51
|
Calcium and Redox Liaison: A Key Role of Selenoprotein N in Skeletal Muscle. Cells 2021; 10:cells10051116. [PMID: 34066362 PMCID: PMC8148124 DOI: 10.3390/cells10051116] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Selenoprotein N (SEPN1) is a type II glycoprotein of the endoplasmic reticulum (ER) that senses calcium levels to tune the activity of the sarcoplasmic reticulum calcium pump (SERCA pump) through a redox-mediated mechanism, modulating ER calcium homeostasis. In SEPN1-depleted muscles, altered ER calcium homeostasis triggers ER stress, which induces CHOP-mediated malfunction, altering excitation–contraction coupling. SEPN1 is localized in a region of the ER where the latter is in close contact with mitochondria, i.e., the mitochondria-associated membranes (MAM), which are important for calcium mobilization from the ER to mitochondria. Accordingly, SEPN1-depleted models have impairment of both ER and mitochondria calcium regulation and ATP production. SEPN1-related myopathy (SEPN1-RM) is an inherited congenital muscle disease due to SEPN1 loss of function, whose main histopathological features are minicores, i.e., areas of mitochondria depletion and sarcomere disorganization in muscle fibers. SEPN1-RM presents with weakness involving predominantly axial and diaphragmatic muscles. Since there is currently no disease-modifying drug to treat this myopathy, analysis of SEPN1 function in parallel with that of the muscle phenotype in SEPN1 loss of function models should help in understanding the pathogenic basis of the disease and possibly point to novel drugs for therapy. The present essay recapitulates the novel biological findings on SEPN1 and how these reconcile with the muscle and bioenergetics phenotype of SEPN1-related myopathy.
Collapse
|
52
|
Jain P, Dvorkin-Gheva A, Mollen E, Malbeteau L, Xie M, Jessa F, Dhavarasa P, Chung S, Brown KR, Jang GH, Vora P, Notta F, Moffat J, Hedley D, Boutros PC, Wouters BG, Koritzinsky M. NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4. SCIENCE ADVANCES 2021; 7:7/19/eabf7114. [PMID: 33962950 PMCID: PMC8104867 DOI: 10.1126/sciadv.abf7114] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
There is an urgent need to identify vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). PDAC cells acquire metabolic changes that augment NADPH production and cytosolic redox homeostasis. Here, we show that high NADPH levels drive activity of NADPH oxidase 4 (NOX4) expressed in the endoplasmic reticulum (ER) membrane. NOX4 produces H2O2 metabolized by peroxiredoxin 4 (PRDX4) in the ER lumen. Using functional genomics and subsequent in vitro and in vivo validations, we find that PDAC cell lines with high NADPH levels are dependent on PRDX4 for their growth and survival. PRDX4 addiction is associated with increased reactive oxygen species, a DNA-PKcs-governed DNA damage response and radiosensitivity, which can be rescued by depletion of NOX4 or NADPH. Hence, this study has identified NOX4 as a protein that paradoxically converts the reducing power of the cytosol to an ER-specific oxidative stress vulnerability in PDAC that may be therapeutically exploited by targeting PRDX4.
Collapse
Affiliation(s)
- Pallavi Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Erik Mollen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- University of Maastricht, Maastricht, Netherlands
| | - Lucie Malbeteau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Fatima Jessa
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Piriththiv Dhavarasa
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Parth Vora
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hedley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Departments of Human Genetics and Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
53
|
King B, Ikenga A, Larsen M, Sim C. Suppressed expression of oxidoreductin-like protein, Oxidor, increases follicle degeneration and decreases survival during the overwintering diapause of the mosquito Culex pipiens. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110959. [PMID: 33862219 DOI: 10.1016/j.cbpa.2021.110959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Throughout diapause in mosquitoes, stress resistance and subsequent prolonged lifespan are a few important features of diapause that are crucial for overwintering success. In the mosquito Culex pipiens, we suggest that oxidoreductin-like protein is involved with these diapause characteristics for overwintering survival. Expression of oxidor was more than two-fold higher in early stage diapausing females compared to their non-diapausing counterparts. Suppression of the gene that encodes oxidoreductin-like protein by RNAi significantly increased the proportion of degenerating follicles in early-stage adult diapausing females. Inhibition of oxidor also significantly reduced the survivability of diapausing females which indicates that this protein plays a key role in protecting multiple tissues during early diapause.
