51
|
How the functional group substitution and solvent effects affect the antioxidant activity of (+)-catechin? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
52
|
Boulmokh Y, Belguidoum K, Meddour F, Amira-Guebailia H. Investigation of antioxidant activity of epigallocatechin gallate and epicatechin as compared to resveratrol and ascorbic acid: experimental and theoretical insights. Struct Chem 2021. [DOI: 10.1007/s11224-021-01763-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
53
|
Alisi IO, Uzairu A, Idris SO. Ligand-based design of chalcone analogues and thermodynamic analysis of their mechanism of free radical scavenge. J Mol Model 2021; 27:95. [PMID: 33638715 DOI: 10.1007/s00894-021-04717-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/17/2021] [Indexed: 11/24/2022]
Abstract
Overproduction of free radicals in the body may result in oxidative stress, which plays an active role in the development of various health disorders. Consequently, the development of efficient free radical scavengers and evaluation of their antioxidant properties is a research area of interest. In the present research, computational quantum chemical approach based on the density functional theory (DFT) method was employed to elucidate the free radical scavenge of chalcone derivatives via thermodynamic studies. New set of chalcone antioxidants were designed. Their reactivity towards hydroperoxyl (HOO·) and methyl peroxyl (CH3OO·) radicals were investigated through systematic study of their mechanism of free radical scavenge. Various reaction enthalpies and Gibbs free energy that characterize the various steps in these mechanisms were computed in the gas phase and aqueous solution, in order to identify the main channels of reaction. Results in the gas phase indicate that hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms represent the most plausible reaction pathways, while single electron transfer followed by proton transfer (SET-PT) mechanism was thermodynamically unfeasible. However, these mechanisms were thermodynamically favoured in aqueous solution. Also, these chalcone derivatives were observed to be more effective in scavenging HOO· than CH3OO· radicals in both phases. Based on the exergonicity of the obtained results, the molecule MCHM 17 ((E)-1-(3-bromo-5-hydroxyphenyl)-3-(2,5-dihydroxyphenyl)prop-2-en-1-one) at the 5-OH site was found to exhibit the greatest potential to scavenge HOO· and CH3OO· radicals in both phases. This research is a gateway to the efficient exploitation of these compounds in pharmacy and food chemistry.
Collapse
Affiliation(s)
- Ikechukwu Ogadimma Alisi
- Department of Applied Chemistry, Federal University Dutsin-ma, PMB 5001 Dutsin-ma, Katsina State, Nigeria.
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University Zaria, Zaria, Kaduna State, Nigeria
| | - Sulaiman Ola Idris
- Department of Chemistry, Ahmadu Bello University Zaria, Zaria, Kaduna State, Nigeria
| |
Collapse
|
54
|
Combined experimental and theoretical studies of the structure-antiradical activity relationship of heterocyclic hydrazone compounds. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
55
|
Zheng YZ, Fu ZM, Deng G, Guo R, Chen DF. Free radical scavenging potency of ellagic acid and its derivatives in multiple H +/e ‒ processes. PHYTOCHEMISTRY 2020; 180:112517. [PMID: 32950773 DOI: 10.1016/j.phytochem.2020.112517] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
The reaction energetics of the multiple free radical scavenging mechanisms of ellagic acid and its derivatives were studied by DFT method. Ellagic acid and its derivatives that bear catechol or guaiacyl moieties can proceed multiple free radical scavenging processes. Intramolecular hydrogen-bonds were found in the most stable geometries of the investigated compounds and can influence the antioxidant activity of the related groups and hydrogen atom/proton loss sequence. The stronger hydrogen-bond, the weaker antioxidant activity of the hydrogen atom/proton-donating group. The preferred mechanisms vary among different phases. All of the investigated compounds prefer to trap free radicals by multiple HAT mechanisms in gas and benzene phases. The second HAT reaction preferably occurs in the same catechol or guaiacyl unit of the first HAT group with the formation of stable quinone or benzodioxole. The catechol and guaiacyl moieties not only retain high free radical scavenging ability of the parent compounds but even show increased potency for the second and fourth H+/e‒ reactions. In water phase, ellagic acid and its derivatives would proceed consecutively PL reactions from the OH groups. The formed di/tri/tetra-anion would proceed one/four electron transfers following with single/double SPLET mechanism and electron donation reactions until forming the stable quinone or benzodioxole.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Zhong-Min Fu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
56
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. Effects of different ester chains on the antioxidant activity of caffeic acid. Bioorg Chem 2020; 105:104341. [DOI: 10.1016/j.bioorg.2020.104341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/03/2020] [Accepted: 09/30/2020] [Indexed: 11/29/2022]
|
57
|
Almeida-Neto FWQ, da Silva LP, Ferreira MKA, Mendes FRS, de Castro KK, Bandeira PN, de Menezes JES, dos Santos HS, Monteiro NK, Marinho ES, de Lima-Neto P. Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-{4’-[(E)-3-(Fluorophenyl)-1-(phenyl)-prop-2-en-1-one]}-acetamide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128765] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
58
|
Zheng YZ, Fu ZM, Deng G, Guo R, Chen DF. Role of C‒H bond in the antioxidant activities of rooperol and its derivatives: A DFT study. PHYTOCHEMISTRY 2020; 178:112454. [PMID: 32692658 DOI: 10.1016/j.phytochem.2020.112454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Rooperol and its derivatives, derived from the Hypoxis rooperi plant, are polyphenolic and norlignan compounds with excellent antioxidant activities. The reaction enthalpies for the free-radical scavenging by rooperol and its six derivatives were studied using density functional theory. We found that the C-H groups played a significant role in the antioxidant activities in non-polar phases. In the gas and benzene phases, rooperol and its derivatives preferentially underwent the free-radical scavenging process via the 3‒CH group by following the hydrogen atom transfer (HAT) mechanism. In polar phases, the sequential proton loss electron transfer (SPLET) was the most preferred mechanism, and the phenolic O‒H groups played a significant role. Additionally, we found that when the hydrogen atom in the OH group was replaced by a glucose moiety, the antioxidant activity of the adjacent OH group was reduced. ROP, DHROP-I, DHROP-II, ROP-4″-G and ROP-4'G have catechol moiety, they may proceed double step-wise mechanisms to trap free radicals. In the gas and benzene phases, the preferable mechanism is dHAT. In water phase, it is SPLHAT.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Zhong-Min Fu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Da-Fu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
59
|
Farrokhnia M. Density Functional Theory Studies on the Antioxidant Mechanism and Electronic Properties of Some Bioactive Marine Meroterpenoids: Sargahydroquionic Acid and Sargachromanol. ACS OMEGA 2020; 5:20382-20390. [PMID: 32832791 PMCID: PMC7439385 DOI: 10.1021/acsomega.0c02354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 05/09/2023]
Abstract
Certain meroterpenoids isolated from brown alga of the genus Sargassum are known to be antioxidant agents. Herein, density functional theory has been performed to analyze the preferred antioxidant mechanism of the two reactive antioxidant compounds derived from the Sargassum genus, that is, Sargahydroquinoic acid and Sargachromanol and some of their derivatives. Their global reactivity descriptors have been calculated to reveal their reactivity as an antioxidant. Molecule 1 is the most reactive antioxidant according to calculated descriptors. The results of molecule 1 are comparable to that of Trolox, suggesting their similar activity. The calculated descriptors are closely matched with experimental pieces of evidence. It has been found that hydrogen atom transfer (HAT) is more favored in gas media. Also, the effect of solvent polarity on the antioxidant activity has been explored for molecule 1. The results disclose that the polarity of the solvent increases the contribution of two other mechanisms, that is, single-electron transfer, followed by proton transfer and sequential proton loss electron transfer.
