51
|
Wojnarowicz MW, Fisher AM, Minaeva O, Goldstein LE. Considerations for Experimental Animal Models of Concussion, Traumatic Brain Injury, and Chronic Traumatic Encephalopathy-These Matters Matter. Front Neurol 2017; 8:240. [PMID: 28620350 PMCID: PMC5451508 DOI: 10.3389/fneur.2017.00240] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
Animal models of concussion, traumatic brain injury (TBI), and chronic traumatic encephalopathy (CTE) are widely available and routinely deployed in laboratories around the world. Effective animal modeling requires careful consideration of four basic principles. First, animal model use must be guided by clarity of definitions regarding the human disease or condition being modeled. Concussion, TBI, and CTE represent distinct clinical entities that require clear differentiation: concussion is a neurological syndrome, TBI is a neurological event, and CTE is a neurological disease. While these conditions are all associated with head injury, the pathophysiology, clinical course, and medical management of each are distinct. Investigators who use animal models of these conditions must take into account these clinical distinctions to avoid misinterpretation of results and category mistakes. Second, model selection must be grounded by clarity of purpose with respect to experimental questions and frame of reference of the investigation. Distinguishing injury context ("inputs") from injury consequences ("outputs") may be helpful during animal model selection, experimental design and execution, and interpretation of results. Vigilance is required to rout out, or rigorously control for, model artifacts with potential to interfere with primary endpoints. The widespread use of anesthetics in many animal models illustrates the many ways that model artifacts can confound preclinical results. Third, concordance between key features of the animal model and the human disease or condition being modeled is required to confirm model biofidelity. Fourth, experimental results observed in animals must be confirmed in human subjects for model validation. Adherence to these principles serves as a bulwark against flawed interpretation of results, study replication failure, and confusion in the field. Implementing these principles will advance basic science discovery and accelerate clinical translation to benefit people affected by concussion, TBI, and CTE.
Collapse
Affiliation(s)
- Mark W Wojnarowicz
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States
| | - Andrew M Fisher
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States.,Boston University College of Engineering, Boston, MA, United States
| | - Olga Minaeva
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States.,Boston University College of Engineering, Boston, MA, United States
| | - Lee E Goldstein
- Molecular Aging and Development Laboratory, Boston University School of Medicine, Boston, MA, United States.,Boston University College of Engineering, Boston, MA, United States.,CTE Program, Boston University Alzheimer's Disease Center, Boston, MA, United States
| |
Collapse
|
52
|
Lagraoui M, Sukumar G, Latoche JR, Maynard SK, Dalgard CL, Schaefer BC. Salsalate treatment following traumatic brain injury reduces inflammation and promotes a neuroprotective and neurogenic transcriptional response with concomitant functional recovery. Brain Behav Immun 2017; 61:96-109. [PMID: 27939247 PMCID: PMC5316369 DOI: 10.1016/j.bbi.2016.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation plays a critical role in the pathogenesis of traumatic brain injury (TBI). TBI induces rapid activation of astrocytes and microglia, infiltration of peripheral leukocytes, and secretion of inflammatory cytokines. In the context of modest or severe TBI, such inflammation contributes to tissue destruction and permanent brain damage. However, it is clear that the inflammatory response is also necessary to promote post-injury healing. To date, anti-inflammatory therapies, including the broad class of non-steroidal anti-inflammatory drugs (NSAIDs), have met with little success in treatment of TBI, perhaps because these drugs have inhibited both the tissue-damaging and repair-promoting aspects of the inflammatory response, or because inhibition of inflammation alone is insufficient to yield therapeutic benefit. Salsalate is an unacetylated salicylate with long history of use in limiting inflammation. This drug is known to block activation of NF-κB, and recent data suggest that salsalate has a number of additional biological activities, which may also contribute to its efficacy in treatment of human disease. Here, we show that salsalate potently blocks pro-inflammatory gene expression and nitrite secretion by microglia in vitro. Using the controlled cortical impact (CCI) model in mice, we find that salsalate has a broad anti-inflammatory effect on in vivo TBI-induced gene expression, when administered post-injury. Interestingly, salsalate also elevates expression of genes associated with neuroprotection and neurogenesis, including the neuropeptides, oxytocin and thyrotropin releasing hormone. Histological analysis reveals salsalate-dependent decreases in numbers and activation-associated morphological changes in microglia/macrophages, proximal to the injury site. Flow cytometry data show that salsalate changes the kinetics of CCI-induced accumulation of various populations of CD11b-positive myeloid cells in the injured brain. Behavioral assays demonstrate that salsalate treatment promotes significant recovery of function following CCI. These pre-clinical data suggest that salsalate may show promise as a TBI therapy with a multifactorial mechanism of action to enhance functional recovery.
