51
|
Huang L, Xuan W, Zadlo A, Kozinska A, Sarna T, Hamblin MR. Antimicrobial photodynamic inactivation is potentiated by the addition of selenocyanate: Possible involvement of selenocyanogen? JOURNAL OF BIOPHOTONICS 2018; 11:e201800029. [PMID: 29488327 PMCID: PMC6105409 DOI: 10.1002/jbio.201800029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
We previously showed that antimicrobial photodynamic inactivation (aPDI) of Gram-positive and Gram-negative bacteria mediated by the phenothiazinium dye, methylene blue (MB), was potentiated by the addition of potassium thiocyanate (10 mM). The mechanism was suggested to involve a singlet oxygen-mediated reaction with SCN to form sulfite and cyanide and then to produce sulfur trioxide radical anion. We now report that potassium selenocyanate (concentrations up to 100 mM) can also potentiate (up to 6 logs of killing) aPDI mediated by a number of different photosensitizers (PS): MB, rose bengal and 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin dihydrochloride (as low as 200 nM). When a mixture of selenocyanate with these PS in solution was illuminated and then bacteria were added after the light, there was up to 6 logs of killing (Gram-negative > Gram-positive) but the antibacterial species decayed rapidly (by 20 minutes). Our hypothesis to explain this antibacterial activity is the formation of selenocyanogen (SeCN)2 by reaction with singlet oxygen (1 O2 ) as shown by quenching of 1 O2 by SeCN and increased photoconsumption of oxygen. The fact that lead tetraacetate reacted with SeCN (literature preparation of (SeCN)2 ) also produced a short-lived antibacterial species supports this hypothesis.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Weijun Xuan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kozinska
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
52
|
Safiarian MS, Sawoo S, Mapp CT, Williams DE, Gude L, Fernández M, Lorente A, Grant KB. Aminomethylanthracene Dyes as High‐Ionic‐Strength DNA‐Photocleaving Agents: Two Rings are Better than One. ChemistrySelect 2018. [DOI: 10.1002/slct.201703019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Sudeshna Sawoo
- Department of Chemistry Georgia State University, Atlanta GA 30302–3965 USA
| | - Carla T. Mapp
- Department of Chemistry Georgia State University, Atlanta GA 30302–3965 USA
| | | | - Lourdes Gude
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805-Alcalá de Henares Madrid Spain
| | - María‐José Fernández
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805-Alcalá de Henares Madrid Spain
| | - Antonio Lorente
- Departamento de Química Orgánica y Química Inorgánica Universidad de Alcalá 28805-Alcalá de Henares Madrid Spain
| | - Kathryn B. Grant
- Department of Chemistry Georgia State University, Atlanta GA 30302–3965 USA
| |
Collapse
|
53
|
Misba L, Zaidi S, Khan AU. Efficacy of photodynamic therapy against Streptococcus mutans biofilm: Role of singlet oxygen. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:16-21. [PMID: 29680469 DOI: 10.1016/j.jphotobiol.2018.04.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/29/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
Abstract
In photodynamic therapy (PDT), killing is entirely based on the ROS generation and among different types of ROS generated during PDT, singlet oxygen is considered as the most potential as illustrated in many studies and therefore it is predominantly responsible for photodamage and cytotoxic reactions. The aim of this study was to check whether singlet oxygen (Type II photochemistry) is more potential than free radicals (Type I photochemistry) against Streptococcus mutans biofilm. We have taken two phenothiazinium dyes i.e. toluidine blue O (TBO) and new methylene blue (NMB). TBO was found to have better antibacterial as well as antibiofilm effect than NMB. Antibacterial effect was evaluated by colony forming unit while antibiofilm action by crystal violet and congo red binding assays. We have also evaluated the disruption of preformed biofilm by biofilm reduction assay, confocal laser electron and scanning electron microscopy. More singlet oxygen production was detected in case of TBO than NMB while more Free radical (HO) was produced by NMB than TBO. TBO showed better antibacterial as well as antibiofilm effect than NMB so; we conclude that potency of a photosensitizer is correlated with the capability to produce singlet oxygen.
Collapse
Affiliation(s)
- Lama Misba
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Sahar Zaidi
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab., Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
54
|
Brancini GTP, Rodrigues GB, Rambaldi MDSL, Izumi C, Yatsuda AP, Wainwright M, Rosa JC, Braga GÚL. The effects of photodynamic treatment with new methylene blue N on the Candida albicans proteome. Photochem Photobiol Sci 2018; 15:1503-1513. [PMID: 27830217 DOI: 10.1039/c6pp00257a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Candida albicans is a human pathogenic fungus mainly affecting immunocompromised patients. Resistance to the commonly used fungicides can lead to poor treatment of mucosal infections which, in turn, can result in life-threatening systemic candidiasis. In this scenario, antimicrobial photodynamic treatment (PDT) has emerged as an effective alternative to treat superficial and localized fungal infections. Microbial death in PDT is a consequence of the oxidation of many cellular biomolecules, including proteins. Here, we report a combination of two-dimensional electrophoresis and tandem mass spectrometry to study the protein damage resulting from treating C. albicans with PDT with new methylene blue N and red light. Two-dimensional gels of treated cells showed an increase in acidic spots in a fluence-dependent manner. Amino acid analysis revealed a decrease in the histidine content after PDT, which is one plausible explanation for the observed acidic shift. However, some protein spots remained unchanged. Protein identification by mass spectrometry revealed that both modified and unmodified proteins could be localized to the cytoplasm, ruling out subcellular location as the only explanation for damage selectivity. Therefore, we hypothesize that protein modification by PDT is a consequence of both photosensitizer binding affinity and the degree of exposure of the photooxidizable residues on the protein surface.
Collapse
Affiliation(s)
| | - Gabriela Braga Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | | | - Clarice Izumi
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Ana Patrícia Yatsuda
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| | - Mark Wainwright
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| | - José César Rosa
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Gilberto Úbida Leite Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
55
|
Chu WY, Tsai MH, Peng CL, Shih YH, Luo TY, Yang SJ, Shieh MJ. pH-Responsive Nanophotosensitizer for an Enhanced Photodynamic Therapy of Colorectal Cancer Overexpressing EGFR. Mol Pharm 2018; 15:1432-1444. [PMID: 29498860 DOI: 10.1021/acs.molpharmaceut.7b00925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photodynamic therapy (PDT) has been shown to kill cancer cells and improve survival and quality of life in cancer patients, and numerous new approaches have been considered for maximizing the efficacy of PDT. In this study, a new multifunctional nanophotosensitizer Ce6/GE11-(pH)micelle was developed to target epidermal growth factor receptor (EGFR) overexpressing colorectal cancer (CRC) cells. This nanophotosensitizer was synthesized using a micelle comprising pH-responsive copolymers (PEGMA-PDPA), biodegradable copolymers (mPEG-PCL), and maleimide-modified biodegradable copolymers (Mal-PEG-PCL) to entrap the potential hydrophobic photosensitizer chlorin e6 (Ce6) and to present EGFR-targeting peptides (GE11) on its surface. In the presence of Ce6/GE11-(pH)micelles, Ce6 uptake by EGFR-overexpressing CRC cells significantly increased due to GE11 specificity. Moreover, Ce6 was released from Ce6/GE11-(pH)micelles in tumor environments, leading to improved elimination of cancer cells in PDT. These results indicate enhanced efficacy of PDT using Ce6/GE11-(pH)micelle, which is a powerful nanophotosensitizer with high potential for application to future PDT for CRC.