Collapse
Affiliation(s)
- Maryam Farrokhnia
- The Persian Gulf Marine Biotechnology
Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 0098, Iran
| |
Collapse
|
60
|
Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J Food Biochem 2020; 44:e13394. [PMID: 32691460 DOI: 10.1111/jfbc.13394] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/08/2020] [Accepted: 07/03/2020] [Indexed: 12/21/2022]
Abstract
In this review, the concept of phenolic antioxidants, mechanisms of action, and applications have been reviewed. Phenolic compounds (PCs) acts as an antioxidant by reacting with a variety of free radicals. The mechanism of antioxidant actions involved either by hydrogen atom transfer, transfer of a single electron, sequential proton loss electron transfer, and chelation of transition metals. In foods, the PCs act as antioxidants which are measured with several in vitro spectroscopic methods. The PCs have been found in milk and a wide range of dairy products with sole purposes of color, taste, storage stability, and quality enhancement. The role of PCs in three types of food additives, that is, antimicrobial, antioxidant, and flavoring agents have been critically reviewed. The literature revealed that PCs present in a variety of foods possess several health benefits such as antibacterial, antihyperlipidemic, anticancer, antioxidants, cardioprotective, neuroprotective, and antidiabetic properties. PRACTICAL APPLICATIONS: Phenolic compounds are strong antioxidants and are safer than synthetic antioxidants. The wide occurrence in plant foods warranted continuous review applications. This review, therefore, presented an updated comprehensive overview of the concept, mechanism, and applications of phenolic antioxidants in foods.
Collapse
Affiliation(s)
- Alam Zeb
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
61
|
Ozalp L, Danış Ö, Yuce-Dursun B, Demir S, Gündüz C, Ogan A. Investigation of HMG-CoA reductase inhibitory and antioxidant effects of various hydroxycoumarin derivatives. Arch Pharm (Weinheim) 2020; 353:e1900378. [PMID: 32648617 DOI: 10.1002/ardp.201900378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Cardiovascular diseases are one of the primary causes of deaths worldwide, and the development of atherosclerosis is closely related to hypercholesterolemia. As the reduction of the low-density lipoprotein cholesterol level is critical for treating these diseases, the inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme A (HMG-CoA) reductase, which is essentially responsible for cholesterol biosynthesis, stands out as a key solution to lower plasma cholesterol levels. In this study, we synthesized several dihydroxycoumarins and investigated their antioxidant and in vitro HMG-CoA reductase inhibitory effects. Furthermore, we carried out in silico studies and examined the quantum-chemical properties of the coumarin derivatives. We also performed molecular docking experiments and analyzed the binding strength of each coumarin derivative. Our results revealed that compound IV displayed the highest HMG-CoA reductase inhibitory activity (IC50 = 42.0 µM) in vitro. Cupric-reducing antioxidant capacity and ferric-reducing antioxidant power assays demonstrated that coumarin derivatives exhibit potent antioxidant activities. Additionally, a close relationship was found between the lowest unoccupied molecular orbital energy levels and the antioxidant activities.
Collapse
Affiliation(s)
- Lalehan Ozalp
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Özkan Danış
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Basak Yuce-Dursun
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Serap Demir
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| | - Cihan Gündüz
- Department of Chemistry & Biochemistry, Manhattan College, White Plains, NY, USA
| | - Ayse Ogan
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
62
|
Synthesis, crystal structure, biological evaluation, docking study, and DFT calculations of 1-amidoalkyl-2-naphthol derivative. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
63
|
Queiroz AN, Martins CC, Santos KLB, Carvalho ES, Owiti AO, Oliveira KRM, Herculano AM, da Silva ABF, Borges RS. Experimental and theoretical study on structure-tautomerism among edaravone, isoxazolone, and their heterocycles derivatives as antioxidants. Saudi Pharm J 2020; 28:819-827. [PMID: 32647483 PMCID: PMC7335820 DOI: 10.1016/j.jsps.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/03/2020] [Indexed: 01/07/2023] Open
Abstract
Edaravone is a heterocyclic pyrazolone compound. It has pronounced effect against free radicals, however renal and hepatic disorders have been reported. Isoxazolones are considered bioisosteric analogues of pyrazolones and may have comparable properties. Thus, we investigated the structural and electronic influences for edaravone, isoxazolone, and their tautomers on antioxidant process. Structure and tautomerism study among edaravone, isoxazolone and their heterocycles derivatives were related to antioxidant mechanisms by using the hybrid DFT method B3LYP with the basis sets 6-31++G(2d,2p). The C—H tautomer was the most stable and energetically favored among them. Intramolecular N—H—N hydrogen bonds and polar medium were responsible for the low energy differences among all possible tautomers. N—H tautomers in both systems proved to be better antioxidant by SET (single electron transfer), while O—H tautomers were better antioxidant on HAT (homolytic hydrogen atom transfer) mechanism. Theoretical calculation showed that edaravone is more potent than phenylisoxazolone, however, both has similar antioxidant scavenging on experimental DPPH. The carbonyliminic system played a very important role in the antioxidant activity for both studied classes.