Collapse
Affiliation(s)
- Bryan King
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Arinze Ikenga
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Mazie Larsen
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Cheolho Sim
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
54
|
Pozzer D, Invernizzi RW, Blaauw B, Cantoni O, Zito E. Ascorbic Acid Route to the Endoplasmic Reticulum: Function and Role in Disease. Antioxid Redox Signal 2021; 34:845-855. [PMID: 31867990 DOI: 10.1089/ars.2019.7912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Humans cannot synthesize ascorbic acid (AscH2) (vitamin C), so deficiencies in dietary AscH2 cause the life-threatening disease of scurvy and many other diseases. After oral ingestion, plasma AscH2 concentrations are strictly controlled by transporters, which are required for entry into the cell and into intracellular organelles. Recent Advances: Besides its general antioxidant function, AscH2 is a cofactor for endoplasmic reticulum (ER)-localized collagen hydroxylases. Its important role in ER homeostasis is also highlighted by the fact that AscH2 deficiency in auxotrophic species triggers ER stress. Critical Issues: Characterizations of the molecular basis of diseases suggest that intracellular AscH2 deficiency is due not only to limited dietary access but also to its limited intracellular transport and net loss under conditions of intracellular hyperoxidation in the ER. This essay will offer an overview of the different transporters of vitamin C regulating its intracellular concentration, its function inside the ER, and the phenotypes of the diseases that can be triggered by increased depletion of this vitamin in the ER. Future Directions: When considering the benefits of increasing dietary AscH2, it is important to consider pharmacokinetic differences in the bioavailability between orally and intravenously administered AscH2: the latter bypasses intestinal absorption and is, therefore, the only route that can lead to the high plasma concentrations that may provide some health effects, and it is this route that needs to be chosen in clinical trials for those diseases associated with a deficiency of AscH2. Antioxid. Redox Signal. 34, 845-855.
Collapse
Affiliation(s)
- Diego Pozzer
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | | | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Orazio Cantoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
55
|
Zilli F, Marques Ramos P, Auf der Maur P, Jehanno C, Sethi A, Coissieux M, Eichlisberger T, Sauteur L, Rouchon A, Bonapace L, Pinto Couto J, Rad R, Jensen MR, Banfi A, Stadler MB, Bentires‐Alj M. The NFIB-ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells. EMBO Mol Med 2021; 13:e13162. [PMID: 33751828 PMCID: PMC8033524 DOI: 10.15252/emmm.202013162] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Metastasis is the main cause of deaths related to solid cancers. Active transcriptional programmes are known to regulate the metastatic cascade but the molecular determinants of metastatic colonization remain elusive. Using an inducible piggyBac (PB) transposon mutagenesis screen, we have shown that overexpression of the transcription factor nuclear factor IB (NFIB) alone is sufficient to enhance primary mammary tumour growth and lung metastatic colonization. Mechanistically and functionally, NFIB directly increases expression of the oxidoreductase ERO1A, which enhances HIF1α-VEGFA-mediated angiogenesis and colonization, the last and fatal step of the metastatic cascade. NFIB is thus clinically relevant: it is preferentially expressed in the poor-prognostic group of basal-like breast cancers, and high expression of the NFIB/ERO1A/VEGFA pathway correlates with reduced breast cancer patient survival.