Collapse
Affiliation(s)
- Wen-Yu Chu
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan
| | - Ming-Hsien Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division , Institute of Nuclear Energy Research , P.O. Box 3-27, Longtan, Taoyuan 325 , Taiwan
| | - Ying-Hsia Shih
- Isotope Application Division , Institute of Nuclear Energy Research , P.O. Box 3-27, Longtan, Taoyuan 325 , Taiwan
| | - Tsai-Yueh Luo
- Isotope Application Division , Institute of Nuclear Energy Research , P.O. Box 3-27, Longtan, Taoyuan 325 , Taiwan
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan.,Gene'e Tech Co. Ltd. 2F., No. 661, Bannan Road , Zhonghe Dist., New Taipei City 235 , Taiwan.,Apius Bio Inc. 1F., No. 92, Daxin Street , Yonghe Dist., New Taipei City 234 , Taiwan
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering , National Taiwan University , No. 1, Section 1, Jen-Ai Road , Taipei 100 , Taiwan.,Department of Oncology , National Taiwan University Hospital and College of Medicine , No. 7, Chung-Shan South Road , Taipei 100 , Taiwan
| |
Collapse
|
56
|
Hally C, Rodríguez-Amigo B, Bresolí-Obach R, Planas O, Nos J, Boix-Garriga E, Ruiz-González R, Nonell S. Photodynamic Therapy. THERANOSTICS AND IMAGE GUIDED DRUG DELIVERY 2018. [DOI: 10.1039/9781788010597-00086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Photodynamic therapy is a clinical technique for the treatment of cancers, microbial infections and other medical conditions by means of light-induced generation of reactive oxygen species using photosensitising drugs. The intrinsic fluorescence of many such drugs make them potential theranostic agents for simultaneous diagnosis and therapy. This chapter reviews the basic chemical and biological aspects of photodynamic therapy with an emphasis on its applications in theranostics. The roles of nanotechnology is highlighted, as well as emerging trends such as photoimmunotherapy, image-guided surgery and light- and singlet-oxygen dosimetry.
Collapse
Affiliation(s)
- Cormac Hally
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | | | - Roger Bresolí-Obach
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Oriol Planas
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Jaume Nos
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Ester Boix-Garriga
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Geneva Switzerland
| | - Rubén Ruiz-González
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull Via Augusta 390 08017 Barcelona Spain
| |
Collapse
|
57
|
|
58
|
Hamblin MR. Potentiation of antimicrobial photodynamic inactivation by inorganic salts. Expert Rev Anti Infect Ther 2017; 15:1059-1069. [PMID: 29084463 DOI: 10.1080/14787210.2017.1397512] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.
Collapse
Affiliation(s)
- Michael R Hamblin
- a Massachusetts General Hospital , Wellman Center for Photomedicine , Boston , MA , USA
| |
Collapse
|
59
|
Huang L, El-Hussein A, Xuan W, Hamblin MR. Potentiation by potassium iodide reveals that the anionic porphyrin TPPS4 is a surprisingly effective photosensitizer for antimicrobial photodynamic inactivation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:277-286. [PMID: 29172135 DOI: 10.1016/j.jphotobiol.2017.10.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 01/30/2023]
Abstract
We recently reported that addition of the non-toxic salt, potassium iodide can potentiate antimicrobial photodynamic inactivation of a broad-spectrum of microorganisms, producing many extra logs of killing. If the photosensitizer (PS) can bind to the microbial cells, then delivering light in the presence of KI produces short-lived reactive iodine species, while if the cells are added after light the killing is caused by molecular iodine produced as a result of singlet oxygen-mediated oxidation of iodide. In an attempt to show the importance of PS-bacterial binding, we compared two charged porphyrins, TPPS4 (thought to be anionic and not able to bind to Gram-negative bacteria) and TMPyP4 (considered cationic and well able to bind to bacteria). As expected TPPS4+light did not kill Gram-negative Escherichia coli, but surprisingly when 100mM KI was added, it was highly effective (eradication at 200nM+10J/cm2 of 415nm light). TPPS4 was more effective than TMPyP4 in eradicating the Gram-positive bacteria, methicillin-resistant Staphylococcus aureus and the fungal yeast Candida albicans (regardless of KI). TPPS4 was also highly active against E. coli after a centrifugation step when KI was added, suggesting that the supposedly anionic porphyrin bound to bacteria and Candida. This was confirmed by uptake experiments. We compared the phthalocyanine tetrasulfonate derivative (ClAlPCS4), which did not bind to bacteria or allow KI-mediated killing of E. coli after a spin, suggesting it was truly anionic. We conclude that TPPS4 behaves as if it has some cationic character in the presence of bacteria, which may be related to its delivery from suppliers in the form of a dihydrochloride salt.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Ahmed El-Hussein
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; The National Institute of Laser Enhanced Science, Cairo University, Egypt
| | - Weijun Xuan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Otorhinolaryngology, Head and Neck Surgery, First Clinical Medical College and Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
60
|
Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:125-131. [DOI: 10.1016/j.jphotobiol.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022]
|
61
|
El-Hussein A, Hamblin MR. ROS generation and DNA damage with photo-inactivation mediated by silver nanoparticles in lung cancer cell line. IET Nanobiotechnol 2017; 11:173-178. [PMID: 28477000 DOI: 10.1049/iet-nbt.2015.0083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lung cancer is considered one of the major health problems worldwide and the burden is even heavier in Africa. Nanomedicine is considered one of the most promising medical research applications nowadays. This is due to the unique physical and chemical properties of materials at the nanoscale. Silver nanoparticles have been extensively studied recently in many biomedical applications especially in cancer treatment, since they possess multifunctional effects that make these nanostructures ideal candidates for biomedical applications. AgNPs have been proved to have anti-tumour activity and the mode of cell death was shown to be apoptotic. The goal of the current work was to investigate the degree of DNA damage that may result from the usage of AgNPs as a photosensitiser in photo-inactivation and to evaluate the generation of reactive oxygen species (ROS) produced in the treatment. The results showed the occurrence of DNA damage in lung cancer cells (A549) through the generation of ROS shown by mitochondrial membrane potential changes.
Collapse
Affiliation(s)
- Ahmed El-Hussein
- Department of Laser Applications in Meteorology, Photochemistry, Photobiology and Agriculture, The National Institute of Laser Enhanced Science, Cairo University, Cairo, Egypt.
| | - Michael R Hamblin
- Harvard-MIT Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
62
|
Rout B, Liu CH, Wu WC. Photosensitizer in lipid nanoparticle: a nano-scaled approach to antibacterial function. Sci Rep 2017; 7:7892. [PMID: 28801673 PMCID: PMC5554217 DOI: 10.1038/s41598-017-07444-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/21/2017] [Indexed: 12/17/2022] Open
Abstract
Photosensitization-based antimicrobial therapy (PAT) is an alternative therapy aimed at achieving bacterial inactivation. Researchers use various photosensitizers to achieve bacterial inactivation. However, the most widely used approach involves the use of photosensitizers dispersed in aqueous solution, which could limit the effectiveness of photodynamic inactivation. Therefore, the approaches to encapsulate the photosensitizer in appropriate vehicles can enhance the delivery of the photosensitizer. Herein, Toluidine Blue O (TBO) was the photosensitizer, and lipid nanoparticles were used for its encapsulation. The lipid nanoparticle-based delivery system has been tailor-made for decreasing the average size and viscosity and increasing the formulation stability as well as the wettability of skin. Usage of an appropriate vehicle will also increase the cellular uptake of the photosensitizer into the bacterial cells, leading to the damage on cell membrane and genomic DNA. Evidence of effectiveness of the developed PAT on planktonic bacteria and biofilms was examined by fluorescence microscopy and scanning electron microscopy. Lipid nanoparticles protected the photosensitizer from aggregation and made the application easy on the skin as indicated in data of size distribution and contact angle. The use of lipid nanoparticles for encapsulating TBO could enhance photosensitization-based antimicrobial therapy as compared to the aqueous media for delivering photosensitizers.
