51
|
Electrochemical and spectroscopic evaluation of 6-MP and its interaction with carbon dots and dsDNA. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
52
|
Xiang S, Mao S, Chen F, Zhao S, Su W, Fu L, Zare N, Karimi F. A bibliometric analysis of graphene in acetaminophen detection: Current status, development, and future directions. CHEMOSPHERE 2022; 306:135517. [PMID: 35787882 DOI: 10.1016/j.chemosphere.2022.135517] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Acetaminophen is a widely used analgesic throughout the world. Detection of acetaminophen has particular value in pharmacy and clinics. Electrochemical sensors assembled with advanced materials are an effective method for the rapid detection of acetaminophen. Graphene-based carbon nanomaterials have been extensively investigated for potential analytical applications in the last decade. In this article, we selected papers containing both graphene and acetaminophen. Bibliometrics was used to analyze the relationships and trends among these papers. The results show that the topic has grown at a high rate since 2009. Among them, the detection of acetaminophen by an electrochemical sensor based on graphene is the most important direction. Graphene has moved from being a primary sensing material to a substrate for immobilization of other active ingredients. In addition, the degradation of acetaminophen using graphene-modified electrodes is also an important direction. We analyzed the research history and current status of this topic through bibliometrics. Authors, institutions, countries, and key literature were discussed. We also proposed perspectives for this topic.
Collapse
Affiliation(s)
- Shuyan Xiang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shuduan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, China.
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
53
|
Beitollahi H, Tajik S, Dourandish Z, Garkani Nejad F. Simple Preparation and Characterization of Hierarchical Flower-like NiCo 2O 4 Nanoplates: Applications for Sunset Yellow Electrochemical Analysis. BIOSENSORS 2022; 12:bios12110912. [PMID: 36354421 PMCID: PMC9688067 DOI: 10.3390/bios12110912] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/12/2023]
Abstract
The current work was performed to construct a novel electrochemical sensing system for determination of sunset yellow via the modification of screen-printed graphite electrode modified with hierarchical flower-like NiCo2O4 nanoplates (NiCo2O4/SPGE). The prepared material (hierarchical flower-like NiCo2O4 nanoplates) was analyzed by diverse microscopic and spectroscopic approaches for the crystallinity, composition, and morphology. Chronoamperometry, differential pulse voltammetry, linear sweep voltammetry, and cyclic voltammetry were used for determination of the electrochemical behavior of sunset yellow. The as-fabricated sensor had appreciable electro-catalytic performance and current sensitivity in detecting the sunset yellow. There were some advantages for NiCo2O4/SPGE under the optimized circumstances of sunset yellow determination, including a broad dynamic linear between 0.02 and 145.0 µM, high sensitivity of 0.67 μA/(μM.cm2), and a narrow limit of detection of 0.008 μM. The practical applicability of the proposed sensor was verified by determining the sunset yellow in real matrices, with satisfactory recoveries.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman P.O. Box 76318-85356, Iran
| |
Collapse
|
54
|
Beitollahi H, Dourandish Z, Tajik S, Sharifi F, Jahani PM. Electrochemical Sensor Based on Ni-Co Layered Double Hydroxide Hollow Nanostructures for Ultrasensitive Detection of Sumatriptan and Naproxen. BIOSENSORS 2022; 12:bios12100872. [PMID: 36291009 PMCID: PMC9599541 DOI: 10.3390/bios12100872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 06/12/2023]
Abstract
In this work, Ni-Co layered double hydroxide (Ni-Co LDH) hollow nanostructures were synthesized and characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and Fourier-transform infrared spectroscopy (FT-IR) techniques. A screen-printed electrode (SPE) surface was modified with as-fabricated Ni-Co LDHs to achieve a new sensing platform for determination of sumatriptan. The electrochemical behavior of the Ni-Co LDH-modified SPE (Ni-CO LDH/SPE) for sumatriptan determination was investigated using voltammetric methods. Compared with bare SPE, the presence of Ni-Co LDH was effective in the enhancement of electron transport rate between the electrode and analyte, as well as in the significant reduction of the overpotential of sumatriptan oxidation. Differential pulse voltammetry (DPV) was applied to perform a quantitative analysis of sumatriptan. The linearity range was found to be between 0.01 and 435.0 μM. The limits of detection (LOD) and sensitivity were 0.002 ± 0.0001 μM and 0.1017 ± 0.0001 μA/μM, respectively. In addition, the performance of the Ni-CO LDH/SPE for the determination of sumatriptan in the presence of naproxen was studied. Simultaneous analysis of sumatriptan with naproxen showed well-separated peaks leading to a quick and selective analysis of sumatriptan. Furthermore, the practical applicability of the prepared Ni-CO LDH/SPE sensor was examined in pharmaceutical and biological samples with satisfactory recovery results.
Collapse
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631885356, Iran
| | - Zahra Dourandish
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran
| | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | | |
Collapse
|
55
|
Wu Y, Jin X, Ashrafzadeh Afshar E, Taher MA, Xia C, Joo SW, Mashifana T, Vasseghian Y. Simple turn-off fluorescence sensor for determination of raloxifene using gold nanoparticles stabilized by chitosan hydrogel. CHEMOSPHERE 2022; 305:135392. [PMID: 35753416 DOI: 10.1016/j.chemosphere.2022.135392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
It is essential to develop a simple, applicable, and reliable assay to anticancer drug raloxifene (RAF) because of its significant usage and side effect due to entering residue in the environment. Fluorescence sensors developed and widely used because of them high selectivity, fast-response, and highly-sensitivity. The gold nanoparticles using chitosan hydrogel was synthesized and applied as a fluorescence sensor to determine the trace amount of RAF. The characterization methods including DLS, FE-SEM, EDX, XRD, and FT-IR were performed to confirm the synthesized structure. This sensor turned off the fluorescent signals proportional to RAF concentrations at 400 nm. The RAF can be detected in the linear range from 5 × 10-7 to 5 × 10-5 M. Limits of detection and quantification were obtained as 34 × 10-8 and 11 × 10-7 M as well as the relative standard deviation calculated as 1.63% in RAF measuring. The effective parameters on quenching efficiency were studied by central composite design (CCD) with response surface methodology (RSM). The effective parameters in RAF determination, include analyte concentration, temperature, contact time, and pH, were obtained as 35 μM, 30 °C, 8 min, and pH = 8.5. The sensor was applied to determine the RAF concentrations in biological and environmental samples with satisfactory recoveries between 97.5% and 109%.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Research Societies, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; DeHua TB New Decoration Materials Co., Ltd., Huzhou, Zhejiang, 313200, China.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| | - Tebogo Mashifana
- The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O. Box 17011, Doornfontein, 2088, South Africa; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
56
|
Keerthana SP, Kowsalya K, Kumar PS, Yuvakkumar R, Kungumadevi L, Ravi G, Velauthapillai D. Effect of grinding time on bismuth oxyhalides optical and morphological properties influence on photocatalytic removal of organic dye. CHEMOSPHERE 2022; 304:135272. [PMID: 35688190 DOI: 10.1016/j.chemosphere.2022.135272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we reported the synthesis of BiOX (X = Cl, Br) with different grinding time like 15 min and 30 min to analyze the evolution of physiochemical properties and the morphological evolution. The structural, optical, vibrational properties were examined by standard characterization studies. The formation of bismuth oxyhalides were confirmed by XRD and Raman studies. The crystallite size was decreased as in 30 min grinded sample whereas there is an influence of crystal structure. BiOCl (15 and 30 min) samples expelled the nanoflake like structure with the flakes arranged to form a nanoflower morphology. On comparing BiOCl (15 min), there is high orientation of nanoflakes on BiOCl (30 min) sample. As explored in BiOBr (15 and 30 min) samples, the development of nanoplates were found. The growth of nanoplates was enhanced in the better way in BiOBr (30 min) than BiOBr (15 min). The grinding time has explored a great influence on morphology. The photocatalyst test for prepared photocatalysts was performed to reduce the RhB dye. The photocatalysts showed 74%, 97%, 98% and 99.8% for BiOCl (15 min), BiOCl (30 min), BiOBr (15 min) and BiOBr (30 min). The rate constant value obtained was 0.008, 0.011, 0.021, 0.033 and 0.068 min-1. BiOBr (30 min) sample achieved higher rate constant value. The hierarchical nanostructures and narrow bandgap has made the samples to be a potential candidate to reduce the toxic pollutants with complete efficiency.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - K Kowsalya
- Department of Physics, Mother Teresa Women's University, Kodaikanal, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - L Kungumadevi
- Department of Physics, Mother Teresa Women's University, Kodaikanal, India
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
57
|
Poursoltani Zarandi M, Beitollahi H. Design of electrochemical sensor based on N-doped reduced graphene oxide/copper oxide nanocomposite and ionic liquid for the simultaneous determination of 4-aminophenol and acetaminophen. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
58
|
Mehmandoust M, Khoshnavaz Y, Karimi F, Çakar S, Özacar M, Erk N. A novel 2-dimensional nanocomposite as a mediator for the determination of doxorubicin in biological samples. ENVIRONMENTAL RESEARCH 2022; 213:113590. [PMID: 35690088 DOI: 10.1016/j.envres.2022.113590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/23/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
In our study, the electrochemical properties of a novel activated nanocomposite were studied with 2-dimensional graphitic carbon nitride/sodium dodecyl sulfate/graphene nanoplatelets on the screen-printed electrodes (2D-g-C3N4/SDS/GNPs/SPE). The as-fabricated sensor exhibited excellent electrochemical performance, including wide dynamic ranges from 0.03 to 1.0 and 1.0-13.5 μM with a low limit of detection (LOD) of 10.0 nM. The fabricated 2D-g-C3N4/SDS/GNPs/SPE electrode exhibited high sensitivity, stability, good reproducibility, reusability, and repeatability towards DOX sensing. It can be utilized in real samples, including human plasma and urine, with excellent correlations and coefficients of variation below 6.0%. Therefore, this study presents potential application values in sensing DOX with efficient performance. Finally, the accuracy was attested by comparison with high-performance liquid chromatography (HPLC) as the reference method, signalizing a good agreement.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Yasamin Khoshnavaz
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.
