capable of capturing above 95% of the initial MB amount in less than 15 min. The physicochemical characterization indicates that alkali modification caused a change in the hydrochar surface making it more chemically homogeneous, which is particularly evident for the 250 °C hydrochar. Thus, the adsorption process can be regarded as a complex result of various phenomena, including physi- and chemi-sorption, acid–base and redox equilibria.
Collapse
|
62
|
Parra-Marfíl A, Ocampo-Pérez R, Collins-Martínez VH, Flores-Vélez LM, Gonzalez-Garcia R, Medellín-Castillo NA, Labrada-Delgado GJ. Synthesis and characterization of hydrochar from industrial Capsicum annuum seeds and its application for the adsorptive removal of methylene blue from water. ENVIRONMENTAL RESEARCH 2020; 184:109334. [PMID: 32199318 DOI: 10.1016/j.envres.2020.109334] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/01/2020] [Accepted: 03/01/2020] [Indexed: 05/14/2023]
Abstract
Chili seeds (CS) represent one of the most abundant residues in Mexico due to the high production and consumption. In this work, CS were used as raw material for the production of low-cost adsorbents for the removal of methylene blue from water. The adsorbents were synthesized from a hydrothermal treatment (based on a surface response experiment design) and characterized texturally by assessing changes in their properties. The mass yield (%R), carbon content (%C), and the second order adsorption rate constant (k2) were derived in relation to a list of input variables (e.g., the reaction temperature, residence time, and water/biomass ratio). Accordingly, those output variables were affected most sensitively by temperature and/or residence time, while changes of the water/biomass ratio were insignificant. Besides, an increase in the reaction temperature favored the degradation of the lignocellulosic material with increases in the carbon fixation. The adsorption capacity of methylene blue (MB) by the hydrochars depended drastically on the oxygen/carbon ratio. As such, the maximum adsorption capacity value of 145 mg g-1 was attained at the initial MB concentration of ~3000 μM (optimal oxygen/carbon value of 0.43). On the other hand, the maximum partition coefficient (KD) was estimated as 2.96 μM-1 mg g-1 with the initial/equilibrium concentrations of 20.5/6.93 μM. The performance evaluation between different studies, when made in terms of KD, suggests that the tested hydrochar should be one of the best adsorbents to treat methylene blue, especially at near-real environmental conditions (e.g., below micromolar levels).
Collapse
Affiliation(s)
- Adriana Parra-Marfíl
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico.
| | - Virginia H Collins-Martínez
- Ingeniería y Química de Materiales, Centro de Investigación en Materiales Avanzados, S.C., Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chih, C.P. 31136, Mexico
| | - Luisa Ma Flores-Vélez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Raúl Gonzalez-Garcia
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, 78260, San Luis Potosí, Mexico
| | - Nahúm A Medellín-Castillo
- Centro de Investigación y Estudios de Posgrado, Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr. M. Nava 8, San Luis Potosí, SLP 78290, Mexico
| | - Gladis J Labrada-Delgado
- LINAN-IPICYT, Camino a La Presa San José 2055. Col. Lomas 4 Sección, CP 78216, San Luis Potosí, S.L.P, Mexico
| |
Collapse
|
63
|
Li B, Guo JZ, Liu JL, Fang L, Lv JQ, Lv K. Removal of aqueous-phase lead ions by dithiocarbamate-modified hydrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136897. [PMID: 32018999 DOI: 10.1016/j.scitotenv.2020.136897] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Hydrochar produced from agricultural and forestry wastes and its application into the environment are very attractive. Herein, a high-efficiency dithiocarbamate-modified hydrochar (DTHC) was prepared successfully and then applied to eliminate Pb(II) from aqueous solutions. DTHC was characterized by various techniques. It was found that dithiocarbamate and amine groups were successfully grafted onto the surface of hydrochar. The surface area of DTHC was 7.94 m2·g-1, which was four folds less than pristine hydrochar (31.60 m2·g-1), but its adsorption capacity obviously increased. Adsorption experiments showed that the Pb(II) adsorption process onto DTHC well accorded with pseudo-2nd-order kinetics and Langmuir isotherms. The highest Pb(II) uptake by DTHC at 293 K determined from the Langmuir model was 151.51 mg·g-1. Fourier transform infrared spectra and X-ray photoelectron spectroscopy verified that dithiocarbamate, carboxylate, amine and sulfonate groups all facilitated the Pb(II) adsorption. The adsorption mechanism was ascribed to the inner-sphere surface complexation of Pb(II) by these groups and to the ion exchange between Pb(II) and Na(I). Thus, DTHC is an effective adsorbent for Pb(II) removal from water.