Collapse
Affiliation(s)
- Bishakh Rout
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, 259, Wen-Hwa First Road, Kwei-Shan, Tao-Yuan, 333, Taiwan. .,Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan. .,Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City, Taiwan. .,Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, 5, Fu-Hsing Street, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| |
Collapse
|
63
|
Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. NANOPHOTONICS 2017; 6:853-879. [PMID: 29226063 PMCID: PMC5720168 DOI: 10.1515/nanoph-2016-0189] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Collapse
Affiliation(s)
- Nasim Kashef
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
64
|
Kashef N, Hamblin MR. Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation? Drug Resist Updat 2017; 31:31-42. [PMID: 28867242 DOI: 10.1016/j.drup.2017.07.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 01/08/2023]
Abstract
Infections have been a major cause of disease throughout the history of humans on earth. With the introduction of antibiotics, it was thought that infections had been conquered. However, bacteria have been able to develop resistance to antibiotics at an exponentially increasing rate. The growing threat from multi-drug resistant organisms calls for intensive action to prevent the emergence of totally resistant and untreatable infections. Novel, non-invasive, non-antibiotic strategies are needed that act more efficiently and faster than current antibiotics. One promising alternative is antimicrobial photodynamic inactivation (APDI), an approach that produces reactive oxygen species when dyes and light are combined. So far, it has been questionable if bacteria can develop resistance against APDI. This review paper gives an overview of recent studies concerning the susceptibility of bacteria towards oxidative stress, and suggests possible mechanisms of the development of APDI-resistance that should at least be addressed. Some ways to potentiate APDI and also to overcome future resistance are suggested.
Collapse
Affiliation(s)
- Nasim Kashef
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
65
|
Potassium Iodide Potentiates Antimicrobial Photodynamic Inactivation Mediated by Rose Bengal in In Vitro and In Vivo Studies. Antimicrob Agents Chemother 2017; 61:AAC.00467-17. [PMID: 28438946 DOI: 10.1128/aac.00467-17] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/19/2017] [Indexed: 02/05/2023] Open
Abstract
Rose bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation for several years. While RB is highly active against Gram-positive bacteria, it is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the nontoxic salt potassium iodide (100 mM) potentiates green light (540-nm)-mediated killing by up to 6 extra logs with the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium methicillin-resistant Staphylococcus aureus, and the fungal yeast Candida albicans The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals and, finally, forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing the levels of killing achieved in three different scenarios: (i) cells, RB, and KI are mixed together and then illuminated with green light; (ii) cells and RB are centrifuged, and then KI is added and the mixture is illuminated with green light; and (iii) RB and KI are illuminated with green light, and then cells are added after illumination with the light. We also showed that KI could potentiate RB photodynamic therapy in a mouse model of skin abrasions infected with bioluminescent P. aeruginosa.
Collapse
|
66
|
Pérez-Laguna V, Pérez-Artiaga L, Lampaya-Pérez V, García-Luque I, Ballesta S, Nonell S, Paz-Cristobal MP, Gilaberte Y, Rezusta A. Bactericidal Effect of Photodynamic Therapy, Alone or in Combination with Mupirocin or Linezolid, on Staphylococcus aureus. Front Microbiol 2017. [PMID: 28626456 PMCID: PMC5454219 DOI: 10.3389/fmicb.2017.01002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibiotic treatments frequently fail due to the development of antibiotic resistance, underscoring the need for new treatment strategies. Antimicrobial photodynamic therapy (aPDT) could constitute an alternative therapy. In bacterial suspensions of Staphylococcus aureus, which is commonly implicated in cutaneous and mucosal infections, we evaluated the in vitro efficacy of aPDT, using the photosensitizing agents rose bengal (RB) or methylene blue (MB), alone or combined with the antibiotics mupirocin (MU) or linezolid (LN). RB or MB, at concentrations ranging from 0.03 to 10 μg/ml, were added to S. aureus ATCC 29213 suspensions containing >108 cells/ml, in the absence or presence of MU or LN (1 or 10 μg/ml). Suspensions were irradiated with a white metal halide (λ 420–700 nm) or light-emitting diode lamp (λ 515 and λ 625 nm), and the number of viable bacteria quantified by counting colony-forming units (CFU) on blood agar. Addition of either antibiotic had no significant effect on the number of CFU/ml. By contrast, RB-aPDT and MB-aPDT effectively inactivated S. aureus, as evidenced by a 6 log10 reduction in bacterial growth. In the presence of MU or LN, the same 6 log10 reduction was observed in response to aPDT, but was achieved using significantly lower concentrations of the photosensitizers RB or MB. In conclusion, the combination of MU or LN and RB/MB-aPDT appears to exert a synergistic bactericidal effect against S. aureus in vitro.
Collapse
Affiliation(s)
- Vanesa Pérez-Laguna
- IIS AragónZaragoza, Spain.,Department of Microbiology, Hospital Universitario Miguel ServetZaragoza, Spain
| | - Luna Pérez-Artiaga
- Department of Microbiology, Hospital Universitario Miguel ServetZaragoza, Spain
| | | | | | - Sofía Ballesta
- Department of Microbiology, University of SevillaSeville, Spain
| | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon LlullBarcelona, Spain
| | | | - Yolanda Gilaberte
- IIS AragónZaragoza, Spain.,Department of Dermatology, Hospital San JorgeHuesca, Spain
| | - Antonio Rezusta
- IIS AragónZaragoza, Spain.,Department of Microbiology, Hospital Universitario Miguel ServetZaragoza, Spain.,Department of Microbiology, Preventive Medicine and Public Health, University of ZaragozaZaragoza, Spain
| |
Collapse
|
67
|
Huang L, Szewczyk G, Sarna T, Hamblin MR. Potassium Iodide Potentiates Broad-Spectrum Antimicrobial Photodynamic Inactivation Using Photofrin. ACS Infect Dis 2017; 3:320-328. [PMID: 28207234 DOI: 10.1021/acsinfecdis.7b00004] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is known that noncationic porphyrins such as Photofrin (PF) are effective in mediating antimicrobial photodynamic inactivation (aPDI) of Gram-positive bacteria or fungi. However, the aPDI activity of PF against Gram-negative bacteria is accepted to be extremely low. Here we report that the nontoxic inorganic salt potassium iodide (KI) at a concentration of 100 mM when added to microbial cells (108/mL) + PF (10 μM hematoporphyrin equivalent) + 415 nm light (10 J/cm2) can eradicate (>6 log killing) five different Gram-negative species (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus mirabilis, and Acinetobacter baumannii), whereas no killing was obtained without KI. The mechanism of action appears to be the generation of microbicidal molecular iodine (I2/I3-) as shown by comparable bacterial killing when cells were added to the mixture after completion of illumination and light-dependent generation of iodine as detected by the formation of the starch complex. Gram-positive methicillin-resistant Staphylococcus aureus is much more sensitive to aPDI (200-500 nM PF), and in this case potentiation by KI may be mediated mainly by short-lived iodine reactive species. The fungal yeast Candida albicans displayed intermediate sensitivity to PF-aPDI, and killing was also potentiated by KI. The reaction mechanism occurs via singlet oxygen (1O2). KI quenched 1O2 luminescence (1270 nm) at a rate constant of 9.2 × 105 M-1 s-1. Oxygen consumption was increased when PF was illuminated in the presence of KI. Hydrogen peroxide but not superoxide was generated from illuminated PF in the presence of KI. Sodium azide completely inhibited the killing of E. coli with PF/blue light + KI.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious
Diseases, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
- Wellman Center
for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry,
Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland
| | - Michael R. Hamblin
- Wellman Center
for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Harvard−MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
68
|
Gollmer A, Felgentraeger A, Maisch T, Flors C. Real-time imaging of photodynamic action in bacteria. JOURNAL OF BIOPHOTONICS 2017; 10:264-270. [PMID: 26790971 DOI: 10.1002/jbio.201500259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
Fluorescence imaging studies of the processes leading to photodynamic inactivation of bacteria have been limited due to the small size of microorganisms as well as by the faint fluorescence of most photosensitizers. A versatile method based on highly-sensitive fluorescence microscopy is presented which allows to study, in real time, the incorporation of photosensitizers inside S. aureus upon photodynamic action. The method takes advantage of the fluorescence enhancement of phenothiazine and porphyrin photosensitizers upon entering the bacterial cytosol after the cell wall has been compromised. In combination with typical assays, such as the addition of specific enhancers of reactive oxygen species, it is possible to extract mechanistic information about the pathway of photodynamic damage at the single-cell level. Imaging experiments in deuterated buffer strongly support a Type-I mechanism for methylene blue and a very minor role of singlet oxygen.