| | - Soner Çakar
- Zonguldak Bülent Ecevit University, Science and Arts Faculty, Chemistry Department, Zonguldak, 67100, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Mahmut Özacar
- Sakarya University, Faculty of Science & Arts, Department of Chemistry, 54187, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187, Sakarya, Turkey.
| |
Collapse
|
59
|
Orooji Y, Pakzad K, Nasrollahzadeh M. Lignosulfonate valorization into a Cu-containing magnetically recyclable photocatalyst for treating wastewater pollutants in aqueous media. CHEMOSPHERE 2022; 305:135180. [PMID: 35660391 DOI: 10.1016/j.chemosphere.2022.135180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
This study presents an eco-friendly and economical process for preparing a magnetic copper complex conjugated to modified calcium lignosulfonate (LS) through a diamine (Fe3O4@LS@naphthalene-1,5-diamine@copper complex; FLN-Cu) as a green and novel catalyst. The prepared catalyst was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller (BET), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, inductively coupled plasma-optical emission spectrometry (ICP-OES) and field emission scanning electron microscopy (FESEM) techniques. The photocatalytic performance of the synthesized FLN-Cu catalyst was investigated by the degradation of aqueous solutions of dyes such as Rhodamine B (RhB), methylene blue (MB), and Congo red (CR) under UV irradiation. The dye degradation was followed by UV-Vis (ultraviolet-visible) spectrophotometry by measuring the changes in absorbance. The effects of different factors such as pH, contact time, photocatalyst dosage, and initial concentration of dye on the adsorption percentage were also investigated. Moreover, the catalyst showed high stability and could be readily separated from the reaction media using a magnet and reused five times without a remarkable loss of catalytic ability.
Collapse
Affiliation(s)
- Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 3716146611, Iran
| | | |
Collapse
|
60
|
Shi N, Wang H, Cui C, Afshar EA, Mehrabi F, Taher MA, Shojaei M, Hamidi AS, Dong Y. Survey of antibacterial activity and release kinetics of gold-decorated magnetic nanoparticles of Fe0 conjugated with sulfamethoxazole against Escherichia coli and Staphylococcus aureus. CHEMOSPHERE 2022; 305:135179. [PMID: 35660051 DOI: 10.1016/j.chemosphere.2022.135179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Drug delivery of antibiotics with magnetic nanoparticles improved by coating metals such as gold and silver has recently been studied. This work describe a simple method to synthesize modified magnetic nanoparticles which have high ability to modify the customary formulation of antibiotics such as sulfamethoxazole (SMX) and pursuant study of adsorption-desorption (release) of this drug. These synthesized nanoparticles were characterized by different methods, including field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and mapping, Fourier-transform infrared spectroscopy, X-ray diffraction, vibrating-sample magnetometry, thermogravimetric analysis and zeta potential test. Present assay showed a well correlation with the introduced carrier for the drug. Also the hypothesis were proved by some adsorption isotherm models and drug kinetics studies of carriers with different drug release kinetics models. This study confirmed the adsorption isotherm models and kinetics of drug sorbate are Temkin and Pseudo-First-Order Lagergren models, respectively; the kinetics of drug release from this carrier is based on Zero-Order model. The values of MIC in antibacterial test for pure SMX and SMX conjugated nanoparticles against Escherichia coli were calculated to be 14 and 2.5 μg/mL, respectively, and these values against Staphylococcus aureus were 24 and 1.25 μg/mL, respectively.
Collapse
Affiliation(s)
- Nan Shi
- School of Chemical Engineering and Technology North University of China, TaiYuan, China; Dezhou Graduate School, North University of China, Dezhou, China
| | - Haibin Wang
- School of Chemical Engineering and Technology North University of China, TaiYuan, China.
| | - Chengjun Cui
- School of Chemical Engineering and Technology North University of China, TaiYuan, China; Dezhou Graduate School, North University of China, Dezhou, China
| | | | - Fatemeh Mehrabi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ashraf Sadat Hamidi
- Department of Physics, Science and Research Branch, Islamic Azad University, Mazandaran, Iran
| | - Yu Dong
- School of Chemical Engineering and Technology North University of China, TaiYuan, China; Dezhou Graduate School, North University of China, Dezhou, China
| |
Collapse
|
61
|
Karthik V, Selvakumar P, Senthil Kumar P, Satheeskumar V, Godwin Vijaysunder M, Hariharan S, Antony K. Recent advances in electrochemical sensor developments for detecting emerging pollutant in water environment. CHEMOSPHERE 2022; 304:135331. [PMID: 35709842 DOI: 10.1016/j.chemosphere.2022.135331] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In the latest times, considerable studies have been performed closer to detecting emerging pollutant such as paracetamol in wastewater. Electrochemical sensor developments have recently started to determine in fewer concentrations effectively. The detection of paracetamol using standard protocols corresponding to electroanalytical techniques has a greater impact noticed in directing the detecting process toward biosensors. Non-enzymatic sensors are the peak of all electro analysis approaches. Functionalized materials, such as metal oxide nanoparticles, conducting polymers, and carbon-based materials for electrode surface functionalization have been used to create a fortification for distributing passive enzyme-free biosensors. Synergic effects are possible by enhancing loading capacity and mass transfer of reactants for attaining high analytical sensitivity using a variety of nanomaterials with large surface areas. The main focus of this study is to address the prevailing issues in the identification of paracetamol with the tasks in the non-enzymatic sensors field, followed by the useful methods of electro analysis studies.
Collapse
Affiliation(s)
- V Karthik
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - P Selvakumar
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - V Satheeskumar
- Department of Civil Engineering, Government College of Technology, Coimbatore, 641013, India
| | - M Godwin Vijaysunder
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - S Hariharan
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| | - K Antony
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
| |
Collapse
|
62
|
Kaur H, Siwal SS, Chauhan G, Saini AK, Kumari A, Thakur VK. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. CHEMOSPHERE 2022; 304:135182. [PMID: 35667504 DOI: 10.1016/j.chemosphere.2022.135182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Foodborne-related infections due to additives and pollutants pose a considerable task for food processing enterprises. Therefore, the competent, cost-effective, and quick investigation of nutrition additives and contaminants is essential to reduce the threat of public fitness problems. The electrochemical sensor (ECS) shows facile and potent analytical approaches desirable for food protection and quality inspection over traditional methods. The consequence of a broad display of nanomaterials has paved the path for their relevance in designing high-performance ECSs appliances for medical diagnostics and conditions and food protection. This review article has discussed the importance of electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs). Initially, we have demonstrated the types of pharmaceutical and food/agriculture pollutants (such as pesticides, heavy metals, antibiotics and other medical drugs) present in water. Subsequently, we have compiled the information on electrochemical techniques (such as voltammetric and electrochemical impedance spectroscopy) and their crucial parameters for detecting pollutants. Further, the applications of CNMs for sensing pharmaceutical and food pollutants have been demonstrated in detail. Finally, the topic has been concluded with existing challenges and future prospects.
