51
|
AlKahtane AA, Ghanem E, Bungau SG, Alarifi S, Ali D, AlBasher G, Alkahtani S, Aleya L, Abdel-Daim MM. Carnosic acid alleviates chlorpyrifos-induced oxidative stress and inflammation in mice cerebral and ocular tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11663-11670. [PMID: 31965510 DOI: 10.1007/s11356-020-07736-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Chlorpyrifos is an organophosphate pesticide whose exposure leads to inhibition of acetylcholinesterase (AChE) enzyme and induces oxidative stress, inflammation, and neurotoxicity. The current study was designed to evaluate the efficacy of carnosic acid (CA) in ameliorating CPF-induced cytotoxicity in mice brain and eye tissues. We allocated 40 male Swiss albino mice to receive DMSO 1% solution, oral CA 60 mg/kg/day bw, CPF 12 mg/kg/day bw via gastric gavage, or CPF plus CA at 30 and 60 mg/kg/day bw. Carnosic acid was administered once/day for 14 days, while CPF was administered in the last 7 days of the experiment. Biochemical analysis showed that CPF administration was associated with significant increases in the serum concentrations of interleukin-1β, IL-6, and tumor necrosis factor-α, while it was associated with significant reductions in serum AChE levels in mice. Moreover, CPF-intoxicated mice exhibited significantly higher levels of malondialdehyde and nitric oxide in the brain and eye tissues. However, they had significantly lower levels of reduced glutathione, glutathione peroxidase, superoxide dismutase, and catalase in comparison with normal controls. Pretreatment with CA at 30 and 60 mg/kg/day bw for 14 days significantly alleviated all the aforementioned CPF-induced alterations in a dose-dependent manner; more frequent restorations of the normal control ranges were observed in the higher dose group. In conclusion, CA offers a neuroprotective effect against CPF-induced oxidative stress and inflammation and should be further studied in upcoming experimental and clinical research.
Collapse
Affiliation(s)
- Abdullah A AlKahtane
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Esraa Ghanem
- Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Simona G Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Gadah AlBasher
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
52
|
Bensouici C, Boudiar T, Kashi I, Bouhedjar K, Boumechhour A, Khatabi L, Larguet H. Chemical characterization, antioxidant, anticholinesterase and alpha-glucosidase potentials of essential oil of Rosmarinus tournefortii de noé. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-019-00309-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
53
|
Cognitive Facilitation and Antioxidant Effects of an Essential Oil Mix on Scopolamine-Induced Amnesia in Rats: Molecular Modeling of In Vitro and In Vivo Approaches. Molecules 2020; 25:molecules25071519. [PMID: 32230815 PMCID: PMC7181224 DOI: 10.3390/molecules25071519] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/11/2023] Open
Abstract
The present study investigated the capability of an essential oil mix (MO: 1% and 3%) in ameliorating amnesia and brain oxidative stress in a rat model of scopolamine (Sco) and tried to explore the underlying mechanism. The MO was administered by inhalation to rats once daily for 21 days, while Sco (0.7 mg/kg) treatment was delivered 30 min before behavioral tests. Donepezil (DP: 5 mg/kg) was used as a positive reference drug. The cognitive-enhancing effects of the MO in the Sco rat model were assessed in the Y-maze, radial arm maze (RAM), and novel object recognition (NOR) tests. As identified by gas chromatography–mass spectrometry (GC–MS), the chemical composition of the MO is comprised by limonene (91.11%), followed by γ-terpinene (2.02%), β-myrcene (1.92%), β-pinene (1.76%), α-pinene (1.01%), sabinene (0.67%), linalool (0.55%), cymene (0.53%), and valencene (0.43%). Molecular interactions of limonene as the major compound in MO with the active site of butyrylcholinesterase (BChE) was explored via molecular docking experiments, and Van der Waals (vdW) contacts were observed between limonene and the active site residues SER198, HIS438, LEU286, VAL288, and PHE329. The brain oxidative status and acetylcholinesterase (AChE) and BChE inhibitory activities were also determined. MO reversed Sco-induced memory deficits and brain oxidative stress, along with cholinesterase inhibitory effects, which is an important mechanism in the anti-amnesia effect. Our present findings suggest that MO ameliorated memory impairment induced by Sco via restoration of the cholinergic system activity and brain antioxidant status.
Collapse
|
54
|
Sharifi-Rad J, Ezzat SM, El Bishbishy MH, Mnayer D, Sharopov F, Kılıç CS, Neagu M, Constantin C, Sharifi-Rad M, Atanassova M, Nicola S, Pignata G, Salehi B, Fokou PVT, Martins N. Rosmarinus plants: Key farm concepts towards food applications. Phytother Res 2020; 34:1474-1518. [PMID: 32058653 DOI: 10.1002/ptr.6622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Rosmarinus species are aromatic plants that mainly grow in the Mediterranean region. They are widely used in folk medicine, food, and flavor industries and represent a valuable source of biologically active compounds (e.g., terpenoids, flavonoids, and phenolic acids). The extraction of rosemary essential oil is being done using three main methods: carbon dioxide supercritical extraction, steam distillation, and hydrodistillation. Furthermore, interesting antioxidant, antibacterial, antifungal, antileishmanial, anthelmintic, anticancer, anti-inflammatory, antidepressant, and antiamnesic effects have also been broadly recognized for rosemary plant extracts. Thus the present review summarized data on economically important Rosmarinus officinalis species, including isolation, extraction techniques, chemical composition, pharmaceutical, and food applications.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Ceyda S Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Patrick V T Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
55
|
Singh S, Dharamveer, Kulshreshtha M. Pharmacological Approach of Pistacia Vera Fruit to Assess Learning and Memory Potential in Chemically-Induced Memory Impairment in Mice. Cent Nerv Syst Agents Med Chem 2020; 19:125-132. [PMID: 30836928 DOI: 10.2174/1871524919666190304122927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The present study was designed to investigate the potential of Pistacia vera (P. vera) fruits in experimental memory impairments in mice. MATERIAL & METHODS Memory impairment was induced in Swiss Albino mice by scopolamine (0.4mg mg/kg. i.p). Animals were divided into five separate groups of six animals each, positive control group received carboxy methyl cellulose (CMC) as vehicle, negative control group received scopolamine with vehicle, and standard group received donepezil (5mg/kg i.p) with Scopolamine. Ethanolic extract of P. vera (EEPV) at doses of 200mg/kg & 400mg/kg p.o were administered to group test1 & test 2 respectively along with scopolamine. Elevated plus maze (EPM), passive avoidance paradigms and morris water maze (MWM) were used as exteroceptive behavioral models to access learning and memory activity. Transfer latency, step down latency and escape latency parameters were evaluated plus maze, passive avoidance paradigm, morris water maze. Thereafter lipid peroxidation test, glutathione level and catalase activities were estimated in homogenized brain of mice. RESULTS Pretreatment of mice with EEPV (200mg/kg & 400mg/kg) significantly reduced scopolamine induced amnesia. The obtained data clearly revealed that there was increase in escape latency in MWM and also increase in step down latency in passive avoidance paradigm. Transfer latencey was found to be decrease in EPM and biochemical. Parameters were clearly satisfied the data as compared to negative control group which was indicative of cognitive improvement. CONCLUSION P. vera fruit extract demonstrated to improve cognitive process by enhancing memory in different experimental paradigm such as EPM, passive avoidance and MWM when administered orally. Hence it would be worthwhile to explore the potential of this plant in the management of memory disorders.
Collapse
Affiliation(s)
- Satyam Singh
- School of Pharmacy, Babu Banarasi Das University, Babu Banarasi Das City, Faizabad Road, Chinhat, Lucknow- 227105, Uttar Pradesh, India
| | - Dharamveer
- School of Pharmacy, Babu Banarasi Das University, Babu Banarasi Das City, Faizabad Road, Chinhat, Lucknow- 227105, Uttar Pradesh, India
| | - Mayank Kulshreshtha
- School of Pharmacy, Babu Banarasi Das University, Babu Banarasi Das City, Faizabad Road, Chinhat, Lucknow- 227105, Uttar Pradesh, India
| |
Collapse
|
56
|
Age related neurodegenerative Alzheimer's disease: Usage of traditional herbs in therapeutics. Neurosci Lett 2020; 717:134679. [PMID: 31816333 DOI: 10.1016/j.neulet.2019.134679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease mainly associated with cognition impairment. Studies in last more than six decades have suggested that the disease pathology primarily includes the depleted cholinergic neurons, accumulation of amyloid beta plaques and hyper phosphorylation of tau proteins. However, the disease etiology remains enigmatic and no therapy is available to modify the disease status. Studies in experimental models and in post mortem brain of AD patients have suggested the involvement of oxidative stress, inflammatory responses, unfolded protein responses and apoptosis in disease pathology, yet the information is deficit to develop the disease modifying therapeutics. Owing to the need of novel effective treatment, chronic consumption of medicines with minimum side effects, recently the researchers turned towards the traditional medicines. This review is mainly focusing on the traditional herbs which have been suggested to contain disease related antidote activities and may be utilized for the effective treatment of AD patients.
