51
|
Xu MX, Ge CX, Qin YT, Gu TT, Lou DS, Li Q, Hu LF, Feng J, Huang P, Tan J. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic Biol Med 2019; 130:542-556. [PMID: 30465824 DOI: 10.1016/j.freeradbiomed.2018.11.016] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
An increasing number of studies have shown that air pollution containing particulate matter (PM) ≤ 2.5 µm (PM2.5) plays a significant role in the development of metabolic disorder and other chronic diseases. Inflammation and oxidative stress caused by metabolic syndrome are widely determined to be critical factors in the development of nonalcoholic fatty liver disease (NAFLD) pathogenesis. However, there is no direct evidence of this, and the underlying molecular mechanism is still not fully understood. In this study, we investigated the role of inflammation and oxidative stress caused by prolonged PM2.5 exposure in dyslipidemia-associated chronic hepatic injury, and further determined whether an increase in hepatic inflammation and oxidative stress promoted lipid accumulation in the liver, ultimately increasing the risk of NAFLD. Therefore, we studied changes in indicators of metabolic disorder and in symbolic indices of NAFLD. We confirmed increases in insulin resistance, glucose tolerance, peripheral inflammation and dysarteriotony in PM2.5-induced mice. Oxidative stress and inflammatory response in the liver caused by PM2.5 inhalation contributed to abnormal hepatic function, further promoting lipid accumulation in the liver. Moreover, we observed inhibition of oxidative stress and inflammatory response by pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) in vitro, suggesting that oxidative stress and inflammatory in liver cells aggravated by PM2.5 contributed to hepatic injury by altering normal lipid metabolism. These results indicate a new goal for preventing and treating air pollution-induced diseases: suppression of oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Min-Xuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| | - Chen-Xu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Yu-Ting Qin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, PR China
| | - Ting-Ting Gu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, PR China
| | - De-Shuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Qiang Li
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Lin-Feng Hu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China
| | - Jing Feng
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Ping Huang
- Department Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, PR China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China; Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing 400067, PR China.
| |
Collapse
|
52
|
Li Q, Zheng J, Xu S, Zhang J, Cao Y, Qin Z, Liu X, Jiang C. The neurotoxicity induced by PM 2.5 might be strongly related to changes of the hippocampal tissue structure and neurotransmitter levels. Toxicol Res (Camb) 2018; 7:1144-1152. [PMID: 30510684 PMCID: PMC6220725 DOI: 10.1039/c8tx00093j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/03/2018] [Indexed: 11/21/2022] Open
Abstract
Objective: The complex components of PM2.5 including metal elements transported through the blood brain barrier could induce nervous system damage. This study discusses the relationship between rats' learning and memory and changes in the hippocampal neuron histomorphology and neurotransmitter levels induced by PM2.5 exposure. Methods: Male rats were treated with different concentrations of PM2.5 by tracheal perfusion once per week for up to 12 weeks. After the rats were sacrificed, the main metal element contents (Al, Pb, Cu, Mn, As, Cr, Cd, and Ni) of the blood and whole hippocampus, levels of neurotransmitters released in the whole hippocampus and relative receptors, and changes in the hippocampal structure were detected. Results: The results showed that PM2.5 significantly reduced the cognitive learning abilities of rats. PM2.5 exposure increased the contents of hippocampal lead, manganese, and aluminum. The level of glutamic acid was increased in the hippocampal tissues of the 20 mg kg-1 group, in combination with the decreased N-methyl-d-aspartate glutamate receptor (NMDAR) and increased metabotropic glutamate receptor type1 (mGluR1) expression. Increased clearance, a mild disorder of arrangement, and mild edema could be observed in the rat hippocampal neurons treated with PM2.5. Conclusion: PM2.5-induced defects in learning and memory may be related to the morphological abnormalities of the hippocampus and the abnormal expression of neurotransmitters and their receptors.
Collapse
Affiliation(s)
- Qingzhao Li
- School of Public Health , North China University of Science and Technology , 57 Jianshe Road , Tangshan 063000 , Hebei , People's Republic of China
| | - Jiali Zheng
- Department of Neurology , The People's Hospital of Pingliang , 79 East street , Pingliang 744000 , Gansu , People's Republic of China
| | - Sheng Xu
- Department of Neurosurgery , Tangshan People's Hospital , 65 Shengli Road , Tangshan 063001 , Hebei , People's Republic of China
| | - Jingshu Zhang
- The Center for Hygienic Analysis and Detection , Nanjing Medical University , 101 LongMian Avenue , Jiangning District , Nanjing 211166 , People's Republic of China
| | - Yanhua Cao
- School of Public Health , North China University of Science and Technology , 57 Jianshe Road , Tangshan 063000 , Hebei , People's Republic of China
| | - Zhenlong Qin
- Department of Anesthesiology , Beijing University of Chinese Medicine Third Affiliated Hospital , No 51 Xiaoguan Street , Anwai , Chaoyang District , Beijing 100029 , People's Republic of China . ; ; Tel: +86 10 52075429
| | - Xiaoqin Liu
- Department of Nephrology , Hongqi Hospital , Mudanjiang Medical College , 5 Tongxiang Road , Aimin District , Mudanjiang 157011 , Heilongjiang , People's Republic of China . ; ; Tel: +86 453 6582800
| | - Chunyang Jiang
- Department of Thoracic Surgery , Tianjin Union Medical Center , 190 Jieyuan Road , Hongqiao District , Tianjin 300121, Tianjin , People's Republic of China . ; ; Tel: +86 22 27557493
| |
Collapse
|
53
|
Alderete TL, Chen Z, Toledo-Corral CM, Contreras ZA, Kim JS, Habre R, Chatzi L, Bastain T, Breton CV, Gilliland FD. Ambient and Traffic-Related Air Pollution Exposures as Novel Risk Factors for Metabolic Dysfunction and Type 2 Diabetes. CURR EPIDEMIOL REP 2018; 5:79-91. [PMID: 30319933 PMCID: PMC6178230 DOI: 10.1007/s40471-018-0140-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a top contributor to the global burden of mortality and disability in adults. There has also been a slow, but steady rise in prediabetes and type 2 diabetes in youth. The current review summarizes recent findings regarding the impact of increased exposure to air pollutants on the type 2 diabetes epidemic. RECENT FINDINGS Human and animal studies provide strong evidence that exposure to ambient and traffic-related air pollutants such as particulate matter (PM), nitrogen dioxide (NO2), and nitrogen oxides (NOx) play an important role in metabolic dysfunction and type 2 diabetes etiology. This work is supported by recent findings that have observed similar effect sizes for increased exposure to air pollutants on clinical measures of risk for type 2 diabetes in children and adults. Further, studies indicate that these effects may be more pronounced among individuals with existing risk factors, including obesity and prediabetes. SUMMARY Current epidemiological evidence suggests that increased air pollution exposure contributes to alterations in insulin signaling, glucose metabolism, and beta (β)-cell function. Future work is needed to identify the specific detrimental pollutants that alter glucose metabolism. Additionally, advanced tools and new areas of investigation present unique opportunities to study the underlying mechanisms, including intermediate pathways, that link increased air pollution exposure with type 2 diabetes onset.