Collapse
Affiliation(s)
- Mouna Lagraoui
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Gauthaman Sukumar
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Joseph R Latoche
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Sean K Maynard
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Clifton L Dalgard
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA; Department of Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, MD, USA
| | - Brian C Schaefer
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA; Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
53
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
54
|
Perrine K, Helcer J, Tsiouris AJ, Pisapia DJ, Stieg P. The Current Status of Research on Chronic Traumatic Encephalopathy. World Neurosurg 2017; 102:533-544. [PMID: 28254594 DOI: 10.1016/j.wneu.2017.02.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 12/14/2022]
Abstract
Chronic traumatic encephalopathy (CTE) evolved from the term dementia pugilistica describing the dementia found in many boxers to its current use in describing the dementia and depression sometimes found in athletes subjected to multiple concussions or subconcussive blows to the head. Concurrently, the neuropathology evolved to specify a unique type of tauopathy found in perivascular spaces at the depth of sulci and other features not typically seen in neurodegenerative tauopathies. Four stages of CTE have been proposed, with 4 corresponding clinical syndromes of traumatic encephalopathy syndrome. However, it remains unclear whether this is a syndrome unique to repetitive head trauma, especially in contact sports, because the epidemiology has been difficult to establish. In particular, research to date has had a denominator problem in not establishing the total number of potential cases at risk for developing CTE. The current review examines the evidence to date for these syndromes and contributing or complicating factors affecting the neuropathology, neuroimaging, and clinical presentations associated with them.
Collapse
Affiliation(s)
- Kenneth Perrine
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA.
| | - Jacqueline Helcer
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - David J Pisapia
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, USA
| | - Philip Stieg
- Department of Neurological Surgery, Weill Cornell Medical College, New York, USA
| |
Collapse
|
55
|
Moye LS, Pradhan AA. From blast to bench: A translational mini-review of posttraumatic headache. J Neurosci Res 2017; 95:1347-1354. [PMID: 28151589 DOI: 10.1002/jnr.24001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/07/2016] [Accepted: 11/28/2016] [Indexed: 12/25/2022]
Abstract
Current events within the military and professional sports have resulted in an increased recognition of the long-term and debilitating consequences of traumatic brain injury. Mild traumatic brain injury accounts for the majority of head injuries, and posttraumatic headache is the most common adverse effect. It is estimated that between 30% to 90% of traumatic brain injuries result in posttraumatic headache, and for a significant number of people this headache disorder can continue for up to and over a year post injury. Often, the most severe and chronic posttraumatic headache has a migraine-like phenotype and is difficult to resolve. In this review we discuss the preclinical findings from animal models of posttraumatic headache. We also describe potential mechanisms by which traumatic brain injury leads to chronic posttraumatic headache, including neuroinflammatory mediators and migraine-associated neuropeptides. There are surprisingly few preclinical studies that have investigated overlapping mechanisms between posttraumatic headache and migraine, especially considering the prevalence and debilitating nature of posttraumatic headache. Given this context, posttraumatic headache is a field with many emerging opportunities for growth. The frequency of posttraumatic headache in the general and military population is rising, and further preclinical research is required to understand, ameliorate, and treat this disabling disorder. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago
| | | |
Collapse
|
56
|
Jayakumar AR, Tong XY, Shamaladevi N, Barcelona S, Gaidosh G, Agarwal A, Norenberg MD. Defective synthesis and release of astrocytic thrombospondin-1 mediates the neuronal TDP-43 proteinopathy, resulting in defects in neuronal integrity associated with chronic traumatic encephalopathy: in vitro
studies. J Neurochem 2017; 140:645-661. [DOI: 10.1111/jnc.13867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 12/14/2022]
Affiliation(s)
| | - Xiao Y. Tong