Collapse
|
57
|
Capatina L, Boiangiu RS, Dumitru G, Napoli EM, Ruberto G, Hritcu L, Todirascu-Ciornea E. Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish ( Danio rerio). Antioxidants (Basel) 2020; 9:antiox9010062. [PMID: 31936730 PMCID: PMC7023291 DOI: 10.3390/antiox9010062] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/25/2022] Open
Abstract
Rosmarinus officinalis L. is a traditional herb with various therapeutic applications such as antibacterial, antioxidant, anti-inflammatory, antidepressant, and anticholinesterase activities, and can be used for the prevention or treatment of dementia. In the present study, we tested whether Rosmarinus officinalis L. could counteract scopolamine-induced anxiety, dementia, and brain oxidative stress in the zebrafish model and tried to find the underlying mechanism. Rosmarinus officinalis L. essential oil (REO: 25, 150, and 300 µL/L) was administered by immersion to zebrafish (Danio rerio) once daily for eight days while scopolamine (100 µM) treatment was delivered 30 min before behavioral tests. The antidepressant and cognitive-enhancing actions of the essential oil in the scopolamine zebrafish model was measured in the novel tank diving test (NTT) and Y-maze test. The chemical composition was identified by Gas chromatograph–Mass spectrometry (GC-MS) analysis. The brain oxidative status and acetylcholinesterase (AChE) activity was also determined. REO reversed scopolamine-induced anxiety, memory impairment, and brain oxidative stress. In addition, a reduced brain AChE activity following the administration of REO in scopolamine-treated fish was observed. In conclusion, REO exerted antidepressant-like effect and cognitive-enhancing action and was able to abolish AChE alteration and brain oxidative stress induced by scopolamine.
Collapse
Affiliation(s)
- Luminita Capatina
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Giuseppe Ruberto
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy; (E.M.N.); (G.R.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
- Correspondence: ; Tel.: +40-232201666
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; (L.C.); (R.S.B.); (G.D.); (E.T.-C.)
| |
Collapse
|
58
|
Adamczak A, Ożarowski M, Karpiński TM. Antibacterial Activity of Some Flavonoids and Organic Acids Widely Distributed in Plants. J Clin Med 2019; 9:109. [PMID: 31906141 PMCID: PMC7019947 DOI: 10.3390/jcm9010109] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 01/03/2023] Open
Abstract
Among natural substances widespread in fruits, vegetables, spices, and medicinal plants, flavonoids and organic acids belong to the promising groups of bioactive compounds with strong antioxidant and anti-inflammatory properties. The aim of the present work was to evaluate the antibacterial activity of 13 common flavonoids (flavones, flavonols, flavanones) and 6 organic acids (aliphatic and aromatic acids). The minimal inhibitory concentrations (MICs) of selected plant substances were determined by the micro-dilution method using clinical strains of four species of pathogenic bacteria. All tested compounds showed antimicrobial properties, but their biological activity was moderate or relatively low. Bacterial growth was most strongly inhibited by salicylic acid (MIC = 250-500 μg/mL). These compounds were generally more active against Gram-negative bacteria: Escherichia coli and Pseudomonas aeruginosa than Gram-positive ones: Enterococcus faecalis and Staphylococcus aureus. An analysis of the antibacterial effect of flavone, chrysin, apigenin, and luteolin showed that the presence of hydroxyl groups in the phenyl rings A and B usually did not influence on the level of their activity. A significant increase in the activity of the hydroxy derivatives of flavone was observed only for S. aureus. Similarly, the presence and position of the sugar group in the flavone glycosides generally had no effect on the MIC values.
Collapse
Affiliation(s)
- Artur Adamczak
- Department of Botany, Breeding and Agricultural Technology of Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Kolejowa 2, 62-064 Plewiska, Poland;
| | - Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| |
Collapse
|
59
|
Vyas S, Kothari S, Kachhwaha S. Nootropic medicinal plants: Therapeutic alternatives for Alzheimer’s disease. J Herb Med 2019. [DOI: 10.1016/j.hermed.2019.100291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
60
|
Ko YH, Kwon SH, Lee SY, Jang CG. Isoorientin improves scopolamine-induced cognitive impairments by restoring the cholinergic system, antioxidant defense, and p-CREB/BDNF signaling in the hippocampus and frontal cortex. Arch Pharm Res 2019; 42:722-731. [PMID: 31350730 DOI: 10.1007/s12272-019-01172-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/22/2019] [Indexed: 01/27/2023]
Abstract
Isoorientin (ISO) is considered one of the most important flavonoids with various pharmacological effects such as antioxidant, anti-inflammatory, and anti-cancer activities. Despite these beneficial activities, the effects of ISO on learning and memory have not been investigated so far. The current study evaluated the memory-enhancing effects of ISO in a scopolamine-treated mouse model by using the Y-maze and passive avoidance tests. The results showed that ISO (5 and 10 mg/kg, p.o.) treatment significantly improved the cognitive impairments caused by scopolamine. Additionally, ISO significantly decreased scopolamine-induced acetylcholinesterase and thiobarbituric acid reactive substance activities in both the hippocampus and frontal cortex of mice. In addition, ISO significantly increased the levels of total superoxide dismutase induced by scopolamine in the hippocampus and frontal cortex. Moreover, Western blot results indicated that ISO reversed the decreases in expression of phosphorylated cAMP response element binding (CREB) and brain-derived neurotrophic factor (BDNF) in the hippocampus and frontal cortex of scopolamine-treated mice. Thus, our results provide initial evidence that ISO ameliorates scopolamine-induced memory and cognitive impairments partly by restoring the cholinergic system, antioxidant defense, and p-CREB/BDNF signaling pathway, thereby exhibiting memory-enhancing activities.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
61
|
Bilska A, Kobus-Cisowska J, Kmiecik D, Danyluk B, Kowalski R, Szymanowska D, Gramza-Michałowska A, Szczepaniak O. Cholinesterase inhibitory activity, antioxidative potential and microbial stability of innovative liver pâté fortified with rosemary extract (Rosmarinus officinalis). ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
62
|
Filiptsova O, Gazzavi-Rogozina L, Timoshyna I, Naboka O, Dyomina Y, Ochkur A. The effect of the essential oils of lavender and rosemary on the human short-term memory. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- O.V. Filiptsova
- National University of Pharmacy, 53 , Pushkinska str., Kharkiv, 61002, Ukraine
| | | | - I.A. Timoshyna
- National University of Pharmacy, 53 , Pushkinska str., Kharkiv, 61002, Ukraine
| | - O.I. Naboka
- National University of Pharmacy, 53 , Pushkinska str., Kharkiv, 61002, Ukraine
| | - Ye.V. Dyomina
- National University of Pharmacy, 53 , Pushkinska str., Kharkiv, 61002, Ukraine
| | - A.V. Ochkur
- National University of Pharmacy, 53 , Pushkinska str., Kharkiv, 61002, Ukraine
| |
Collapse
|
63
|
Zappalà A, Vicario N, Calabrese G, Turnaturi R, Pasquinucci L, Montenegro L, Spadaro A, Parenti R, Parenti C. Neuroprotective effects of Rosmarinus officinalis L. extract in oxygen glucose deprivation (OGD)-injured human neural-like cells. Nat Prod Res 2019; 35:669-675. [PMID: 30938188 DOI: 10.1080/14786419.2019.1587428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rosmarinus officinalis L. (RO), an aromatic plant used as food condiment and in traditional medicine, exerts numerous beneficial properties including antioxidant, analgesic and neuroprotective effects. Onset and progression of homeostatic imbalances observed in the early phases of a number of neurodegenerative diseases, have been associated with a gap junction (GJ)-dependent increased membrane permeability and alterations of connexins (Cxs), including Cx43. Here, we evaluate spray-dried RO extract (SDROE)-mediated effects on cell viability, apoptosis and Cx43-based intercellular communication using human SH-SY5Y neuron-like and human A-172 glial-like cells in an in vitro model of oxygen glucose deprivation (OGD) injury. We found that SDROE exerts a protective action in OGD-injured cells, increasing cell viability and metabolic turnover and decreasing Cx43-based cell coupling. These data suggest that SDROE-mediated Cx43 reduction may be the molecular basis for its beneficial effects to be exploited for preventive treatment against the risk of some neurodegenerative disorders.