Collapse
Affiliation(s)
- Auriekson N Queiroz
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Camila C Martins
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Kelton L B Santos
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil.,Faculdade de Química, Campus Santana, Universidade Federal do Amapá, Santana, AP, Brazil
| | - Ederson S Carvalho
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Alex O Owiti
- California University of Science and Medicine, San Bernardino, CA, United States
| | - Karen R M Oliveira
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Biological Sciences Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Anderson M Herculano
- Programa de Pós-Graduação em Neurociências e Biologia Celular, Biological Sciences Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| | - Albérico B F da Silva
- Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, São Carlos, SP, Brazil
| | - Rosivaldo S Borges
- Pharmaceutical Chemistry Laboratory, College of Pharmacy, Health Science Institute, Federal University of Pará, 66075-110 Belém, PA, Brazil
| |
Collapse
|
64
|
Antioxidant Properties of Lapachol and Its Derivatives and Their Ability to Chelate Iron (II) Cation: DFT and QTAIM Studies. Bioinorg Chem Appl 2020; 2020:2103239. [PMID: 32318101 PMCID: PMC7150675 DOI: 10.1155/2020/2103239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/09/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023] Open
Abstract
The elucidation of the complexation of lapachol and its derivatives to Fe2+ cation has been done using the density functional theory (DFT). This complexation has been limited to bidentate and tridentate to Fe2+ cation. Geometry optimizations have been implemented in gas and solution phase (water, acetonitrile, chlorobenzene, benzene, and toluene) for ligands at B3LYP/6-311++G (d,p) level of theory using B3LYP/6-31+G(d,p) optimized data as starting point. But, the geometrical optimizations in solution phase of the 22 complexes analyzed of lapachol and its derivatives to Fe2+ cation were restricted to acetonitrile and benzene. The complexation energy and the metal ion affinity (MIA) have also been calculated using the B3LYP method. The results obtained indicated a proportionality between the MIA values and the retained charge on Fe2+ cation for k2-(O1,O2) modes. But, an inverse proportionality has been yielded between these two parameters for k3-(O2, C=C) tridentate modes. For k3-(O3,C=C) tridentate mode coordination, the higher stability has been obtained. In this latter tridentate coordination in gas phase, the topological analysis of complexes exhibits the fact that the electron density is concentrated between the O3 oxygen atom of the ligand attached to Fe2+ and this metal cation. Moreover, the hydrogen bond strength calculated for isolated ligands (situated between 23.92 and 30.15 kJ/mol) is in the range of normal HBs. Collectively, all the complexation processes have shown to be highly exothermic. Our results have also shown that the electron extraction from Fe2+...Lai complexes is more difficult compared to that from free ligands.
Collapse
|
65
|
Boulebd H, Khodja IA, Bay MV, Hoa NT, Mechler A, Vo QV. Thermodynamic and Kinetic Studies of the Radical Scavenging Behavior of Hydralazine and Dihydralazine: Theoretical Insights. J Phys Chem B 2020; 124:4123-4131. [DOI: 10.1021/acs.jpcb.0c02439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria 25017
| | - Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria 25017
| | - Mai Van Bay
- Department of Chemistry, The University of Da Nang—University of Science and Education, Da Nang 550000, Vietnam
| | - Nguyen Thi Hoa
- Academic Affairs, The University of Da Nang—University of Technology and Education, 48 Cao Thang, Da Nang 550000, Vietnam
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia
| | - Quan V. Vo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Chemical Technology—Environment, The University of Da Nang—University of Technology and Education, 48 Cao Thang, Da Nang 550000, Vietnam
| |
Collapse
|
66
|
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
67
|
A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the DFT study. J Mol Model 2020; 26:98. [PMID: 32279127 DOI: 10.1007/s00894-020-04368-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
Chromone (4H-chromen-4-one, 4H-1-benzopyran-4-one) and related compounds are important pharmacophores and privileged structures in medicinal chemistry because of their important biological activities such as anti-tumor, anti-HIV, and antioxidant. In the study, the density functional theory (DFT) calculations were performed for radical scavenging activity evaluation of a series of 3-styrylchromone derivatives. The reaction enthalpies related to the steps in the radical scavenging action mechanisms and several physicochemical descriptors such as global hardness, softness, and electronegativity were computed in gas phase and in water. The solvation effect of water on the antioxidant activity was taken into account by using the conductor-like polarizable continuum model. The calculated results were discussed by considering all physicochemical properties of molecules: thermodynamic, orbital, and structural. The results obtained were consistent with the experimental results.
Collapse
|
68
|
Alisi IO, Uzairu A, Abechi SE. Free radical scavenging mechanism of 1,3,4-oxadiazole derivatives: thermodynamics of O-H and N-H bond cleavage. Heliyon 2020; 6:e03683. [PMID: 32258501 PMCID: PMC7114742 DOI: 10.1016/j.heliyon.2020.e03683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
The thermodynamics of free radical scavenge of 1,3,4-oxadiazole derivatives towards oxygen-centred free radicals were investigated by the density functional theory (DFT) method in the gas phase and aqueous solution. Three mechanisms of free radical scavenge namely, hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) were considered. The antioxidant descriptors that characterize these mechanisms such as, bond dissociation enthalpy (BDE), adiabatic ionization potential (AIP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) were evaluated. The sequence of electron donation as predicted by the HOMO results were in good agreement with the sequence of ETE for the considered molecules at their favoured sites of free radical scavenge. The reaction Gibbs free energy for inactivation of the selected peroxyl radicals, show that 1,3,4-oxadiazole antioxidants are more efficient radical scavengers by HAT and SPLET mechanisms than SET-PT mechanism in vacuum. In aqueous solution, the SET-PT mechanism was observed to be the dominant reaction pathway.