Collapse
Affiliation(s)
- Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China.
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Jia-Lin Liu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Ling Fang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Jian-Quan Lv
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Kangle Lv
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei, PR China
| |
Collapse
|
64
|
Evaluation of the selective adsorption of silica-sand/anionized-starch composite for removal of dyes and Cupper(II) from their aqueous mixtures. Int J Biol Macromol 2020; 149:1285-1293. [DOI: 10.1016/j.ijbiomac.2020.02.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023]
|
65
|
Facilely synthesized recyclable mesoporous magnetic silica composite for highly efficient and fast adsorption of Methylene Blue from wastewater: Thermodynamic mechanism and kinetics study. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
66
|
Bento LR, Melo CA, Ferreira OP, Moreira AB, Mounier S, Piccolo A, Spaccini R, Bisinoti MC. Humic extracts of hydrochar and Amazonian Dark Earth: Molecular characteristics and effects on maize seed germination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:135000. [PMID: 31791776 DOI: 10.1016/j.scitotenv.2019.135000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 05/27/2023]
Abstract
Inspired by the presence of anthropogenic organic matter in highly fertile Amazonian Dark Earth (ADE), which is attributed to the transformation of organic matter over thousands of years, we explored hydrothermal carbonization as an alternative for humic-like substances (HLS) production. Hydrothermal carbonization of sugarcane industry byproducts (bagasse and vinasse) in the presence and absence of H3PO4 afforded HLS, which were isolated and compared with humic substances (HS) isolated from ADE in terms of molecular composition and maize seed germination activity. HLS isolated from sugarcane bagasse hydrochar produced in the presence or absence of H3PO4 comprised both hydrophobic and hydrophilic moieties, differing from other HLS mainly in terms of phenolic content, while HLS isolated from vinasse hydrochar featured hydrophobic structures mainly comprising aliphatic moieties. Compared to that of HLS, the structure of soil-derived HS reflected an increased contribution of fresh organic matter input and, hence, featured a higher content of O-alkyl moieties. HLS derived from lignocellulosic biomass were rich in phenolics and promoted maize seed germination more effectively than HLS comprising alkyl moieties. Thus, HLS isolated from bagasse hydrochar had the highest bioactivity, as the presence of amphiphilic moieties therein seemed to facilitate the release of bioactive molecules from supramolecular structures and stimulate seed germination. Based on the above results, the hydrothermal carbonization of lignocellulosic biomass was concluded to be a viable method of producing amphiphilic HLS for use as plant growth promoters.
Collapse
Affiliation(s)
- Lucas Raimundo Bento
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil; Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055 Portici, Italy
| | - Camila Almeida Melo
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil
| | - Odair Pastor Ferreira
- Laboratório de Materiais Funcionais Avançados (LaMFA), Departamento de Física, Universidade Federal do Ceará, P.O. Box 3151, 60455-900 Fortaleza, Ceará, Brazil
| | - Altair Benedito Moreira
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil
| | - Stéphane Mounier
- Laboratoire MIO, CNRS-IRD-Université de Toulon-AMU - CS 60584, 83041 Toulon, Cedex 9, France
| | - Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055 Portici, Italy
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agroalimentare ed i Nuovi Materiali (CERMANU), Università di Napoli Federico II, Via Università, 100, 80055 Portici, Italy
| | - Márcia Cristina Bisinoti
- Department of Chemistry and Environmental Sciences, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São José do Rio Preto, Brazil.