- Departments of Pathology; University of Miami School of Medicine; Miami Florida USA
| | | | - Stephanie Barcelona
- Departments of Pathology; University of Miami School of Medicine; Miami Florida USA
| | - Gabriel Gaidosh
- Ophthalmology; University of Miami School of Medicine; Miami Florida USA
| | - Apeksha Agarwal
- Departments of Pathology; University of Miami School of Medicine; Miami Florida USA
| | - Michael D. Norenberg
- Laboratory of Neuropathology; Veterans Affairs Medical Center; Miami Florida USA
- Departments of Pathology; University of Miami School of Medicine; Miami Florida USA
- Biochemistry & Molecular Biology; University of Miami School of Medicine; Miami Florida USA
- Neurology; University of Miami School of Medicine; Miami Florida USA
| |
Collapse
|
57
|
Albayram O, Herbert MK, Kondo A, Tsai CY, Baxley S, Lian X, Hansen M, Zhou XZ, Lu KP. Function and regulation of tau conformations in the development and treatment of traumatic brain injury and neurodegeneration. Cell Biosci 2016; 6:59. [PMID: 27980715 PMCID: PMC5139118 DOI: 10.1186/s13578-016-0124-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/24/2016] [Indexed: 11/10/2022] Open
Abstract
One of the two common hallmark lesions of Alzheimer's disease (AD) brains is neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated tau protein (p-tau). NFTs are also a defining feature of other neurodegenerative disorders and have recently been identified in the brains of patients suffering from chronic traumatic encephalopathy (CTE). However, NFTs are not normally observed in traumatic brain injury (TBI) until months or years after injury. This raises the question of whether NFTs are a cause or a consequence of long-term neurodegeneration following TBI. Two conformations of phosphorylated tau, cis p-tau and trans p-tau, which are regulated by the peptidyl-prolyl isomerase Pin1, have been previously identified. By generating a polyclonal and monoclonal antibody (Ab) pair capable of distinguishing between cis and trans isoforms of p-tau (cis p-tau and trans p-tau, respectively), cis p-tau was identified as a precursor of tau pathology and an early driver of neurodegeneration in AD, TBI and CTE. Histological studies shows the appearance of robust cis p-tau in the early stages of human mild cognitive impairment (MCI), AD and CTE brains, as well as after sport- and military-related TBI. Notably, cis p-tau appears within hours after closed head injury and long before other known pathogenic p-tau conformations including oligomers, pre-fibrillary tangles and NFTs. Importantly, cis p-tau monoclonal antibody treatment not only eliminates cis p-tau induction and tau pathology, but also restores many neuropathological and functional outcome in TBI mouse models. Thus, cis p-tau is an early driver of tau pathology in TBI and CTE and detection of cis p-tau in human bodily fluids could potentially provide new diagnostic and prognostic tools. Furthermore, humanization of the cis p-tau antibody could ultimately be developed as a new treatment for AD, TBI and CTE.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Megan K Herbert
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Asami Kondo
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Cheng-Yu Tsai
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Sean Baxley
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Xiaolan Lian
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Madison Hansen
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine and the Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA USA
| |
Collapse
|
58
|
Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci U S A 2016; 113:E7701-E7709. [PMID: 27849576 DOI: 10.1073/pnas.1611673113] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron dysfunction disease that leads to paralysis and death. There is currently no established molecular pathogenesis pathway. Multiple proteins involved in RNA processing are linked to ALS, including FUS and TDP43, and we propose a disease mechanism in which loss of function of at least one of these proteins leads to an accumulation of transcription-associated DNA damage contributing to motor neuron cell death and progressive neurological symptoms. In support of this hypothesis, we find that FUS or TDP43 depletion leads to increased sensitivity to a transcription-arresting agent due to increased DNA damage. Thus, these proteins normally contribute to the prevention or repair of transcription-associated DNA damage. In addition, both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing. Gaining a better understanding of the role(s) that FUS and TDP43 play in transcription-associated DNA damage could shed light on the mechanisms underlying ALS pathogenesis.