Collapse
Affiliation(s)
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University Zaria, Kaduna State, Nigeria
| | | |
Collapse
|
69
|
Anitha S, Krishnan S, Senthilkumar K, Sasirekha V. Theoretical investigation on the structure and antioxidant activity of (+) catechin and (−) epicatechin – a comparative study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1745917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- S. Anitha
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| | - S. Krishnan
- Department of Physics, Bharathiar University, Coimbatore, India
| | - K. Senthilkumar
- Department of Physics, Bharathiar University, Coimbatore, India
| | - V. Sasirekha
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, India
| |
Collapse
|
70
|
Boulebd H. The role of benzylic-allylic hydrogen atoms on the antiradical activity of prenylated natural chalcones: a thermodynamic and kinetic study. J Biomol Struct Dyn 2020; 39:1955-1964. [DOI: 10.1080/07391102.2020.1740791] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
71
|
Amine Khodja I, Boulebd H. Synthesis, biological evaluation, theoretical investigations, docking study and ADME parameters of some 1,4-bisphenylhydrazone derivatives as potent antioxidant agents and acetylcholinesterase inhibitors. Mol Divers 2020; 25:279-290. [PMID: 32146656 DOI: 10.1007/s11030-020-10064-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/26/2020] [Indexed: 11/28/2022]
Abstract
Five 1,4-bisphenylhydrazone derivatives (1-5) were successfully synthesized and evaluated for their antioxidant and acetylcholinesterase inhibitory activities. The antioxidant activity has been carried out using DPPH, ABTS, CUPRAC and superoxide radical scavenging methods. All the compounds showed a very good antioxidant activity compared to that of the standards used. Compound 1 was found to be the best antioxidant agent with IC50 values lower or comparable to that of the standards. The acetylcholinesterase inhibitory activity has been evaluated using a modified Ellman's assay. The obtained results indicate that compound 2 is the best acetylcholinesterase inhibitor with a low IC50 value comparable to that of the galantamine. In addition, DFT calculations have been performed to determine in which mechanism the synthesized hydrazones follow to scavenge free radicals. Molecular docking study was performed for compound 2, and its interaction modes with the enzyme acetylcholinesterase were determined. As a result, a strong interaction between this compound and the active site of AChE enzyme was revealed. Finally, ADME properties of the synthesized compounds were also studied and showed good drug-like properties.
Collapse
Affiliation(s)
- Imene Amine Khodja
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria
| | - Houssem Boulebd
- Laboratory of Synthesis of Molecules with Biological Interest, University of Frères Mentouri Constantine 1, Constantine, Algeria.
| |
Collapse
|
72
|
Antioxidant Properties of Camphene-Based Thiosemicarbazones: Experimental and Theoretical Evaluation. Molecules 2020; 25:molecules25051192. [PMID: 32155763 PMCID: PMC7179440 DOI: 10.3390/molecules25051192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
The thiosemicarbazone derivatives have a wide range of biological activities, such as antioxidant activity. In this study, the antiradical activities of six camphene-based thiosemicarbazones (TSC-1~6) were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and peroxyl radical scavenging capacity (PSC) assays, respectively, and the results reveal that TSC1~6 exhibited good abilities for scavenging free radicals in a dose-dependent way. Compound TSC-2 exhibited the best effect of scavenging DPPH radical, with the lowest EC50 (0.208 ± 0.004 mol/mol DPPH) as well as the highest bimolecular rate constant Kb (4218 M-1 s-1), which is 1.18-fold higher than that of Trolox. Meanwhile, TSC-2 also obtained the lowest EC50 (1.27 µmol of Trolox equiv/µmol) of scavenging peroxyl radical. Furthermore, the density functional theory (DFT) calculation was carried out to further explain the experimental results by calculating several molecular descriptors associated with radical scavenging activity. These theoretical data suggested that the electron-donating effect of the diethylamino group in TSC-2 leads to the enhancement of the scavenging activities and the studied compounds may prefer to undergo the hydrogen atom transfer process.
Collapse
|
73
|
Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep 2020; 10:2611. [PMID: 32054964 PMCID: PMC7018807 DOI: 10.1038/s41598-020-59451-z] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 11/12/2022] Open
Abstract
The antioxidant activities of 18 typical phenolic acids were investigated using 2, 2′-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) assays. Five thermodynamic parameters involving hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT), and sequential proton-loss electron transfer (SPLET) mechanisms were calculated using density functional theory with the B3LYP/UB3LYP functional and 6–311++G (d, p) basis set and compared in the phenolic acids. Based on the same substituents on the benzene ring, -CH2COOH and -CH = CHCOOH can enhance the antioxidant activities of phenolic acids, compared with -COOH. Methoxyl (-OCH3) and phenolic hydroxyl (-OH) groups can also promote the antioxidant activities of phenolic acids. These results relate to the O-H bond dissociation enthalpy of the phenolic hydroxyl group in phenolic acids and the values of proton affinity and electron transfer enthalpy (ETE) involved in the electron donation ability of functional groups. In addition, we speculated that HAT, SET-PT, and SPLET mechanisms may occur in the DPPH reaction system. Whereas SPLET was the main reaction mechanism in the FRAP system, because, except for 4-hydroxyphenyl acid, the ETE values of the phenolic acids in water were consistent with the experimental results.
Collapse
|
74
|
Zheng YZ, Zhou Y, Guo R, Fu ZM, Chen DF. Structure-antioxidant activity relationship of ferulic acid derivatives: Effect of ester groups at the end of the carbon side chain. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
75
|
Boulebd H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127210] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
76
|
Computational study on the antioxidant property of coumarin-fused coumarins. Food Chem 2020; 304:125446. [DOI: 10.1016/j.foodchem.2019.125446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022]
|
77
|
Boulebd H. DFT study of the antiradical properties of some aromatic compounds derived from antioxidant essential oils: C–H bond vs. O–H bond. Free Radic Res 2019; 53:1125-1134. [DOI: 10.1080/10715762.2019.1690652] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Sciences, University of Frères Mentouri Constantine 1, Constantine, Algeria
| |
Collapse
|
78
|
In silico design of hydrazone antioxidants and analysis of their free radical-scavenging mechanism by thermodynamic studies. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2019. [DOI: 10.1186/s43088-019-0011-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Antioxidants are very crucial in maintaining the normal function of body cells, as they scavenge excess free radical in the body. A set of hydrazone antioxidants was designed by in silico screening. The density functional theory (DFT) method was employed to explore the reaction energetics of their free radical-scavenging mechanism. With the aid of the developed quantitative structure-activity relationship (QSAR) model for hydrazone antioxidants, the structure and antioxidant activity of these compounds were predicted. Three potential reaction mechanisms were investigated, namely, hydrogen atom transfer (HAT), single-electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Bond dissociation enthalpy (BDE), adiabatic ionization potential (AIP), proton dissociation enthalpy (PDE), proton affinity (PA), electron transfer enthalpy (ETE) and Gibbs free energy that characterize the various steps in these mechanisms were calculated in the gas phase.