Collapse
Affiliation(s)
- Harjot Kaur
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Samarjeet Singh Siwal
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Gunjan Chauhan
- Department of Chemistry, M.M. Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Adesh Kumar Saini
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Anita Kumari
- Department of Chemistry, GGDSD College Rajpur (Palampur), Himachal Pradesh University, Shimla, 176061, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
63
|
Ashour M, Alprol AE, Khedawy M, Abualnaja KM, Mansour AT. Equilibrium and Kinetic Modeling of Crystal Violet Dye Adsorption by a Marine Diatom, Skeletonema costatum. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6375. [PMID: 36143687 PMCID: PMC9505319 DOI: 10.3390/ma15186375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 05/31/2023]
Abstract
Significant efforts have been made to improve adsorbents capable of eliminating pollutants from aqueous solutions, making it simple and quick to separate from the treated solution. In the current study, the removal of Crystal Violet Dye (CVD) from an aqueous synthetic solution onto a marine diatom alga, Skeletonema costatum, was investigated. Different experiments were conducted as a function of different pH, contact time, adsorbent dosage, temperature, and initial CVD concentration. The highest adsorption efficiency (98%) was obtained at 0.4 g of S. costatum, pH 3, and a contact time of 120 min, at 25 °C. Furthermore, Fourier-transform infrared spectroscopy (FTIR) results display that binding of CVD on S. costatum may occur by electrostatic and complexation reactions. Moreover, the Brunauer-Emmett-Teller surface area analysis (BET) obtained was 87.17 m2 g-1, which, in addition to a scanning electron microscope (SEM), reveals large pores that could enhance the uptake of large molecules. However, the equilibrium adsorption models were conducted by Halsey, Langmuir, Freundlich, Henderson, and Tempkin isotherm. In addition, multilayer adsorption isotherm best described the uptake of CVD onto S. costatum. The maximum monolayer adsorption capacity (qmax) was 6.410 mg g-1. Moreover, thermodynamic parameters of the adsorption studies suggested that the uptake of CVD onto S. costatum was endothermic and spontaneous. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetic equations were applied to model the adsorption kinetic data. It was seen that the kinetics of the adsorption may be described using pseudo-second-order kinetic equations. Finally, the present work concluded that the marine diatom alga S. costatum is suitable as a natural material for the adsorption of CVD.
Collapse
Affiliation(s)
- Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Ahmed E. Alprol
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Mohamed Khedawy
- National Institute of Oceanography and Fisheries (NIOF), Cairo 11516, Egypt
| | - Khamael M. Abualnaja
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Makkah, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Hofuf 31982, Al-Ahsa, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| |
Collapse
|
64
|
Moradi O, Pudineh A, Sedaghat S. Synthesis and characterization Agar/GO/ZnO NPs nanocomposite for removal of methylene blue and methyl orange as azo dyes from food industrial effluents. Food Chem Toxicol 2022; 169:113412. [PMID: 36087616 DOI: 10.1016/j.fct.2022.113412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 12/25/2022]
Abstract
Herein, with using graphene oxide (GO), agar and ZnO NPs was synthesized as nanocomposite to removal of dyes contaminants from food industry effluents. Synthesis and characterization of the nanocomposite adsorbent were carried out by FTIR, XRD, FE-SEM, TEM, EDX and DLS analyses. The effects of various parameters such as pH, initial dye concentration, contact time and temperature on the removal of methylene blue (MB) and methyl orange (MO) as azo dyes were investigated. The used nanocomposite can be effective in the adsorption of dyes due to their different functional groups. The Freundlich and Langmuir models were used to investigate the isotherm of contaminants removal. The results showed that the removal of methylene blue and methyl orange dyes followed the Freundlich isotherm, and the values of the R2 correlation coefficient for agar/GO, and agar/GO/ZnO nanocomposites for MB dye was 0.9640 and 0.9977, respectively, and for dye MO, 0.9918 and 0.9683, respectively. The maximum removal percentages for MB and MO dyes were 88% and 91%, respectively.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Afshin Pudineh
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
65
|
Raeisi-Kheirabadi N, Nezamzadeh-Ejhieh A, Aghaei H. Cyclic and Linear Sweep Voltammetric Studies of a Modified Carbon Paste Electrode with Nickel Oxide Nanoparticles toward Tamoxifen: Effects of Surface Modification on Electrode Response Kinetics. ACS OMEGA 2022; 7:31413-31423. [PMID: 36092618 PMCID: PMC9454271 DOI: 10.1021/acsomega.2c03441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
Due to the serious adverse futures of some anticancer drugs, the determination of trace amounts of these drugs by simple analytical techniques is of great interest. In this regard, knowing about the mechanism of the analyte with the sensing material plays an important role. Nickel oxide nanoparticles (NiO NPs) modified by a carbon paste electrode (NiO-CPE) showed an irreversible cyclic voltammetric (CV) behavior in the NaOH (pH 13) supporting electrolyte based on the peak separation of 311 mV. Its peak current was decreased by adding tamoxifen (TAM), confirming that TAM molecules can consume NiO before participating in the electrode reaction. For this goal, TAM can be oxidized or reduced, and the corresponding mechanisms are schematically illustrated in the text. This study focused on the kinetic aspects of the process. Based on the CV results, a surface coverage (Γ) value of 2.72 × 10-5 mol NiO per cm2 was obtained with charge transfer coefficients αa and αc of 0.317 and 0.563, respectively. αa and αc values were changed to 0.08 and 0.72 in the presence of TAM. Further, the rate constant (k s) value was 0.021 ± 0.01 s-1 in the presence of TAM. In linear sweep voltammetry (LSV), an α value of about 0.636 ± 0.023 and an exchange rate constant (k o) value of about 0.097 ± 0.031 s-1 were obtained in the absence of TAM, which changed to 0.62 ± 0.081 and 0.089 ± 0.021 s-1 in the presence of TAM, respectively. Despite more published papers, when the TAM analyte was added to the NaOH supporting electrolyte, both anodic and cathodic peak currents of the modified NiO-CPE decreased. We suggested some reasons for this decreased peak current, and four mechanisms were illustrated for the electrode response in the presence of TAM.
Collapse
|
66
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
67
|
Daglar H, Altintas C, Erucar I, Heidari G, Zare EN, Moradi O, Srivastava V, Iftekhar S, Keskin S, Sillanpää M. Metal-organic framework-based materials for the abatement of air pollution and decontamination of wastewater. CHEMOSPHERE 2022; 303:135082. [PMID: 35618068 DOI: 10.1016/j.chemosphere.2022.135082] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Developing new and efficient technologies for environmental remediation is becoming significant due to the increase in global concerns such as climate change, severe epidemics, and energy crises. Air pollution, primarily due to increased levels of H2S, SOx, NH3, NOx, CO, volatile organic compounds (VOC), and particulate matter (PM) in the atmosphere, has a significant impact on public health, and exhaust gases harm the natural sulfur, nitrogen, and carbon cycles. Similarly, wastewater discharged to the environment with metal ions, herbicides, pharmaceuticals, personal care products, dyes, and aromatics/organic compounds is a risk for health since it may lead to an outbreak of waterborne pathogens and increase the exposure to endocrine-disrupting agents. Therefore, developing new and efficient air and water quality management systems is critical. Metal-organic frameworks (MOFs) are novel materials for which the main application areas include gas storage and separation, water harvesting from the atmosphere, chemical sensing, power storage, drug delivery, and food preservation. Due to their versatile structural motifs that can be modified during synthesis, MOFs also have a great promise for green applications including air and water pollution remediation. The motivation to use MOFs for environmental applications prompted the modification of their structures via the addition of metal and functional groups, as well as the creation of heterostructures by mixing MOFs with other nanomaterials, to effectively remove hazardous contaminants from wastewater and the atmosphere. In this review, we focus on the state-of-the-art environmental applications of MOFs, particularly for water treatment and air pollution, by highlighting the groundbreaking studies in which MOFs have been used as adsorbents, membranes, and photocatalysts for the abatement of air and water pollution. We finally address the opportunities and challenges for the environmental applications of MOFs.