Collapse
Affiliation(s)
- Tanya L. Alderete
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Zhanghua Chen
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Claudia M. Toledo-Corral
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
- California State University, Los Angeles, Department of Public Health, Los Angeles California, USA
| | - Zuelma A. Contreras
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Jeniffer S. Kim
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Rima Habre
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Leda Chatzi
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Theresa Bastain
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Carrie V. Breton
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| | - Frank D. Gilliland
- University of Southern California, Department of Preventive Medicine, Division of Environmental Health, Los Angeles, California, USA
| |
Collapse
|
54
|
Yang BY, Qian ZM, Li S, Chen G, Bloom MS, Elliott M, Syberg KW, Heinrich J, Markevych I, Wang SQ, Chen D, Ma H, Chen DH, Liu Y, Komppula M, Leskinen A, Liu KK, Zeng XW, Hu LW, Guo Y, Dong GH. Ambient air pollution in relation to diabetes and glucose-homoeostasis markers in China: a cross-sectional study with findings from the 33 Communities Chinese Health Study. Lancet Planet Health 2018; 2:e64-e73. [PMID: 29615239 DOI: 10.1016/s2542-5196(18)30001-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 05/26/2023]
Abstract
BACKGROUND Health effects of air pollution on diabetes have been scarcely studied in developing countries. We aimed to explore the associations of long-term exposure to ambient particulate matter (PM) and gaseous pollutants with diabetes prevalence and glucose-homoeostasis markers in China. METHODS Between April 1 and Dec 31, 2009, we recruited a total of 15 477 participants aged 18-74 years using a random number generator and a four-staged, stratified and cluster sampling strategy from a large cross-sectional study (the 33 Communities Chinese Health Study) from three cities in Liaoning province, northeastern China. Fasting and 2 h insulin and glucose concentrations and the homoeostasis model assessment of insulin resistance index and β-cell function were used as glucose-homoeostasis markers. Diabetes was defined according to the American Diabetes Association's recommendations. We calculated exposure to air pollutants using data from monitoring stations (PM with an aerodynamic diameter of 10 μm or less [PM10], sulphur dioxide, nitrogen dioxide, and ozone) and a spatial statistical model (PM with an aerodynamic diameter of 1 μm or less [PM1] and 2·5 μm or less [PM2·5]). We used two-level logistic regression and linear regression analyses to assess associations between exposure and outcomes, controlling for confounders. FINDINGS All the studied pollutants were significantly associated with increased diabetes prevalence (eg, the adjusted odds ratios associated with an increase in IQR for PM1, PM2·5, and PM10 were 1·13, 95% CI 1·04-1·22; 1·14, 1·03-1·25; and 1·20, 1·12-1·28, respectively). These air pollutants were also associated with higher concentrations of fasting glucose (0·04-0·09 mmol/L), 2 h glucose (0·10-0·19 mmol/L), and 2 h insulin (0·70-2·74 μU/L). No association was observed for the remaining biomarkers. Stratified analyses indicated greater effects on the individuals who were younger (<50 years) or overweight or obese. INTERPRETATION Long-term exposure to air pollution was associated with increased risk of diabetes in a Chinese population, particularly in individuals who were younger or overweight or obese. FUNDING The National Key Research and Development Program of China, the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities, the Guangdong Province Natural Science Foundation, the Career Development Fellowship of Australian National Health and Medical Research Council, and the Early Career Fellowship of Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhengmin Min Qian
- Department of Epidemiology, Saint Louis University, Saint Louis, MO, USA
| | - Shanshan Li
- College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, USA; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Gongbo Chen
- College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, USA; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Michael S Bloom
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China; Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Michael Elliott
- Department of Biostatistics, Saint Louis University, Saint Louis, MO, USA
| | - Kevin W Syberg
- Department of Health Management and Policy, Saint Louis University, Saint Louis, MO, USA
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Munich, Germany
| | - Si-Quan Wang
- Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Duo-Hong Chen
- Department of Air Quality Forecasting and Early Warning, Guangdong Environmental Monitoring Center, State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Protection Key Laboratory of Atmospheric Secondary Pollution, Guangzhou, China
| | - Yimin Liu
- Laboratory of Occupational Environment and Health Effects, Guangzhou Key Medical Discipline of Occupational Health Guardianship, Guangzhou Prevention and Treatment Center for Occupational Diseases, Guangzhou No 12 Hospital, Guangzhou, China
| | - Mika Komppula
- Finnish Meteorological Institute, Atmospheric Research Center of Eastern Finland, Kuopio, Finland
| | - Ari Leskinen
- Finnish Meteorological Institute, Atmospheric Research Center of Eastern Finland, Kuopio, Finland
| | - Kang-Kang Liu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Wen Zeng
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Li-Wen Hu
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuming Guo
- College for Public Health and Social Justice, Saint Louis University, Saint Louis, MO, USA; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
55
|
Martens DS, Nawrot TS. Air Pollution Stress and the Aging Phenotype: The Telomere Connection. Curr Environ Health Rep 2018; 3:258-69. [PMID: 27357566 DOI: 10.1007/s40572-016-0098-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies.