Collapse
Affiliation(s)
- Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Giovanna Calabrese
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Rita Turnaturi
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Lorella Pasquinucci
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Lucia Montenegro
- Department of Drug Sciences, Pharmaceutical Technology Section, University of Catania, Catania, Italy
| | - Angelo Spadaro
- Department of Drug Sciences, Medicinal Chemistry Section, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Catania, Italy
| | - Carmela Parenti
- Department of Drug Sciences, Pharmacology Section, University of Catania, Catania, Italy
| |
Collapse
|
64
|
Filiptsova O, Gazzavi-Rogozina L, Timoshyna I, Naboka O, Dyomina Y, Ochkur A. The essential oil of rosemary and its effect on the human image and numerical short-term memory. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- O.V. Filiptsova
- National University of Pharmacy, 53, Pushkinska Str., Kharkiv 61002, Ukraine
| | | | - I.A. Timoshyna
- National University of Pharmacy, 53, Pushkinska Str., Kharkiv 61002, Ukraine
| | - O.I. Naboka
- National University of Pharmacy, 53, Pushkinska Str., Kharkiv 61002, Ukraine
| | - Ye.V. Dyomina
- National University of Pharmacy, 53, Pushkinska Str., Kharkiv 61002, Ukraine
| | - A.V. Ochkur
- National University of Pharmacy, 53, Pushkinska Str., Kharkiv 61002, Ukraine
| |
Collapse
|
65
|
Ortega-Vidal J, Ruiz-Riaguas A, Fernández-de Córdova ML, Ortega-Barrales P, Llorent-Martínez EJ. Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea. Influence of simulated gastrointestinal in vitro digestion. Food Chem 2019; 287:258-264. [PMID: 30857697 DOI: 10.1016/j.foodchem.2019.02.101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/20/2023]
Abstract
In order to value J. glutinosa DC (rock tea), we characterised its phenolic profile and antioxidant activity. The study was performed in aqueous extracts before and after a simulated in vitro digestion to obtain data regarding phenolics bioavailability. Methanolic extracts were also analysed for comparison purposes. Phytochemical profiles were determined by high-performance liquid chromatography with mass spectrometric detection, whereas total phenolic content (TPC) and antioxidant assays were performed by conventional spectrophotometric methods. The most abundant compounds were dicaffeoylquinic acids, representing more than 90% of phenolics in tea infusions. Statistically significant differences were observed for all parameters except for TPC in methanol and aqueous extracts. Both phenolics amount and antioxidant activities were lower after the in vitro digestion of the infusions. However, although phenolics were lost during the simulated digestion, rock tea is still a good source of bioactive compounds with potential applications in the pharmaceutical or nutraceutical industries.
Collapse
Affiliation(s)
- J Ortega-Vidal
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - A Ruiz-Riaguas
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - M L Fernández-de Córdova
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - P Ortega-Barrales
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain
| | - E J Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, E-23071 Jaén, Spain.
| |
Collapse
|
66
|
Moss M, Smith E, Milner M, McCready J. Acute ingestion of rosemary water: Evidence of cognitive and cerebrovascular effects in healthy adults. J Psychopharmacol 2018; 32:1319-1329. [PMID: 30318972 DOI: 10.1177/0269881118798339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The use of herbal extracts and supplements to enhance health and wellbeing is increasing in western society. AIMS This study investigated the impact of the acute ingestion of a commercially available water containing an extract and hydrolat of rosemary ( Rosmarinus officinalis L. syn. Salvia rosmarinus Schleid.). Aspects of cognitive functioning, mood and cerebrovascular response measured by near-infrared spectroscopy provided the dependent variables. METHODS Eighty healthy adults were randomly allocated to consume either 250 mL of rosemary water or plain mineral water. They then completed a series of computerised cognitive tasks, followed by subjective measures of alertness and fatigue. Near-infrared spectroscopy monitored levels of total, oxygenated and deoxygenated haemoglobin at baseline and throughout the cognitive testing procedure. RESULTS Analysis of the data revealed a number of statistically significant, small, beneficial effects of rosemary water on cognition, consistent with those found previously for the inhalation of the aroma of rosemary essential oil. Of particular interest here are the cerebrovascular effects noted for deoxygenated haemoglobin levels during cognitive task performance that were significantly higher in the rosemary water condition. This represents a novel finding in this area, and may indicate a facilitation of oxygen extraction at times of cognitive demand. CONCLUSION Taken together the data suggest potential beneficial properties of acute consumption of rosemary water. The findings are discussed in terms of putative metabolic and cholinergic mechanisms.
Collapse
Affiliation(s)
- Mark Moss
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Ellen Smith
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Matthew Milner
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | - Jemma McCready
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
67
|
Boudiar T, Lozano-Sánchez J, Harfi B, Del Mar Contreras M, Segura-Carretero A. Phytochemical characterization of bioactive compounds composition of Rosmarinus eriocalyx by RP-HPLC-ESI-QTOF-MS. Nat Prod Res 2018; 33:2208-2214. [PMID: 30453758 DOI: 10.1080/14786419.2018.1495635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rosmarinus eriocalyx (rosemary or Elyazir) is an endemic species growing in arid steppe and rocky mountain in the South-West Algeria. This plant is well known in Algeria and Morocco due to its medicinal properties. However, little is known about its phytochemical composition. For this purpose, natural antioxidant compounds from R. eriocalyx were recovered by solid-liquid extraction and characterized by reversed-phase high-performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry using negative and positive ionization modes. This analytical methodology enabled the characterization of 101 compounds, which were distributed in five major categories namely hydroxycinnamic acid derivatives, hydroxybenzoic acid derivatives, flavonoids, phenolic diterpenes and phenolic triterpenes. Moreover, the studied extract generally showed free radical-scavenging and reductive abilities in the range of butylated hydroxyanisole, butylated hydroxytoluene, α-tocopherol, and ascorbic acid. Therefore, the result suggests that the aqueous-methanolic extract of R. eriocalyx could serve as a potential source of antioxidants.
Collapse
Affiliation(s)
- Tarek Boudiar
- a Biotechnology Research Centre (C.R.Bt) , Constantine , Alegria
| | - Jesús Lozano-Sánchez
- b Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Granada , Spain.,c Research and Development of Functional Food Centre (CIDAF) , Granada , Spain
| | - Boualem Harfi
- a Biotechnology Research Centre (C.R.Bt) , Constantine , Alegria
| | - Maria Del Mar Contreras
- b Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Granada , Spain.,c Research and Development of Functional Food Centre (CIDAF) , Granada , Spain
| | - Antonio Segura-Carretero
- b Department of Analytical Chemistry, Faculty of Sciences , University of Granada , Granada , Spain.,c Research and Development of Functional Food Centre (CIDAF) , Granada , Spain
| |
Collapse
|
68
|
Determination of the Phenolic Profile and Antioxidant Activity of Leaves and Fruits of SpanishQuercus coccifera. J CHEM-NY 2018. [DOI: 10.1155/2018/2573270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, we report the phytochemical composition and antioxidant activity of methanol extracts of leaves and fruits (acorns) ofQuercus coccifera(kermes oak). Forty-one compounds were characterized using high-performance liquid chromatography with electrospray multistage mass spectrometry (HPLC-ESI-MSn) with an ion trap mass spectrometer. A high percentage of the detected compounds were gallic acid derivatives, although some saccharides and flavonoids were also present. This phytochemical pattern is typical inQuercusspecies, which are rich in gallotannins. These compounds are partially responsible for the cardioprotective effects observed in different food samples containing them. We evaluated the antioxidant activity by ABTS and DPPH assays. In both cases, high antioxidant activity was observed, being higher in acorns than in leaves. The high antioxidant potential of the extracts, which is related to the high total phenolic content, indicates the potential benefit of the use of this species as a source of bioactive compounds.
Collapse
|
69
|
The Confrontation between Ethnopharmacology and Pharmacological Tests of Medicinal Plants Associated with Mental and Neurological Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7686913. [PMID: 30057646 PMCID: PMC6051267 DOI: 10.1155/2018/7686913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/16/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
For neurological disorders, pharmacological tests have shown promising results in the reduction of side effects when using plants with known therapeutic effects in the treatment of some types of dementia. Therefore, the goals of this study are to gather data about the major medicinal plants used in the nervous system as described in ethnopharmacological surveys from South America and Brazil and to compare this data with the results from pharmacological tests on the active principles of those same plants found in the scientific literature. After collecting the data about each plant, their respective popular indication was compared with the results found through pharmacological tests. The discrepancy rate between the effects observed by ethnopharmacological and pharmacological methods in this study is greater than 50%. In conclusion, despite the importance of ethnopharmacological data, it is important to make comparisons with pharmacological tests for the same plants, since the pharmacological studies, although few, have shown a high rate of discrepancy in the results.