Collapse
Affiliation(s)
- Hilal Daglar
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Cigdem Altintas
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Ilknur Erucar
- Department of Natural and Mathematical Sciences, Faculty of Engineering, Ozyegin University, Cekmekoy, 34794, Istanbul, Turkey
| | - Golnaz Heidari
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, 41938-33697, Iran
| | | | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, 90014, Finland
| | - Sidra Iftekhar
- Department of Applied Physics, University of Eastern Finland, Kuopio, 70120, Finland
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450, Istanbul, Turkey
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
68
|
Facile sonochemical preparation of La2Cu2O5 nanostructures, characterization, the evaluation of performance, mechanism, and kinetics of photocatalytic reactions for the removal of toxic pollutants. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
69
|
Buledi JJA, Solangi AR, Hyder A, Batool M, Mahar N, Mallah A, Karimi-Maleh H, Karaman O, Karaman C, Ghalkhani M. Fabrication of sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide nanocomposite for electrochemical monitoring of 4-aminophenol. ENVIRONMENTAL RESEARCH 2022; 212:113372. [PMID: 35561824 DOI: 10.1016/j.envres.2022.113372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 05/24/2023]
Abstract
4-aminophenol (4-AP) is one of the major environmental pollutants which is broadly exploited as drug intermediate in the pharmaceutical formulations. The extensive release of 4-AP in the environment without treatment has become a serious issue that has led several health effects on humans. This work describe the determination of 4-AP through a new chemically modified sensor based on polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide (PVA/WO3/rGO) nanocomposite. The fabricated nanocomposite was characterized through XRD and HR-TEM to confirm the crystalline structure with average size of 35.9 nm and 2D texture with ultra-fine sheets. The electrochemical characterization of fabricated sensor was carried out by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) to ensure the charge transfer kinetics of modified sensor that revealed high conductivity of PVA/WO3/rGO/GCE. Under optimized conditions e.g. scan rate 80 mV/s, phosphate buffer (pH 6) as supporting electrolyte and potential window from -0.2 to 0.8 V, the prepared sensor showed excellent response for 4-AP. The linear dynamic range of developed method was optimized as 0.003-70 μM. The LOD of fabricated sensor based on PVA/WO3/rGO/GCE for 4-AP was calculated as 0.51 nM. The practical application of PVA/WO3/rGO/GCE was tested in real water and pharmaceutical samples. The fabricated sensor presented here, exhibited exceptional stability and sensitivity than the reported sensors and could be effectively used for the monitoring 4-AP without interferences.
Collapse
Affiliation(s)
- J Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Madeeha Batool
- Institute of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Nasrullah Mahar
- King Fahad University of Petroleum and Minerals (KFUPM), Saudi Arabia
| | - Arfana Mallah
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, 76080, Sindh, Pakistan
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, 2028 Johannesburg, P.O. Box 17011, South Africa.
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya, 07070, Turkey
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya, 07070, Turkey.
| | - Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, 1678815811, Tehran, Iran
| |
Collapse
|
70
|
Qambrani N, Buledi JA, Khand NH, Solangi AR, Ameen S, Jalbani NS, Khatoon A, Taher MA, Moghadam FH, Shojaei M, Karimi F. Facile Synthesis of NiO/ZnO nanocomposite as an effective platform for electrochemical determination of carbamazepine. CHEMOSPHERE 2022; 303:135270. [PMID: 35688198 DOI: 10.1016/j.chemosphere.2022.135270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 05/28/2023]
Abstract
The pharmaceutical science demand for sustainable and selective electrochemical sensors which exhibit ultrasensitive capabilities for the monitoring of different drugs. In an attempt to build a useful electrochemical sensor, we describe a most efficient method for the fabrication of NiO/ZnO nanocomposite through aqueous chemical growth method. The successfully synthesized NiO/ZnO nanocomposite is successfully employed to modify a glassy carbon electrode in order to build a sensitive and reliable electrochemical sensor for the detection of carbamazepine (CBZ), an anticonvulsant drug. The morphological texture, functionalities and crystalline structure of prepared nanocomposite were determined via FTIR, XRD, EDX, TEM, and SEM analysis. In order to examine the charge transfer kinetics, the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to exploit the electrochemical properties of the synthesized nanocomposite. The NiO/ZnO nanocomposite exhibited excellent electron transfer kinetics and less resistive behavior than the individual NiO and ZnO nanoparticles. The differential pulse voltammetry and cyclic voltammetry tools were used for the fluent determination of CBZ. Certain parameters were optimized to develop an effective method including optimum scan rate 60 mV/s, potential range from 0.4 to 1.4 V and BRB as supporting electrolyte with pH 3. The developed sensor showed exceptional response for CBZ under the linear dynamic range from 5 to 100 μM. The limit of detection of proposed NiO/ZnO sensor for the CBZ was calculated to be 0.08 μM. The analytical approach of prepared electrochemical sensor was investigated in different pharmaceutical formulation with acceptable percent recoveries ranging from 96.7 to 98.6%.
Collapse
Affiliation(s)
- Nadeem Qambrani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad 67450, Sindh, Pakistan
| | - Nida S Jalbani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amna Khatoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | | | - F H Moghadam
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Moein Shojaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
71
|
Zhang L, Sun M, Jing T, Li S, Ma H. A facile electrochemical sensor based on green synthesis of Cs/Ce-MOF for detection of tryptophan in human serum. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
72
|
Tiris G, Mehmandoust A, Karimi F, Erk N. Determination of active ingredients in antihypertensive drugs using a novel green HPLC method approach. CHEMOSPHERE 2022; 303:135053. [PMID: 35618061 DOI: 10.1016/j.chemosphere.2022.135053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/07/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
A novel, sensitive, fast, and pratic RP-HPLC methods were presented for the quantitative amounts of Telmisartan (TEL) and Olmesartan (OLM) in the presence of Amlodipin (AML) in a binary mixture of pharmaceutical preparation. Waters Spherisorb ODS-2 C18 column was used for separation. These methods were valid over linearity ranges of 2.5-30 μμg/mlL, 2-85 μμg/mlL, and 2-35 μμg/mlL for OLM, TEL, and AML, respectively. The mobile phase system consisted of acetonitrile:methanol: phosphate buffer at pH 3.0 (65:5:30 v/v/v), and the flow rate was 1,5 mlL/min for OLM and AML. The mobile system's other mixture (TEL and AML) was acetonitrile:methanol: phosphate buffer at pH 2.5 (65:5:30 v/v/v), and the flow rate was 1,5 mlL/min. These procedures were successfully applied to bulk, laboratory synthetic mixture, and medicinal dosage forms to use active ingredients quantitatively. The studied methods were validated according to ICH guidelines. In the developed HPLC method, the limit of detection values was found to be 0.020 μμg/mlL for TEL, 0.025 μμg/mlL for OML, and 0.070 μμg/mlL for AML. The correlation coefficients for the HPLC method were found to be 0.9938 for TEL, 0.9996 for OML, and 0.9982 for AML. The calibration range is between 2.5 and -30, 5-35, and 2-85 μμg/mlL for OLM, AML, and TEL, respectively. The proposed HPLC method is a convenient, effective, sensitive, green, and time-saving method for the rapid determination of TEL and OLM in the presence of AML.
Collapse
Affiliation(s)
- Gizem Tiris
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Analytical Chemistry, 34093, Istanbul, Turkey.
| | | | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
73
|
Jahani PM, Nejad FG, Dourandish Z, Zarandi MP, Safizadeh MM, Tajik S, Beitollahi H. A modified carbon paste electrode with N-rGO/CuO nanocomposite and ionic liquid for the efficient and cheap voltammetric sensing of hydroquinone in water specimens. CHEMOSPHERE 2022; 302:134712. [PMID: 35487364 DOI: 10.1016/j.chemosphere.2022.134712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
This paper reports a voltammetric sensor based on copper oxide nanoparticles on nitrogen-doped reduced graphene oxide nanocomposite (N-rGO/CuO)-ionic liquid modified carbon paste electrode (N-rGO/CuO-ILCPE) for determining the hydroquinone (HQ). The N-rGO/CuO was prepared by a facile protocol, followed by characterization via fourier transform-infrared (FT-IR) patterns, field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) analysis. The electrochemical behaviour was linearly symmetrical to various hydroquinone levels (1.0-600.0 μM) with a narrow limit of detection (LOD = 0.25 μM). The diffusion coefficient was also estimated to be 4.1 × 10-6 cm2/s. The N-rGO/CuO-ILCPE was impressively applicable in determination of hydroquinone in the real specimens.