Collapse
Affiliation(s)
- Anita Gollmer
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Ariane Felgentraeger
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tim Maisch
- Department of Dermatology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia) and Nanobiotechnology Unit Associated to the National Center for Biotechnology (CSIC), 28049, Madrid, Spain
| |
Collapse
|
69
|
Garcia-Diaz M, Huang YY, Hamblin MR. Use of fluorescent probes for ROS to tease apart Type I and Type II photochemical pathways in photodynamic therapy. Methods 2016; 109:158-166. [PMID: 27374076 PMCID: PMC5075498 DOI: 10.1016/j.ymeth.2016.06.025] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy involves the excitation of a non-toxic dye by harmless visible light to produce a long-lived triplet state that can interact with molecular oxygen to produce reactive oxygen species (ROS), which can damage biomolecules and kill cells. ROS produced by electron transfer (Type 1) include superoxide, hydrogen peroxide and hydroxyl radical (HO), while singlet oxygen (1O2) is produced by energy transfer. Diverse methods exist to distinguish between these two pathways, some of which are more specific or more sensitive than others. In this review we cover the use of two fluorescence probes: singlet oxygen sensor green (SOSG) detects 1O2; and 4-hydroxyphenyl-fluorescein (HPF) that detects HO. Interesting data was collected concerning the photochemical pathways of functionalized fullerenes compared to tetrapyrroles, stable synthetic bacteriochlorins with and without central metals, phenothiazinium dyes interacting with inorganic salts such as azide.
Collapse
Affiliation(s)
- Maria Garcia-Diaz
- Department of Pharmacy, University of Copenhagen, Universitetsparken, 2, DK-2100, Copenhagen, Denmark
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
70
|
Gsponer NS, Agazzi ML, Spesia MB, Durantini EN. Approaches to unravel pathways of reactive oxygen species in the photoinactivation of bacteria induced by a dicationic fulleropyrrolidinium derivative. Methods 2016; 109:167-174. [DOI: 10.1016/j.ymeth.2016.05.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
|
71
|
Sherman I, Gerchman Y, Sasson Y, Gnayem H, Mamane H. Disinfection and Mechanistic Insights ofEscherichia coliin Water by Bismuth Oxyhalide Photocatalysis. Photochem Photobiol 2016; 92:826-834. [DOI: 10.1111/php.12635] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/31/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Ilana Sherman
- School of Mechanical Engineering; Tel Aviv University; Tel Aviv Israel
- The Water Research Center at Tel-Aviv University; Tel Aviv Israel
| | - Yoram Gerchman
- Department of Biology and Environment; Faculty of Natural Sciences; University of Haifa, Oranim; Tivon Israel
| | - Yoel Sasson
- Casali center of Applied Chemistry; The Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Hani Gnayem
- Casali center of Applied Chemistry; The Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem Israel
| | - Hadas Mamane
- School of Mechanical Engineering; Tel Aviv University; Tel Aviv Israel
- The Water Research Center at Tel-Aviv University; Tel Aviv Israel
| |
Collapse
|
72
|
Broad-Spectrum Antimicrobial Effects of Photocatalysis Using Titanium Dioxide Nanoparticles Are Strongly Potentiated by Addition of Potassium Iodide. Antimicrob Agents Chemother 2016; 60:5445-53. [PMID: 27381399 DOI: 10.1128/aac.00980-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/24/2016] [Indexed: 01/23/2023] Open
Abstract
Photocatalysis describes the excitation of titanium dioxide nanoparticles (a wide-band gap semiconductor) by UVA light to produce reactive oxygen species (ROS) that can destroy many organic molecules. This photocatalysis process is used for environmental remediation, while antimicrobial photocatalysis can kill many classes of microorganisms and can be used to sterilize water and surfaces and possibly to treat infections. Here we show that addition of the nontoxic inorganic salt potassium iodide to TiO2 (P25) excited by UVA potentiated the killing of Gram-positive bacteria, Gram-negative bacteria, and fungi by up to 6 logs. The microbial killing depended on the concentration of TiO2, the fluence of UVA light, and the concentration of KI (the best effect was at 100 mM). There was formation of long-lived antimicrobial species (probably hypoiodite and iodine) in the reaction mixture (detected by adding bacteria after light), but short-lived antibacterial reactive species (bacteria present during light) produced more killing. Fluorescent probes for ROS (hydroxyl radical and singlet oxygen) were quenched by iodide. Tri-iodide (which has a peak at 350 nm and a blue product with starch) was produced by TiO2-UVA-KI but was much reduced when methicillin-resistant Staphylococcus aureus (MRSA) cells were also present. The model tyrosine substrate N-acetyl tyrosine ethyl ester was iodinated in a light dose-dependent manner. We conclude that UVA-excited TiO2 in the presence of iodide produces reactive iodine intermediates during illumination that kill microbial cells and long-lived oxidized iodine products that kill after light has ended.
Collapse
|
73
|
Bolognese F, Bistoletti M, Barbieri P, Orlandi VT. Honey-sensitive Pseudomonas aeruginosa mutants are impaired in catalase A. MICROBIOLOGY-SGM 2016; 162:1554-1562. [PMID: 27516083 DOI: 10.1099/mic.0.000351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antimicrobial power of honey seems to be ascribable to several factors, including oxidative and osmotic stress. The aim of this study was to find genetic determinants involved in the response to honey stress in the opportunistic pathogen Pseudomonas aeruginosa, chosen as model micro-organism. A library of transposon mutants of P. aeruginosa PAO1 was constructed and only four mutants unable to grow in presence of fir honeydew honey were selected. All four mutants were impaired in the major H2O2-scavenging enzyme catalase A (KatA). The knockout of katA gene caused sensitivity, as expected, not only to hydrogen peroxide but also to different types of honey including Manuka GMO 220 honey. Genetic complementation, as well as the addition of PAO1 supernatant containing extracellular catalase, restored tolerance to honey stress in all the mutants. As P. aeruginosa PAO1 catalase KatA copes with H2O2 stress, it is conceivable that the antimicrobial activity of honey is, at least partially, due to the presence of hydrogen peroxide in honey or the ability of honey to induce production of hydrogen peroxide. The katA-deficient mutants could be used as tester micro-organisms to compare the power of different types of natural and curative honeys in eliciting oxidative stress mediated by hydrogen peroxide.