| |
Collapse
|
67
|
Activated Carbons Derived from Teak Sawdust-Hydrochars for Efficient Removal of Methylene Blue, Copper, and Cadmium from Aqueous Solution. WATER 2019. [DOI: 10.3390/w11122581] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recycling materials from waste has been considered one of the essential principles in the context of sustainable development. In this study, we used teak sawdust as the feedstock material to synthesize activated carbon (AC) samples and evaluated the application of these ACs in the adsorption of methylene blue (MB), Cd(II), and Cu(II). The sawdust was carbonized by a hydrothermal process, followed by chemical activation using K2CO3 or ZnCl2 in various weight ratios. The AC samples produced were characterized by scanning electron microscopy, Brunauer–Emmett–Teller surface area analysis, Fourier-transform infrared spectroscopy, X-ray photon spectroscopy, and mass titration of acidic groups. The characterization results showed that the ACs did possess a high surface area and rich oxygen-containing functional groups. The adsorptive amounts of MB, Cd(II), and Cu(II) on ACs approximately increased with the concentration of the activating agent: when the weight ratio of the carbonaceous material to ZnCl2 reached 1.75, the maximum adsorption capacities for MB, Cd(II), and Cu(II) were achieved, and the values were 614, 208, and 182 mg/g, respectively. The level of oxygen-containing functional groups was identified as an important factor in determining the adsorptive amounts. While the electrostatic force was the primary pathway that led to the adsorption of the tested contaminants onto the AC, the complexation reaction was a vital mechanism responsible for the adsorptive interaction between ACs and Cu(II). The high adsorption capacity of the synthetic ACs for MB, Cd(II), and Cu(II) demonstrated in this study points out the potential application of biomass-residue-based adsorbents prepared via a coupled hydrothermal carbonization/chemical activation process in wastewater treatment.
Collapse
|
68
|
Başakçılardan Kabakcı S, Baran SS. Hydrothermal carbonization of various lignocellulosics: Fuel characteristics of hydrochars and surface characteristics of activated hydrochars. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 100:259-268. [PMID: 31563839 DOI: 10.1016/j.wasman.2019.09.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
In the present study, various lignocellulosic biowastes (wood sawdust, olive pomace, walnut shell, apricot seed, tea stalk, hazelnut husk) were hydrothermally carbonized at 220 °C for 90 min. Since the hydrochars have several end-uses, this study particularly investigates their end-use as solid fuels and precursors of activated carbon after chemical activation. Activated hydrochars were obtained from the hydrochars of wood sawdust, olive pomace, walnut shell, apricot seed, tea stalk, hazelnut husk by chemical activation with KOH at 600 °C. As fuels, all hydrochars had higher fixed carbon content, lower volatile matter content and higher ignition temperatures compared to their original biomass samples. Olive pomace hydrochar, which has high heating value (25.56 MJ/kg) and low ash content (5.5%), has the best fuel properties among hydrochars investigated. Activated hydrochars demonstrated BET surface areas of 308.9-666.7 m2/g (activated hydrochar of wood sawdust and tea stalk), and total pore volumes of 0.25-0.73 cm3/g (activated hydrochar of olive pomace and wood sawdust). The average pore size distribution of the activated hydrochars ranged between 1.05 nm (olive pomace)- 4.74 nm (wood sawdust). All agricultural-based activated hydrochars had similar average pore size distribution of 1.05-1.25 nm, which fell in the range of super-microporous structure. With the average pore size of 4.74 nm, activated hydrochar of wood sawdust could be classified under mesoporous structure. This study clearly points out that biomass type definitely affected fuel properties of hydrochars and the porous structure of the activated hydrochars.
Collapse
|
69
|
Li B, Guo J, Lv K, Fan J. Adsorption of methylene blue and Cd(II) onto maleylated modified hydrochar from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113014. [PMID: 31446359 DOI: 10.1016/j.envpol.2019.113014] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/06/2019] [Accepted: 08/02/2019] [Indexed: 05/21/2023]
Abstract
A new carboxylate-functionalized hydrochar (CFHC) was successfully prepared by reaction of hydrochar with maleic anhydride under solvent-free conditions and followed by deprotonating carboxyl group of hydrochar with NaHCO3 solution. CFHC was characterized using X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), zeta potential, Brunauer-Emmett-Teller surface area (BET) and Fourier-transform infrared spectroscopy (FTIR), and its adsorption properties and mechanisms to methylene blue (MB) and Cd(II) were investigated using the batch method. The isotherm adsorption data were accorded with Langmuir model and the maximum uptakes were 1155.57 and 90.99 mg/g for MB and Cd(II) at the temperature of 303 K, respectively. The joint analysis of batch experiments and characterizations of hydrochar confirmed the π-π interaction was accompanied by electrostatic interaction and hydrogen bond for MB adsorption, while the surface complexation and ion exchange were predominant mechanisms for Cd(II) adsorption. Therefore, a highly effective adsorbent CFHC prepared by a simple and environmentally friendly solid-phase synthesis is a promising candidate for wastewater treatment.