Collapse
Affiliation(s)
- Dries S Martens
- Centre for Environmental Sciences, Hasselt University, 3500, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3500, Hasselt, Belgium. .,Department of Public Health & Primary Care, Leuven University, 3000, Leuven, Belgium.
| |
Collapse
|
56
|
Calderón-Garcidueñas L, Avila-Ramírez J, Calderón-Garcidueñas A, González-Heredia T, Acuña-Ayala H, Chao CK, Thompson C, Ruiz-Ramos R, Cortés-González V, Martínez-Martínez L, García-Pérez MA, Reis J, Mukherjee PS, Torres-Jardón R, Lachmann I. Cerebrospinal Fluid Biomarkers in Highly Exposed PM2.5 Urbanites: The Risk of Alzheimer's and Parkinson's Diseases in Young Mexico City Residents. J Alzheimers Dis 2018; 54:597-613. [PMID: 27567860 DOI: 10.3233/jad-160472] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exposure to fine particulate matter (PM2.5) and ozone (O3) above US EPA standards is associated with Alzheimer's disease (AD) risk, while Mn toxicity induces parkinsonism. Mexico City Metropolitan Area (MCMA) children have pre- and postnatal sustained and high exposures to PM2.5, O3, polycyclic aromatic hydrocarbons, and metals. Young MCMA residents exhibit frontal tau hyperphosphorylation and amyloid-β (Aβ)1 - 42 diffuse plaques, and aggregated and hyperphosphorylated α-synuclein in olfactory nerves and key brainstem nuclei. We measured total prion protein (TPrP), total tau (T-tau), tau phosphorylated at threonine 181 (P-Tau), Aβ1-42, α-synuclein (t-α-syn and d-α-synuclein), BDNF, insulin, leptin, and/or inflammatory mediators, in 129 normal CSF samples from MCMA and clean air controls. Aβ1-42 and BDNF concentrations were significantly lower in MCMA children versus controls (p = 0.005 and 0.02, respectively). TPrP increased with cumulative PM2.5 up to 5 μg/m3 and then decreased, regardless of cumulative value or age (R2 = 0.56). TPrP strongly correlated with T-Tau and P-Tau, while d-α-synuclein showed a significant correlation with TNFα, IL10, and IL6 in MCMA children. Total synuclein showed an increment in childhood years related to cumulated PM2.5, followed by a decrease after age 12 years (R2 = 0.47), while d-α-synuclein exhibited a tendency to increase with cumulated PM2.5 (R2 = 0.30). CSF Aβ1-42, BDNF, α-synuclein, and TPrP changes are evolving in young MCMA urbanites historically showing underperformance in cognitive processes, odor identification deficits, downregulation of frontal cellular PrP, and neuropathological AD and PD hallmarks. Neuroprotection of young MCMA residents ought to be a public health priority.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rubén Ruiz-Ramos
- Instituto de Medicina Forense, Universidad Veracruzana, Boca del Río, México
| | | | | | | | - Jacques Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, Strasbourg, France
| | | | | | | |
Collapse
|
57
|
Calderón-Garcidueñas L, Reynoso-Robles R, Pérez-Guillé B, Mukherjee PS, Gónzalez-Maciel A. Combustion-derived nanoparticles, the neuroenteric system, cervical vagus, hyperphosphorylated alpha synuclein and tau in young Mexico City residents. ENVIRONMENTAL RESEARCH 2017; 159:186-201. [PMID: 28803148 DOI: 10.1016/j.envres.2017.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Mexico City (MC) young residents are exposed to high levels of fine particulate matter (PM2.5), have high frontal concentrations of combustion-derived nanoparticles (CDNPs), accumulation of hyperphosphorylated aggregated α-synuclein (α-Syn) and early Parkinson's disease (PD). Swallowed CDNPs have easy access to epithelium and submucosa, damaging gastrointestinal (GI) barrier integrity and accessing the enteric nervous system (ENS). This study is focused on the ENS, vagus nerves and GI barrier in young MC v clean air controls. Electron microscopy of epithelial, endothelial and neural cells and immunoreactivity of stomach and vagus to phosphorylated ɑ-synuclein Ser129 and Hyperphosphorylated-Tau (Htau) were evaluated and CDNPs measured in ENS. CDNPs were abundant in erythrocytes, unmyelinated submucosal, perivascular and intramuscular nerve fibers, ganglionic neurons and vagus nerves and associated with organelle pathology. ɑSyn and Htau were present in 25/27 MC gastric,15/26 vagus and 18/27 gastric and 2/26 vagus samples respectively. We strongly suggest CDNPs are penetrating and damaging the GI barrier and reaching preganglionic parasympathetic fibers and the vagus nerve. This work highlights the potential role of CDNPs in the neuroenteric hyperphosphorylated ɑ-Syn and tau pathology as seen in Parkinson and Alzheimer's diseases. Highly oxidative, ubiquitous CDNPs constitute a biologically plausible path into Parkinson's and Alzheimer's pathogenesis.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 14370, Mexico.
| | | | | | | | | |
Collapse
|
58
|
Chiu YHM, Hsu HHL, Wilson A, Coull BA, Pendo MP, Baccarelli A, Kloog I, Schwartz J, Wright RO, Taveras EM, Wright RJ. Prenatal particulate air pollution exposure and body composition in urban preschool children: Examining sensitive windows and sex-specific associations. ENVIRONMENTAL RESEARCH 2017; 158:798-805. [PMID: 28759881 PMCID: PMC5570541 DOI: 10.1016/j.envres.2017.07.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 06/14/2017] [Accepted: 07/11/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Evolving animal studies and limited epidemiological data show that prenatal air pollution exposure is associated with childhood obesity. Timing of exposure and child sex may play an important role in these associations. We applied an innovative method to examine sex-specific sensitive prenatal windows of exposure to PM2.5 on anthropometric measures in preschool-aged children. METHODS Analyses included 239 children born ≥ 37 weeks gestation in an ethnically-mixed lower-income urban birth cohort. Prenatal daily PM2.5 exposure was estimated using a validated satellite-based spatio-temporal model. Body mass index z-score (BMI-z), fat mass, % body fat, subscapular and triceps skinfold thickness, waist and hip circumferences and waist-to-hip ratio (WHR) were assessed at age 4.0 ± 0.7 years. Using Bayesian distributed lag interaction models (BDLIMs), we examined sex differences in sensitive windows of weekly averaged PM2.5 levels on these measures, adjusting for child age, maternal age, education, race/ethnicity, and pre-pregnancy BMI. RESULTS Mothers were primarily Hispanic (55%) or Black (26%), had ≤ 12 years of education (66%) and never smoked (80%). Increased PM2.5 exposure 8-17 and 15-22 weeks gestation was significantly associated with increased BMI z-scores and fat mass in boys, but not in girls. Higher PM2.5 exposure 10-29 weeks gestation was significantly associated with increased WHR in girls, but not in boys. Prenatal PM2.5 was not significantly associated with other measures of body composition. Estimated cumulative effects across pregnancy, accounting for sensitive windows and within-window effects, were 0.21 (95%CI = 0.01-0.37) for BMI-z and 0.36 (95%CI = 0.12-0.68) for fat mass (kg) in boys, and 0.02 (95%CI = 0.01-0.03) for WHR in girls, all per µg/m3 increase in PM2.5. CONCLUSIONS Increased prenatal PM2.5 exposure was more strongly associated with indices of increased whole body size in boys and with an indicator of body shape in girls. Methods to better characterize vulnerable windows may provide insight into underlying mechanisms contributing to sex-specific associations.