Collapse
Affiliation(s)
- Fabrizio Bolognese
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Michela Bistoletti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Paola Barbieri
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Viviana Teresa Orlandi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| |
Collapse
|
74
|
Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 2016; 33:67-73. [PMID: 27421070 DOI: 10.1016/j.mib.2016.06.008] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
Photodynamic therapy (PDT) uses photosensitizers (non-toxic dyes) that are activated by absorption of visible light to form reactive oxygen species (including singlet oxygen) that can oxidize biomolecules and destroy cells. Antimicrobial photodynamic inactivation (aPDI) can treat localized infections. aPDI neither causes any resistance to develop in microbes, nor is affected by existing drug resistance status. We discuss some recent developments in aPDI. New photosensitizers including polycationic conjugates, stable synthetic bacteriochlorins and functionalized fullerenes are described. The microbial killing by aPDI can be synergistically potentiated (several logs) by harmless inorganic salts via photochemistry. Genetically engineered bioluminescent microbial cells allow PDT to treat infections in animal models. Photoantimicrobials have a promising future in the face of the unrelenting increase in antibiotic resistance.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
75
|
Wu X, Huang YY, Kushida Y, Bhayana B, Hamblin MR. Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite. Free Radic Biol Med 2016; 95:74-81. [PMID: 27012419 PMCID: PMC4867282 DOI: 10.1016/j.freeradbiomed.2016.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 12/29/2022]
Abstract
Antimicrobial photocatalysis involves the UVA excitation of titanium dioxide (TiO2) nanoparticles (particularly the anatase form) to produce reactive oxygen species (ROS) that kill microbial cells. For the first time we report that the addition of sodium bromide to photoactivated TiO2 (P25) potentiates the killing of Gram-positive, Gram-negative bacteria and fungi by up to three logs. The potentiation increased with increasing bromide concentration in the range of 0-10mM. The mechanism of potentiation is probably due to generation of both short and long-lived oxidized bromine species including hypobromite as shown by the following observations. There is some antimicrobial activity remaining in solution after switching off the light, that lasts for 30min but not 2h, and oxidizes 3,3',5,5'-tetramethylbenzidine. N-acetyl tyrosine ethyl ester was brominated in a light dose-dependent manner, however no bromine or tribromide ion could be detected by spectrophotometry or LC-MS. The mechanism appears to have elements in common with the antimicrobial system (myeloperoxidase+hydrogen peroxide+bromide).
Collapse
Affiliation(s)
- Ximing Wu
- Department of Emergency, First Affiliated College & Hospital, Guangxi Medical University, Nanning 530021, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Kushida
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Graduate School of Pharmaceutical Science, University of Tokyo, Japan
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
76
|
Fujiya A, Tanaka M, Yamaguchi E, Tada N, Itoh A. Sequential Photo-oxidative [3 + 2] Cycloaddition/Oxidative Aromatization Reactions for the Synthesis of Pyrrolo[2,1-a]isoquinolines Using Molecular Oxygen as the Terminal Oxidant. J Org Chem 2016; 81:7262-70. [DOI: 10.1021/acs.joc.6b00439] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akitoshi Fujiya
- Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Masanori Tanaka
- Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Eiji Yamaguchi
- Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
77
|
Misba L, Kulshrestha S, Khan AU. Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy. BIOFOULING 2016; 32:313-328. [PMID: 26905507 DOI: 10.1080/08927014.2016.1141899] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The objective of this study was to evaluate the anti-biofilm efficacy of photodynamic therapy by conjugating a photosensitizer (TBO) with silver nanoparticles (AgNP). Streptococcus mutans was exposed to laser light (630 nm) for 70 s (9.1 J cm(-2)) in the presence of a toluidine blue O-silver nanoparticle conjugate (TBO-AgNP). The results showed a reduction in the viability of bacterial cells by 4 log10. The crystal violet assay, confocal laser scanning microscopy and scanning electron microscopy revealed that the TBO-AgNP conjugates inhibited biofilm formation, increased the uptake of propidium iodide and leakage of the cellular constituents, respectively. Fluorescence spectroscopic studies confirmed the generation of OH(•) as a major reactive oxygen species, indicating type I phototoxicity. Both the conjugates down-regulated the expression of biofilm related genes compared to TBO alone. Hence TBO-AgNP conjugates were found to be more phototoxic against S. mutans biofilm than TBO alone.
Collapse
Affiliation(s)
- Lama Misba
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , India
| | - Shatavari Kulshrestha
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , India
| | - Asad U Khan
- a Interdisciplinary Biotechnology Unit , Aligarh Muslim University , Aligarh , India
| |
Collapse
|
78
|
Tang X, Liu Y, Li S. Heterogeneous UV-Fenton photodegradation of azocarmine B over [FeEDTA]− intercalated ZnAl-LDH at circumneutral pH. RSC Adv 2016. [DOI: 10.1039/c6ra14671f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Under optimized operating conditions by RSM, the EDTA–Fe–LDH catalyst exhibited high photocatalytic activity, furthermore, the possible reaction mechanisms were proposed.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- Department of Environmental Science and Engineering
- Xiangtan University
- Xiangtan 411105
- China
| | - Yun Liu
- Department of Environmental Science and Engineering
- Xiangtan University
- Xiangtan 411105
- China
| | - Sihui Li
- Department of Environmental Science and Engineering
- Xiangtan University
- Xiangtan 411105
- China
| |
Collapse
|
79
|
Liu Y, Qin R, Zaat SAJ, Breukink E, Heger M. Antibacterial photodynamic therapy: overview of a promising approach to fight antibiotic-resistant bacterial infections. J Clin Transl Res 2015; 1:140-167. [PMID: 30873451 PMCID: PMC6410618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 11/22/2015] [Accepted: 12/28/2015] [Indexed: 10/28/2022] Open
Abstract
Antibacterial photodynamic therapy (APDT) has drawn increasing attention from the scientific society for its potential to effectively kill multidrug-resistant pathogenic bacteria and for its low tendency to induce drug resistance that bacteria can rapidly develop against traditional antibiotic therapy. The review summarizes the mechanism of action of APDT, the photosensitizers, the barriers to PS localization, the targets, the in vitro-, in vivo-, and clinical evidence, the current developments in terms of treating Gram-positive and Gram-negative bacteria, the limitations, as well as future perspectives. Relevance for patients: A structured overview of all important aspects of APDT is provided in the context of resistant bacterial species. The information presented is relevant and accessible for scientists as well as clinicians, whose joint effort is required to ensure that this technology benefits patients in the post-antibiotic era.
Collapse
Affiliation(s)
- Yao Liu
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands
| | - Rong Qin
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, the Netherlands
| | - Eefjan Breukink
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands
| | - Michal Heger
- Department of Membrane Biochemistry and Biophysics, Utrecht University, the Netherlands, Department of Experimental Surgery, Academic Medical Center, University of Amsterdam, the Netherlands
| |
Collapse
|
80
|
Strategies to optimize photosensitizers for photodynamic inactivation of bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 150:2-10. [DOI: 10.1016/j.jphotobiol.2015.05.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 01/06/2023]
|
81
|
Bacellar IOL, Tsubone TM, Pavani C, Baptista MS. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 2015; 16:20523-59. [PMID: 26334268 PMCID: PMC4613217 DOI: 10.3390/ijms160920523] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/18/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022] Open
Abstract
Photodynamic therapy (PDT) is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS), which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.