Collapse
|
70
|
An overview of the possible therapeutic role of SUMOylation in the treatment of Alzheimer’s disease. Pharmacol Res 2018; 130:420-437. [DOI: 10.1016/j.phrs.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
71
|
Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, Lysiuk R. Brief Challenges on Medicinal Plants: An Eye-Opening Look at Ageing-Related Disorders. Basic Clin Pharmacol Toxicol 2018; 122:539-558. [DOI: 10.1111/bcpt.12972] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine; Mo i Rana Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| | - Natália Martins
- Mountain Research Centre (CIMO), ESA; Polytechnic Institute of Bragança, Campus de Santa Apolónia; Bragança Portugal
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences; University of Verona; Verona Italy
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Novel Bacteria and Drug Discovery Research Group (NBDD); School of Pharmacy; Monash University Malaysia; Bandar Sunway Malaysia
- Center of Health Outcomes Research and Therapeutic Safety; School of Pharmaceutical Sciences; University of Phayao; Phayao Thailand
- Asian Centre for Evidence Synthesis in Population; Implementation and Clinical Outcomes; Health and Well-Being Cluster; Global Asia in the 21st Century Platform; Monash University Malaysia; Bandar Sunway Malaysia
| | - Kateryna Smetanina
- Department of Management and Economy of Pharmacy; Postgraduate Faculty; Drug Technology and Pharmacoeconomics; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| | - Roman Lysiuk
- Department of Pharmacognosy and Botany; Danylo Halytsky Lviv National Medical University; Lviv Ukraine
| |
Collapse
|
72
|
Medicherla K, Ketkar A, Sahu BD, Sudhakar G, Sistla R. Rosmarinus officinalis L. extract ameliorates intestinal inflammation through MAPKs/NF-κB signaling in a murine model of acute experimental colitis. Food Funct 2018; 7:3233-43. [PMID: 27349640 DOI: 10.1039/c6fo00244g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We investigated the anti-inflammatory and anti-colitis effects of Rosmarinus officinalis L. extract (RE) by using both in vitro LPS-activated mouse RAW 264.7 macrophages and in vivo dextran sulfate sodium (DSS)-induced experimental murine colitis and suggested the underlying possible mechanisms. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis was performed to identify the major components present in the RE. The clinical signs, biochemistry, immunoblot, ELISA and histology in colon tissues were assessed in order to elucidate the beneficial effect of RE. RE suppressed the LPS-induced pro-inflammatory cytokine production and the expressions of inflammatory proteins in macrophages. Administration of RE (50 and 100 mg kg(-1)) also significantly reduced the severity of DSS-induced murine colitis, as assessed by the clinical symptoms, colon length and histology. RE administration prevented the DSS-induced activation of p38, ERK and JNK MAPKs, attenuated IκBα phosphorylation and subsequent nuclear translocation and DNA binding of NF-κB (p65). RE also suppressed the COX-2 and iNOS expressions, decreased the levels of TNF-α and IL-6 cytokines and the myeloperoxidase activity in the colon tissue. Histological observation revealed that RE administration alleviated mucosal damage and inflammatory cell infiltration induced by DSS in the colon tissue. Hence, RE could be used as a new preventive and therapeutic food ingredient or as a dietary supplement for inflammatory bowel disease.
Collapse
Affiliation(s)
- Kanakaraju Medicherla
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India.
| | - Avanee Ketkar
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India.
| | - Bidya Dhar Sahu
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
| | - Godi Sudhakar
- Department of Human Genetics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India.
| | - Ramakrishna Sistla
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India.
| |
Collapse
|
73
|
Habtemariam S. Molecular Pharmacology of Rosmarinic and Salvianolic Acids: Potential Seeds for Alzheimer's and Vascular Dementia Drugs. Int J Mol Sci 2018; 19:E458. [PMID: 29401682 PMCID: PMC5855680 DOI: 10.3390/ijms19020458] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 12/20/2022] Open
Abstract
Both caffeic acid and 3,4-dihydroxyphenyllactic acid (danshensu) are synthesized through two distinct routs of the shikimic acid biosynthesis pathway. In many plants, especially the rosemary and sage family of Lamiaceae, these two compounds are joined through an ester linkage to form rosmarinic acid (RA). A further structural diversity of RA derivatives in some plants such as Salvia miltiorrhiza Bunge is a form of RA dimer, salvianolic acid-B (SA-B), that further give rise to diverse salvianolic acid derivatives. This review provides a comprehensive perspective on the chemistry and pharmacology of these compounds related to their potential therapeutic applications to dementia. The two common causes of dementia, Alzheimer's disease (AD) and stroke, are employed to scrutinize the effects of these compounds in vitro and in animal models of dementia. Key pharmacological mechanisms beyond the common antioxidant and anti-inflammatory effects of polyphenols are highlighted with emphasis given to amyloid beta (Aβ) pathologies among others and neuronal regeneration from stem cells.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
74
|
Rosmarinus officinalis L.: an update review of its phytochemistry and biological activity. Future Sci OA 2018; 4:FSO283. [PMID: 29682318 PMCID: PMC5905578 DOI: 10.4155/fsoa-2017-0124] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/21/2017] [Indexed: 01/31/2023] Open
Abstract
The worldwide interest in the use of medicinal plants has been growing, and its beneficial effects being rediscovered for the development of new drugs. Based on their vast ethnopharmacological applications, which inspired current research in drug discovery, natural products can provide new and important leads against various pharmacological targets. This work pioneers an extensive and an updated literature review on the current state of research on Rosmarinus officinalis L., elucidating which compounds and biological activities are the most relevant. Therefore, a search was made in the databases PubMed, ScienceDirect and Web of Science with the terms ‘rosemary’, ‘Rosmarinus officinalis’, ‘rosmarinic acid’ ‘carnosol’ and ‘carnosic acid’, which included 286 articles published since 1990 about rosemary's pharmacological activities and their isolated compounds. According to these references, there has been an increasing interest in the therapeutic properties of this plant, regarding carnosic acid, carnosol, rosmarinic acid and the essential oil. The present manuscript provides an updated review upon the most reported activities on R. officinalis and its active constituents. The worldwide interest in the use of medicinal plants has been growing, and their beneficial effects being rediscovered for the development of new drugs. Actually, current research in drug discovery has been inspired on the vast ethnopharmacological applications of natural products, providing new and important leads against various pharmacological targets. In this work, an updated literature review is presented to clarify the current state of research on Rosmarinus officinalis L., elucidating its constituents and their most relevant biological activities. Therefore, this work provides an updated review upon the most reported medicinal properties, namely, antitumoral, anti-inflammatory, analgesic, neurodegenerative, endocrinal, anti-infective and antioxidant.
Collapse
|
75
|
de Oliveira MR. Carnosic Acid as a Promising Agent in Protecting Mitochondria of Brain Cells. Mol Neurobiol 2018; 55:6687-6699. [DOI: 10.1007/s12035-017-0842-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
|
76
|
Rizk HA, Masoud MA, Maher OW. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. J Biochem Mol Toxicol 2017; 31. [PMID: 28815802 DOI: 10.1002/jbt.21977] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 08/01/2017] [Indexed: 12/25/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent widely used in human malignancies. Its long-term use cause neurobiological side effects. The aim of the present study was to investigate the prophylactic effect exerted by daily administration of ellagic acid (EA) and rosmarinic acid (RA) on DOX-induced neurotoxicity in rats. Our data showed that DOX-induced significant elevation of brain malondialdehyde, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS), caspase-3, and cholinesterase associated with significant reduction in reduced glutathione, monoamines namely serotonin, dopamine, as well as norepinephrine. Concomitant administration of EA (10 mg/kg/day, p.o. for 14 days) and/or RA (75 mg/kg/day, p.o. for 14 days) with DOX significantly mitigated the neural changes induced by DOX. Meanwhile, treatment ameliorated pro-inflammatory cytokines as TNF-α, iNOS, and attenuated oxidative stress biomarkers as well as brain monoamines. In conclusion, EA and RA can effectively protect against DOX-induced neurotoxicity, and the mechanisms underlying the neuroprotective effect are potentially associated with its antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
- Hanan A Rizk
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Marwa A Masoud
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Omar W Maher
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| |
Collapse
|
77
|
Rahman MR. A Review Study on the Traditional Plants has Potential Antidepressant Property. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/mojcsr.2017.04.00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
78
|
Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts. PLoS One 2017; 12:e0186864. [PMID: 29073181 PMCID: PMC5658086 DOI: 10.1371/journal.pone.0186864] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs). TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2) expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.
Collapse
|
79
|
Bendif H, Miara MD, Peron G, Sut S, Dall'Acqua S, Flamini G, Maggi F. NMR, HS-SPME-GC/MS, and HPLC/MS
n
Analyses of Phytoconstituents and Aroma Profile of Rosmarinus eriocalyx. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 06/26/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Hamdi Bendif
- Natural and Life Sciences Department; Faculty of Sciences; Mohamed Boudiaf University; BP 166 Msila Msila 28000 Algeria
- Laboratory of Ethnobotany and Natural Substances; Department of Natural Sciences; Ecole Normale Superieure (ENS), Kouba; BP 92 Kouba 16308 Algeria
| | - Mohamed Djamel Miara
- Natural and Life Sciences Department; Faculty of Sciences; Mohamed Boudiaf University; BP 166 Msila Msila 28000 Algeria
| | - Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences; University of Padova; Via Marzolo 5 IT-35100 Padova Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences; University of Padova; Via Marzolo 5 IT-35100 Padova Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences; University of Padova; Via Marzolo 5 IT-35100 Padova Italy
| | - Guido Flamini
- Department of Pharmacy; University of Pisa; Via Bonanno 6 IT-56126 Pisa Italy
| | - Filippo Maggi
- School of Pharmacy; University of Camerino; via S. Agostino 1 IT-62032 Camerino Italy
| |
Collapse
|
80
|
Namdaung U, Athipornchai A, Khammee T, Kuno M, Suksamrarn S. 2-Arylbenzofurans from Artocarpus lakoocha and methyl ether analogs with potent cholinesterase inhibitory activity. Eur J Med Chem 2017; 143:1301-1311. [PMID: 29126732 DOI: 10.1016/j.ejmech.2017.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/30/2017] [Accepted: 10/09/2017] [Indexed: 11/19/2022]
Abstract
In vitro screening for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities of the Artocarpus lakoocha root-bark extracts revealed interesting results. Bioassay-guided fractionation resulted in the isolation of two new (1 and 2) and six known 2-arylbenzofurans 3-8, along with one stilbenoid 9 and one flavonoid 10. The structures of the isolated compounds were elucidated by UV, IR, 1D- and 2D-NMR and MS spectroscopic data analysis. Compounds 4, 6 and 7 exhibited more potent AChE inhibitory activity (IC50 = 0.87-1.10 μM) than the reference drug, galantamine. Compounds 4, 8 and 9 displayed greater BChE inhibition than the standard drug. The preferential inhibition of BChE over AChE indicated that 4 also showed a promising dual AChE and BChE inhibitor. The synthetic mono-methylated analogs 4a-c and 6a-b were found to be good BChE inhibitors with IC50 values ranging between 0.31 and 1.11 μM. Based on the docking studies, compounds 4 and 6 are well-fitted in the catalytic triad of AChE. Compounds 4 and 6 showed different binding orientations on BChE, and the most potent BChE inhibitor 4 occupied dual binding to both CAS and PAS more efficiently.