Results
A total of 25 hydrazone antioxidants were designed, in which the molecule MHD 017 gave the best antioxidant activity. Among the tested molecules, MHD 017 at the 10-OH site gave the best results for the various thermodynamic parameters calculated. The reaction Gibbs free energy results also indicate that this is the most favoured site for free radical scavenge.
Conclusion
The obtained results show that HAT and SPLET mechanisms are the thermodynamically plausible reaction pathways of free radical scavenge by hydrazone antioxidants. The reactivity of these compounds towards the hydroperoxyl radical (HOO·) was greater than that towards the methyl peroxyl radical (CH3OO·) based on the exergonicity of the calculated reaction Gibbs free energy.
Graphical abstract
Collapse
|
79
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. Theoretical insight into the antioxidative activity of isoflavonoid: The effect of the C2=C3 double bond. PHYTOCHEMISTRY 2019; 166:112075. [PMID: 31351332 DOI: 10.1016/j.phytochem.2019.112075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Isoflavonoids are one of the most important groups of naturally occurring antioxidants. Their structural features are important for evaluating their antioxidative activity. In this work, density functional theory (DFT) methods were applied to investigate the influence of the C2=C3 double bond on the antioxidative activity of isoflavonoids based on three currently accepted radical scavenging mechanisms from the viewpoint of thermodynamics. The C2=C3 double bond can make the compounds more flat, which would extend the conjugated system in the molecule and make the isoflavonoids higher antioxidant activity. The C2=C3 double bond would not alter the strongest antioxidative hydroxyl group of the isoflavonoids. In the gas, benzene and CHCl3 phases, the C2=C3 double bond will enhance the antioxidative activity of isoflavonoids by lowering the bond dissociation enthalpies of the hydroxyl groups in the B ring that are the strongest antioxidative sites for the hydrogen atom transfer (HAT) mechanism. In polar phases, a similar result is obtained by weakening the proton affinity of 7-OH that is the strongest antioxidative hydroxyl group in the sequential proton loss electron transfer (SPLET), mechanism. Thus, the C2=C3 double bond will enhance the antioxidative activity of isoflavonoids irrespective of the studied phases.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
80
|
Cheng C, Yu X, McClements DJ, Huang Q, Tang H, Yu K, Xiang X, Chen P, Wang X, Deng Q. Effect of flaxseed polyphenols on physical stability and oxidative stability of flaxseed oil-in-water nanoemulsions. Food Chem 2019; 301:125207. [PMID: 31377621 DOI: 10.1016/j.foodchem.2019.125207] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/05/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
Recent studies have shown that the high susceptibility of flaxseed oil nanoemulsions to lipid oxidation limits their incorporation into functional foods and beverages. For this reason, the impact of various flaxseed phenolic extracts on the physical and oxidative stability of flaxseed oil nanoemulsions was investigated. Flaxseed lignan extract (FLE) and secoisolariciresinol (SECO) exhibited antioxidant activity whereas secoisolariciresinol diglucoside (SDG) and p-coumaric acid (CouA) exhibited prooxidant activity in the flaxseed oil nanoemulsions. The antioxidant potential of flaxseed phenolics in the nanoemulsions was as follows: SECO < CouA < SDG ≈ FLE. Moreover, the antioxidant/prooxidant activity of the phenolics was also related to their free radical scavenging activity and partitioning in the nanoemulsions. Our results suggested that both SECO and FLE were good plant-based antioxidants for improving the stability of flaxseed oil nanoemulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xiao Yu
- College of Food and Biological Engineering, Henan Collaborative Innovation Center for Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | | | - Qingde Huang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hu Tang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kun Yu
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xia Xiang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Peng Chen
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Xintian Wang
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Oil Crops Research Institute, Hubei Key Laboratory of Lipid Chemistry and Nutrition, and Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| |
Collapse
|
81
|
A DFT Analysis on Antioxidant and Antiradical Activities from Anthraquinones Isolated from the Cameroonian Flora. J CHEM-NY 2019. [DOI: 10.1155/2019/7684941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present work is devoted to the exploration antioxidant and antiradical activity of twenty anthraquinones isolated from the Cameroonian flora at B3LYP/6-311++G(d,p) level of theory using the B3LYP/6-31 + G(d,p) geometrical data as geometry optimization starting points. The single electron transfer mechanism has been adopted to examine both biological activities. The classification of the antiradical profile to integrate the electrodonating power (ω−), electroaccepting power (ω+), donor index (Rd) and acceptor index (Ra) has been performed using the donor-acceptor map (DAM). The antioxidant and radical powers of compounds analyzed have been compared to that of two classical vitamins (vitamin C and gallic acid). The stability of each anthraquinone derivative of the molecular library has been developed according to thermodynamic and kinetic concepts. The global reactivity descriptors (GRDs; electrophilicity index (ω), electronegativity (χ), global softness (S), and global hardness (η)) have been used to analyze the reactivity. The topological analysis of optimized structures indicates that the strength of the hydrogen bonds formed is situated between 44.205 and 52.001 kJ/mol. Our B3LYP results reveal that 3-methoxy-1-vismiaquinone (in a configuration without hydrogen bond) exhibits the best antioxidant capacity in gas phase. A comparison between antioxidant performance of molecules examined and that of classical vitamins (gallic acid, caffeic acid, ferulic acid, and ascorbic acid (vitamin C)) displayed the fact that the single electron transfer (SET) mechanism is more prominent for compounds of the molecular library analyzed. In the same vein, the antiradical behaviors of anthraquinone derivatives have shown to be higher than that of gallic acid and vitamin C in gas phase and water. The 5,8-dihydroxy-2-methylantraquinone structure in a configuration bearing one hydrogen bond has been found to be the best antiradical of the series in aqueous solution.