Collapse
Affiliation(s)
- Isabel O L Bacellar
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Tayana M Tsubone
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| | - Christiane Pavani
- Programa de Pós Graduação em Biofotônica Aplicada às Ciências da Saúde, Universidade Nove de Julho, São Paulo 01504-001, Brazil.
| | - Mauricio S Baptista
- Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, Brazil.
| |
Collapse
|
82
|
De Sordi L, Butt MA, Pye H, Kohoutova D, Mosse CA, Yahioglu G, Stamati I, Deonarain M, Battah S, Ready D, Allan E, Mullany P, Lovat LB. Development of Photodynamic Antimicrobial Chemotherapy (PACT) for Clostridium difficile. PLoS One 2015; 10:e0135039. [PMID: 26313448 PMCID: PMC4551672 DOI: 10.1371/journal.pone.0135039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/16/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Clostridium difficile is the leading cause of antibiotic-associated diarrhoea and pseudo membranous colitis in the developed world. The aim of this study was to explore whether Photodynamic Antimicrobial Chemotherapy (PACT) could be used as a novel approach to treating C. difficile infections. METHODS PACT utilises the ability of light-activated photosensitisers (PS) to produce reactive oxygen species (ROS) such as free radical species and singlet oxygen, which are lethal to cells. We screened thirteen PS against C. difficile planktonic cells, biofilm and germinating spores in vitro, and cytotoxicity of effective compounds was tested on the colorectal adenocarcinoma cell-line HT-29. RESULTS Three PS were able to kill 99.9% of bacteria in both aerobic and anaerobic conditions, both in the planktonic state and in a biofilm, after exposure to red laser light (0.2 J/cm2) without harming model colon cells. The applicability of PACT to eradicate C. difficile germinative spores indirectly was also shown, by first inducing germination with the bile salt taurocholate, followed by PACT. CONCLUSION This innovative and simple approach offers the prospect of a new antimicrobial therapy using light to treat C. difficile infection of the colon.
Collapse
Affiliation(s)
- Luisa De Sordi
- Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
- Research Department of Tissue & Energy, UCL, London, United Kingdom
| | - M. Adil Butt
- Research Department of Tissue & Energy, UCL, London, United Kingdom
- Division of Gastrointestinal Services, University College Hospital, London, United Kingdom
| | - Hayley Pye
- Research Department of Tissue & Energy, UCL, London, United Kingdom
| | - Darina Kohoutova
- Research Department of Tissue & Energy, UCL, London, United Kingdom
- Division of Gastrointestinal Services, University College Hospital, London, United Kingdom
| | - Charles A. Mosse
- Research Department of Tissue & Energy, UCL, London, United Kingdom
| | - Gokhan Yahioglu
- Department of Chemistry, Imperial College London, London, United Kingdom
- PhotoBiotics Ltd, Chemistry Building, Imperial College London, London, United Kingdom
| | - Ioanna Stamati
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Mahendra Deonarain
- PhotoBiotics Ltd, Chemistry Building, Imperial College London, London, United Kingdom
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Sinan Battah
- Organix Ltd, Colchester, United Kingdom
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Derren Ready
- Public Health Laboratory London, Pathology & Pharmacy Building, London, United Kingdom
| | - Elaine Allan
- Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
| | - Peter Mullany
- Microbial Diseases, UCL Eastman Dental Institute, London, United Kingdom
| | - Laurence B. Lovat
- Research Department of Tissue & Energy, UCL, London, United Kingdom
- Division of Gastrointestinal Services, University College Hospital, London, United Kingdom
| |
Collapse
|
83
|
Kasimova KR, Sadasivam M, Landi G, Sarna T, Hamblin MR. Potentiation of photoinactivation of Gram-positive and Gram-negative bacteria mediated by six phenothiazinium dyes by addition of azide ion. Photochem Photobiol Sci 2015; 13:1541-8. [PMID: 25177833 DOI: 10.1039/c4pp00021h] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Antimicrobial photodynamic inactivation (APDI) using phenothiazinium dyes is mediated by reactive oxygen species consisting of a combination of singlet oxygen (quenched by azide), hydroxyl radicals and other reactive oxygen species. We recently showed that addition of sodium azide paradoxically potentiated APDI of Gram-positive and Gram-negative bacteria using methylene blue as the photosensitizer, and this was due to electron transfer to the dye triplet state from azide anion, producing azidyl radical. Here we compare this effect using six different homologous phenothiazinium dyes: methylene blue, toluidine blue O, new methylene blue, dimethylmethylene blue, azure A, and azure B. We found both significant potentiation (up to 2 logs) and also significant inhibition (>3 logs) of killing by adding 10 mM azide depending on Gram classification, washing the dye from the cells, and dye structure. Killing of E. coli was potentiated with all 6 dyes after a wash, while S. aureus killing was only potentiated by MB and TBO with a wash and DMMB with no wash. More lipophilic dyes (higher log P value, such as DMMB) were more likely to show potentiation. We conclude that the Type I photochemical mechanism (potentiation with azide) likely depends on the microenvironment, i.e. higher binding of dye to bacteria. Bacterial dye-binding is thought to be higher with Gram-negative compared to Gram-positive bacteria, when unbound dye has been washed away, and with more lipophilic dyes.
Collapse
Affiliation(s)
- Kamola R Kasimova
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA.
| | | | | | | | | |
Collapse
|
84
|
Bacterial photodynamic inactivation mediated by methylene blue and red light is enhanced by synergistic effect of potassium iodide. Antimicrob Agents Chemother 2015; 59:5203-12. [PMID: 26077247 DOI: 10.1128/aac.00019-15] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/06/2015] [Indexed: 11/20/2022] Open
Abstract
The inexorable increase of antibiotic resistance occurring in different bacterial species is increasing the interest in developing new antimicrobial treatments that will be equally effective against multidrug-resistant strains and will not themselves induce resistance. One of these alternatives may be photodynamic inactivation (PDI), which uses a combination of nontoxic dyes, called photosensitizers (PS), excited by harmless visible light to generate reactive oxygen species (ROS) by type 1 (radical) and type 2 (singlet oxygen) pathways. In this study, we asked whether it was possible to improve the efficacy of PDI in vitro and in vivo by addition of the inert salt potassium iodide (KI) to a commonly investigated PS, the phenothiazinium dye methylene blue (MB). By adding KI, we observed a consistent increase of red light-mediated bacterial killing of Gram-positive and Gram-negative species in vitro and in vivo. In vivo, we also observed less bacterial recurrence in wounds in the days posttreatment. The mechanism of action is probably due to formation of reactive iodine species that are produced quickly with a short lifetime. This finding may have a relevant clinical impact by reducing the risk of amputation and, in some cases, the risk of death, leading to improvement in the care of patients affected by localized infections.
Collapse
|
85
|
Vilsinski BH, Gerola AP, Enumo JA, Campanholi KDSS, Pereira PCDS, Braga G, Hioka N, Kimura E, Tessaro AL, Caetano W. Formulation of Aluminum Chloride Phthalocyanine in Pluronic™P-123 and F-127 Block Copolymer Micelles: Photophysical properties and Photodynamic Inactivation of Microorganisms. Photochem Photobiol 2015; 91:518-25. [DOI: 10.1111/php.12421] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 01/10/2015] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | | | | | - Gustavo Braga
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| | - Noboru Hioka
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| | - Elza Kimura
- Department of Pharmacy and Pharmacology; State University of Maringá; Maringá Paraná Brazil
| | - André Luiz Tessaro
- Chemistry Departament; The Federal University of Technology; Maringá Paraná Brazil
| | - Wilker Caetano
- Chemistry Department; State University of Maringá; Maringá Paraná Brazil
| |
Collapse
|
86
|
Yin R, Wang M, Huang YY, Landi G, Vecchio D, Chiang LY, Hamblin MR. Antimicrobial photodynamic inactivation with decacationic functionalized fullerenes: oxygen-independent photokilling in presence of azide and new mechanistic insights. Free Radic Biol Med 2015; 79:14-27. [PMID: 25451642 PMCID: PMC4721583 DOI: 10.1016/j.freeradbiomed.2014.10.514] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/27/2014] [Accepted: 10/11/2014] [Indexed: 01/23/2023]
Abstract
Functionalized fullerenes are gaining wide interest for mediating photodynamic therapy (PDT) of diseases such as cancers and infections. We recently reported the synthesis of two new decacationic fullerene monoadducts: C60[>M(C3N6(+)C3)2]-(I(-))10(LC14) and its derivative with a light-harvesting antenna conjugated as a C60[>CPAF-(MN6(+)C3)2]-(I(-))10 nanostructure (LC15). We studied the ability of these compounds to mediate PDT of human cancer cells in vitro when excited by UVA light or by white light. Here we report the synthesis of a new fullerene derivative C60[>M(C3N6(+)C3)2][>M(C3N6C3)2]-(I(-))10 (LC16 derived from LC14), as a malonate bisadduct containing a covalently bound decatertiary amine arm. We investigated the relative abilities of the three compounds to generate singlet oxygen ((1)O2), hydroxyl radicals (HO·), and hydrogen peroxide (H2O2) after excitation by UVA or by white light. We used three different classes of pathogenic microbial cells (Gram-positive bacterium, methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative bacterium Escherichia coli, and fungal yeast Candida albicans). LC15 was the most powerful broad spectrum antimicrobial fullerenyl photosensitizer (FPS) followed by LC16, and LC14 was least powerful. Killing depended on both fullerene monoadduct concentration and light fluence. UVA was five times more effective than white light for killing, but not for generation of ROS and relative absorption was greater in white spectral region. Bacterial killing was not much inhibited by addition of azide anions and in some cases was potentiated. In the absence of oxygen, microbial photokilling was highly potentiated (up to 5 logs) by the addition of azide anions. We conclude that molecular functional addends that encourage a type I electron-transfer mechanism increase the ability of photoactivated fullerene monoadducts to kill microbial cells. Oxygen-independent photokilling is possible with fullerene monoadducts in the presence of azide anions, probably mediated by azidyl radicals. UVA excitation may kill bacteria partly by an electron-transfer mechanism directly into bacteria as well as by ROS.