Collapse
Affiliation(s)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mostafa Poursoltani Zarandi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
74
|
Musuvadhi Babulal S, Anupriya J, Chen SM. Self assembled three dimensional β-Cu 2V 2O 7 hierarchical flower decorated porous carbon: An efficient electrocatalyst for flutamide detection in biological and environmental samples. CHEMOSPHERE 2022; 303:135203. [PMID: 35667499 DOI: 10.1016/j.chemosphere.2022.135203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The serious situation mandates the use of anticancer drugs, which protect people all over the world from the growth of prostate cancer. In particular, excessive dosage and erroneous discharge of flutamide concentration cause make environmental pollution on the surface of the wastewater. In this study, the highly sensitive and selective electrochemical approach based on copper vanadium oxide decorated porous carbon (denoted as β-Cu2V2O7/PC) composite modified glassy carbon electrode (GCE) has been developed and it was applied for sensitive detection of anticancer drug flutamide (FTM). Moreover, using the co-precipitation method, the flower-like β-Cu2V2O7 hierarchical microstructure was synthesized, and through the wet chemical process, the β-Cu2V2O7/PC composite was obtained. The resultant product was characterized by XRD, FTIR, RAMAN, XPS and structural morphology established by FESEM analysis. Besides that, the electrochemical characterization and properties were analyzed by cyclic voltammetry (CV) and amperometric (i-t) techniques. The β-Cu2V2O7/PC/RDGCE had two linear ranges at 0.01-2.11 μM and 2.31-30.81 μM. The lower limits of detection and sensitivity were found at 0.62 nM (S/N = 3), and 24.33 μA μM-1 cm-2 respectively. The practicability test was applied for the determination of FTM in urine, blood serum and environmental aquatic fluid with satisfactory recovery obtained.
Collapse
Affiliation(s)
- Sivakumar Musuvadhi Babulal
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Jeyaraman Anupriya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
75
|
Sebokolodi TI, Sipuka DS, Muzenda C, Nkwachukwu OV, Nkosi D, Arotiba OA. Electrochemical detection of nicotine at a carbon Nanofiber-Poly(amidoamine) dendrimer modified glassy carbon electrode. CHEMOSPHERE 2022; 303:134961. [PMID: 35577133 DOI: 10.1016/j.chemosphere.2022.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Development of electrochemical sensors for important drugs such nicotine (an addictive drug) is important for the society. This study reports the electrochemical detection of nicotine at a carbon nanofiber/poly (amidoamine) dendrimer modified glassy carbon electrode. The carbon nanofiber (CNF) modified GCE was prepared by drop-coating followed by the electrodeposition of generation 4 poly (amidoamine) succinamic acid dendrimer (PAMAM) to form the sensor - CNF-PAMAM GCE. Characterization of prepared materials and modified electrodes was carried out using Fourier transmission infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV). The CNF-PAMAM composite was confirmed by microscopy. A marked reduction in charge transfer resistance and increase in current of the CNF-PAMAM GCE in comparison to the bare electrode showed a synergic improvement electrochemical response because of the CNF-PAMAM nanocomposite. The CNF-PAMAM demonstrated an enhanced performance in the oxidation of nicotine in comparison to the bare GCE by shifting the anodic potential Epa of nicotine from 0.9 V to 0.8 V. The electrochemical sensor achieved a detection limit (LOD) of 0.02637 μM in the concentration range of 0.4815-15.41 μM of nicotine in 0.1 M PBS at pH 7.5. The sensor ability to determine nicotine in real samples was assessed in cigarettes obtaining recovery percentages of 88.00 and 97.42%. The sensor demonstrated selectivity toward nicotine in the presence of interferences. Finally, the method was validated by ultraviolet-visible spectroscopy analysis.
Collapse
Affiliation(s)
- Tsholofelo I Sebokolodi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Dimpo S Sipuka
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Charles Muzenda
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Oluchi V Nkwachukwu
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Duduzile Nkosi
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Omotayo A Arotiba
- Department of Chemical Sciences, University of Johannesburg, Doornfontein, 2028, South Africa; Centre for Nanomaterials Science Research, University of Johannesburg, South Africa.
| |
Collapse
|
76
|
Muruganantham R, Lin CY, Wu HW, Gregory DH, Liu WR. Interface design strategy in combined materials of lithium thiophosphate electrolyte for solid-state lithium-ion batteries applications. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
77
|
Yaashikaa PR, Kumar PS. Fabrication and characterization of magnetic nanomaterials for the removal of toxic pollutants from water environment: A review. CHEMOSPHERE 2022; 303:135067. [PMID: 35623434 DOI: 10.1016/j.chemosphere.2022.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The success of any sustainable growth represents an advancement of novel approaches and new methodologies for managing any ecological concern. Magnetic nanoparticles have gained recent interest owing to their versatile properties such as controlled size, shape, quantum and surface effect, etc, and outcome in wastewater treatment and pollutant removal. Developments have progressed in synthesizing magnetic nanoparticles with the required size, shape and morphology, surface and chemical composition. Magnetic nanoparticles are target specific and inexpensive compared to conventional treatment techniques. This review insight into the synthesis of magnetic nanoparticles using physical, chemical, and biological methods. The biological method of synthesizing magnetic nanoparticles serves to be cost-effective, green process, and eco-friendly for various applications. Characterization studies of synthesized nanoparticles using TEM, XRD, SARS, SANS, DLS, etc are discussed in detail. Magnetic nanoparticles are widely utilized in recent research for removing organic and inorganic contaminants. It was found that the magnetic nanosorption approach together with redox reactions proves to be an effective and flexible mechanism for the removal of pollutants from waste effluents.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
78
|
Memon AF, Ameen S, Khand NH, Qambrani N, Buledi JA, Junejo B, Solangi AR, Taqvi SIH, Dragoi EN, Zare N, Karimi F, Vasseghian Y. Electrochemical monitoring of bisphenol-s through nanostructured tin oxide/Nafion/GCE: A solution to environmental pollution. CHEMOSPHERE 2022; 303:135170. [PMID: 35640684 DOI: 10.1016/j.chemosphere.2022.135170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/15/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Over the past few decades, phenolic compounds have been broadly exploited in the industries to be utilized in several applications including polycarbonate plastic, food containers, epoxy resins, etc. One of the major compounds in phenolics is Bisphenol-S (BPS) which has dominantly replaced Bisphenol-A in several applications. Phenolic compounds are extensively drained into the environment without proper treatment and cause several health hazards. Thus, to tackle this serious problem an electrochemical sensor based on SnO2/GCE has been successfully engineered to monitor the low-level concentration of BPS in water samples. The fabrication of SnO2 nanoparticles (SnO2 NPs) was confirmed through FTIR, XRD, and TEM to examine the size, crystallinity, internal texture, and functionalities of the prepared material. The fabricated material was exploited as a chemically modified sensor for the determination of BPS in water samples collected from different sources. Under optimal conditions such as scan sweep 100 mV/s, PBS electrolyte pH of 6, potential window (0.3-1.3 V), the proposed sensor manifested an excellent response for BPS. The LOD of the present method for BPS was calculated as 0.007 μM, respectively. Moreover, the stability and selectivity profile of SnO2/GCE for BPS in the real matrix was examined to be outstanding.
Collapse
Affiliation(s)
- Almas F Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Nadeem Qambrani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Bindia Junejo
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron no 73, 700050, Romania
| | - Najmeh Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
79
|
Ahmadian E, Janas D, Eftekhari A, Zare N. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. CHEMOSPHERE 2022; 302:134826. [PMID: 35525455 DOI: 10.1016/j.chemosphere.2022.134826] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Liver and pancreatic tumors are among the third leading causes of cancer-associated death worldwide. In addition to poor prognosis, both cancer types are diagnosed at advanced and metastatic stages without typical prior symptoms. Unfortunately, the existing theranostic approaches are inefficient in cancer diagnosis and treatment. Carbon nanotubes (CNTs) have attracted increasing attention in this context due to their distinct properties, including variable functionalization capability, biocompatibility, and excellent thermodynamic and optical features. As a consequence, they are now regarded as one of the most promising materials for this application. The current review aims to summarize and discuss the role of CNT in pancreatic and liver cancer theranostics. Accordingly, the breakthroughs achieved so far are classified based on the cancer type and analyzed in detail. The most feasible tactics utilizing CNT-based solutions for both cancer diagnosis and treatment are presented from the biomedical point of view. Finally, a future outlook is provided, which anticipates how the R&D community can build on the already developed methodologies and the subsequent biological responses of the pancreatic and liver cancer cells to the directed procedures.