Collapse
Affiliation(s)
- Umalee Namdaung
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Anan Athipornchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Burapha University, Chon-Buri 20131, Thailand
| | - Thongchai Khammee
- Department of Chemistry, Faculty of Science and Technology, Phranakhon Rajabhat University, Bangkok 10220, Thailand
| | - Mayuso Kuno
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Sunit Suksamrarn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand.
| |
Collapse
|
81
|
Shinjyo N, Green J. Are sage, rosemary and lemon balm effective interventions in dementia? A narrative review of the clinical evidence. Eur J Integr Med 2017. [DOI: 10.1016/j.eujim.2017.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
82
|
McBean GJ, López MG, Wallner FK. Redox-based therapeutics in neurodegenerative disease. Br J Pharmacol 2017; 174:1750-1770. [PMID: 27477685 PMCID: PMC5446580 DOI: 10.1111/bph.13551] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 06/02/2016] [Accepted: 07/01/2016] [Indexed: 12/13/2022] Open
Abstract
This review describes recent developments in the search for effective therapeutic agents that target redox homeostasis in neurodegenerative disease. The disruption to thiol redox homeostasis in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis is discussed, together with the experimental strategies that are aimed at preventing, or at least minimizing, oxidative damage in these diseases. Particular attention is given to the potential of increasing antioxidant capacity by targeting the Nrf2 pathway, the development of inhibitors of NADPH oxidases that are likely candidates for clinical use, together with strategies to reduce nitrosative stress and mitochondrial dysfunction. We describe the shortcomings of compounds that hinder their progression to the clinic and evaluate likely avenues for future research. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- G J McBean
- School of Biomolecular and Biomedical Science, Conway InstituteUniversity College DublinDublinIreland
| | - M G López
- Instituto Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of MedicineUniversidad Autónoma de MadridMadridSpain
| | - F K Wallner
- Redoxis ABSweden and University of SkövdeSkövdeSweden
| |
Collapse
|
83
|
Ozarowski M, Mikolajczak PL, Piasecka A, Kujawski R, Bartkowiak-Wieczorek J, Bogacz A, Szulc M, Kaminska E, Kujawska M, Gryszczynska A, Kachlicki P, Buchwald W, Klejewski A, Seremak-Mrozikiewicz A. Effect of Salvia miltiorrhiza root extract on brain acetylcholinesterase and butyrylcholinesterase activities, their mRNA levels and memory evaluation in rats. Physiol Behav 2017; 173:223-230. [PMID: 28219697 DOI: 10.1016/j.physbeh.2017.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 01/05/2023]
Abstract
Salvia miltiorrhiza (Lamiaceae), one of the most important and popular plants of traditional medicine of Asia, is used for the prevention and treatment of cardiovascular diseases and in central nervous system disturbances. The main aim of this study was to assess the influence of subchronic (28-fold) administration of Salvia miltiorrhiza root extract (SE, 200mg/kg, p.o.) on behavioural activity and memory of rats and to evaluate the activities of cholinesterases (AChE and BuChE) and gene expression levels of AChE and BuChE as well as of beta-secretase (BACE1) in the hippocampus and frontal cortex in vivo. Huperzine A (HU, 0.5mg/kg b.w., p.o.) served as a positive control substance, whereas scopolamine (0.5mg/kg, i.p.) injection was used as a well-known model of memory impairment. The results showed that subchronic administration of SE led to an improvement of long-term memory of rats. Strong inhibition of AChE and BuChE mRNA transcription in the frontal cortex of rats treated with SE or HU was observed. The BACE1 transcript level was significantly decreased. AChE activity was statistically significantly inhibited in the frontal cortex and the hippocampus by SE (47% and 55%, respectively). Similar effects were observed in the case of HU. In summary, activity of SE provides evidence that the plant can be a source of drugs used in the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Marcin Ozarowski
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, Poznan, Poland; Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland.
| | - Przemyslaw L Mikolajczak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Anna Piasecka
- Institute of Bioorganic Chemistry of the Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland; Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Radoslaw Kujawski
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Joanna Bartkowiak-Wieczorek
- Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences,Sw. Marii Magdaleny 14, 61-861 Poznan, Poland.
| | - Anna Bogacz
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland.
| | - Michal Szulc
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Ewa Kaminska
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland.
| | - Malgorzata Kujawska
- Department of Toxicology,University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland.
| | - Agnieszka Gryszczynska
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Piotr Kachlicki
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Waldemar Buchwald
- Department of Botany, Breeding and Agricultural Technology for Medicinal Plants, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland.
| | - Andrzej Klejewski
- Department of Nursing, University of Medical Sciences, Smoluchowskiego 11, Poznan, Poland; Department of Obstetrics and Women's Diseases, University of Medical Sciences, Smoluchowskiego 11, Poznan, Poland.
| | - Agnieszka Seremak-Mrozikiewicz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibers and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland; Division of Perinatology and Women's Diseases, University of Medical Sciences, Polna 33, 60-535 Poznan, Poland; Laboratory of Molecular Biology, University of Medical Sciences, Polna 33, 60-535 Poznan, Poland.
| |
Collapse
|
84
|
Omar SH, Scott CJ, Hamlin AS, Obied HK. The protective role of plant biophenols in mechanisms of Alzheimer's disease. J Nutr Biochem 2017; 47:1-20. [PMID: 28301805 DOI: 10.1016/j.jnutbio.2017.02.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/03/2017] [Accepted: 02/16/2017] [Indexed: 12/31/2022]
Abstract
Self-assembly of amyloid beta peptide (Aβ) into the neurotoxic oligomers followed by fibrillar aggregates is a defining characteristic of Alzheimer's disease (AD). Several lines of proposed hypotheses have suggested the mechanism of AD pathology, though the exact pathophysiological mechanism is not yet elucidated. The poor understanding of AD and multitude of adverse responses reported from the current synthetic drugs are the leading cause of failure in the drug development to treat or halt the progression of AD and mandate the search for safer and more efficient alternatives. A number of natural compounds have shown the ability to prevent the formation of the toxic oligomers and disrupt the aggregates, thus attracted much attention. Referable to the abundancy and multitude of pharmacological activities of the plant active constituents, biophenols that distinguish them from the other phytochemicals as a natural weapon against the neurodegenerative disorders. This review provides a critical assessment of the current literature on in vitro and in vivo mechanistic activities of biophenols associated with the prevention and treatment of AD. We have contended the need for more comprehensive approaches to evaluate the anti-AD activity of biophenols at various pathologic levels and to assess the current evidences. Consequently, we highlighted the various problems and challenges confronting the AD research, and offer recommendations for future research.
Collapse
Affiliation(s)
- Syed H Omar
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Christopher J Scott
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Adam S Hamlin
- School of Science & Technology, University of New England, Armidale, NSW 2351, Australia
| | - Hassan K Obied
- School of Biomedical Sciences, Faculty of Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
85
|
Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Mol Neurobiol 2017; 55:1773-1785. [PMID: 28224478 DOI: 10.1007/s12035-017-0456-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
As an essential component of cellular defense against a variety of endogenous and exogenous stresses, nuclear factor erythroid 2-related factor 2 (Nrf2) has received increased attention in the past decades. Multiple studies indicate that Nrf2 acts not only as an important protective factor in injury models but also as a downstream target of therapeutic agents. Activation of Nrf2 has increasingly been linked to many human diseases, especially in central nervous system (CNS) injury such as traumatic brain injury (TBI). Several researches have deciphered that activation of Nrf2 exerts antioxidative stress, antiapoptosis, and antiinflammation influence in TBI via different molecules and pathways including heme oxygenase-1 (HO-1), NADPH:quinine oxidoreductase-1 (NQO-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Hence, Nrf2 shows great promise as a molecular target in TBI. In the present article, we provide an updated review of the current state of our knowledge about relationship between Nrf2 and TBI, highlighting the specific roles of Nrf2 in TBI.