Collapse
Affiliation(s)
- Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China.
| | - Jianzhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Hangzhou 311300, Zhejiang, PR China
| | - Kangle Lv
- Hubei Key Laboratory of Catalysis and Materials Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei, PR China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| |
Collapse
|
70
|
A Comprehensive Review on Hydrothermal Carbonization of Biomass and its Applications. CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s42250-019-00098-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
71
|
Deng J, Li X, Wei X, Liu Y, Liang J, Tang N, Song B, Chen X, Cheng X. Sulfamic acid modified hydrochar derived from sawdust for removal of benzotriazole and Cu(II) from aqueous solution: Adsorption behavior and mechanism. BIORESOURCE TECHNOLOGY 2019; 290:121765. [PMID: 31301570 DOI: 10.1016/j.biortech.2019.121765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
A novel hydrochar adsorbent derived from sawdust (SAHC) was prepared for highly efficient simultaneous removal of benzotriazole (BTA) and Cu(II) from aqueous solution. The prepared adsorbent was characterized by several methods such as SEM, FTIR, and XPS. Batch adsorption experiments showed that the maximum adsorption capacity of SAHC for BTA and Cu(II) was 159.91 and 298.86 mg/g, respectively. Additionally, the study of competitive adsorption showed that the adsorption of Cu(II) was barely affected by the existence of BTA while the BTA adsorption was significantly improved with the coexistence of Cu(II). The study of adsorption mechanism found that Cu(II) could chelate with BTA to form complex, and the complexing-bridging interaction improved BTA adsorption. SAHC exhibited high adsorption ability after six adsorption cycles, which indicated excellent stability and regeneration performance of SAHC. All the results suggested that SAHC could be a promising adsorbent for simultaneous removal of BTA and Cu(II) from wastewater.
Collapse
Affiliation(s)
- Jiaqin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Xue Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ning Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuwu Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaojuan Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
72
|
Chen XQ, Li B, Shen Y, Guo JZ. Facile Synthesis of Calcite-Impregnated Hydrochar with High Sorption Capacity for Cu(II) from Aqueous Solution. ACS OMEGA 2019; 4:15022-15029. [PMID: 31552344 PMCID: PMC6751695 DOI: 10.1021/acsomega.9b01805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/26/2019] [Indexed: 05/21/2023]
Abstract
Calcite-impregnated hydrochar (Ca-HC) was successfully synthesized by a one-step hydrothermal method and used as an adsorbent for Cu(II) remediation. Characterization techniques showed that Ca-HC contained calcite and oxygen-containing functional groups. A series of Cu(II) sorption experiments onto Ca-HC showed that the initial Cu(II) concentration, contact time, sorption temperature, and initial pH of the solution influenced the sorption of Cu(II). The actual achievable sorption capacity of Ca-HC for Cu(II) was 130.57 mg g-1 at 303 K, and the sorption process obeyed the Langmuir model and pseudo-second-order kinetic equation. The precipitation and surface complexation rather than ion exchange were mainly ascribed to the removal of Cu(II) onto Ca-HC. The calcite provided the active site to produce posnjakite precipitation during the sorption process and enhance the sorption capacity of the hydrochar. Therefore, these results demonstrated that Ca-HC is an effective sorbent that can remove Cu(II) from water.