Collapse
Affiliation(s)
- Yueh-Hsiu Mathilda Chiu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsiao-Hsien Leon Hsu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mathew P Pendo
- Center for Medicine, Health and Society, Vanderbilt University College of Arts and Science, Nashville, TN, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Israel
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elsie M Taveras
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
59
|
Calderón-Garcidueñas L, González-González LO, Kulesza RJ, Fech TM, Pérez-Guillé G, Luna MAJB, Soriano-Rosales RE, Solorio E, Miramontes-Higuera JDJ, Gómez-Maqueo Chew A, Bernal-Morúa AF, Mukherjee PS, Torres-Jardón R, Mills PC, Wilson WJ, Pérez-Guillé B, D'Angiulli A. Exposures to fine particulate matter (PM 2.5) and ozone above USA standards are associated with auditory brainstem dysmorphology and abnormal auditory brainstem evoked potentials in healthy young dogs. ENVIRONMENTAL RESEARCH 2017; 158:324-332. [PMID: 28672130 DOI: 10.1016/j.envres.2017.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/29/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Delayed central conduction times in the auditory brainstem have been observed in Mexico City (MC) healthy children exposed to fine particulate matter (PM2.5) and ozone (O3) above the current United States Environmental Protection Agency (US-EPA) standards. MC children have α synuclein brainstem accumulation and medial superior olivary complex (MSO) dysmorphology. The present study used a dog model to investigate the potential effects of air pollution on the function and morphology of the auditory brainstem. METHODOLOGY Twenty-four dogs living in clean air v MC, average age 37.1 ± 26.3 months, underwent brainstem auditory evoked potential (BAEP) measurements. Eight dogs (4 MC, 4 Controls) were analysed for auditory brainstem morphology and histopathology. RESULTS MC dogs showed ventral cochlear nuclei hypotrophy and MSO dysmorphology with a significant decrease in cell body size, decreased neuronal packing density with regions in the nucleus devoid of neurons and marked gliosis. MC dogs showed significant delayed BAEP absolute wave I, III and V latencies compared to controls. CONCLUSIONS MC dogs show auditory nuclei dysmorphology and BAEPs consistent with an alteration of the generator sites of the auditory brainstem response waveform. This study puts forward the usefulness of BAEPs to study auditory brainstem neurodegenerative changes associated with air pollution in dogs. Recognition of the role of non-invasive BAEPs in urban dogs is warranted to elucidate novel neurodegenerative pathways link to air pollution and a promising early diagnostic strategy for Alzheimer's Disease.
Collapse
Affiliation(s)
| | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | - Tatiana M Fech
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | | | | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paul C Mills
- The University of Queensland, QLD 4072, Australia
| | | | | | - Amedeo D'Angiulli
- Department of Psychology, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| |
Collapse
|
60
|
Ku T, Li B, Gao R, Zhang Y, Yan W, Ji X, Li G, Sang N. NF-κB-regulated microRNA-574-5p underlies synaptic and cognitive impairment in response to atmospheric PM 2.5 aspiration. Part Fibre Toxicol 2017; 14:34. [PMID: 28851397 PMCID: PMC5575838 DOI: 10.1186/s12989-017-0215-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022] Open
Abstract
Background PM2.5 (particulate matter ≤ 2.5 μm) is one of the leading environmental risk factors for the global burden of disease. Whereas increasing evidence has linked the adverse roles of PM2.5 with cardiovascular and respiratory diseases, limited but growing emerging evidence suggests that PM2.5 exposure can affect the nervous system, causing neuroinflammation, synaptic dysfunction and cognitive deterioration. However, the molecular mechanisms underlying the synaptic and cognitive deficits elicited by PM2.5 exposure are largely unknown. Methods C57BL/6 mice received oropharyngeal aspiration of PM2.5 (1 and 5 mg/kg bw) every other day for 4 weeks. The mice were also stereotaxically injected with β-site amyloid precursor protein cleaving enzyme 1 (β-secretase, BACE1) shRNA or LV-miR-574-5p lentiviral constructs in the absence or presence of PM2.5 aspiration at 5 mg/kg bw every other day for 4 weeks. Spatial learning and memory were assessed with the Morris water maze test, and synaptic function integrity was evaluated with electrophysiological recordings of long-term potentiation (LTP) and immunoblot analyses of glutamate receptor subunit expression. The expression of α-secretase (ADAM10), BACE1, and γ-secretase (nicastrin) and the synthesis and accumulation of amyloid β (Aβ) were measured by immunoblot and enzyme-linked immunosorbent assay (ELISA). MicroRNA (miRNA) expression was screened with a microRNA microarray analysis and confirmed by real-time quantitative reverse transcription PCR (qRT-PCR) analysis. Dual-luciferase reporter gene and chromatin immunoprecipitation (ChIP) analyses were used to detect the binding of miR-574-5p in the 3’UTR of BACE1 and NF-κB p65 in the promoter of miR-574-5p, respectively. Results PM2.5 aspiration caused neuroinflammation and deteriorated synaptic function integrity and spatial learning and memory, and the effects were associated with the induction of BACE1. The action was mediated by NF-κB p65-regulated downregulation of miR-574-5p, which targets BACE1. Overexpression of miR-574-5p in the hippocampal region decreased BACE1 expression, restored synaptic function, and improved spatial memory and learning following PM2.5 exposure. Conclusions Taken together, our findings reveal a novel molecular mechanism underlying impaired synaptic and cognitive function following exposure to PM2.5, suggesting that miR-574-5p is a potential intervention target for the prevention and treatment of PM2.5-induced neurological disorders. Electronic supplementary material The online version of this article (10.1186/s12989-017-0215-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ben Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yingying Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Wei Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
61
|
Ponomarenko P, Chadaeva I, Rasskazov DA, Sharypova E, Kashina EV, Drachkova I, Zhechev D, Ponomarenko MP, Savinkova LK, Kolchanov N. Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters. Front Aging Neurosci 2017; 9:231. [PMID: 28775688 PMCID: PMC5517495 DOI: 10.3389/fnagi.2017.00231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 12/14/2022] Open
Abstract
While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become interesting to the general population [may help to choose a lifestyle (in childhood, adolescence, and adulthood) that can reduce the risks of sporadic AD, its comorbidities, and complications in the elderly].