Collapse
|
59
|
Tzekov R, Phifer J, Myers A, Mouzon B, Crawford F. Inflammatory changes in optic nerve after closed-head repeated traumatic brain injury: Preliminary study. Brain Inj 2016; 30:1428-1435. [DOI: 10.1080/02699052.2016.1219062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
60
|
Corrigan F, Arulsamy A, Teng J, Collins-Praino LE. Pumping the Brakes: Neurotrophic Factors for the Prevention of Cognitive Impairment and Dementia after Traumatic Brain Injury. J Neurotrauma 2016; 34:971-986. [PMID: 27630018 DOI: 10.1089/neu.2016.4589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death worldwide, affecting as many as 54,000,000-60,000,000 people annually. TBI is associated with significant impairments in brain function, impacting cognitive, emotional, behavioral, and physical functioning. Although much previous research has focused on the impairment immediately following injury, TBI may have much longer-lasting consequences, including neuropsychiatric disorders and cognitive impairment. TBI, even mild brain injury, has also been recognized as a significant risk factor for the later development of dementia and Alzheimer's disease. Although the link between TBI and dementia is currently unknown, several proposed mechanisms have been put forward, including alterations in glucose metabolism, excitotoxicity, calcium influx, mitochondrial dysfunction, oxidative stress, and neuroinflammation. A treatment for the devastating long-term consequences of TBI is desperately needed. Unfortunately, however, no such treatment is currently available, making this a major area of unmet medical need. Increasing the level of neurotrophic factor expression in key brain areas may be one potential therapeutic strategy. Of the neurotrophic factors, granulocyte-colony stimulating factor (G-CSF) may be particularly effective for preventing the emergence of long-term complications of TBI, including dementia, because of its ability to reduce apoptosis, stimulate neurogenesis, and increase neuroplasticity.
Collapse
Affiliation(s)
- Frances Corrigan
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Alina Arulsamy
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Jason Teng
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Translational Neuropathology Lab, Discipline of Anatomy and Pathology, School of Medicine, University of Adelaide , Adelaide, Australia
| |
Collapse
|
61
|
Abstract
There is a paucity of accurate and reliable biomarkers to detect traumatic brain injury, grade its severity, and model post-traumatic brain injury (TBI) recovery. This gap could be addressed via advances in brain mapping which define injury signatures and enable tracking of post-injury trajectories at the individual level. Mapping of molecular and anatomical changes and of modifications in functional activation supports the conceptual paradigm of TBI as a disorder of large-scale neural connectivity. Imaging approaches with particular relevance are magnetic resonance techniques (diffusion weighted imaging, diffusion tensor imaging, susceptibility weighted imaging, magnetic resonance spectroscopy, functional magnetic resonance imaging, and positron emission tomographic methods including molecular neuroimaging). Inferences from mapping represent unique endophenotypes which have the potential to transform classification and treatment of patients with TBI. Limitations of these methods, as well as future research directions, are highlighted.
Collapse
|
62
|
Abstract
In their Perspective, Donald A. Redelmeier and Sheharyar Raza discuss the significance of Seena Fazel and colleagues' longitudinal study of traumatic brain injury (TBI)-associated outcomes.