Collapse
|
86
|
Abstract
Alzheimer's disease is an age-related neurodegenerative disorder characterized by memory deficits. Various studies have been carried out to find therapeutic approaches for Alzheimer's disease. However, the proper treatment option is still not available. There is no cure for Alzheimer's disease, but symptomatic treatment may improve the memory and other dementia related problems. Traditional medicine is practiced worldwide as memory enhancer since ancient times. Natural therapy including herbs and medicinal plants has been used in the treatment of memory deficits such as dementia, amnesia, as well as Alzheimer's disease since a long time. Medicinal plants have been used in different systems of medicine, particularly Unani system of medicines and exhibited their powerful roles in the management and cure of memory disorders. Most of herbs and plants have been chemically evaluated and their efficacy has also been proven in clinical trials. However, the underlying mechanisms of actions are still on the way. In this paper, we have reviewed the role of different medicinal plants that play an important role in the treatment of Alzheimer's disease and memory deficits using conventional herbal therapy.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine and Surgery, Faculty of Medical and Health Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Allah Nawaz
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
87
|
Abdel-Azeem AS, Hegazy AM, Zeidan HM, Ibrahim KS, El-Sayed EM. Potential Renoprotective Effects of Rosemary and Thyme Against Gentamicin Toxicity in Rats. J Diet Suppl 2016; 14:380-394. [DOI: 10.1080/19390211.2016.1253632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Amal S. Abdel-Azeem
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Amany M. Hegazy
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Hala M. Zeidan
- Department of Research on Children with Special Needs, National Research Centre, Dokki, Giza, Egypt
| | - Khadiga S. Ibrahim
- Department of Environmental and Occupational Medicine, National Research Centre, Dokki, Giza, Egypt
| | - Eman M. El-Sayed
- Department of Nutrition and Food Sciences, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
88
|
Farr SA, Niehoff ML, Ceddia MA, Herrlinger KA, Lewis BJ, Feng S, Welleford A, Butterfield DA, Morley JE. Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 2016; 165:328-38. [PMID: 27527000 DOI: 10.1016/j.physbeh.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 06/22/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Oxidative damage is one of the hallmarks of the aging process. The current study evaluated effects of two proprietary antioxidant-based ingredients, rosemary extract and spearmint extract containing carnosic acid and rosmarinic acid, respectively, on learning and memory in the SAMP8 mouse model of accelerated aging. The two rosemary extracts contained carnosic acid (60% or 10% carnosic acid) and one spearmint extract contained 5% rosmarinic acid. Three doses of actives in each extract were tested: 32, 16, 1.6 or 0mg/kg. After 90days of treatment mice were tested in T-maze foot shock avoidance, object recognition and lever press. Rosemary extract containing 60% carnosic acid improved acquisition and retention in T-maze foot shock, object recognition and lever press. Rosemary extract with 10% carnosic acid improved retention in T-maze foot shock avoidance and lever press. Spearmint with 5% rosmarinic acid improved acquisition and retention in T-maze foot shock avoidance and object recognition. 4-hydroxynonenal (HNE) was reduced in the brain cortex after treatment with all three extracts (P<0.001) compared to the vehicle treated SAMP8. Protein carbonyls were reduced in the hippocampus after administration of rosemary with 10% carnosic acid (P<0.05) and spearmint containing 5% rosmarinic acid (P<0.001). The current results indicate that the extracts from spearmint and rosemary have beneficial effects on learning and memory and brain tissue markers of oxidation that occur with age in SAMP8 mice.
Collapse
Affiliation(s)
- Susan A Farr
- VA Medical Center, 915 North Grand Blvd, St. Louis, MO, 63106, United States; St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States.
| | - Michael L Niehoff
- St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States
| | - Michael A Ceddia
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | | | - Brandon J Lewis
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | - Shulin Feng
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | - Andrew Welleford
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, 249 Chemistry-Physics, Lexington, KY 40506, United States
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, 249 Chemistry-Physics, Lexington, KY 40506, United States
| | - John E Morley
- St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States; St. Louis University School of Medicine, Division of Endocrinology, 1402 South Grand Blvd., St. Louis, MO, 63104, United States
| |
Collapse
|
89
|
Mannelli LDC, Micheli L, Maresca M, Cravotto G, Bellumori M, Innocenti M, Mulinacci N, Ghelardini C. Anti-neuropathic effects of Rosmarinus officinalis L. terpenoid fraction: relevance of nicotinic receptors. Sci Rep 2016; 6:34832. [PMID: 27713514 PMCID: PMC5054390 DOI: 10.1038/srep34832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/21/2016] [Indexed: 01/05/2023] Open
Abstract
Traditional uses and current results highlight the neuroprotective properties of Rosmarinus officinalis L. The compelling need for novel strategies able to relieve neuropathic pain encouraged us to analyze different rosemary leaf extracts in rats following chronic constriction injury (CCI) of sciatic nerve. Ethanol, acetone, and the innovative ultrasound-hexane extractive methods were used to obtain: EE, AE, and for hexane extracts UREprel and URE. Extracts were characterized in terms of typical constituents and repeatedly administered to CCI-rats (13-days treatment, from the day of surgery). URE showed the best efficacy and potency in reducing hypersensitivity to noxious- and non-noxious stimuli and spontaneous pain. URE contained the higher quantity of the terpenoid carnosic acid (CA) and its efficacy was compared to pure CA. Histological analysis of the sciatic nerve revealed that URE prevented axon and myelin derangement, edema and inflammatory infiltrate. In the dorsal horn of the spinal cord, URE did not reduce astrocyte activation. Both the pain reliever and the neuroconservative effects of URE were significantly prevented by the nicotinic receptor (nAChR) antagonist mecamylamine. In conclusion, the hexane-ultrasound rosemary extract is able to reduce neuropathic hypersensitivity and protect nervous tissues. Effectiveness is mainly related to the terpenoid fraction by mechanisms involving nAChRs.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Laura Micheli
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Mario Maresca
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| | - Giancarlo Cravotto
- Dept. Scienza e Tecnologia del Farmaco, University of Turin, Turin, Italy
| | - Maria Bellumori
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Division, University of Florence, Florence, Italy
| | - Marzia Innocenti
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Division, University of Florence, Florence, Italy
| | - Nadia Mulinacci
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmaceutical and Nutraceutical Division, University of Florence, Florence, Italy
| | - Carla Ghelardini
- Dept. of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy
| |
Collapse
|
90
|
Akour A, Kasabri V, Afifi FU, Bulatova N. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: a review of folkloric practice vs. evidence-based pharmacology. PHARMACEUTICAL BIOLOGY 2016; 54:1901-1918. [PMID: 26911517 DOI: 10.3109/13880209.2015.1113994] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/20/2015] [Accepted: 10/25/2015] [Indexed: 06/05/2023]
Abstract
Context National statistical reports in Jordan indicate a decrease in the total fertility rate along with a parallel increase in contraceptive use. The folkloric use of medicinal herbs in gynecological disorders has been growing in Jordan, despite of deficient reports on the evidence-based safety and efficacy of these practices. Objective The aim of this comprehensive article is to review medicinal plants with claimed ethnonpharmacological usage in various gynecological and pregnancy-related issues in Jordan, and to assess their evidence-based pharmacological studies as well as their phytochemistry. Methods The published literature was surveyed using Google Scholar entering the terms "ethnopharmacology AND Jordan AND infertility AND gynecology OR gestation". We included ethnopharmacological surveys in Jordan with available full-text. Results Twelve articles were reviewed. Plant species which are commonly used for female gynecological issues such as Artemisia monosperma Del. and A. herba-alba Asso. (Asteraceae) have been found to exert an antifertility effect. Ricinus communis L. (Euphorbiaceae) and Citrullus colocynthis (L.) Schrad. (Cucurbitaceae) had antifertility effects in male rats, but Nigella sativa oil L. (Ranunculaceae) and Cinnamon zeylanicum J. Presl (Lauraceae) were found to enhance it. Conclusion Using plants for gynecological disorders is a common practice in Jordan. Many of them, whether utilised for gynecological or non-gynecological conditions equally, were found to have detrimental effects on female or male fertility. Thus, couples planning pregnancy should be discouraged from the consumption of these herbs. Further local studies are warranted to confirm the appreciable beneficial pharmacological effects and safety of these plants.