Collapse
Affiliation(s)
- Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Aziz Eftekhari
- Department of Pharmacology & Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran; Health Innovation & Acceleration Centre, Tabriz University of Medical Sciences, Tabriz, 51664, Iran; Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan.
| | - Najme Zare
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
80
|
Moradi O. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem Toxicol 2022; 168:113391. [PMID: 36041662 DOI: 10.1016/j.fct.2022.113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/27/2022]
Abstract
Vanillin is an organic compound that not only acts as a flavoring and fragrance enhancer in some foods, but also can have antioxidant, anti-inflammatory, anti-cancer and anti-depressant effects. Nevertheless, its excessive use can be associated with side effects on human health. Consequently, there is a need to achieve a rapid vanillin determination approach to enhance food safety. The diversity and high sensitivity of analytical approaches has led researchers to use more advanced and efficient methods providing quantitative and qualitative outcomes in complex matrices. Among these, prominent attention has been drawn to electrochemical sensors for reasons such as reliability, simplicity, cost-effectiveness, portability, selectivity, and ease of operation, especially for the determination of vanillin. Nanomaterials are a good candidate for sensor construction due to their commendable physicochemical attributes. Some advanced nanostructures with promising platforms for high-sensitivity, highly selective, and long-lasting electrochemical sensors include graphene (Gr) and its derivatives, graphite carbon nitride (g-C3N4), carbon nanotubes (CNTs), metal nanoparticles, metal organic frameworks, carbon nanofibers (CNFs) and quantum dots. Study about sizes, dimensions, and morphologies of nanomaterials makes strong candidates for improving sensitivity or selectivity according to electrocatalytic abilities. The low LOD and wide linear range of samples demonstrated an excellent catalytic performance towards the vanillin oxidation. Some investigations have reported the synergistic effects like great conductivity of carbon nanomaterials which improved the electrocatalytic performance of nanocomposites which demonstrated the estimable sensitivity of nanomaterial-supported electrochemical sensors for determination of vanillin concentrations. The sensors which have reported have a commendable response to practical potential and evaluated in biscuit, pudding powder, chocolate, custard specimens and etc. sensitivity, stability, reproducibility and repeatability of suggested sensor were investigated. The present review article scrutinizes recent advances in the fabrication of nanomaterial-based electrochemical sensors to detect vanillin in various food matrices.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
81
|
Wu J, Wu Y, Yuan Y, Xia C, Saravanan M, Shanmugam S, Sabour A, Alshiekheid M, Brindhadevi K, Chi NTL, Pugazhendhi A. Eco-friendly, green synthesized copper oxide nanoparticle (CuNPs) from an important medicinal plant Turnera subulata Sm. and its biological evaluation. Food Chem Toxicol 2022; 168:113366. [PMID: 35977621 DOI: 10.1016/j.fct.2022.113366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 12/25/2022]
Abstract
In this report, the green fabrication of copper oxide nanoparticles (CuNPs) using Turnera subulata leaf extract and assessed for the antibacterial and photocatalytic activities. The synthesis of CuNPs was performed using the leaves of T. subulata (TS-CuNPs) and characterized using UV-visible spectrophotometry, Fourier transforms infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Energy-dispersive X-ray spectroscopy (EDX). Produced TS-CuNPs showing transmittance peaks approximately 707-878 cm-1, with a spherical shape particle with an average size of 58.5 nm. As synthesized TS-CuNPs were used as a coating material in cotton fabrics and tested the efficacy against Gram-negative and Gram-positive bacterial pathogens. TS-CuNPs inhibited the growth of Escherichia coli and Staphylococcus aureus on cotton fabrics. Antibiofilm activity of TS-CuNPs showed a 4-fold reduction in the biofilm formation of E. coli and S. aureus. Structural morphology of TS-CuNPs coated on cotton fabric analysis using SEM-EDX confirmed the attachment of TS-CuNPs and reduction in the bacterial attachment to the cotton fabrics. Thus, this study provides a potential strategy to improve the antibacterial property of cotton fabrics in textile production for medical, sportswear, and casual wear applications. Further, the photocatalytic activity against the tested dyes evident the potential in dye industry wastewater treatment. Hence, this work represents a simple, greener, and cost-effective route for in situ synthesis of CuNPs with the potential antibacterial and as a dye degradation agent for water remediation.
Collapse
Affiliation(s)
- Jiamin Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, PR China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Mythili Saravanan
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
82
|
Memon AF, Ameen S, Qambrani N, Buledi JA, Khand NH, Solangi AR, Taqvi SIH, Karaman C, Karimi F, Afsharmanesh E. An improved electrochemical sensor based on triton X-100 functionalized SnO 2 nanoparticles for ultrasensitive determination of cadmium. CHEMOSPHERE 2022; 300:134634. [PMID: 35439494 DOI: 10.1016/j.chemosphere.2022.134634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
The drastic increases in the concentration of heavy metals ions in the environment have become a serious concern for a number of years. Heavy metals pose serious impacts on human and aquatic life and cause severe health hazards. Amongst heavy metals, cadmium is known for its lethal effects on human health as it easily reacts with enzymes and creates free radicals in the biological system that causes carcinogenicity and other serious diseases. Thus, to tackle this challenge, TX-100 SnO2 nanoparticles based chemically modified sensor is introduced to assess the quantity of Cd+2 in the water system. The engineered SnO2 nanoparticles were electrochemically characterized through cyclic voltammetry and electrochemical impedance spectroscopy to ensure the better charge transfer kinetics and electrocatalytic properties of fabricated sensors. Under the optimized conditions e.g., scan rate 80 mV/s, PBS electrolyte pH 7, and potential window (-0.2 to -1.4 V), the engineered TX-100/SnO2/GCE-based sensor manifested a phenomenal response for cadmium ions in water media. The LOD and LOQ of developed TX-100/SnO2/GCE were calculated in the nanomolar range as 0.0084 nM and 0.27 nM. The recovery values of the proposed method for Cd+2 were found in an acceptable limit that witnesses the effectiveness of the fabricated sensor. Moreover, the excellent stability and anti-interference behavior of the sensor highlights its dynamic profile to be commercially utilized for the determination of Cd+2 ions in water bodies.
Collapse
Affiliation(s)
- Almas F Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Nadeem Qambrani
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Jamil A Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Nadir H Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080, Jamshoro, Pakistan.
| | - Syed Iqleem H Taqvi
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, 07070, Antalya, Turkey.
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Elahe Afsharmanesh
- Ibne Shahr Ashoob-e Saravi Student Research Center, Administration of Education, District 1, Sari, Iran
| |
Collapse
|
83
|
Altuner EE, El Houda Tiri RN, Aygun A, Gulbagca F, Sen F, Iranbakhsh A, Karimi F, Vasseghian Y, Dragoi EN. Hydrogen production and photocatalytic activities from NaBH4 using trimetallic biogenic PdPtCo nanoparticles: Development of machine learning model. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
84
|
Shahinfard H, Shabani-Nooshabadi M, Reisi-Vanani A, Ansarinejad H. A novel platform based on CoMn 2O 4-rGO/1-ethyl-3-methylimidazolium chloride modified carbon paste electrode for voltammetric detection of pethidine in the presence morphine and olanzapine. CHEMOSPHERE 2022; 301:134710. [PMID: 35487358 DOI: 10.1016/j.chemosphere.2022.134710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
The present work focuses on the development of a new electrochemical platform based on CoMn2O4-rGO/1-ethyl-3-methylimidazolium chloride modified carbon paste electrode (CoMn2O4-rGO/IL/CPE) for electrochemical determination of pethidine in the presence of biological species. For the first time, the electrooxidation mechanism of pethidine in presences of morphine and olanzapine is investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) technologies. The as-synthesized CoMn2O4-rGO nanocomposites are characterized by physicochemical measurements such as X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), Field emission scanning electron microscopy (FE-SEM), and Fourier transform infrared (FT-IR). The obtained results illustrated synergistic interactions between rGO and CoMn2O4 structures. Also, to investigate the electrode charge-transfer resistances, electrochemical features of the resulting nanocomposites are studied via electrochemical impedance spectroscopy (EIS) analysis. Based on the result, three segmented linear ranges are observed over the range 0.08-900 μM and detection limit of 0.024 μM. Over the 10.0-40.0 μM ranges of pethidine in phosphate buffer solution (PBS-pH 7.0), suitable diffusion coefficient of 5.67 × 10-7 cm2 s-1 is evaluated by chronoamperometry technique (CHA). Finally, the CoMn2O4-rGO/IL/CPE with high sensitivity, selectivity and repeatability is successfully used for determination of pethidine in real sample and drug formulation.