Collapse
Affiliation(s)
- Petr Ponomarenko
- Children's Hospital Los Angeles, University of Southern CaliforniaLos Angeles, CA, United States
| | - Irina Chadaeva
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Dmitry A Rasskazov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Ekaterina Sharypova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Elena V Kashina
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Irina Drachkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Dmitry Zhechev
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Mikhail P Ponomarenko
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| | - Ludmila K Savinkova
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia
| | - Nikolay Kolchanov
- Division for System Biology, Institute of Cytology and Genetics of Siberian Branch of Russian Academy of SciencesNovosibirsk, Russia.,Faculty of Natural Sciences, Novosibirsk State UniversityNovosibirsk, Russia
| |
Collapse
|
62
|
González-Maciel A, Reynoso-Robles R, Torres-Jardón R, Mukherjee PS, Calderón-Garcidueñas L. Combustion-Derived Nanoparticles in Key Brain Target Cells and Organelles in Young Urbanites: Culprit Hidden in Plain Sight in Alzheimer’s Disease Development. J Alzheimers Dis 2017; 59:189-208. [DOI: 10.3233/jad-170012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
63
|
Koman PD, Mancuso P. Ozone Exposure, Cardiopulmonary Health, and Obesity: A Substantive Review. Chem Res Toxicol 2017; 30:1384-1395. [PMID: 28574698 DOI: 10.1021/acs.chemrestox.7b00077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From 1999-2014, obesity prevalence increased among adults and youth. Obese individuals may be uniquely susceptible to the proinflammatory effects of ozone because obese humans and animals have been shown to experience a greater decline in lung function than normal-weight subjects. Obesity is independently associated with limitations in lung mechanics with increased ozone dose. However, few epidemiologic studies have examined the interaction between excess weight and ozone exposure among adults. Using PubMed keyword searches and reference lists, we reviewed epidemiologic evidence to identify potential response-modifying factors and determine if obese or overweight adults are at increased risk of ozone-related health effects. We initially identified 170 studies, of which seven studies met the criteria of examining the interaction of excess weight and ozone exposure on cardiopulmonary outcomes in adults, including four short-term ozone exposure studies in controlled laboratory settings and three community epidemiologic studies. In the studies identified, obesity was associated with decreased lung function and increased inflammatory mediators. Results were inconclusive about the effect modification when data were stratified by sex. Obese and overweight populations should be considered as candidate at-risk groups for epidemiologic studies of cardiopulmonary health related to air pollution exposures. Air pollution is a modifiable risk factor that may decrease lung function among obese individuals with implications for environmental and occupational health policy.
Collapse
Affiliation(s)
- Patricia D Koman
- Department of Environmental Health Sciences, ‡Nutritional Sciences, and §Graduate Program in Immunology, School of Public Health, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Peter Mancuso
- Department of Environmental Health Sciences, ‡Nutritional Sciences, and §Graduate Program in Immunology, School of Public Health, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
64
|
Barrea L, Savastano S, Di Somma C, Savanelli MC, Nappi F, Albanese L, Orio F, Colao A. Low serum vitamin D-status, air pollution and obesity: A dangerous liaison. Rev Endocr Metab Disord 2017; 18:207-214. [PMID: 27645613 PMCID: PMC5486902 DOI: 10.1007/s11154-016-9388-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this review is to provide a general overview of the possible associations among the vitamin D status, air pollution and obesity. Sunlight exposure accounts in humans for more than 90 % of the production of vitamin D. Among emerging factors influencing sunlight-induced synthesis of vitamin D, prospective and observational studies proved that air pollution constitutes an independent risk factor in the pathogenesis of vitamin D hypovitaminosis. In addition, environmental pollutants can affect risk of obesity when inhaled, in combination with unhealthy diet and lifestyle. In turn, obesity is closely associated with a low vitamin D status and many possible mechanisms have been proposed to explain this association. The associations of air pollution with low vitamin D status on the hand and with obesity on the other hand, could provide a rationale for considering obesity as a further link between air pollution and low vitamin D status. In this respect, a vicious cycle could operate among low vitamin D status, air pollution, and obesity, with additive detrimental effects on cardio-metabolic risk in obese individuals. Besides vitamin D supplementation, nutrient combination, used to maximize the protective effects against air pollution, might also contribute to improve the vitamin D status by attenuating the "obesogen" effects of air pollution.
Collapse
Affiliation(s)
- Luigi Barrea
- I. O.S. & COLEMAN Srl, 80011 Acerra, Naples, Italy
| | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | - Lidia Albanese
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Francesco Orio
- Department of Sports Science and Wellness, “Parthenope” University of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
65
|
Calderón-Garcidueñas L, de la Monte SM. Apolipoprotein E4, Gender, Body Mass Index, Inflammation, Insulin Resistance, and Air Pollution Interactions: Recipe for Alzheimer's Disease Development in Mexico City Young Females. J Alzheimers Dis 2017; 58:613-630. [PMID: 28527212 PMCID: PMC9996388 DOI: 10.3233/jad-161299] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Given the epidemiological trends of increasing Alzheimer's disease (AD) and growing evidence that exposure and lifestyle factors contribute to AD risk and pathogenesis, attention should be paid to variables such as air pollution, in order to reduce rates of cognitive decline and dementia. Exposure to fine particulate matter (PM2.5) and ozone (O3) above the US EPA standards is associated with AD risk. Mexico City children experienced pre- and postnatal high exposures to PM2.5, O3, combustion-derived iron-rich nanoparticles, metals, polycyclic aromatic hydrocarbons, and endotoxins. Exposures are associated with early brain gene imbalance in oxidative stress, inflammation, innate and adaptive immune responses, along with epigenetic changes, accumulation of misfolded proteins, cognitive deficits, and brain structural and metabolic changes. The Apolipoprotein E (APOE) 4 allele, the most prevalent genetic risk for AD, plays a key role in the response to air pollution in young girls. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2 SD from average IQ). This review focused on the relationships between gender, BMI, systemic and neural inflammation, insulin resistance, hyperleptinemia, dyslipidemia, vascular risk factors, and central nervous system involvement in APOE4 urbanites exposed to PM2.5 and magnetite combustion-derived iron-rich nanoparticles that can reach the brain. APOE4 young female heterozygous carriers constitute a high-risk group for a fatal disease: AD. Multidisciplinary intervention strategies could be critical for prevention or amelioration of cognitive deficits and long-term AD progression in young individuals at high risk.