Collapse
|
82
|
Antioxidative activity analyses of some pyridazine derivatives using computational methods. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00850-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
83
|
New Phenolic Derivatives of Thiazolidine-2,4-dione with Antioxidant and Antiradical Properties: Synthesis, Characterization, In Vitro Evaluation, and Quantum Studies. Molecules 2019; 24:molecules24112060. [PMID: 31151176 PMCID: PMC6600258 DOI: 10.3390/molecules24112060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress has been incriminated in the physiopathology of many diseases, such as diabetes, cancer, atherosclerosis, and cardiovascular and neurodegenerative diseases. There is a great interest in developing new antioxidants that could be useful for preventing and treating conditions for which oxidative stress is suggested as the root cause. The thiazolidine-2,4-dione derivatives have been reported to possess various pharmacological activities and the phenol moiety is known as a pharmacophore in many naturally occurring and synthetic antioxidants. Twelve new phenolic derivatives of thiazolidine-2,4-dione were synthesized and physicochemically characterized. The antioxidant capacity of the synthesized compounds was assessed through several in vitro antiradical, electron transfer, and Fe2+ chelation assays. The top polyphenolic compounds 5f and 5l acted as potent antiradical and electron donors, with activity comparable to the reference antioxidants used. The ferrous ion chelation capacity of the newly synthesized compounds was modest. Several quantum descriptors were calculated in order to evaluate their influence on the antioxidant and antiradical properties of the compounds and the chemoselectivity of the radical generation reactions has been evaluated. The correlation with the energetic level of the frontier orbitals partially explained the antioxidant activity, whereas a better correlation was found while evaluating the O–H bond dissociation energy of the phenolic groups.
Collapse
|
84
|
Zheng YZ, Deng G, Guo R, Fu ZM, Chen DF. The influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antioxidative activity of flavonoid. PHYTOCHEMISTRY 2019; 160:19-24. [PMID: 30669059 DOI: 10.1016/j.phytochem.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Flavonoids widely found in natural foods are characterized by acting as antioxidants compounds. There are close relationship between the antiradical activities and structural properties of flavonoids. In this work, density functional theory (DFT) methods were applied to investigate the influence of the H5⋯OC4 intramolecular hydrogen-bond (IHB) on the antiradical activity of flavonoid based on three prevalently accepted radical scavenging mechanisms: hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT) and sequential proton-loss electron-transfer (SPLET). The thermodynamic properties: bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE) related with these mechanisms were calculated to elucidate the antiradical activity. The results showed that the 5-OH group is most influenced and its antiradical capacity was weakened by the H5⋯OC4 IHB. In the gas, benzene and chloroform phases, H5⋯OC4 IHB would reduce the antiradical activity of flavonoid via increasing the bond dissociation enthalpy. While, in the DMSO and H2O phases, the opposite result occurs by lowering the proton affinity.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
85
|
DFT Studies on the Antioxidant Activity of Naringenin and Its Derivatives: Effects of the Substituents at C3. Int J Mol Sci 2019; 20:ijms20061450. [PMID: 30909377 PMCID: PMC6470621 DOI: 10.3390/ijms20061450] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/07/2023] Open
Abstract
The radical scavenging activity of a flavonoid is largely influenced by its structure. The effects of the substituents at C3 position on the antioxidant activity of naringenin were carried out using the density functional theory (DFT) method. The reaction enthalpies related with the three well-established mechanisms were analyzed. Excellent correlations were found between the reaction enthalpies and Hammett sigma constants. Equations obtained from the linear regression can be helpful in the selection of suitable candidates for the synthesis of novel naringenin derivatives with enhanced antioxidant properties. In the gas and benzene phases, the antioxidant activity of naringenin was enhanced by the electron-donating substituents via weakening the bond dissociation enthalpy (BDE). In the water phase, it was strengthened by electron-withdrawing groups—via lowering the proton affinity (PA). The electronic effect of the substituent on the BDE of naringenin is mainly governed by the resonance effect, while that on the ionization potential (IP) and PA of naringenin is mainly controlled by the field/inductive effect.
Collapse
|
86
|
Antioxidant activity and pKa calculations of 4‑mercaptostilbene and some derivatives: A theoretical approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
87
|
Zheng YZ, Deng G, Guo R, Chen DF, Fu ZM. Substituent Effects on the Radical Scavenging Activity of Isoflavonoid. Int J Mol Sci 2019; 20:ijms20020397. [PMID: 30669260 PMCID: PMC6359201 DOI: 10.3390/ijms20020397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 11/16/2022] Open
Abstract
Understanding the role of substituents is of great importance for the preparation of novel phenolic compounds with enhanced antioxidative properties. In this work, the antioxidative activity of isoflavonoid derivatives with different substituents placed at the C2 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) related to hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) mechanisms were calculated. The strongest antioxidative group of isoflavonoid is not altered by the substituents. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Equations obtained from linear regression can be useful in the selection of suitable candidates for the synthesis of novel isoflavonoids derivatives with enhanced antioxidative properties. In the gas and benzene phases, the electron-donating substituents would enhance the antioxidative activity of isoflavonoids via weakening the BDE of 4′−OH. In water phase, they will reduce the antioxidative by strengthening the PA of 7−OH. Contrary results occur for the electron-withdrawing groups. In addition, the electronic effects of substituents on the BDE/IP/PA have also been analyzed.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
88
|
Zheng YZ, Deng G, Chen DF, Guo R, Lai RC. The influence of C2C3 double bond on the antiradical activity of flavonoid: Different mechanisms analysis. PHYTOCHEMISTRY 2019; 157:1-7. [PMID: 30342314 DOI: 10.1016/j.phytochem.2018.10.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 05/10/2023]
Abstract
Flavonoids widely found in bee products are excellent antioxidants. The structural features are important in evaluating the antiradical activity of flavonoid. In this work, the density functional theory (DFT) methods were applied to investigate the influence of C2C3 double bond on the antiradical activity of flavonoid based on three prevalently accepted radical scavenging mechanisms from the thermodynamic aspect. It is found that the hydroxyl groups in different rings are affected variously by the C2C3 double bond and the 3OH group is most influenced. For the compounds that only differ with the C2C3 double bond, the antiradical activity of flavone or flavonol (possessing C2C3 double bond) is not always stronger than that of flavanone: in the weak polarity phases, only the antiradical activities of chrysin, galangin and morin are stronger than those of pinocembrin, pinobanksin and dihydro-morin, respectively. In polar phases, the C2C3 double bond would weaken the antiradical activity of flavonoid via enlarging the proton affinity and the antiradical activity of flavone or flavonol is weaker than that of flavanone.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Rong-Cai Lai
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