Collapse
Affiliation(s)
- Hamed Shahinfard
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Mehdi Shabani-Nooshabadi
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran; Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Adel Reisi-Vanani
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Hanieh Ansarinejad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
85
|
Ganesamurthi J, Shanmugam R, Chen TW, Chen SM, Balamurugan M, Gan ZW, Siddiqui MR, Wabaidur SM, Ali MA. NiO/ZnO binary metal oxide based electrochemical sensor for the evaluation of hazardous flavonoid in biological and vegetable samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
86
|
Kang JY, Shi YP. Recent advances and application of carbon nitride framework materials in sample preparation. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
87
|
Mehmandoust M, Karimi F, Erk N. A zinc oxide nanorods/molybdenum disulfide nanosheets hybrid as a sensitive and reusable electrochemical sensor for determination of anti-retroviral agent indinavir. CHEMOSPHERE 2022; 300:134430. [PMID: 35358553 DOI: 10.1016/j.chemosphere.2022.134430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
This work aims to develop an electrochemical sensor for the reusable and selective detection of trace levels of indinavir (IDV) as an anti-retroviral drug by using zinc oxide nano-rods/molybdenum disulfide nanosheets on a screen-printed electrode (ZnO NRs/MoS2 NSs/SPE). Quantitative IDV detection was achieved using differential pulse voltammetry (DPV). The assay specificity was illustrated using interfering species and exhibited high specificity toward the IDV. The developed displayed a wide dynamic range, from 0.01 to 0.66 and 0.66-7.88 μM in Britton-Robinson (B-R) buffer, with a 0.007 μM limit of detection. The fabricated ZnO NRs/MoS2 NSs/SPE electrode exhibited high sensitivity, stability, good reproducibility, and repeatability towards the sensing of IDV. It turned out that the hybrid electrochemical sensor's sensing performance was remarkably improved due to the synergistic effect between MoS2 NSs and ZnO NRs, where the former affords a large active surface area and quick electron transfer. The reported sensor provides a new alternative for electrochemical detection of IDV and could expand the applications of metal nanoparticles in emerging technologies for monitoring drugs in real samples.
Collapse
Affiliation(s)
- Mohammad Mehmandoust
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187 Sakarya, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications, And Sustainability Research & Development Group (BIOENAMS R&D Group), 54187 Sakarya, Turkey.
| |
Collapse
|
88
|
Biomimetic syntheses of silver nanoparticles using A. ferruginea bark extracts and tenable approaches for developing anti-infectives. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
89
|
A Voltammetric Sensor for the Determination of Hydroxylamine Using a Polypyrrole Nanotubes-Modified Electrode. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, we develop an electrochemical sensor using a polypyrrole nanotubes-modified graphite screen-printed electrode (PPy NTs/GSPE) for sensing hydroxylamine. The PPy NTs/GSPE-supported sensor has an appreciable electrocatalytic performance and great stability for hydroxylamine oxidation. Compared to a bare graphite screen-printed electrode, we demonstrate that using the PPy NTs/GSPE leads to a significant reduction in the oxidation potential of hydroxylamine. The standard curve shows a linear relationship ranging from 0.005 to 290.0 μM (R2 = 0.9998), with a high sensitivity (0.1349 μA/μM) and a narrow limit of detection (LOD) of 0.001 μM. In addition, the PPy NTs/GSPE has satisfactory outcomes for hydroxylamine detection in real specimens.
Collapse
|
90
|
Prinith N, Manjunatha JG, Al-Kahtani AA, Tighezza AM, Sillanpää M. Highly Selective and Sensitive Voltammetric Method for the Detection of Catechol in Tea and Water Samples Using Poly(gibberellic acid)-Modified Carbon Paste Electrode. ACS OMEGA 2022; 7:24679-24687. [PMID: 35874207 PMCID: PMC9301953 DOI: 10.1021/acsomega.2c02553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite the wide range of applications of catechol (CC) in agrochemical, petrochemical, textile, cosmetics, and pharmaceutical industries, its exposure to the environment leads to health issues as it is carcinogenic. This increased the concern over the risk of exposure level of CC in the environment, and monitoring its level has become critical. In this work, we report the fabrication of poly-gibberellic acid-modified carbon paste electrode (PGBAMCPE) to be a simple, viable, and effective electrochemical electrode for the determination of CC. This was synthesized by a simple electropolymerization method by the cyclic voltammetry (CV) technique. The electrodes were characterized by field emission electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemical impedance spectroscopy. Compared to the bare carbon paste electrode, the sensitivity for CC fortified at PGBAMCPE in both CV and differential pulse voltammetry (DPV). We succeeded attaining a lower detection limit of 0.57 μM by the DPV method. The developed electrode was observed to be highly conductive, transducing, stable, and reproducible and was highly selective with anti-interfering properties from the determination of CC with hydroquinone simultaneously. The applicability of the electrode was confirmed from the detection CC in tea and water samples with good recoveries. This substantiates that PGBAMCPE is promising and consistent for the rapid monitoring of CC-contaminated area and clinical diagnosis.
Collapse
Affiliation(s)
- Nambudumada
S. Prinith
- Department
of Chemistry, FMKMC College, Constituent
College of Mangalore University, Madikeri 571201, Karnataka, India
| | - J. G. Manjunatha
- Department
of Chemistry, FMKMC College, Constituent
College of Mangalore University, Madikeri 571201, Karnataka, India
| | | | - Ammar M. Tighezza
- Chemistry
Department King Saud University, P.O. box 2455, Riyadh 11451, Saudi Arabia
| | - Mika Sillanpää
- Chemistry
Department, College of Science and Chemical Engineering, Aarhus University, Norrebrogade 44, Aarhus C 8000, Denmark
| |
Collapse
|
91
|
Ashrafzadeh Afshar E, Taher MA, Karimi-Maleh H, Karaman C, Joo SW, Vasseghian Y. Magnetic nanoparticles based on cerium MOF supported on the MWCNT as a fluorescence quenching sensor for determination of 6-mercaptopurine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119230. [PMID: 35395348 DOI: 10.1016/j.envpol.2022.119230] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, a new magnetic nanocomposite was developed as an efficient and fast-response fluorescence quenching sensor for determination of anticancer drug 6-mercaptopurine (6-MP). For this purpose, the needle-shape fluorescence metal-organic framework of cerium (Ce-MOF) were successfully synthesized on the surface of multiwalled carbon nanotubes using 1,3,5-benzenetricarboxylic acid ligand via a facile solvothermal assisted route and magnetized. The accuracy of the proposed synthesis was confirmed using the FT-IR, FE-SEM, XRD, and VSM methods. The obtained product as presented the fluorescence emission in 331 nm by excitation of 293 nm in excitation/emission slit widths of 10.0 nm. The operation of suggested method is based on quenching the fluorescence signal in accordance with increasing the 6-MP concentration. The proposed assay effectively detected the trace amount of 6-MP in the linear range of 1.0 × 10-6 to 7 × 10-5 M. The limit of detection and limit of quantification were obtained as 8.6 × 10-7 and 2.86 × 10-6 M, respectively. The analyte molecule was determined in real samples with satisfactory recoveries between 98.75 and 105.33.
Collapse
Affiliation(s)
- Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|
92
|
Jahani PM, Beitollahi H, Nejad FG, Dourandish Z, Di Bartolomeo A. Screen-printed graphite electrode modified with Co 3O 4nanoparticles and 2D graphitic carbon nitride as an effective electrochemical sensor for 4-aminophenol detection. NANOTECHNOLOGY 2022; 33:395702. [PMID: 35688102 DOI: 10.1088/1361-6528/ac779f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We fabricated a new electrochemical 4-aminophenol sensor based on a nanocomposite of Co3O4nanoparticles and graphite carbon nitride (Co3O4@g-C3N4), used for the modification of a screen-printed electrode (Co3O4@g-C3N4/SPE). The synthesized nanocomposite was characterized using field-emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and Fourier transform-infrared (FT-IR) techniques. The electro-oxidation of 4-aminophenol in phosphate buffer solution (pH = 7.0) was investigated via cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The peak current of oxidation in the optimized conditions had a linear relationship with various 4-aminophenol contents (0.05-780.0μM) with a correlation coefficient of 0.9996 and the limit of detection (S/N = 3) of 1.5 × 10-8M. The developed method was successful to determine 4-aminophenol in real specimens, with acceptable outcomes.
Collapse
Affiliation(s)
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Zahra Dourandish
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Antonio Di Bartolomeo
- Department of Physics 'E.R. Caianiello', University of Salerno, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
93
|
Jafarzadeh H, Karaman C, Güngör A, Karaman O, Show PL, Sami P, Mehrizi AA. Hydrogen production via sodium borohydride hydrolysis catalyzed by cobalt ferrite anchored nitrogen-and sulfur co-doped graphene hybrid nanocatalyst: Artificial neural network modeling approach. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
94
|
Buledi JA, Solangi AR, Hyder A, Khand NH, Memon SA, Mallah A, Mahar N, Dragoi EN, Show P, Behzadpour M, Karimi-Maleh H. Selective oxidation of amaranth dye in soft drinks through tin oxide decorated reduced graphene oxide nanocomposite based electrochemical sensor. Food Chem Toxicol 2022; 165:113177. [DOI: 10.1016/j.fct.2022.113177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 02/07/2023]
|
95
|
Mazinani A, Zare K, Moradi O, Attar H. Sulfonated calixarene modified Poly(methyl methacrylate) nanoparticles:A promising adsorbent for Removal of Vanadium Ions from aqueous media. CHEMOSPHERE 2022; 299:134459. [PMID: 35367226 DOI: 10.1016/j.chemosphere.2022.134459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The poly (methyl methacrylate) (PMMA)-based nanoparticle was synthesized by surfactant-free emulsion polymerization method and then post modified with Calixarene using (3-Aminopropyl)triethoxysilane organo-silane as a linker after OH-treatment. The prepared structure was applied for efficient adsorption of Vanadium ions in the aqueous solution after characterization by FT-IR, SEM, TEM, DLS, and EDX. Additional investigations discovered that the prepared adsorbent has a good capacity to adsorb vanadium ions. The effect of key experimental factors was studied to find the optimal point of adsorbent efficiency including the initial concentration of analyte, sorbent dosage, pH of the solution, contact time, and type/quantity of the eluents. It was specified, the maximum adsorption capacity for the synthesized nanoparticles was obtained about 322 mg g-1. The adsorption mechanism was revealed that the model of Langmuir isotherm well-matched compared to the others due to the calculated equilibrium data. Besides, the kinetics of the adsorption process was fitted with pseudo-second-order. Eventually, the prepared adsorbent was successfully applied in vanadium adsorption from real water media.