Collapse
Affiliation(s)
| | - Bing Li
- E-mail: . Tel: (+86) 571-63732772
| | | | | |
Collapse
|
73
|
Nguyen DH, Tran HN, Chao HP, Lin CC. Effect of nitric acid oxidation on the surface of hydrochars to sorb methylene blue: An adsorption mechanism comparison. ADSORPT SCI TECHNOL 2019. [DOI: 10.1177/0263617419867519] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Duy H Nguyen
- Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan; Faculty of Environment Science, TNU-University of Agriculture and Forestry, Thai Nguyen 24000, Vietnam
| | - Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Vietnam
| | - Huan-Ping Chao
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Chu-Ching Lin
- Institute of Environmental Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
74
|
Preparation, characterization and cost analysis of activated biochar and hydrochar derived from agricultural waste: a comparative study. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0936-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
75
|
Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1806-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
76
|
Recio-Sánchez G, Tighe-Neira R, Alvarado C, Inostroza-Blancheteau C, Benito N, García-Rodríguez A, Marcos R, Pesenti H, Carmona ER. Assessing the effectiveness of green synthetized silver nanoparticles with Cryptocarya alba extracts for remotion of the organic pollutant methylene blue dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15115-15123. [PMID: 30919197 DOI: 10.1007/s11356-019-04934-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
In the present work, silver nanoparticles (AgNPs) synthetized with Cryptocarya alba (Peumo) leaf extract were studied. The fabrication method was fast, low cost, and eco-friendly, and the final properties of AgNPs were determined by experimental parameters, such as AgNO3 and Peumo extract concentrations used. Setting suitable experimental conditions, crystalline AgNPs with apparent spherical forms and average diameter around 3.5 nm were obtained. In addition, the capability of synthesized Peumo-AgNPs to remove methylene blue dye (MB) in aqueous solution as well as their catalytic effectiveness was also investigated. The results showed that green synthesized AgNPs can remove fast and effectively the MB dye from aqueous medium by itself, but better results were found acting like catalyst by using sodium borohydride (NaBH4) in the reaction. In addition, this green nanomaterial can be recycling several times maintaining initial properties for removal of MB. Thus, AgNPs synthetized with Peumo leaf extracts could be an excellent catalyst candidate for degradation of blue methylene dye in chemical industries.
Collapse
Affiliation(s)
- Gonzalo Recio-Sánchez
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Ricardo Tighe-Neira
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Claudia Alvarado
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Noelia Benito
- Departamento de Física, Universidad de Concepción, Concepción, Chile
| | - Alba García-Rodríguez
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Ricard Marcos
- Grup de Mutagènesi, Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| | - Héctor Pesenti
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile
| | - Erico R Carmona
- Núcleo de Investigación en Bioproductos y Materiales Avanzados, Facultad de Ingeniería, Universidad Católica de Temuco, Temuco, Chile.
| |
Collapse
|
77
|
Li B, Lv JQ, Guo JZ, Fu SY, Guo M, Yang P. The polyaminocarboxylated modified hydrochar for efficient capturing methylene blue and Cu(II) from water. BIORESOURCE TECHNOLOGY 2019; 275:360-367. [PMID: 30597398 DOI: 10.1016/j.biortech.2018.12.083] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 05/21/2023]
Abstract
The polyaminocarboxylated modified hydrochar (ACHC) was synthesized to introduce abundant amino, hydroxyl and carboxylate multifunctional groups onto the surface of hydrochar by etherification, amination and carboxylated reaction. The ACHC was systematically characterized and used to evaluate adsorption properties of Cu(II) and methylene blue (MB) by batch sorption tests. The adsorption process toward Cu(II) and MB by ACHC obeyed the pseudo-second-order kinetic model and Langmuir model. Characteristic analysis indicated the surface chelation was mainly contribute to Cu(II) adsorption by large amounts of amino and carboxylate groups while π-π interaction, hydrogen bonding and electrostatic attraction dominated MB adsorption. The maximum adsorption capacities of ACHC were 140.65 and 1238.66 mg·g-1 for Cu(II) and MB at 303 K, respectively. Approximately 97% of the adsorptive uptakes for two pollutants were removed within merely 5 min for kinetic experiment. Competitive adsorption of Cu(II) and MB, and treatment of electroplating wastewater by ACHC were also investigated.
Collapse
Affiliation(s)
- Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China.
| | - Jian-Quan Lv
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Shen-Yuan Fu
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Ming Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Ping Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| |
Collapse
|
78
|
Lima HH, Maniezzo RS, Llop ME, Kupfer VL, Arroyo PA, Guilherme MR, Rubira AF, Girotto EM, Rinaldi AW. Synthesis and characterization of pecan nutshell-based adsorbent with high specific area and high methylene blue adsorption capacity. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
79
|
Surface Separation Equilibria and Dynamics of Cationic Dye Loaded onto Citric Acid and Sodium Hydroxide Treated Eggshells. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2018-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThis research enthusiastically highlights the bio-adsorption of methylene blue (MB) by local, poultry, NaOH and citric acid modified ubiquitous eggshell (LES, NLES, CLES, PES, NPES and CPES) adsorbents. The microstructures of these adsorbents indicated that they had some surface functional moieties that were responsible for the adsorption of MB. The Langmuir isotherm and PSO model best fit the experiment data. The largest Langmuir monolayer adsorption capacity${q_{max}}$, was 242.47 mg/g, with the largest MB initial concentration of 400 mg/L. This was a clear indication and a confirmation that MB adsorption by the powdered eggshells was chemisorptive. Moreover, the values of$F$, the thickness of the boundary layer/film were$\gt 0$, showing that the rate limiting step for the adsorption process was controlled by more than one diffusion mechanism. The values of$\Delta {G^\circ }$for the adsorption of MB by the adsorbents indicated that the adsorption reactions were all non-feasible and non-spontaneous. The values for$\Delta {S^\circ }$(J/K/mol) for LES, NLES and CPES for the uptake of MB showed decrease in the chaos or degree of randomness of the adsorption reactions, and the reverse was the case for PES, NPES and CLES for the uptake of MB, which showed increase in the chaos or degree of randomness of the adsorption. The adsorption of MB by LES, NLES and CPES gave$\Delta {H^\circ }$(kJ/mol) values which were indicative of endothermic nature of the adsorption systems, and the reverse was the case for the uptake of MB by PES, NPES and CLES, which was indicative of the exothermic nature of the adsorption systems.