89
|
Bensegueni R, Guergouri M, Bensouici C, Bencharif M. Synthesis, experimental and theoretical antiradical activity assessment of some azomethines and phenylhydrazones. SN APPLIED SCIENCES 2018. [DOI: 10.1007/s42452-018-0085-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
90
|
Zheng YZ, Chen DF, Deng G, Guo R, Fu ZM. The antioxidative activity of piceatannol and its different derivatives: Antioxidative mechanism analysis. PHYTOCHEMISTRY 2018; 156:184-192. [PMID: 30312934 DOI: 10.1016/j.phytochem.2018.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 05/27/2023]
Abstract
The naturally occurring stilbenes piceatannol and its derivatives are excellent antioxidants. In this work, the antioxidative activities of piceatannol and different piceatannol derivatives have been investigated using the density functional theory (DFT) method based on three widely accepted radical scavenging mechanisms, namely, the hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). The gas and four solvent phases, namely, bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), proton affinity (PA) and electron transfer enthalpy (ETE), related to these mechanisms were calculated to elucidate the antioxidative capacities of the investigated compounds. This work focuses specifically on the thermodynamically preferred mechanism, antioxidative site and antioxidative activity order of the investigated stilbenes. The substituted effects of the methyl group and prenyl group on the chemical properties of the remaining OH and CH groups are also analysed. This work confirms the vital role of the OH and CH groups on free radical scavenging of piceatannol and its derivatives.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zhong-Min Fu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| |
Collapse
|
91
|
Xue Y, Liu Y, Luo Q, Wang H, Chen R, Liu Y, Li Y. Antiradical Activity and Mechanism of Coumarin–Chalcone Hybrids: Theoretical Insights. J Phys Chem A 2018; 122:8520-8529. [DOI: 10.1021/acs.jpca.8b06787] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yunping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Qingquan Luo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Han Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ran Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Yin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Ya Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, No. 209, Tongshan Road, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
92
|
Wang L, Yang F, Zhao X, Li Y. Effects of nitro- and amino-group on the antioxidant activity of genistein: A theoretical study. Food Chem 2018; 275:339-345. [PMID: 30724205 DOI: 10.1016/j.foodchem.2018.09.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
Five novel compounds (Gen-NO2, Gen-2NO2, Gen-NH2, Gen-2NH2 and Gen-6NH2) have been designed via introducing an electron-withdrawing group -NO2 and an electron-donating group -NH2 into the structure of genistein. The effects of -NO2 and -NH2 groups on the antioxidant ability of genistein were investigated via quantum chemistry method in gas and methanol phases. The crucial parameters related to three antioxidant mechanisms were calculated. Moreover, the frontier molecular orbital, natural bond orbital and global descriptive parameters were calculated to evaluate the reactivity of genistein and its derivatives. Calculated results indicate the antioxidant process of genistein and its derivatives inclines to the hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) mechanisms in gas and methanol phases, respectively. Moreover, introducing -NH2 group into genistein can improve its antioxidant activity owing to the outstanding activities of amino-substituents of genistein, which will provide valuable guidance for the synthesis of new antioxidants experimentally.
Collapse
Affiliation(s)
- Lingling Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Fengjian Yang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xiuhua Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Yuanzuo Li
- College of Science, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
93
|
Zheng YZ, Chen DF, Deng G, Guo R. The Substituent Effect on the Radical Scavenging Activity of Apigenin. Molecules 2018; 23:E1989. [PMID: 30103379 PMCID: PMC6222755 DOI: 10.3390/molecules23081989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/25/2022] Open
Abstract
Flavonoids widely found in natural foods are excellent free radical scavengers. The relationship between the substituent and antioxidative activity of flavonoids has not yet been completely elucidated. In this work, the antioxidative activity of apigenin derivatives with different substituents at the C3 position was determined by density functional theory (DFT) calculations. The bond dissociation enthalpy (BDE), ionization potential (IP), and proton affinity (PA) were calculated. Donator acceptor map (DAM) analysis illustrated that the studied compounds are worse electron acceptors than F and also are not better electron donors than Na. The strongest antioxidative group of apigenin derivatives was the same as apigenin. Excellent correlations were found between the BDE/IP/PA and Hammett sigma constants. Therefore, Hammett sigma constants can be used to predict the antioxidative activity of substituted apigenin and to design new antioxidants based on flavonoids. In non-polar phases, the antioxidative activity of apigenin was increased by the electron-withdrawing groups, while it was reduced by the electron-donating groups. Contrary results occurred in the polar phase. The electronic effect of the substituents on BDE(4'-OH), BDE(5-OH), PA(4'-OH), and IP is mainly controlled by the resonance effect, while that on BDE(7-OH), PA(5-OH), and PA(7-OH) is governed by the field/inductive effect.
Collapse
Affiliation(s)
- Yan-Zhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Da-Fu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Geng Deng
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
94
|
Baldemir A, Köroğlu A, Altanlar N, Coşkun M. A Comparative Study on the in vitro Antioxidant and Antimicrobial Potentials of Three Endemic Ononis L. Species from Turkey. Turk J Pharm Sci 2018; 15:125-129. [PMID: 32454650 DOI: 10.4274/tjps.62533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/22/2017] [Indexed: 12/01/2022]
Abstract
Objectives In this study, the antioxidant capacity, antimicrobial activity and phenolic contents of aerial parts and roots extracts of three endemic Ononis L. (Leguminosae) species (O. sessilifolia Bornm., O. basiadnata Hub. & Mor., O. macrosperma Hub. & Mor.) were investigated for the first time. Materials and Methods The phenolic contents of the extracts [water and ethanol (EtOH)] and fractions [dichloromethane, EtOAc and n-butanol] were determined using Folin-Ciocalteu's phenol reagent. Also, their antioxidant capacities were studied using qualitative DPPH˙ (1,1-diphenyl-2-picrylhdrazyl radical) and TBA assays. The antimicrobial activity of these extracts and fractions compared with standard antibiotics were studied using disc diffusion assays against various Gram-positive and Gram-negative bacteria and fungi. Results The total phenolic contents of the water extracts were found to range between 14.78-80.33 mg/g, and the EtOH extracts ranged from 67.19-145.33 mg/g. EtOAc fractions of the three species were rich in terms of total phenolic contents when compared with other extracts (242.56-620.89 mg/g). The most significant results in the TBA assays were obtained in EtOH extracts of O. macrosperma (IC50=0.13±0.17 µg/mL), O. sessilifolia (IC50=1.41±0.58 µg/mL) and root (IC50=1.96±0.39 µg/mL). Conclusion EtOAc fractions rich in phenolic content were also found to be the most effective in antioxidant activity assays. Although all water extracts had no antimicrobial activity, EtOH extracts and n-butanol fractions showed generally moderate activity against bacteria. Some EtOAc fractions except for O. sessilifolia showed less activity against Escherichia coli, Staphylococcus aureus, MRSA and Candida albicans.