Collapse
Affiliation(s)
- Ali Mazinani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Karim Zare
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Attar
- Chemical Engineering Department, Engineering and Technology Faculty, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
96
|
Moradi O, Alizadeh H, Sedaghat S. Removal of pharmaceuticals (diclofenac and amoxicillin) by maltodextrin/reduced graphene and maltodextrin/reduced graphene/copper oxide nanocomposites. CHEMOSPHERE 2022; 299:134435. [PMID: 35358563 DOI: 10.1016/j.chemosphere.2022.134435] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Due to the scarcity of water and the growing industrialization, pharmaceutical wastewater treatment is of particular importance. For this reason, it is necessary to achieve an efficient method to eliminate all types of pharmaceutical pollutants. Herein, synthetic nano-composite is proposed to take a step towards improving the operation of removing pharmaceutical contaminants from the environment and aquatic and industrial effluents. Binary (maltodextrin/reconstituted graphene nanocomposite) and ternary (maltodextrin/reconstituted graphene nanocomposite/copper oxide) nanocomposites were prepared and characterized using, FT-IR, FESEM-EDS, TEM, DLS, and XRD. The nanocomposites were used to eliminate diclofenac and amoxicillin as Pharmaceuticals. The removal of amoxicillin at a concentration of 30 mg/L with an adsorbent dose of 0.05 g and a pH of 7.4 and an optimal temperature of 20 °C in 10 min has the highest removal rate of 86%. In addition, diclofenac with nano-adsorbents prepared under optimal conditions, including an initial concentration of 20 mg/L, adsorbent dose of 0.05 g, adsorption time of 7 min, a temperature of 20 °C and a pH of 7, has the highest removal efficiency of 94%. The results indicated that the prepared nanocomposites are alternative adsorbents to remove Pharmaceuticals from water.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Hamed Alizadeh
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Sajjad Sedaghat
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
97
|
Gnanasekaran L, Santhamoorthy M, Naushad M, ALOthman ZA, Soto-Moscoso M, Show PL, Khoo KS. Photocatalytic removal of food colorant using NiO/CuO heterojunction nanomaterials. Food Chem Toxicol 2022; 167:113277. [DOI: 10.1016/j.fct.2022.113277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
|
98
|
Ahghari MA, Ahghari MR, Kamalzare M, Maleki A. Design, synthesis, and characterization of novel eco-friendly chitosan-AgIO 3 bionanocomposite and study its antibacterial activity. Sci Rep 2022; 12:10491. [PMID: 35729281 PMCID: PMC9213402 DOI: 10.1038/s41598-022-14501-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/08/2022] [Indexed: 11/10/2022] Open
Abstract
This work reports a facile and green approach to preparing AgIO3 nanoparticles decorated with chitosan (chitosan-AgIO3). The bionanocomposite was fully characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM) images, energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). The antibacterial effect of chitosan-AgIO3 bionanocomposite was investigated for Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus saprophyticus, Escherichia coli, and Staphylococcus aureus as pathogen microorganisms via the plate count method, disk diffusion method, and optical density (OD) measurements. The antibacterial performance of the bionanocomposite was compared with two commercial drugs (penicillin and silver sulfadiazine) and in some cases, the synthesized bionanocomposite has a better effect in the eradication of bacteria. The bionanocomposite represented great antibacterial properties. Flow cytometry was performed to investigate the mechanism of bionanocomposite as an antibacterial agent. Reactive oxygen species (ROS) production was responsible for the bactericidal mechanisms. These results demonstrate that the chitosan-AgIO3 bionanocomposite, as a kind of antibacterial material, got potential for application in a broad range of biomedical applications and water purification. The design and synthesis of green and biodegradable antibacterial materials with simple processes and by using readily available materials cause the final product to be economically affordable and could be scaled in different industries.
Collapse
Affiliation(s)
- Mohammad Ali Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad Reza Ahghari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Kamalzare
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| |
Collapse
|
99
|
Ly NH, Kim MK, Lee H, Lee C, Son SJ, Zoh KD, Vasseghian Y, Joo SW. Advanced microplastic monitoring using Raman spectroscopy with a combination of nanostructure-based substrates. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2022; 12:865-888. [PMID: 35757049 PMCID: PMC9206222 DOI: 10.1007/s40097-022-00506-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 06/07/2023]
Abstract
Micro(nano)plastic (MNP) pollutants have not only impacted human health directly, but are also associated with numerous chemical contaminants that increase toxicity in the natural environment. Most recent research about increasing plastic pollutants in natural environments have focused on the toxic effects of MNPs in water, the atmosphere, and soil. The methodologies of MNP identification have been extensively developed for actual applications, but they still require further study, including on-site detection. This review article provides a comprehensive update on the facile detection of MNPs by Raman spectroscopy, which aims at early diagnosis of potential risks and human health impacts. In particular, Raman imaging and nanostructure-enhanced Raman scattering have emerged as effective analytical technologies for identifying MNPs in an environment. Here, the authors give an update on the latest advances in plasmonic nanostructured materials-assisted SERS substrates utilized for the detection of MNP particles present in environmental samples. Moreover, this work describes different plasmonic materials-including pure noble metal nanostructured materials and hybrid nanomaterials-that have been used to fabricate and develop SERS platforms to obtain the identifying MNP particles at low concentrations. Plasmonic nanostructure-enhanced materials consisting of pure noble metals and hybrid nanomaterials can significantly enhance the surface-enhanced Raman scattering (SERS) spectra signals of pollutant analytes due to their localized hot spots. This concise topical review also provides updates on recent developments and trends in MNP detection by means of SERS using a variety of unique materials, along with three-dimensional (3D) SERS substrates, nanopipettes, and microfluidic chips. A novel material-assisted spectral Raman technique and its effective application are also introduced for selective monitoring and trace detection of MNPs in indoor and outdoor environments. Graphical abstract
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120 Republic of Korea
| | - Moon-Kyung Kim
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyewon Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, 02713 Republic of Korea
| | - Cheolmin Lee
- Department of Chemical and Biological Engineering, Seokyeong University, Seoul, 02713 Republic of Korea
| | - Sang Jun Son
- Department of Chemistry, Gachon University, Seongnam, 13120 Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978 Republic of Korea
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978 Republic of Korea
| |
Collapse
|
100
|
Polyoxometalates-graphene nanocomposites modified electrode for electro-sensing detection of Sudan I in food. Food Chem Toxicol 2022; 166:113222. [PMID: 35690185 DOI: 10.1016/j.fct.2022.113222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Sudan I, a lipophilic azo dye -dye, is desirable and urgent to be accurate detected due to its increasing levels and high toxicity in food and environmental monitoring and analysis. Herein, a sensitive electrochemical sensor for Sudan I was established based on a new K10P2W18Fe4(H2O)2O68 functionalized carbon nanomaterials (Fe4P2W18-GNPS). The electrode modified nanocomposite, Fe4P2W18-GNPS, was successfully fabricated and characterized by FTIR, SEM and UV-vis. The effective combination of Fe4P2W18 and graphene exhibited high electrocatalytic activity towards the oxidation of Sudan I, promote charge transfer, and more sensing sites. Under optimized experimental conditions, the proposed differential pulse voltammetry (DPV) showed excellent analytical performances for Sudan I with the limit of detection (LOD) of 5 nM (S/N = 3), the sensitivity of 13.10 μA·μM-1cm-2 at the 0.005-2 μM and 0.39 μA·μM-1cm-2 at 10-200 μM. The stability and reproducibility make the electrochemical sensor suitable for detecting the Sudan I in food.
Collapse
|