Collapse
Affiliation(s)
- Federica Zilli
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Pedro Marques Ramos
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Novartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Priska Auf der Maur
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Charly Jehanno
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Atul Sethi
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Marie‐May Coissieux
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Loïc Sauteur
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Adelin Rouchon
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Laura Bonapace
- Novartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Joana Pinto Couto
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Novartis Institutes for Biomedical ResearchBaselSwitzerland
| | - Roland Rad
- Department of Medicine IITUM School of MedicineInstitute of Molecular Oncology and Functional GenomicsCenter for Translational Cancer Research (TranslaTUM)Technische Universität MünchenMünchenGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Andrea Banfi
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Mohamed Bentires‐Alj
- Department of BiomedicineDepartment of SurgeryUniversity Hospital BaselUniversity of BaselBaselSwitzerland
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
56
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
57
|
Phuong HT, Ishiwata-Kimata Y, Nishi Y, Oguchi N, Takagi H, Kimata Y. Aeration mitigates endoplasmic reticulum stress in Saccharomyces cerevisiae even without mitochondrial respiration. MICROBIAL CELL 2021; 8:77-86. [PMID: 33816593 PMCID: PMC8010904 DOI: 10.15698/mic2021.04.746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Saccharomyces cerevisiae is a facultative anaerobic organism that grows well under both aerobic and hypoxic conditions in media containing abundant fermentable nutrients such as glucose. In order to deeply understand the physiological dependence of S. cerevisiae on aeration, we checked endoplasmic reticulum (ER)-stress status by monitoring the splicing of HAC1 mRNA, which is promoted by the ER stress-sensor protein, Ire1. HAC1-mRNA splicing that was caused by conventional ER-stressing agents, including low concentrations of dithiothreitol (DTT), was more potent in hypoxic cultures than in aerated cultures. Moreover, growth retardation was observed by adding low-dose DTT into hypoxic cultures of ire1Δ cells. Unexpectedly, aeration mitigated ER stress and DTT-induced impairment of ER oxidative protein folding even when mitochondrial respiration was halted by the ρo mutation. An ER-located protein Ero1 is known to directly consume molecular oxygen to initiate the ER protein oxidation cascade, which promotes oxidative protein folding of ER client proteins. Our further study using ero1-mutant strains suggested that, in addition to mitochondrial respiration, this Ero1-medaited reaction contributes to mitigation of ER stress by molecular oxygen. Taken together, here we demonstrate a scenario in which aeration acts beneficially on S. cerevisiae cells even under fermentative conditions.
Collapse
Affiliation(s)
- Huong Thi Phuong
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yuki Ishiwata-Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yuki Nishi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Norie Oguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Yukio Kimata
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
58
|
The ER stress response mediator ERO1 triggers cancer metastasis by favoring the angiogenic switch in hypoxic conditions. Oncogene 2021; 40:1721-1736. [PMID: 33531624 PMCID: PMC7932925 DOI: 10.1038/s41388-021-01659-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/15/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023]
Abstract
Solid tumors are often characterized by a hypoxic microenvironment which contributes, through the hypoxia-inducible factor HIF-1, to the invasion-metastasis cascade. Endoplasmic reticulum (ER) stress also leads tumor cells to thrive and spread by inducing a transcriptional and translational program, the Unfolded Protein Response (UPR), aimed at restoring ER homeostasis. We studied ERO1 alpha (henceforth ERO1), a protein disulfide oxidase with the tumor-relevant characteristic of being positively regulated by both ER stress and hypoxia. Analysis of the redox secretome indicated that pro-angiogenic HIF-1 targets, were blunted in ERO1-devoid breast cancer cells under hypoxic conditions. ERO1 deficiency reduced tumor cell migration and lung metastases by impinging on tumor angiogenesis, negatively regulating the upstream ATF4/CHOP branch of the UPR and selectively impeding oxidative folding of angiogenic factors, among which VEGF-A. Thus, ERO1 deficiency acted synergistically with the otherwise feeble curative effects of anti-angiogenic therapy in aggressive breast cancer murine models and it might be exploited to treat cancers with pathological HIF-1-dependent angiogenesis. Furthermore, ERO1 levels are higher in the more aggressive basal breast tumors and correlate inversely with the disease- and metastasis-free interval of breast cancer patients. Thus, taking advantage of our in vitro data on ERO1-regulated gene products we identified a gene set associated with ERO1 expression in basal tumors and related to UPR, hypoxia, and angiogenesis, whose levels might be investigated in patients as a hallmark of tumor aggressiveness and orient those with lower levels toward an effective anti-angiogenic therapy.