Collapse
MESH Headings
- Animals
- Ethnopharmacology
- Evidence-Based Medicine
- Female
- Fertility/drug effects
- Folklore
- Genital Diseases, Female/drug therapy
- Genital Diseases, Female/epidemiology
- Humans
- Infertility, Female/chemically induced
- Infertility, Female/epidemiology
- Infertility, Female/physiopathology
- Infertility, Male/chemically induced
- Infertility, Male/epidemiology
- Infertility, Male/physiopathology
- Jordan/epidemiology
- Male
- Medicine, Traditional
- Phytotherapy
- Plant Preparations/adverse effects
- Plant Preparations/therapeutic use
- Plants, Medicinal
- Pregnancy
- Pregnancy Complications/drug therapy
- Pregnancy Complications/epidemiology
- Risk Assessment
- Risk Factors
Collapse
Affiliation(s)
- Amal Akour
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Violet Kasabri
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Fatma U Afifi
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| | - Nailya Bulatova
- a Faculty of Pharmacy, The University of Jordan , Amman , Jordan
| |
Collapse
|
91
|
Bednarczyk-Cwynar B, Wachowiak N, Szulc M, Kamińska E, Bogacz A, Bartkowiak-Wieczorek J, Zaprutko L, Mikolajczak PL. Strong and Long-Lasting Antinociceptive and Anti-inflammatory Conjugate of Naturally Occurring Oleanolic Acid and Aspirin. Front Pharmacol 2016; 7:202. [PMID: 27462270 PMCID: PMC4940421 DOI: 10.3389/fphar.2016.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
The conjugate 8 was obtained as a result of condensation of 3-hydroxyiminooleanolic acid morfolide (7) and aspirin in dioxane. Analgesic effect of OAO-ASA (8) for the range of doses 0.3–300.0 mg/kg (p.o.) was performed in mice using a hot-plate test. Anti-inflammatory activity was assessed on carrageenan-induced paw edema in rats for the same range of doses. The conjugate OAO-ASA (8) did not significantly change locomotor activity of mice, therefore sedative properties of the compound should be excluded. The compound 8 proved a simple, proportional, dose-dependent analgesic action and expressed strong anti-inflammatory activity showing a reversed U-shaped, dose-dependent relation with its maximum at 30.0 mg/kg. After its combined administration with morphine (MF, 5.0 mg/kg, s.c.) the lowering of antinociceptive activity was found; however, the interaction with naloxone (NL, 3.0 mg/kg, s.c.) did not affect the antinociceptive effect of OAO-ASA (8), therefore its opioid mechanism of action should be rather excluded. After combined administration with acetylsalicylic acid (ASA, 300.0 mg/kg, p.o.) in hot-plate test, the examined compound 8 enhanced the antinociceptive activity in significant way. It also shows that rather the whole molecule is responsible for the antinociceptive and anti-inflammatory effect of the tested compound 8, however, it cannot be excluded that the summarizing effect is produced by ASA released from the compound 8 and the rest of triterpene derivative. The occurrence of tolerance for triterpenic derivative 8 was not observed, since the analgesic and anti-inflammatory effects after chronic administration of the conjugate OAO-ASA (8) was on the same level as after its single treatment. It seemed that the anti-inflammatory mechanism of action of OAO-ASA (8) is not simple, even its chronic administration lowered both blood concentration of IL-6 and mRNA IL-6 expression. However, the effects of the conjugate OAO-ASA (8) on TNF-α level and mRNA expression were opposite. Moreover, compound 8 did not change unequivocally mRNA TLR1, and TLR3 expression. Concluding, the obtained results regarding the antinociceptive and anti-inflammatory activity of new conjugate of oleanolic acid oxime and acetylsalicylic acid (OAO-ASA 8) are very interesting, but for explanation of its mechanism of action, more detailed studies are necessary.
Collapse
Affiliation(s)
- Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Natalia Wachowiak
- Department of Pharmacology, Poznan University of Medical Sciences Poznan, Poland
| | - Michal Szulc
- Department of Pharmacology, Poznan University of Medical Sciences Poznan, Poland
| | - Ewa Kamińska
- Department of Pharmacology, Poznan University of Medical Sciences Poznan, Poland
| | - Anna Bogacz
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Joanna Bartkowiak-Wieczorek
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences Poznan, Poland
| | - Przemyslaw L Mikolajczak
- Department of Pharmacology, Poznan University of Medical SciencesPoznan, Poland; Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal PlantsPlewiska, Poland
| |
Collapse
|
92
|
Song H, Xu L, Zhang R, Cao Z, Zhang H, Yang L, Guo Z, Qu Y, Yu J. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci Lett 2016; 622:95-101. [DOI: 10.1016/j.neulet.2016.04.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 04/08/2016] [Accepted: 04/21/2016] [Indexed: 10/21/2022]
|
93
|
Ozarowski M, Mikolajczak PL, Piasecka A, Kachlicki P, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, Szulc M, Kaminska E, Kujawska M, Jodynis-Liebert J, Gryszczynska A, Opala B, Lowicki Z, Seremak-Mrozikiewicz A, Czerny B. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:9729818. [PMID: 27239217 PMCID: PMC4864554 DOI: 10.1155/2016/9729818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/03/2015] [Indexed: 01/19/2023]
Abstract
Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration.
Collapse
Affiliation(s)
- Marcin Ozarowski
- Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, Sw. Marii Magdaleny 14, 61-861 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Przemyslaw L. Mikolajczak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Anna Piasecka
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland
| | - Piotr Kachlicki
- Department of Pathogen Genetics and Plant Resistance, Metabolomics Team, Institute of Plant Genetics of the Polish Academy of Science, Strzeszynska 34, 60-479 Poznan, Poland
| | - Radoslaw Kujawski
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Anna Bogacz
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 14 Sw. Marii Magdaleny, 61-861 Poznan, Poland
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Joanna Bartkowiak-Wieczorek
- Laboratory of Experimental Pharmacogenetics, Department of Clinical Pharmacy and Biopharmacy, University of Medical Sciences, 14 Sw. Marii Magdaleny, 61-861 Poznan, Poland
| | - Michal Szulc
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Ewa Kaminska
- Department of Pharmacology, University of Medical Sciences, Rokietnicka 5a, 60-806 Poznan, Poland
| | - Malgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Jadwiga Jodynis-Liebert
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Agnieszka Gryszczynska
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Bogna Opala
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Zdzislaw Lowicki
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| | - Agnieszka Seremak-Mrozikiewicz
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Division of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
- Laboratory of Molecular Biology, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Boguslaw Czerny
- Department of Stem Cells and Regenerative Medicine, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University, Zolnierska 48, 70-204 Szczecin, Poland
| |
Collapse
|
94
|
Napoli EM, Siracusa L, Saija A, Speciale A, Trombetta D, Tuttolomondo T, La Bella S, Licata M, Virga G, Leone R, Leto C, Rubino L, Ruberto G. Wild Sicilian rosemary: phytochemical and morphological screening and antioxidant activity evaluation of extracts and essential oils. Chem Biodivers 2016; 12:1075-94. [PMID: 26172328 DOI: 10.1002/cbdv.201400274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Indexed: 12/23/2022]
Abstract
To identify the best biotypes, an extensive survey of Sicilian wild rosemary was carried out by collecting 57 samples from various sites, followed by taxonomic characterization from an agronomic perspective. All the biotypes collected were classified as Rosmarinus officinalis L. A cluster analysis based on the morphological characteristics of the plants allowed the division of the biotypes into seven main groups, although the characteristics examined were found to be highly similar and not area-dependent. Moreover, all samples were analyzed for their phytochemical content, applying an extraction protocol to obtain the nonvolatile components and hydrodistillation to collect the essential oils for the volatile components. The extracts were characterized by LC-UV-DAD/ESI-MS, and the essential oils by GC-FID and GC/MS analyses. In the nonvolatile fractions, 18 components were identified, namely, 13 flavones, two organic acids, and three diterpenes. In the volatile fractions, a total of 82 components were found, with as predominant components α-pinene and camphene among the monoterpene hydrocarbons and 1,8-cineole, camphor, borneol, and verbenone among the oxygenated monoterpenes. Cluster analyses were carried out on both phytochemical profiles, allowing the separation of the rosemary samples into different chemical groups. Finally, the total phenol content and the antioxidant activity of the essential oils and extracts were determined with the Folin-Ciocalteu (FC) colorimetric assay, the UV radiation-induced peroxidation in liposomal membranes (UV-IP test), and the scavenging activity of the superoxide radical (O$\rm{{_{2}^{{^\cdot} -}}}$). The present study confirmed that the essential oils and organic extracts of the Sicilian rosemary samples analyzed showed a considerable antioxidant/free radical-scavenging activity.