Collapse
Affiliation(s)
- Donald A. Redelmeier
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Evaluative Clinical Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- Division of General Internal Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Center for Leading Injury Prevention Practice Education & Research Toronto, Ontario, Canada
- * E-mail:
| | - Sheharyar Raza
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Evaluative Clinical Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
63
|
Bolton Hall AN, Joseph B, Brelsfoard JM, Saatman KE. Repeated Closed Head Injury in Mice Results in Sustained Motor and Memory Deficits and Chronic Cellular Changes. PLoS One 2016; 11:e0159442. [PMID: 27427961 PMCID: PMC4948770 DOI: 10.1371/journal.pone.0159442] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
Millions of mild traumatic brain injuries (TBIs) occur every year in the United States, with many people subject to multiple head injuries that can lead to chronic behavioral dysfunction. We previously reported that mild TBI induced using closed head injuries (CHI) repeated at 24h intervals produced more acute neuron death and glial reactivity than a single CHI, and increasing the length of time between injuries to 48h reduced the cumulative acute effects of repeated CHI. To determine whether repeated CHI is associated with behavioral dysfunction or persistent cellular damage, mice receiving either five CHI at 24h intervals, five CHI at 48h intervals, or five sham injuries at 24h intervals were evaluated across a 10 week period after injury. Animals with repeated CHI exhibited motor coordination and memory deficits, but not gait abnormalities when compared to sham animals. At 10wks post-injury, no notable neuron loss or glial reactivity was observed in the cortex, hippocampus, or corpus callosum. Argyrophilic axons were found in the pyramidal tract of some injured animals, but neither silver stain accumulation nor inflammatory responses in the injury groups were statistically different from the sham group in this region. However, argyrophilic axons, microgliosis and astrogliosis were significantly increased within the optic tract of injured animals. Repeated mild CHI also resulted in microgliosis and a loss of neurofilament protein 200 in the optic nerve. Lengthening the inter-injury interval from 24h to 48h did not effectively reduce these behavioral or cellular responses. These results suggest that repeated mild CHI results in persistent behavioral dysfunction and chronic pathological changes within the visual system, neither of which was significantly attenuated by lengthening the inter-injury interval from 24h to 48h.
Collapse
Affiliation(s)
- Amanda N. Bolton Hall
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Binoy Joseph
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Jennifer M. Brelsfoard
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| | - Kathryn E. Saatman
- Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
- Department of Neurosurgery, University of Kentucky College of Medicine, Lexington, Kentucky, United States of America
| |
Collapse
|
64
|
Grasso G, Landi A. Changing paradigm in mild traumatic brain injury research. J Neurosci Res 2016; 94:825-6. [DOI: 10.1002/jnr.23803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Giovanni Grasso
- Section of Neurosurgery, Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC); University of Palermo; Palermo Italy
| | - Alessandro Landi
- Section of Neurosurgery, Department of Experimental Biomedicine and Clinical Neurosciences (BIONEC); University of Palermo; Palermo Italy
| |
Collapse
|
65
|
Ojo JO, Mouzon B, Algamal M, Leary P, Lynch C, Abdullah L, Evans J, Mullan M, Bachmeier C, Stewart W, Crawford F. Chronic Repetitive Mild Traumatic Brain Injury Results in Reduced Cerebral Blood Flow, Axonal Injury, Gliosis, and Increased T-Tau and Tau Oligomers. J Neuropathol Exp Neurol 2016; 75:636-55. [PMID: 27251042 DOI: 10.1093/jnen/nlw035] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Indexed: 12/14/2022] Open
Abstract
Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI.