Collapse
|
66
|
Wolf K, Popp A, Schneider A, Breitner S, Hampel R, Rathmann W, Herder C, Roden M, Koenig W, Meisinger C, Peters A. Association Between Long-term Exposure to Air Pollution and Biomarkers Related to Insulin Resistance, Subclinical Inflammation, and Adipokines. Diabetes 2016; 65:3314-3326. [PMID: 27605624 DOI: 10.2337/db15-1567] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 08/09/2016] [Indexed: 11/13/2022]
Abstract
Insulin resistance (IR) is present long before the onset of type 2 diabetes and results not only from inherited and lifestyle factors but also likely from environmental conditions. We investigated the association between modeled long-term exposure to air pollution at residence and biomarkers related to IR, subclinical inflammation, and adipokines. Data were based on 2,944 participants of the KORA (Cooperative Health Research in the Region Augsburg) F4 study conducted in southern Germany (2006-2008). We analyzed associations between individual air pollution concentration estimated by land use regression and HOMA-IR, glucose, insulin, HbA1c, leptin, and high-sensitivity C-reactive protein levels from fasting samples using multivariable linear regression models. Effect estimates were calculated for the whole study population and subgroups of individuals who did not have diabetes, had prediabetes, or had diabetes. Among all participants, a 7.9 μg/m3 increment in particulate matter of <10 μm was associated with higher HOMA-IR (15.6% [95% CI 4.0; 28.6]) and insulin (14.5% [3.6; 26.5]). Nitrogen dioxide was associated with HOMA-IR, glucose, insulin, and leptin. Effect estimates for individuals with prediabetes were much larger and highly statistically significant, whereas individuals who did not have diabetes or had diabetes showed rather weak associations. No association was seen for HbA1c level. Our results suggested an association between long-term exposure to air pollution and IR in the general population that was attributable mainly to individuals with prediabetes.
Collapse
Affiliation(s)
- Kathrin Wolf
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Anita Popp
- Ludwig-Maximilians-Universität (LMU) Munich, Institute for Medical Informatics, Biometrics and Epidemiology, Munich, Germany
| | - Alexandra Schneider
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Susanne Breitner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Regina Hampel
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wolfgang Koenig
- University of Ulm Medical Center, Department of Internal Medicine II-Cardiology, Ulm, Germany
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christa Meisinger
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Annette Peters
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | |
Collapse
|
67
|
Calderón-Garcidueñas L, Jewells V, Galaz-Montoya C, van Zundert B, Pérez-Calatayud A, Ascencio-Ferrel E, Valencia-Salazar G, Sandoval-Cano M, Carlos E, Solorio E, Acuña-Ayala H, Torres-Jardón R, D'Angiulli A. Interactive and additive influences of Gender, BMI and Apolipoprotein 4 on cognition in children chronically exposed to high concentrations of PM2.5 and ozone. APOE 4 females are at highest risk in Mexico City. ENVIRONMENTAL RESEARCH 2016; 150:411-422. [PMID: 27376929 DOI: 10.1016/j.envres.2016.06.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/07/2016] [Accepted: 06/16/2016] [Indexed: 05/06/2023]
Abstract
Children's air pollution exposures are associated with systemic and brain inflammation and the early hallmarks of Alzheimer's disease (AD). The Apolipoprotein E (APOE) 4 allele is the most prevalent genetic risk for AD, with higher risk for women. We assessed whether gender, BMI, APOE and metabolic variables in healthy children with high exposures to ozone and fine particulate matter (PM2.5) influence cognition. The Wechsler Intelligence Scale for Children (WISC-R) was administered to 105 Mexico City children (12.32±5.4 years, 69 APOE 3/3 and 36 APOE 3/4). APOE 4v 3 children showed decrements on attention and short-term memory subscales, and below-average scores in Verbal, Performance and Full Scale IQ. APOE 4 females had higher BMI and females with normal BMI between 75-94% percentiles had the highest deficits in Total IQ, Performance IQ, Digit Span, Picture Arrangement, Block Design and Object Assembly. Fasting glucose was significantly higher in APOE 4 children p=0.006, while Gender was the main variable accounting for the difference in insulin, HOMA-IR and leptin (p<.05). Gender, BMI and APOE influence children's cognitive responses to air pollution and glucose is likely a key player. APOE 4 heterozygous females with >75% to <94% BMI percentiles are at the highest risk of severe cognitive deficits (1.5-2SD from average IQ). Young female results highlight the urgent need for gender-targeted health programmes to improve cognitive responses. Multidisciplinary intervention strategies could provide paths for prevention or amelioration of female air pollution targeted cognitive deficits and possible long-term AD progression.
Collapse
Affiliation(s)
| | - Valerie Jewells
- University of North Carolina, Medical School, Chapel Hill, NC, USA
| | | | - Brigitte van Zundert
- Centro de Investigaciones Biomédicas, Universidad Andrés Bello, Santiago de Chile, Chile
| | | | | | | | | | | | | | | | | | - Amedeo D'Angiulli
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
68
|
Peng X, Xing P, Li X, Qian Y, Song F, Bai Z, Han G, Lei H. Towards Personalized Intervention for Alzheimer's Disease. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:289-297. [PMID: 27693548 PMCID: PMC5093853 DOI: 10.1016/j.gpb.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/14/2016] [Accepted: 01/31/2016] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) remains to be a grand challenge for the international community despite over a century of exploration. A key factor likely accounting for such a situation is the vast heterogeneity in the disease etiology, which involves very complex and divergent pathways. Therefore, intervention strategies shall be tailored for subgroups of AD patients. Both demographic and in-depth information is needed for patient stratification. The demographic information includes primarily APOE genotype, age, gender, education, environmental exposure, life style, and medical history, whereas in-depth information stems from genome sequencing, brain imaging, peripheral biomarkers, and even functional assays on neurons derived from patient-specific induced pluripotent cells (iPSCs). Comprehensive information collection, better understanding of the disease mechanisms, and diversified strategies of drug development would help with more effective intervention in the foreseeable future.
Collapse
Affiliation(s)
- Xing Peng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqi Xing
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuhui Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Qian
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhai Song
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhouxian Bai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangchun Han
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Cunji Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing 100053, China.
| |
Collapse
|
69
|
Chan EAW, Buckley B, Farraj AK, Thompson LC. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction. Pharmacol Ther 2016; 165:63-78. [PMID: 27222357 PMCID: PMC6390286 DOI: 10.1016/j.pharmthera.2016.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease have been explored, although linkage with specific factors or genes remains limited. These hypotheses may or may not also lead to particulate matter-induced cardiac dysfunction. Evidence pointing to autocrine/paracrine signaling systems as modulators of cardiac dysfunction has increased interest in the emerging role of endothelins as mediators of cardiac function following particulate matter exposure. Endothelin-1, a well-described small peptide expressed in the pulmonary and cardiovascular systems, is best known for its ability to constrict blood vessels, although it can also induce extravascular effects. Research on the role of endothelins in the context of air pollution has largely focused on vascular effects, with limited investigation of responses resulting from the direct effects of endothelins on cardiac tissue. This represents a significant knowledge gap in air pollution health effects research, given the abundance of endothelin receptors found on cardiac tissue and the ability of endothelin-1 to modulate cardiac contractility, heart rate, and rhythm. The plausibility of endothelin-1 as a mediator of particulate matter-induced cardiac dysfunction is further supported by the therapeutic utility of certain endothelin receptor antagonists. The present review examines the possibility that endothelin-1 release caused by exposure to PM directly modulates extravascular effects on the heart, deleteriously altering cardiac function.