Collapse
Affiliation(s)
- Rui Yin
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Min Wang
- Department of Chemistry, University of Massachusetts, Lowell, MA, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Guangxi Medical University, Nanning, China
| | - Giacomo Landi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Molecular Medicine, University of Siena, Italy
| | - Daniela Vecchio
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Long Y Chiang
- Department of Chemistry, University of Massachusetts, Lowell, MA, USA
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
87
|
Bovis MJ, Noimark S, Woodhams JH, Kay CWM, Weiner J, Peveler WJ, Correia A, Wilson M, Allan E, Parkin IP, MacRobert AJ. Photosensitisation studies of silicone polymer doped with methylene blue and nanogold for antimicrobial applications. RSC Adv 2015. [DOI: 10.1039/c5ra09045h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
2 nm gold nanoparticle (AuNP) and methylene blue (MB) incorporated into medical-grade silicone polymer for antimicrobial applications.
Collapse
|
88
|
Dąbrowski JM, Pucelik B, Pereira MM, Arnaut LG, Macyk W, Stochel G. New hybrid materials based on halogenated metalloporphyrins for enhanced visible light photocatalysis. RSC Adv 2015. [DOI: 10.1039/c5ra19742b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The impregnation of TiO2 with functionalized halogenated (metallo)porphyrins leads to novel materials with a superior photocatalytic activity.
Collapse
Affiliation(s)
| | - Barbara Pucelik
- Faculty of Chemistry
- Jagiellonian University
- 31-060 Kraków
- Poland
| | | | - Luis G. Arnaut
- Chemistry Departament
- University of Coimbra
- Coimbra
- Portugal
| | - Wojciech Macyk
- Faculty of Chemistry
- Jagiellonian University
- 31-060 Kraków
- Poland
| | - Grażyna Stochel
- Faculty of Chemistry
- Jagiellonian University
- 31-060 Kraków
- Poland
| |
Collapse
|
89
|
Tretter L, Horvath G, Hölgyesi A, Essek F, Adam-Vizi V. Enhanced hydrogen peroxide generation accompanies the beneficial bioenergetic effects of methylene blue in isolated brain mitochondria. Free Radic Biol Med 2014; 77:317-30. [PMID: 25277417 DOI: 10.1016/j.freeradbiomed.2014.09.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022]
Abstract
The redox dye methylene blue (MB) is proven to have beneficial effects in various models of neurodegenerative diseases. Here we investigated the effects of MB (100 nM, 300 nM, and 1 μM) on key bioenergetic parameters and on H2O2 production/elimination in isolated guinea pig brain mitochondria under normal as well as respiration-impaired conditions. As measured by high-resolution Oxygraph the rate of resting oxygen consumption was increased, but the ADP-stimulated respiration was unaffected by MB with any of the substrates (glutamate malate, succinate, or α-glycerophosphate) used for supporting mitochondrial respiration. In mitochondria treated with inhibitors of complex I or complex III MB moderately but significantly increased the rate of ATP production, restored ΔΨm, and increased the rate of Ca(2+) uptake. The effects of MB are consistent with transferring electrons from upstream components of the electron transport chain to cytochrome c, which is energetically favorable when the flow of electrons in the respiratory chain is compromised. On the other hand, MB significantly increased the production of H2O2 measured by Amplex UltraRed fluorimetry under all conditions, in resting, ATP-synthesizing, and respiration-impaired mitochondria, with each substrate combination supporting respiration. Furthermore, it also decreased the elimination of H2O2. Generation of H2O2 without superoxide formation, observed in the presence of MB, is interpreted as a result of reduction of molecular oxygen to H2O2 by the reduced MB. The elevated generation and impaired elimination of H2O2 should be considered for the overall oxidative state of mitochondria treated with MB.
Collapse
Affiliation(s)
- L Tretter
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - G Horvath
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - A Hölgyesi
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - F Essek
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - V Adam-Vizi
- MTA-SE Laboratory for Neurobiochemistry, Department of Medical Biochemistry, Semmelweis University, Budapest H-1094, Hungary.
| |
Collapse
|
90
|
Alvarez MG, Montes de Oca MN, Milanesio ME, Ortiz CS, Durantini EN. Photodynamic properties and photoinactivation of Candida albicans mediated by brominated derivatives of triarylmethane and phenothiazinium dyes. Photodiagnosis Photodyn Ther 2014; 11:148-55. [DOI: 10.1016/j.pdpdt.2014.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 03/02/2014] [Accepted: 03/05/2014] [Indexed: 11/16/2022]
|
91
|
St Denis TG, Vecchio D, Zadlo A, Rineh A, Sadasivam M, Avci P, Huang L, Kozinska A, Chandran R, Sarna T, Hamblin MR. Thiocyanate potentiates antimicrobial photodynamic therapy: in situ generation of the sulfur trioxide radical anion by singlet oxygen. Free Radic Biol Med 2013; 65:800-810. [PMID: 23969112 PMCID: PMC3889203 DOI: 10.1016/j.freeradbiomed.2013.08.162] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/26/2013] [Accepted: 08/09/2013] [Indexed: 11/28/2022]
Abstract
Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (OH) and singlet oxygen ((1)O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN(-)) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN(-) enhanced PDT (10 µM MB, 5 J/cm(2) 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10mM (P<0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10mM (P<0.01). We determined that SCN(-) rapidly depleted O2 from an irradiated MB system, reacting exclusively with (1)O2, without quenching the MB excited triplet state. SCN(-) reacted with (1)O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN(-) in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of OH, which, together with kinetic data, strongly suggests that MB, known to produce OH and (1)O2, may, under the conditions used, preferentially form (1)O2.