Collapse
|
59
|
Mehmeti I. Mitochondrien im Mittelpunkt der zytokinvermittelten β-Zellzerstörung – Ernst-Friedrich-Pfeiffer-Preis 2020 – eine Kurzübersicht des Preisträgers Ilir Mehmeti. DIABETOL STOFFWECHS 2020. [DOI: 10.1055/a-1247-1283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ilir Mehmeti
- Dr., Institut für Klinische Biochemie, Medizinische Hochschule Hannover, Hannover
| |
Collapse
|
60
|
Bachar-Wikstrom E, Manchanda M, Bansal R, Karlsson M, Kelly-Pettersson P, Sköldenberg O, Wikstrom JD. Endoplasmic reticulum stress in human chronic wound healing: Rescue by 4-phenylbutyrate. Int Wound J 2020; 18:49-61. [PMID: 33225583 PMCID: PMC7949014 DOI: 10.1111/iwj.13525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
During wound healing, cells have a high rate of protein synthesis and many proteins need to be folded post‐translationally to function, which occurs in the endoplasmic reticulum (ER). In addition to proliferation, several cellular stress conditions, such as hypoxia, in the wound micro‐environment lead to the accumulation of unfolded or misfolded proteins in the ER, causing ER stress. Eukaryotic cells have a signalling system to manage ER stress called the unfolded protein response (UPR). Mild UPR activation has a beneficial homeostatic effect; however, excessive UPR induces cell death. Herein, we examined venous leg ulcer biopsies versus normal acute incisional wounds in age‐matched elderly subjects and found a large increase in ER stress markers. To study the underlying mechanism, we established several cell cultures from amputated legs from the elderly that showed inherent ER stress. While both keratinocytes and fibroblasts migration was impaired by ER stress, migration of elderly leg skin keratinocytes was markedly improved after treatment with the chemical chaperone and clinically established drug 4‐phenylbutyrate (4‐PBA) and demonstrated a reduction in ER stress markers. In a full‐thickness human skin wound healing model, 4‐PBA improved the reepithelialisation rate, which suggests it as a promising drug repurposing candidate for wound healing.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | | | - Paula Kelly-Pettersson
- Department of Clinical Sciences, Danderyd Hospital, Division of Orthopaedics, Karolinska Institutet, Stockholm, Sweden
| | - Olof Sköldenberg
- Department of Clinical Sciences, Danderyd Hospital, Division of Orthopaedics, Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.,Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
61
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
62
|
Pathways for Sensing and Responding to Hydrogen Peroxide at the Endoplasmic Reticulum. Cells 2020; 9:cells9102314. [PMID: 33080949 PMCID: PMC7603117 DOI: 10.3390/cells9102314] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) has emerged as a source of hydrogen peroxide (H2O2) and a hub for peroxide-based signaling events. Here we outline cellular sources of ER-localized peroxide, including sources within and near the ER. Focusing on three ER-localized proteins-the molecular chaperone BiP, the transmembrane stress-sensor IRE1, and the calcium pump SERCA2-we discuss how post-translational modification of protein cysteines by H2O2 can alter ER activities. We review how changed activities for these three proteins upon oxidation can modulate signaling events, and also how cysteine oxidation can serve to limit the cellular damage that is most often associated with elevated peroxide levels.
Collapse
|
63
|
ERO1L promotes IL6/sIL6R signaling and regulates MUC16 expression to promote CA125 secretion and the metastasis of lung cancer cells. Cell Death Dis 2020; 11:853. [PMID: 33056994 PMCID: PMC7560734 DOI: 10.1038/s41419-020-03067-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
The abnormal secretion of CA125, a classic tumor marker, is usually related to a poor prognosis in various tumors. Thus, this study aimed to explore the potential mechanisms that promote CA125 secretion in lung cancer. By querying the database, the gene endoplasmic reticulum oxidoreductase 1L (ERO1L) was identified and chosen as the research subject. The antibody chips were used to screen the lung cancer cell supernatant and found that the most obvious secreted protein was CA125. ERO1L was found to promote the secretion of IL6R by affecting the formation of disulfide bonds. IL6R bound to IL6 and triggered the activation of the NF-κB signaling pathway. Then, NF-κB bound to the promoter of MUC16, resulting in overexpression of MUC16. The extracellular segment of MUC16 was cleaved to form CA125, while the C terminus of MUC16 promoted the EMT phenotype and the release of IL6, forming a positive feedback pathway. In conclusion, ERO1L might affect the secretion of CA125 through the IL6 signaling pathway and form a positive feedback loop to further promote the development of lung cancer. This might expand the application scope of CA125 in lung cancer.