Collapse
Affiliation(s)
- Elizabeth A W Chan
- Oak Ridge Institute for Science and Education (ORISE) Fellow at the National Center for Environmental Assessment, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Barbara Buckley
- National Center for Environmental Assessment, U.S. EPA, Research Triangle Park, NC, USA
| | - Aimen K Farraj
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA
| | - Leslie C Thompson
- Environmental Public Health Division, U.S. EPA, Research Triangle Park, NC, USA.
| |
Collapse
|
70
|
Calderón-Garcidueñas L, San Juan Chávez V, Vacaseydel-Aceves NB, Calderón-Sánchez R, Macías-Escobedo E, Frías C, Giacometto M, Velasquez L, Félix-Villarreal R, Martin JD, Draheim C, Engle RW. Chocolate, Air Pollution and Children's Neuroprotection: What Cognition Tools should be at Hand to Evaluate Interventions? Front Pharmacol 2016; 7:232. [PMID: 27563291 PMCID: PMC4980563 DOI: 10.3389/fphar.2016.00232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022] Open
Abstract
Millions of children across the world are exposed to multiple sources of indoor and outdoor air pollutants, including high concentrations of fine particulate matter (PM2.5) and ozone (O3). The established link between exposure to PM2.5, brain structural, volumetric and metabolic changes, severe cognitive deficits (1.5-2 SD from average IQ) in APOE 4 heterozygous females with >75 − < 94% BMI percentiles, and the presence of Alzheimer's disease (AD) hallmarks in urban children and young adults necessitates exploration of ways to protect these individuals from the deleterious neural effects of pollution exposure. Emerging research suggests that cocoa interventions may be a viable option for neuroprotection, with evidence suggesting that early cocoa interventions could limit the risk of cognitive and developmental concerns including: endothelial dysfunction, cerebral hypoperfusion, neuroinflammation, and metabolic detrimental brain effects. Currently, however, it is not clear how early we should implement consumption of cocoa to optimize its neuroprotective effects. Moreover, we have yet to identify suitable instruments for evaluating cognitive responses to these interventions in clinically healthy children, teens, and young adults. An approach to guide the selection of cognitive tools should take into account neuropsychological markers of cognitive declines in patients with Alzheimer's neuropathology, the distinct patterns of memory impairment between early and late onset AD, and the key literature associating white matter integrity and poor memory binding performance in cases of asymptomatic familial AD. We highlight potential systemic and neural benefits of cocoa consumption. We also highlight Working Memory Capacity (WMC) and attention control tasks as opened avenues for exploration in the air pollution scenario. Exposures to air pollutants during brain development have serious brain consequences in the short and long term and reliable cognition tools should be at hand to evaluate interventions.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Biomedical Sciences, University of MontanaMissoula, MT, USA; Universidad del Valle de MéxicoCiudad de México, Mexico
| | | | | | | | | | | | | | - Luis Velasquez
- Facultad de Medicina, Universidad Andrés Bello Santiago de Chile, Chile
| | | | - Jessie D Martin
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| | | | - Randall W Engle
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
71
|
Calderón-Garcidueñas L, Mora-Tiscareño A, Melo-Sánchez G, Rodríguez-Díaz J, Torres-Jardón R, Styner M, Mukherjee PS, Lin W, Jewells V. A Critical Proton MR Spectroscopy Marker of Alzheimer's Disease Early Neurodegenerative Change: Low Hippocampal NAA/Cr Ratio Impacts APOE ɛ4 Mexico City Children and Their Parents. J Alzheimers Dis 2016; 48:1065-75. [PMID: 26402110 DOI: 10.3233/jad-150415] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Severe air pollution exposures produce systemic, respiratory, myocardial, and brain inflammation and Alzheimer's disease (AD) hallmarks in clinically healthy children. We tested whether hippocampal metabolite ratios are associated with contrasting levels of air pollution, APOE, and body mass index (BMI) in paired healthy children and one parent sharing the same APOE alleles. We used 1H-MRS to interrogate bilateral hippocampal single-voxel in 57 children (12.45 ± 3.4 years) and their 48 parents (37.5 ± 6.78 years) from a low pollution city versus Mexico City (MC). NAA/Cr, Cho/Cr, and mI/Cr metabolite ratios were analyzed. The right hippocampus NAA/Cr ratio was significantly different between cohorts (p = 0.007). The NAA/Cr ratio in right hippocampus in controls versus APOE ɛ4 MC children and in left hippocampus in MC APOE ɛ4 parents versus their children was significantly different after adjusting for age, gender, and BMI (p = 0.027 and 0.01, respectively). The NAA/Cr ratio is considered reflective of neuronal density/functional integrity/loss of synapses/higher pTau burden, thus a significant decrease in hippocampal NAA/Cr ratios may constitute a spectral marker of early neurodegeneration in young urbanites. Decreases in NAA/Cr correlate well with cognitive function, behavioral symptoms, and dementia severity; thus, since the progression of AD starts decades before clinical diagnosis, our findings support the hypothesis that under chronic exposures to fine particulate matter and ozone above the standards, neurodegenerative processes start in childhood and APOE ɛ4 carriers are at higher risk. Gene and environmental factors are critical in the development of AD and the identification and neuroprotection of young urbanites at high risk must become a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The Center for Structural and Functional Neurosciences, The University of Montana, Missoula, MT, USA.,Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Saltillo, Saltillo, Coahuila, México
| | | | - Gastón Melo-Sánchez
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Saltillo, Saltillo, Coahuila, México
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martin Styner
- Department of Psychiatry and Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | | | - Weili Lin
- Neuroradiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Valerie Jewells
- Neuroradiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
72
|
Developmental Exposure to Environmental Chemicals and Metabolic Changes in Children. Curr Probl Pediatr Adolesc Health Care 2016; 46:255-85. [PMID: 27401018 DOI: 10.1016/j.cppeds.2016.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The incidence of childhood obesity, type 2 diabetes, and other forms of metabolic disease have been rising over the past several decades. Although diet and physical activity play important roles in these trends, other environmental factors also may contribute to this significant public health issue. In this article, we discuss the possibility that widespread exposure to endocrine-disrupting chemicals (EDCs) may contribute to the development of metabolic diseases in children. We summarize the epidemiological evidence on exposure to environmental chemicals during early development and metabolic outcomes in infants and children. Prenatal exposure to EDCs, particularly the persistent organic pollutant DDT and its metabolite DDE, may influence growth patterns during infancy and childhood. The altered growth patterns associated with EDCs vary according to exposure level, sex, exposure timing, pubertal status, and age at which growth is measured. Early exposure to air pollutants also is linked to impaired metabolism in infants and children. As a result of these and other studies, professional health provider societies have called for a reduction in environmental chemical exposures. We summarize the resources available to health care providers to counsel patients on how to reduce chemical exposures. We conclude with a discussion of environmental policies that address chemical exposures and ultimately aim to improve public health.