Collapse
Affiliation(s)
- Joseph O Ojo
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS).
| | - Benoit Mouzon
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Moustafa Algamal
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Paige Leary
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Cillian Lynch
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Laila Abdullah
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - James Evans
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Michael Mullan
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Corbin Bachmeier
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - William Stewart
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| | - Fiona Crawford
- From the Roskamp Institute, Sarasota, Florida (JOO, BM, MA, PL, CL, LA, JE, MM, CB, FC); James A. Haley Veterans' Hospital, Tampa, Florida (BM, LA, CB, FC); Open University, Milton Keynes, UK (BM, MA, CL, CB, FC); Bay Pines VA Healthcare System, Bay Pines, Florida (CB); Queen Elizabeth University Hospital, Glasgow, UK (WS); University of Glasgow, Glasgow, UK (WS); and University of Pennsylvania, Philadelphia, Pennsylvania (WS)
| |
Collapse
|
66
|
Hernandez A, Donovan V, Grinberg YY, Obenaus A, Carson MJ. Differential detection of impact site versus rotational site injury by magnetic resonance imaging and microglial morphology in an unrestrained mild closed head injury model. J Neurochem 2016; 136 Suppl 1:18-28. [PMID: 26806371 PMCID: PMC5047732 DOI: 10.1111/jnc.13402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 01/31/2023]
Abstract
Seventy‐five percent of all traumatic brain injuries are mild and do not cause readily visible abnormalities on routine medical imaging making it difficult to predict which individuals will develop unwanted clinical sequelae. Microglia are brain‐resident macrophages and early responders to brain insults. Their activation is associated with changes in morphology or expression of phenotypic markers including P2Y12 and major histocompatibility complex class II. Using a murine model of unrestrained mild closed head injury (mCHI), we used microglia as reporters of acute brain injury at sites of impact versus sites experiencing rotational stress 24 h post‐mCHI. Consistent with mild injury, a modest 20% reduction in P2Y12 expression was detected by quantitative real‐time PCR (qPCR) analysis but only in the impacted region of the cortex. Furthermore, neither an influx of blood‐derived immune cells nor changes in microglial expression of CD45, TREM1, TREM2, major histocompatibility complex class II or CD40 were detected. Using magnetic resonance imaging (MRI), small reductions in T2 weighted values were observed but only near the area of impact and without overt tissue damage (blood deposition, edema). Microglial morphology was quantified without cryosectioning artifacts using ScaleA2 clarified brains from CX3CR1‐green fluorescence protein (GFP) mice. The cortex rostral to the mCHI impact site receives greater rotational stress but neither MRI nor molecular markers of microglial activation showed significant changes from shams in this region. However, microglia in this rostral region did display signs of morphologic activation equivalent to that observed in severe CHI. Thus, mCHI‐triggered rotational stress is sufficient to cause injuries undetectable by routine MRI that could result in altered microglial surveillance of brain homeostasis.
Acute changes in microglial morphology reveal brain responses to unrestrained mild traumatic brain injury
In areas subjected to rotational stress distant from impact site In the absence of detectable changes in standard molecular indicators of brain damage, inflammation or microglial activation. That might result in decreased surveillance of brain function and increased susceptibility to subsequent brain insults.
Collapse
Affiliation(s)
- Alfredo Hernandez
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,MarcU Program, University of California Riverside, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA
| | - Virgina Donovan
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA.,Cell Molecular and Developmental Biology Program, University of California Riverside, Riverside, California, USA.,Loma Linda University School of Medicine, Loma Linda California, Loma Linda, CA, USA
| | - Yelena Y Grinberg
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA
| | - Andre Obenaus
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Cell Molecular and Developmental Biology Program, University of California Riverside, Riverside, California, USA.,Loma Linda University School of Medicine, Loma Linda California, Loma Linda, CA, USA
| | - Monica J Carson
- Center for Glial-Neuronal Interactions, University of California Riverside, School of Medicine, Riverside, California, USA.,Division of Biomedical Sciences, University of California Riverside, School of Medicine, Riverside, California, USA.,Cell Molecular and Developmental Biology Program, University of California Riverside, Riverside, California, USA