Collapse
Affiliation(s)
- Ayşe Baldemir
- Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Kayseri, Turkey
| | - Ayşegül Köroğlu
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| | - Nurten Altanlar
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Ankara, Turkey
| | - Maksut Coşkun
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| |
Collapse
|
95
|
The surrounding environments on the structure and antioxidative activity of luteolin. J Mol Model 2018; 24:149. [PMID: 29869725 DOI: 10.1007/s00894-018-3680-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Luteolin is an excellent antioxidant found in a wide variety of natural foods, such as honey and pollen. In this work, the effect of the surrounding environments on the structure and antioxidative activity of luteolin was carried out using density functional theory (DFT) calculation. The studied environments are gas, benzene, chloroform, pyridine, acetonitrile, ethanol, DMSO, and water. The structure of the luteolin monomer in different environments was optimized. The hydrogen-bond was especially focused, and the antioxidative capacity of luteolin was analyzed from the thermodynamic aspect. It is found that: (1) hydrogen atom transfer (HAT) is the most thermodynamically favorable mechanism in the gas, benzene, and chloroform phases, while sequential proton loss electron transfer (SPLET) is more favorable than HAT and single electron transfer followed by proton transfer (SET-PT) in pyridine, acetonitrile, ethanol, DMSO, and water phases. (2) The 4'-OH group could more strongly participate in the free radical scavenging process of luteolin than other OH groups, while the 5-OH group is the least favored one in the studied environments. (3) The antioxidative capacity of luteolin is strongest in pyridine.
Collapse
|
96
|
Leung R, Venus C, Zeng T, Tsopmo A. Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin. Food Chem 2018; 254:165-169. [PMID: 29548438 DOI: 10.1016/j.foodchem.2018.01.190] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/21/2018] [Accepted: 01/31/2018] [Indexed: 11/16/2022]
Abstract
The aim of the study was to determine the activity of four rye peptides and molecular descriptors responsible for the detected biological function. The activity was determined using hydroxyl radical scavenging and chromium-VI (Cr(VI) reducing assays while the density functional theory (DFT) was used for molecular descriptors (i.e. structure-activity relationships). It was found that at pH 7.4, peptide CQV had the highest Cr(VI) reducing activity (76%) followed by QCA (30.8%) while other peptides had less than 25% reduction. All tested peptides were less active at pH 3.0 and this was due to poor spatial proximity of thiol and amine on the glutamine side chain. In the hydroxyl radical scavenging assay, CQV had the highest activity with 28.9 ± 1.3% inhibition of the formation of HO radicals compared to 19.0-13.6% for other peptides. Cysteine at the N-terminal was important for both the reduction of chromium (pH 7.4) and the HO activity because S-H bond energies at that position were lower based on DFT calculations.
Collapse
Affiliation(s)
- Rachel Leung
- Food Science and Nutrition Program, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada
| | - Colin Venus
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada
| | - Tao Zeng
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada; Department of Chemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada; Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, K1S 5B6 Ottawa, ON, Canada.
| |
Collapse
|
97
|
The Substitution Effect on Reaction Enthalpies of Antioxidant Mechanisms of Juglone and Its Derivatives in Gas and Solution Phase: DFT Study. J CHEM-NY 2018. [DOI: 10.1155/2018/1958047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We examined the structure-reaction enthalpies-antioxidant activity relationship of the molecule library built around juglone and its derivatives at B3LYP/6-31+G(d,p) level. Three major antioxidant mechanisms (hydrogen atom transfer (HAT), single electron transfer-proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET)) have been investigated in five solvents and in the gas phase. The delocalization of the unpaired electrons in the radicals or cation radicals has been explored by the natural bond orbital analysis and the interpretation of spin density maps. The results obtained have proven that the HAT mechanism is the thermodynamically preferred mechanism in the gas phase. But, in the solution phase, the SPLET mechanism has been shown to be more predominant than HAT. The reactivity order of compounds towards selected reactive oxygen species has also been studied.
Collapse
|
98
|
Hernandez DA, Tenorio FJ. Reactivity indexes of antioxidant molecules from Rosmarinus officinalis. Struct Chem 2017. [DOI: 10.1007/s11224-017-1066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
99
|
Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
100
|
Antioxidant Activity of Quercetin and Its Glucosides from Propolis: A Theoretical Study. Sci Rep 2017; 7:7543. [PMID: 28790397 PMCID: PMC5548903 DOI: 10.1038/s41598-017-08024-8] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Among the multiple components of propolis, flavonoids contribute greatly to the antioxidant activities of propolis. Flavonoids mainly exist in the form of sugar-conjugated derivatives. Quercetin glycosides represent the predominant flavonoid fraction in propolis. In this work, density functional theory (DFT) calculations were applied to analyze the antioxidative properties of quercetin and its glucosides in the gas and in the liquid phase (ethanol, water). Three main antioxidant mechanisms, hydrogen atom transfer (HAT), single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET) were used to analyze the antioxidative capacity of the investigated compounds. Solvent effects dominantly affect SET-PT and SPLET. Thus, the thermodynamically preferred mechanism can be altered. HAT and SPLET are the thermodynamically dominant mechanisms in gas and solvent phases, respectively. Therefore, in the gas phase, the sequence of the antioxidative capacity is similar with the bond dissociation enthalpy values: quercetin > quercetin-5-O-glucoside > quercetin-7-O-glucoside > quercetin-3-O-glucoside > quercetin-3'-O-glucoside > quercetin-4'-O-glucoside. While, in the solvent phases, the sequence is similar with the proton affinity values: quercetin-4'-O-glucoside > quercetin-5-O-glucoside > quercetin > quercetin-3-O-glucoside > quercetin-7-O-glucoside > quercetin-3'-O-glucoside. OH groups in B-ring and C-ring contribute mainly to the antioxidative activities of quercetin and glucosides compared with A-ring.
Collapse
|