Collapse
Affiliation(s)
- Tyler G St Denis
- Department of Chemistry, Columbia University, New York, NY, USA; The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniela Vecchio
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Andrzej Zadlo
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ardeshir Rineh
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; School of Chemistry, University of Wollongong, NSW2522, Australia
| | - Magesh Sadasivam
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pinar Avci
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary; Department of Dermatology, Semmelweis University School of Medicine, 1085 Budapest, Hungary
| | - Liyi Huang
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary; Department of Infectious Disease, First Affiliated College & Hospital, Guangxi Medical University, Nanning, China
| | - Anna Kozinska
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland; Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Krakow, Poland
| | - Rakkiyappan Chandran
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tadeusz Sarna
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michael R Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
92
|
Smijs T, Dame Z, de Haas E, Aans JB, Pavel S, Sterenborg H. Photodynamic and Nail Penetration Enhancing Effects of Novel Multifunctional Photosensitizers Designed for The Treatment of Onychomycosis. Photochem Photobiol 2013; 90:189-200. [DOI: 10.1111/php.12196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/20/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Threes Smijs
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Zoë Dame
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Ellen de Haas
- Department of Dermatology and Venereology; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Jan-Bonne Aans
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| | - Stan Pavel
- Department of dermatology; Faculty of Medicine; Charles University; Pilsen Czech Republic
| | - Henricus Sterenborg
- Department of Radiaotherapy; Center for Optical Diagnostics and Therapy; Erasmus Medical Centre; Rotterdam The Netherlands
| |
Collapse
|
93
|
Kochhar JS, Lim WXS, Zou S, Foo WY, Pan J, Kang L. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol Pharm 2013; 10:4272-80. [PMID: 24044683 DOI: 10.1021/mp400359w] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lidocaine as an analgesic is of particular interest in both acute and chronic pain conditions and is used via injections or transdermal patches. While injections are associated with problems such as patient incompliance, topical administration of lidocaine using patches is less efficient due to variability of drug absorption among individuals, slower drug permeation through the skin, and hence a resultant undesirable delay in analgesic effects. To address this clinical problem, we developed a microneedle integrated transdermal patch (MITP), using a photolithography based process, in which microneedles create micrometer-sized channels in the skin to deliver lidocaine rapidly, while the reservoir patch holding the bulk of the drug enables higher drug loading and carries on to release the drug for prolonged periods. We demonstrated a new approach of drug delivery using microneedles, where drugs diffuse out of microneedles through the porous channels left by dissolving drug particles. MITP was shown to be able to encapsulate up to 70 mg of lidocaine. In vitro permeation through rat skin demonstrated that MITP delivered a significantly higher amount of lidocaine than a commercial patch and with a faster onset of drug permeation.
Collapse
Affiliation(s)
- Jaspreet Singh Kochhar
- Department of Pharmacy, National University of Singapore , 18 Science Drive 4, Singapore 117543, Singapore
| | | | | | | | | | | |
Collapse
|
94
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Huang L, Wang M, Dai T, Sperandio FF, Huang YY, Xuan Y, Chiang LY, Hamblin MR. Antimicrobial photodynamic therapy with decacationic monoadducts and bisadducts of [70]fullerene: in vitro and in vivo studies. Nanomedicine (Lond) 2013; 9:253-66. [PMID: 23738632 DOI: 10.2217/nnm.13.22] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Antimicrobial photodynamic therapy uses photosensitizers designed to bind to microorganisms and generate reactive oxygen species when illuminated with visible light. MATERIALS & METHODS We synthesized a highly water-soluble [70]fullerene monoadduct, C70[>M(C3N6(+)C3)2]-(I(-))10 (LC17), and bisadduct, C70[>M(C3N6(+)C3)2][>M(C3N6C3)2] (LC18), both with a well-defined decacationic quaternary ammonium iodide moiety with ten positive charges per C70 to give water solubility and bacterial binding. We determined the antimicrobial effects against human pathogens, Gram-positive (Staphylococcus aureus) and Gram-negative species (Escherichia coli and Acinetobacter baumannii) when activated by UVA or white light. RESULTS White light was more effective with LC17, while UVA light was more effective with LC18. Both compounds were effective in a mouse model of Gram-negative third-degree burn infections determined by bioluminescence imaging. DISCUSSION & CONCLUSION We propose that the attachment of an additional deca(tertiary-ethylenylamino)malonate arm to C70 allowed the moiety to act as a potent electron donor and increased the generation yield of hydroxyl radicals under UVA illumination.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated College & Hospital, Guangxi Medical University, Nanning, 530021, China
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Wang M, Maragani S, Huang L, Jeon S, Canteenwala T, Hamblin MR, Chiang LY. Synthesis of decacationic [60]fullerene decaiodides giving photoinduced production of superoxide radicals and effective PDT-mediation on antimicrobial photoinactivation. Eur J Med Chem 2013; 63:170-84. [PMID: 23474903 DOI: 10.1016/j.ejmech.2013.01.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/20/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
We report a novel class of highly water-soluble decacationic methano[60]fullerene decaiodides C60[>M(C3N6(+)C3)2]-(I(-))10 [1-(I(-))10] capable of co-producing singlet oxygen (Type-II) and highly reactive hydroxyl radicals, formed from superoxide radicals in Type-I photosensitizing reactions, upon illumination at both UVA and white light wavelengths. The O2(-)·-production efficiency of 1-(I(-))10 was confirmed by using an O2(-)·-reactive bis(2,4-dinitrobenzenesulfonyl)tetrafluorofluorescein probe and correlated to the photoinduced electron-transfer event going from iodide anions to (3)C60*[>M(C3N6(+)C3)2] leading to C60(-)·[>M(C3N6(+)C3)2]. Incorporation of a defined number (ten) of quaternary ammonium cationic charges per C60 in 1 was aimed to enhance its ability to target pathogenic Gram-positive and Gram-negative bacterial cells. We used the well-characterized malonato[60]fullerene diester monoadduct C60[>M(t-Bu)2] as the starting fullerene derivative to provide a better synthetic route to C60[>M(C3N6(+)C3)2] via transesterification reaction under trifluoroacetic acid catalyzed conditions. These compounds may be used as effective photosensitizers and nano-PDT drugs for photoinactivation of pathogens.
Collapse
Affiliation(s)
- Min Wang
- Department of Chemistry, Institute of Nanoscience and Engineering Technology, University of Massachusetts, Lowell, MA 01854, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Kimani S, Ghosh G, Ghogare A, Rudshteyn B, Bartusik D, Hasan T, Greer A. Synthesis and characterization of mono-, di-, and tri-poly(ethylene glycol) chlorin e6 conjugates for the photokilling of human ovarian cancer cells. J Org Chem 2012; 77:10638-47. [PMID: 23126407 DOI: 10.1021/jo301889s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PEGylated chlorin e(6) photosensitizers were synthesized with tri(ethylene glycol) attached at the ester bond(s) for a 1:1 conjugate at the 17(3)-position, a 2:1 conjugate at the 15(2)- and 17(3)-positions, and a 3:1 conjugate at the 13(1)-, 15(2)-, and 17(3)-positions. These chlorin sensitizers were studied for hydrolytic stability and solubility, as well as ovarian OVCAR-5 cancer cell uptake, localization, and phototoxicity. Increasing numbers of the PEG groups in the mono-, di-, and tri-PEG chlorin conjugates increased the water solubility and sensitivity to hydrolysis and uptake into the ovarian cancer cells. The PEG chlorin conjugates accumulated in the cytoplasm and mitrochondria, but not in lysosomes. Higher phototoxicity was roughly correlated with higher numbers of PEG groups, with the tri-PEG chlorin conjugate showing the best overall ovarian cancer cell photokilling of the series. Singlet oxygen lifetimes, solvent deuteration, and the effects of additives azide ion and d-mannitol were examined to help clarify the photokilling mechanisms. A Type-II (singlet oxygen) photosensitized mechanism is suggested for the di- and tri-PEG chlorin conjugates; however, a more complicated process based in part on a Type-I (radicals or radical ions) mechanism is suggested for the parent chlorin e(6) and the mono-PEG chlorin conjugate.
Collapse
Affiliation(s)
- Stanley Kimani
- Department of Chemistry and Graduate Center, City University of New York, Brooklyn College, Brooklyn, New York 11210, USA
| | | | | | | | | | | | | |
Collapse
|