| |
Collapse
|
67
|
Alterations of functional properties of hippocampal networks following repetitive closed-head injury. Exp Neurol 2016; 277:227-243. [DOI: 10.1016/j.expneurol.2015.12.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 11/16/2022]
|
68
|
Namjoshi DR, Cheng WH, Carr M, Martens KM, Zareyan S, Wilkinson A, McInnes KA, Cripton PA, Wellington CL. Chronic Exposure to Androgenic-Anabolic Steroids Exacerbates Axonal Injury and Microgliosis in the CHIMERA Mouse Model of Repetitive Concussion. PLoS One 2016; 11:e0146540. [PMID: 26784694 PMCID: PMC4718534 DOI: 10.1371/journal.pone.0146540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/17/2015] [Indexed: 12/14/2022] Open
Abstract
Concussion is a serious health concern. Concussion in athletes is of particular interest with respect to the relationship of concussion exposure to risk of chronic traumatic encephalopathy (CTE), a neurodegenerative condition associated with altered cognitive and psychiatric functions and profound tauopathy. However, much remains to be learned about factors other than cumulative exposure that could influence concussion pathogenesis. Approximately 20% of CTE cases report a history of substance use including androgenic-anabolic steroids (AAS). How acute, chronic, or historical AAS use may affect the vulnerability of the brain to concussion is unknown. We therefore tested whether antecedent AAS exposure in young, male C57Bl/6 mice affects acute behavioral and neuropathological responses to mild traumatic brain injury (TBI) induced with the CHIMERA (Closed Head Impact Model of Engineered Rotational Acceleration) platform. Male C57Bl/6 mice received either vehicle or a cocktail of three AAS (testosterone, nandrolone and 17α-methyltestosterone) from 8-16 weeks of age. At the end of the 7th week of treatment, mice underwent two closed-head TBI or sham procedures spaced 24 h apart using CHIMERA. Post-repetitive TBI (rTBI) behavior was assessed for 7 d followed by tissue collection. AAS treatment induced the expected physiological changes including increased body weight, testicular atrophy, aggression and downregulation of brain 5-HT1B receptor expression. rTBI induced behavioral deficits, widespread axonal injury and white matter microgliosis. While AAS treatment did not worsen post-rTBI behavioral changes, AAS-treated mice exhibited significantly exacerbated axonal injury and microgliosis, indicating that AAS exposure can alter neuronal and innate immune responses to concussive TBI.
Collapse
Affiliation(s)
- Dhananjay R. Namjoshi
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Wai Hang Cheng
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Michael Carr
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kris M. Martens
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Shahab Zareyan
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kurt A. McInnes
- Department of Biomechanical Engineering, University of British Columbia, Vancouver, Canada
| | - Peter A. Cripton
- Department of Biomechanical Engineering, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - Cheryl L. Wellington
- Department of Pathology and Laboratory Medicine, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
69
|
Tortella FC. Challenging the Paradigms of Experimental TBI Models: From Preclinical to Clinical Practice. Methods Mol Biol 2016; 1462:735-740. [PMID: 27604748 DOI: 10.1007/978-1-4939-3816-2_40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Despite prodigious advances in TBI neurobiology research and a broad arsenal of animal models mimicking different aspects of human brain injury, this field has repeatedly experienced collective failures to translate from animals to humans, particularly in the area of therapeutics. This lack of success stems from variability and inconsistent standardization across models and laboratories, as well as insufficient objective and quantifiable diagnostic measures (biomarkers, high-resolution imaging), understanding of the vast clinical heterogeneity, and clinically centered conception of the TBI animal models. Significant progress has been made by establishing well-defined standards for reporting animal studies with "preclinical common data elements" (CDE), and for the reliability and reproducibility in preclinical TBI therapeutic research with the Operation Brain Trauma Therapy (OBTT) consortium. However, to break the chain of failures and achieve a therapeutic breakthrough in TBI will probably require the use of higher species models, specific mechanism-based injury models by which to theranostically targeted treatment portfolios are tested, more creative concepts of therapy intervention including combination therapy and regeneration neurobiology strategies, and the adoption of dosing regimens based upon pharmacokinetic-pharmacodynamic (PK-PD) studies and guided by the injury severity and TBI recovery process.