Collapse
|
80
|
Bedin KC, Souza IP, Cazetta AL, Spessato L, Ronix A, Almeida VC. CO2-spherical activated carbon as a new adsorbent for Methylene Blue removal: Kinetic, equilibrium and thermodynamic studies. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
81
|
Li B, Wang Q, Guo JZ, Huan WW, Liu L. Sorption of methyl orange from aqueous solution by protonated amine modified hydrochar. BIORESOURCE TECHNOLOGY 2018; 268:454-459. [PMID: 30107359 DOI: 10.1016/j.biortech.2018.08.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
The protonated amine modified hydrochar (PAMH) was synthesized by etherification, amination and protonated reaction with hydrochar, which was enriched with abundant protonated amine for methyl orange (MO) removal. PAMH was characterized by elemental analysis, scanning electron microscopy, nitrogen adsorption-desorption measurement, zeta potential and Fourier transform infrared. The sorption of MO from aqueous solution by PAMH was investigated by batch experiments. The results showed that sorption of MO was significantly influenced by the initial concentration of MO, temperature, contact time and ionic strength, while hardly affected by pH values ranging from 4 to 11. The pseudo-second-order and Langmuir equations were able to depict sorption kinetics and sorption isotherms, respectively. Thermodynamic analysis indicated that the sorption behavior was thermopositive and spontaneous. The maximum theoretical uptake computed by the Langmuir equation was 909.09 mg·g-1 at 303 K, which suggested that PAMH was an effective sorbent to eliminate anionic dye from aqueous solution.
Collapse
Affiliation(s)
- Bing Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China; Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China.
| | - Qian Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Wei-Wei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Li Liu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| |
Collapse
|
82
|
Rakass S, Oudghiri Hassani H, Abboudi M, Kooli F, Mohmoud A, Aljuhani A, Al Wadaani F. Molybdenum Trioxide: Efficient Nanosorbent for Removal of Methylene Blue Dye from Aqueous Solutions. Molecules 2018; 23:E2295. [PMID: 30205570 PMCID: PMC6225373 DOI: 10.3390/molecules23092295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 11/16/2022] Open
Abstract
Nano Molybdenum trioxide (α-MoO₃) was synthesized in an easy and efficient approach. The removal of methylene blue (MB) in aqueous solutions was studied using this material. The effects of various experimental parameters, for example contact time, pH, temperature and initial MB concentration on removal capacity were explored. The removal of MB was significantly affected by pH and temperature and higher values resulted in increase of removal capacity of MB. The removal efficiency of Methylene blue was 100% at pH = 11 for initial dye concentrations lower than 150 ppm, with a maximum removal capacity of 152 mg/g of MB as gathered from Langmuir model. By comparing the kinetic models (pseudo first-order, pseudo second-order and intraparticle diffusion model) at various conditions, it has been found that the pseudo second-order kinetic model correlates with the experimental data well. The thermodynamic study indicated that the removal was endothermic, spontaneous and favorable. The thermal regeneration studies indicated that the removal efficiency (99%) was maintained after four cycles of use. Fourier Transform Infrared (FTIR) and Scanning Electron Microscopy (SEM) confirmed the presence of the MB dye on the α-MoO₃ nanoparticles after adsorption and regeneration. The α-MoO₃ nanosorbent showed excellent removal efficiency before and after regeneration, suggesting that it can be used as a promising adsorbent for removing Methylene blue dye from wastewater.