Collapse
|
73
|
Potential Harmful Effects of PM2.5 on Occurrence and Progression of Acute Coronary Syndrome: Epidemiology, Mechanisms, and Prevention Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13080748. [PMID: 27463723 PMCID: PMC4997434 DOI: 10.3390/ijerph13080748] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/13/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
The harmful effects of particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and its association with acute coronary syndrome (ACS) has gained increased attention in recent years. Significant associations between PM2.5 and ACS have been found in most studies, although sometimes only observed in specific subgroups. PM2.5-induced detrimental effects and ACS arise through multiple mechanisms, including endothelial injury, an enhanced inflammatory response, oxidative stress, autonomic dysfunction, and mitochondria damage as well as genotoxic effects. These effects can lead to a series of physiopathological changes including coronary artery atherosclerosis, hypertension, an imbalance between energy supply and demand to heart tissue, and a systemic hypercoagulable state. Effective strategies to prevent the harmful effects of PM2.5 include reducing pollution sources of PM2.5 and population exposure to PM2.5, and governments and organizations publicizing the harmful effects of PM2.5 and establishing air quality standards for PM2.5. PM2.5 exposure is a significant risk factor for ACS, and effective strategies with which to prevent both susceptible and healthy populations from an increased risk for ACS have important clinical significance in the prevention and treatment of ACS.
Collapse
|
74
|
Cheng Z, Lin J, Qian Q. Role of Vitamin D in Cognitive Function in Chronic Kidney Disease. Nutrients 2016; 8:nu8050291. [PMID: 27187460 PMCID: PMC4882704 DOI: 10.3390/nu8050291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 04/23/2016] [Accepted: 05/04/2016] [Indexed: 01/08/2023] Open
Abstract
Both vitamin D deficiency and cognitive impairment are common in patients with chronic kidney disease (CKD). Vitamin D exerts neuroprotective and regulatory roles in the central nervous system. Hypovitaminosis D has been associated with muscle weakness and bone loss, cardiovascular diseases (hypertension, diabetes and hyperlipidemia), inflammation, oxidative stress, immune suppression and neurocognitive impairment. The combination of hypovitaminosis D and CKD can be even more debilitating, as cognitive impairment can develop and progress through vitamin D-associated and CKD-dependent/independent processes, leading to significant morbidity and mortality. Although an increasingly recognized comorbidity in CKD, cognitive impairment remains underdiagnosed and often undermanaged. Given the association of cognitive decline and hypovitaminosis D and their deleterious effects in CKD patients, determination of vitamin D status and when appropriate, supplementation, in conjunction with neuropsychological screening, should be considered integral to the clinical care of the CKD population.
Collapse
Affiliation(s)
- Zhen Cheng
- National Clinical Research Center of Kidney Disease, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210016, China.
- Division of Nephrology and Hypertension Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | - Jing Lin
- Division of Nephrology and Hypertension Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Qi Qian
- Division of Nephrology and Hypertension Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
75
|
Calderón-Garcidueñas L, Reynoso-Robles R, Vargas-Martínez J, Gómez-Maqueo-Chew A, Pérez-Guillé B, Mukherjee PS, Torres-Jardón R, Perry G, Gónzalez-Maciel A. Prefrontal white matter pathology in air pollution exposed Mexico City young urbanites and their potential impact on neurovascular unit dysfunction and the development of Alzheimer's disease. ENVIRONMENTAL RESEARCH 2016; 146:404-17. [PMID: 26829765 DOI: 10.1016/j.envres.2015.12.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/27/2015] [Indexed: 05/20/2023]
Abstract
Millions of urban children are chronically exposed to high concentrations of air pollutants, i.e., fine particulate matter (PM2.5) and ozone, associated with increased risk for Alzheimer's disease. Compared with children living with clear air those in Mexico City (MC) exhibit systemic, brain and intrathecal inflammation, low CSF Aβ42, breakdown of the BBB, attention and short-term memory deficits, prefrontal white matter hyperintensities, damage to epithelial and endothelial barriers, tight junction and neural autoantibodies, and Alzheimer and Parkinson's hallmarks. The prefrontal white matter is a target of air pollution. We examined by light and electron microscopy the prefrontal white matter of MC dogs (n: 15, age 3.17±0.74 years), children and teens (n: 34, age: 12.64±4.2 years) versus controls. Major findings in MC residents included leaking capillaries and small arterioles with extravascular lipids and erythrocytes, lipofuscin in pericytes, smooth muscle and endothelial cells (EC), thickening of cerebrovascular basement membranes with small deposits of amyloid, patchy absence of the perivascular glial sheet, enlarged Virchow-Robin spaces and nanosize particles (20-48nm) in EC, basement membranes, axons and dendrites. Tight junctions, a key component of the neurovascular unit (NVU) were abnormal in MC versus control dogs (χ(2)<0.0001), and white matter perivascular damage was significantly worse in MC dogs (p=0.002). The integrity of the NVU, an interactive network of vascular, glial and neuronal cells is compromised in MC young residents. Characterizing the early NVU damage and identifying biomarkers of neurovascular dysfunction may provide a fresh insight into Alzheimer pathogenesis and open opportunities for pediatric neuroprotection.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT 59812, USA; Universidad del Valle de México, Mexico City 04850, México.
| | | | | | | | | | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City 04310, México
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
76
|
Thomson EM, Pal S, Guénette J, Wade MG, Atlas E, Holloway AC, Williams A, Vincent R. Ozone Inhalation Provokes Glucocorticoid-Dependent and -Independent Effects on Inflammatory and Metabolic Pathways. Toxicol Sci 2016; 152:17-28. [DOI: 10.1093/toxsci/kfw061] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|