Collapse
Affiliation(s)
- Edoardo M Napoli
- Istituto del C.N.R. di Chimica Biomolecolare, Via Paolo Gaifami 18, IT-95126 Catania, (phone: +39-0957338347; fax: +39-0957338310)
| | - Laura Siracusa
- Istituto del C.N.R. di Chimica Biomolecolare, Via Paolo Gaifami 18, IT-95126 Catania, (phone: +39-0957338347; fax: +39-0957338310)
| | - Antonella Saija
- Dipartimento Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Contrada Annunziata, IT-98168 Messina
| | - Antonio Speciale
- Dipartimento Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Contrada Annunziata, IT-98168 Messina
| | - Domenico Trombetta
- Dipartimento Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina, Contrada Annunziata, IT-98168 Messina
| | - Teresa Tuttolomondo
- Dipartimento di Scienze Agrarie e Forestali (SAF), Università di Palermo, Viale delle Scienze 13, IT-90128 Palermo
| | - Salvatore La Bella
- Dipartimento di Scienze Agrarie e Forestali (SAF), Università di Palermo, Viale delle Scienze 13, IT-90128 Palermo
| | - Mario Licata
- Dipartimento di Scienze Agrarie e Forestali (SAF), Università di Palermo, Viale delle Scienze 13, IT-90128 Palermo
| | - Giuseppe Virga
- Dipartimento di Scienze Agrarie e Forestali (SAF), Università di Palermo, Viale delle Scienze 13, IT-90128 Palermo
| | - Raffaele Leone
- Dipartimento di Scienze Agrarie e Forestali (SAF), Università di Palermo, Viale delle Scienze 13, IT-90128 Palermo
| | - Claudio Leto
- Co.Ri.S.S.I.A. Consorzio di Ricerca per lo Sviluppo di Sistemi Innovativi Agroambientali, Via Libertà 203, IT-90100 Palermo
| | - Laura Rubino
- Istituto del C.N.R. di Chimica Biomolecolare, Via Paolo Gaifami 18, IT-95126 Catania, (phone: +39-0957338347; fax: +39-0957338310)
| | - Giuseppe Ruberto
- Istituto del C.N.R. di Chimica Biomolecolare, Via Paolo Gaifami 18, IT-95126 Catania, (phone: +39-0957338347; fax: +39-0957338310).
| |
Collapse
|
95
|
Al-Gholam MA, Nooh HZ, El-Mehi AE, El-Barbary AEM, Fokar AZE. Protective effect of rosemary on acrylamide motor neurotoxicity in spinal cord of rat offspring: postnatal follow-up study. Anat Cell Biol 2016; 49:34-49. [PMID: 27051566 PMCID: PMC4819076 DOI: 10.5115/acb.2016.49.1.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
The direct interactive effects of rosemary and acrylamide on the development of motor neurons in the spinal cord remains unknown. Our goal is to confirm the protective effects of rosemary against motor neuronal degeneration induced by acrylamide in the developing postnatal rat spinal cord using a postnatal rat model. We assigned the offspring of treated female rats into control, rosemary; acrylamide group; and recovery groups. This work depended on clinical, histopathological, morphometrically, immunohistochemical and genetic methods. In the acrylamide group, we observed oxidation, motor neuron degeneration, apoptosis, myelin degeneration, neurofilament reduction, reactive gliosis. Whoever, concomitant rosemary intake and withdrawal of acrylamide modulate these effects. These findings proof that dietary rosemary can directly protect motor neuron against acrylamide toxicity in the mammalian developing spinal cord.
Collapse
Affiliation(s)
- Marwa A Al-Gholam
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Hanaa Zakaria Nooh
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Abeer E El-Mehi
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Abd El-Moneum El-Barbary
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| | - Ahmed Zo El Fokar
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Shebeen El-Kom, Egypt
| |
Collapse
|
96
|
Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1549158. [PMID: 27119005 PMCID: PMC4826941 DOI: 10.1155/2016/1549158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/13/2016] [Indexed: 12/24/2022]
Abstract
Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system.
Collapse
|
97
|
Lu Y, Huang Y, Jiang J, Hu R, Yang Y, Jiang H, Yan J. Neuronal apoptosis may not contribute to the long-term cognitive dysfunction induced by a brief exposure to 2% sevoflurane in developing rats. Biomed Pharmacother 2016; 78:322-328. [PMID: 26898457 DOI: 10.1016/j.biopha.2016.01.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sevoflurane is an inhaled anesthetic commonly used in the pediatric. Recent animal studies suggest that early exposure to high concentration of sevoflurane for a long duration can induce neuroapoptosis and later cognitive dysfunction. However, the neurodevelopmental impact induced by lower concentration and shorter exposure duration of sevoflurane is unclear. To investigate whether early exposure to 2% concentration of sevoflurane for a short duration (clinically relevant usage of sevoflurane) can also induce neuroapoptosis and later cognitive dysfunction. METHODS Rat pups were subjected to control group, 2% sevoflurane for 3h and 3% sevoflurane for 6h. TUNEL assay and apoptotic enzyme cleaved caspase-3 measured by western blot were used for detection of neuronal apoptosis in frontal cortex and CA1 region of hippocampus 24 after sevoflurane treatment. Long-term cognitive function was evaluated by Morris water maze and passive avoidance test as the rats grew up. RESULTS The apoptotic levels in frontal cortex and CA1 region were significantly increased after rats exposed to 3% sevoflurane for 6h (P<0.05), but not 2% sevoflurane for 3h (P>0.05). Exposure to both 2% sevoflurane for 3h and 3% sevoflurane for 6h could cause long-term cognitive dysfunction and animals exposed to 3% sevoflurane for 6h exhibited worse neurodevelopmental outcomes (P<0.05). CONCLUSION It was suggested that neuronal apoptosis might not contribute to long-term cognitive dysfunction induced by 2% concentration and short exposure time of sevoflurane. Our findings also suggested that the mechanisms of sevoflurane-induced neurodevelopmental impact might be various, depending on the concentration and exposure duration.
Collapse
Affiliation(s)
- Yi Lu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Yan Huang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Jue Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Rong Hu
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Yaqiong Yang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China
| | - Hong Jiang
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China.
| | - Jia Yan
- Department of Anesthesiology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, China.
| |
Collapse
|
98
|
The Therapeutic Potential of Rosemary (Rosmarinus officinalis) Diterpenes for Alzheimer's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2680409. [PMID: 26941822 PMCID: PMC4749867 DOI: 10.1155/2016/2680409] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/28/2015] [Indexed: 02/07/2023]
Abstract
Rosemary (Rosmarinus officinalis L.) is one of the most economically important species of the family Lamiaceae. Native to the Mediterranean region, the plant is now widely distributed all over the world mainly due to its culinary, medicinal, and commercial uses including in the fragrance and food industries. Among the most important group of compounds isolated from the plant are the abietane-type phenolic diterpenes that account for most of the antioxidant and many pharmacological activities of the plant. Rosemary diterpenes have also been shown in recent years to inhibit neuronal cell death induced by a variety of agents both in vitro and in vivo. The therapeutic potential of these compounds for Alzheimer's disease (AD) is reviewed in this communication by giving special attention to the chemistry of the compounds along with the various pharmacological targets of the disease. The multifunctional nature of the compounds from the general antioxidant-mediated neuronal protection to other specific mechanisms including brain inflammation and amyloid beta (Aβ) formation, polymerisation, and pathologies is discussed.
Collapse
|
99
|
Bezerra da Silva C, Pott A, Elifio-Esposito S, Dalarmi L, Fialho do Nascimento K, Moura Burci L, de Oliveira M, de Fátima Gaspari Dias J, Warumby Zanin SM, Gomes Miguel O, Dallarmi Miguel M. Effect of Donepezil, Tacrine, Galantamine and Rivastigmine on Acetylcholinesterase Inhibition in Dugesia tigrina. Molecules 2016; 21:53. [PMID: 26760993 PMCID: PMC6273381 DOI: 10.3390/molecules21010053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/26/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023] Open
Abstract
Dugesia tigrina is a non-parasitic platyhelminth, which has been recently utilized in pharmacological models, regarding the nervous system, as it presents a wide sensitivity to drugs. Our trials aimed to propose a model for an in vivo screening of substances with inhibitory activity of the enzyme acetylcholinesterase. Trials were performed with four drugs commercialized in Brazil: donepezil, tacrine, galantamine and rivastigmine, utilized in the control of Alzheimer's disease, to inhibit the activity of acetylcholinesterase. We tested five concentrations of the drugs, with an exposure of 24 h, and the mortality and the inhibition of acetylcholinesterase planarian seizure-like activity (pSLA) and planarian locomotor velocity (pLMV) were measured. Galantamine showed high anticholinesterasic activity when compared to the other drugs, with a reduction of 0.05 μmol·min(-1) and 63% of convulsant activity, presenting screw-like movement and hypokinesia, with pLMV of 65 crossed lines during 5 min. Our results showed for the first time the anticholinesterasic and convulsant effect, in addition to the decrease in locomotion induced by those drugs in a model of invertebrates. The experimental model proposed is simple and low cost and could be utilized in the screening of substances with anticholinesterasic action.
Collapse
Affiliation(s)
- Cristiane Bezerra da Silva
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Arnildo Pott
- Department of Biology, Federal University of Mato Grosso do Sul (UFMS), Av. Senador Filinto Müller, Campo Grande 79046-460, Brazil.
| | - Selene Elifio-Esposito
- Post-Graduation in Health Sciences, Pontíficia Universidade Católica do Paraná, Imaculada Conceição, 1155, Prado Velho, Curitiba 80215-901, Brazil.
| | - Luciane Dalarmi
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Kátia Fialho do Nascimento
- Department of Celular Biology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, Curitiba 81530-900, Brazil.
| | - Ligia Moura Burci
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Maislian de Oliveira
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Josiane de Fátima Gaspari Dias
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Sandra Maria Warumby Zanin
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Obdulio Gomes Miguel
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| | - Marilis Dallarmi Miguel
- Department of Pharmacy, Federal University of Paraná (UFPR), Av. Pref. Lothário Meissner 3400, Jardim Botânico, Curitiba 80210-170, Brazil.
| |
Collapse
|
100
|
Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol Ther 2016; 157:84-104. [DOI: 10.1016/j.pharmthera.2015.11.003] [Citation(s) in RCA: 502] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|