Collapse
Affiliation(s)
- Frank C Tortella
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
70
|
Levy Nogueira M, Epelbaum S, Steyaert JM, Dubois B, Schwartz L. Mechanical stress models of Alzheimer's disease pathology. Alzheimers Dement 2015; 12:324-33. [PMID: 26718585 DOI: 10.1016/j.jalz.2015.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/11/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Extracellular accumulation of amyloid-β protein and intracellular accumulation of tau in brain tissues have been described in animal models of Alzheimer's disease (AD) and mechanical stress-based diseases of different mechanisms, such as traumatic brain injury (TBI), arterial hypertension (HTN), and normal pressure hydrocephalus (NPH). METHODS We provide a brief overview of experimental models of TBI, HTN, and NPH showing features of tau-amyloid pathology, neuroinflammation, and neuronal loss. RESULTS "Alzheimer-like" hallmarks found in these mechanical stress-based models were compared with AD features found in transgenic models. DISCUSSION The goal of this review is, therefore, to build on current concepts of onset and progression of AD lesions. We point to the importance of accumulated mechanical stress in brain as an environmental and endogenous factor that pushes protein deposition and neuronal injury over the disease threshold. We further encourage the development of preventing strategies and drug screening based on mechanical stress models.
Collapse
Affiliation(s)
- Marcel Levy Nogueira
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France; Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; Laboratoire d'informatique (LIX), UMR 7161, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France.
| | - Stéphane Epelbaum
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France; INSERM, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Jean-Marc Steyaert
- Laboratoire d'informatique (LIX), UMR 7161, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
| | - Bruno Dubois
- Institut de la Mémoire et de la Maladie d'Alzheimer (IM2A), Département de Neurologie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France; Institut des Neurosciences Translationnelles de Paris (IHU-A-ICM), Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; INSERM, CNRS, UMR-S975, Institut du Cerveau et de la Moelle Epinière (ICM), Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Hôpital de la Pitié-Salpêtrière, AP-HP, Paris, France
| | - Laurent Schwartz
- Laboratoire d'informatique (LIX), UMR 7161, Ecole Polytechnique, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
71
|
Turner RC, Lucke-Wold BP, Logsdon AF, Robson MJ, Lee JM, Bailes JE, Dashnaw ML, Huber JD, Petraglia AL, Rosen CL. Modeling Chronic Traumatic Encephalopathy: The Way Forward for Future Discovery. Front Neurol 2015; 6:223. [PMID: 26579067 PMCID: PMC4620695 DOI: 10.3389/fneur.2015.00223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/09/2015] [Indexed: 02/05/2023] Open
Abstract
Despite the extensive media coverage associated with the diagnosis of chronic traumatic encephalopathy (CTE), our fundamental understanding of the disease pathophysiology remains in its infancy. Only recently have scientific laboratories and personnel begun to explore CTE pathophysiology through the use of preclinical models of neurotrauma. Some studies have shown the ability to recapitulate some aspects of CTE in rodent models, through the use of various neuropathological, biochemical, and/or behavioral assays. Many questions related to CTE development, however, remain unanswered. These include the role of impact severity, the time interval between impacts, the age at which impacts occur, and the total number of impacts sustained. Other important variables such as the location of impacts, character of impacts, and effect of environment/lifestyle and genetics also warrant further study. In this work, we attempt to address some of these questions by exploring work previously completed using single- and repetitive-injury paradigms. Despite some models producing some deficits similar to CTE symptoms, it is clear that further studies are required to understand the development of neuropathological and neurobehavioral features consistent with CTE-like features in rodents. Specifically, acute and chronic studies are needed that characterize the development of tau-based pathology.
Collapse
Affiliation(s)
- Ryan C. Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brandon P. Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Aric F. Logsdon
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | - Matthew J. Robson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - John M. Lee
- Department of Pathology and Laboratory Medicine, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Julian E. Bailes
- Department of Neurosurgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, IL, USA
| | - Matthew L. Dashnaw
- Department of Neurosurgery, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jason D. Huber
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, USA
| | | | - Charles L. Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|