Collapse
Affiliation(s)
- Souad Rakass
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Hicham Oudghiri Hassani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
- Département de Chimie, Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah, B. P. 1796 (Atlas), Fès 30003, Morocco.
| | - Mostafa Abboudi
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Fethi Kooli
- Community College, Taibah University-Al-Mahd Branch, Al-Mahd 42112, Saudi Arabia.
| | - Ahmed Mohmoud
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Ateyatallah Aljuhani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Fahd Al Wadaani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| |
Collapse
|
83
|
Li JF, Chen Y, Wang Z, Liu ZQ. Self-templating synthesis of hollow copper tungstate spheres as adsorbents for dye removal. J Colloid Interface Sci 2018; 526:459-469. [DOI: 10.1016/j.jcis.2018.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/25/2022]
|
84
|
Rakass S, Mohmoud A, Oudghiri Hassani H, Abboudi M, Kooli F, Al Wadaani F. Modified Nigella Sativa Seeds as a Novel Efficient Natural Adsorbent for Removal of Methylene Blue Dye. Molecules 2018; 23:molecules23081950. [PMID: 30081600 PMCID: PMC6222517 DOI: 10.3390/molecules23081950] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to investigate the use of modified nigella sativa seeds (MNS) for removing of methylene blue (MB) dye from aqueous solution. The nigella sativa (NS) seeds have been pre-treated at different temperatures and periods of time. The maximum adsorption of MB was achieved using NS sample washed with distilled water pre-heated at 65 °C for one hour, then ground to 250 µm particle size (MNS-4). Different parameters were modified to optimize the removal process of MB using MNS-4, such as contact times, temperatures, initial dye concentrations, adsorbent doses, and pH of the solution. MNS-4 exhibited a removal efficiency of 99% for initial dye concentrations greater than 800 ppm at pH value of 11. The kinetic study indicated that the removal process follows the pseudo second order model. The removal was spontaneous, endothermic and favorable, and this was indicated by the thermodynamic study. Maximum removal capacity was 194 mg/g as deduced from Langmuir model. The removal efficiency was maintained after four recycle uses. The modified nigella sativa seeds were characterized before, and after adsorption and regeneration by Fourier Transform infrared (FTIR) and scanning electron microscopy (SEM). The data suggested that nigella sativa seeds could be a prospective agent for removing MB from wastewater.
Collapse
Affiliation(s)
- Souad Rakass
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Ahmed Mohmoud
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Hicham Oudghiri Hassani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
- Département de Chimie, Faculté des Sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdellah, B. P. 1796 (Atlas), Fès 30003, Morocco.
| | - Mostafa Abboudi
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Fethi Kooli
- Community College, Taibah University-Al-Mahd Branch, Al-Mahd 42112, Saudi Arabia.
| | - Fahd Al Wadaani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| |
Collapse
|
85
|
Oudghiri-Hassani H, Rakass S, Abboudi M, Mohmoud A, Al Wadaani F. Preparation and Characterization of α-Zinc Molybdate Catalyst: Efficient Sorbent for Methylene Blue and Reduction of 3-Nitrophenol. Molecules 2018; 23:E1462. [PMID: 29914133 PMCID: PMC6100590 DOI: 10.3390/molecules23061462] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022] Open
Abstract
Zinc molybdate (ZnMoO₄) was prepared by thermal decomposition of an oxalate complex under a controlled temperature of 500 °C. Analyses of the oxalate complex were carried out using Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). On the other hand, analyses of the synthesized zinc molybdate were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller technique (BET). The efficiency of the synthesized catalyst was tested with the reduction reaction of 3-nitrophenol (3-NP), and was also applied as a sorbent for methylene blue dye (MB) in aqueous solutions. The catalytic test of zinc molybdate shows a very high activity. The concentration reduction progress and adsorption of the dye were followed by an ultraviolet-visible (UV-vis) spectrophotometer.
Collapse
Affiliation(s)
- Hicham Oudghiri-Hassani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
- Département Sciences de la Nature, Cégep de Drummondville, 960 rue Saint-Georges, Drummondville, QC J2C 6A2, Canada.
| | - Souad Rakass
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Mostafa Abboudi
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Ahmed Mohmoud
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| | - Fahd Al Wadaani
- Chemistry Department, College of Science, Taibah University, Al-Madinah 30002, Saudi Arabia.
| |
Collapse
|