Collapse
|
64
|
Chi ZC. Research status and prgoress of nonalcoholic fatty pancreatic disease. Shijie Huaren Xiaohua Zazhi 2020; 28:933-950. [DOI: 10.11569/wcjd.v28.i19.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty pancreatic disease (NAFPD) is a disease characterized by an increase in pancreatic fat accumulation. It is a component of the metabolic syndrome and often coexists with nonalcoholic fatty liver disease. Once the diagnosis is established, it is closely related to acute and chronic pancreatitis, type 2 diabetes mellitus, pancreatic fibrosis, and pancreatic cancer. In recent years, it has been confirmed that NAFPD is closely related to cardiovascular disease, liver fibrosis, and liver cancer. The prevalence of NAFPD ranges between 11% and 69%, and increases with age. It is worth noting that the prevalence in obese children is twice as high as that in non-obese children. The high prevalence rate and complexity of the disease have aroused people's high attention. Therefore, to improve the understanding of NAFPD, fully understand the clinical significance of NAFPD, and further study its pathogenesis, diagnosis, and treatment require the collaboration and joint efforts of multiple disciplines, including hepatopathy, gastroenterology, endocrine metabolism, cardiovascular disease, imaging, pathology, and others. In this paper, we review the clinical significance, pathogenesis, and imaging diagnosis of NAFPD and propose our personal understanding of the key points in future research.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
65
|
Miyano K, Okamoto S, Yamauchi A, Kawai C, Kajikawa M, Kiyohara T, Tamura M, Taura M, Kuribayashi F. The NADPH oxidase NOX4 promotes the directed migration of endothelial cells by stabilizing vascular endothelial growth factor receptor 2 protein. J Biol Chem 2020; 295:11877-11890. [PMID: 32616654 DOI: 10.1074/jbc.ra120.014723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Indexed: 11/06/2022] Open
Abstract
Directed migration of endothelial cells (ECs) is an important process during both physiological and pathological angiogenesis. The binding of vascular endothelial growth factor (VEGF) to VEGF receptor-2 (VEGFR-2) on the EC surface is necessary for directed migration of these cells. Here, we used TAXIScan, an optically accessible real-time horizontal cell dynamics assay approach, and demonstrate that reactive oxygen species (ROS)-producing NADPH oxidase 4 (NOX4), which is abundantly expressed in ECs, mediates VEGF/VEGFR-2-dependent directed migration. We noted that a continuous supply of endoplasmic reticulum (ER)-retained VEGFR-2 to the plasma membrane is required to maintain VEGFR-2 at the cell surface. siRNA-mediated NOX4 silencing decreased the ER-retained form of VEGFR-2, resulting in decreased cell surface expression levels of the receptor. We also found that ER-localized NOX4 interacts with ER-retained VEGFR-2 and thereby stabilizes this ER-retained form at the protein level in the ER. We conclude that NOX4 contributes to the directed migration of ECs by maintaining VEGFR-2 levels at their surface.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | | | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, Tokyo, Japan
| | - Takuya Kiyohara
- Department of Cerebrovascular Disease and Neurology, Hakujyuji Hospital, Fukuoka, Japan
| | - Minoru Tamura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Ehime, Japan
| | - Masahiko Taura
- Department of Otorhinolaryngology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | |
Collapse
|
66
|
Kalmankar NV, Venkatesan R, Balaram P, Sowdhamini R. Transcriptomic profiling of the medicinal plant Clitoria ternatea: identification of potential genes in cyclotide biosynthesis. Sci Rep 2020; 10:12658. [PMID: 32728092 PMCID: PMC7391643 DOI: 10.1038/s41598-020-69452-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/10/2020] [Indexed: 01/20/2023] Open
Abstract
Clitoria ternatea a perennial climber of the Fabaceae family, is well known for its agricultural and medical applications. It is also currently the only known member of the Fabaceae family that produces abundant amounts of the ultra-stable macrocyclic peptides, cyclotides, across all tissues. Cyclotides are a class of gene-encoded, disulphide-rich, macrocyclic peptides (26–37 residues) acting as defensive metabolites in several plant species. Previous transcriptomic studies have demonstrated the genetic origin of cyclotides from the Fabaceae plant family to be embedded in the albumin-1 genes, unlike its counterparts in other plant families. However, the complete mechanism of its biosynthesis and the repertoire of enzymes involved in cyclotide folding and processing remains to be understood. In this study, using RNA-Seq data and de novo transcriptome assembly of Clitoria ternatea, we have identified 71 precursor genes of cyclotides. Out of 71 unique cyclotide precursor genes obtained, 51 sequences display unique cyclotide domains, of which 26 are novel cyclotide sequences, arising from four individual tissues. MALDI-TOF mass spectrometry analysis of fractions from different tissue extracts, coupled with precursor protein sequences obtained from transcriptomic data, established the cyclotide diversity in this plant species. Special focus in this study has also been on identifying possible enzymes responsible for proper folding and processing of cyclotides in the cell. Transcriptomic mining for oxidative folding enzymes such as protein-disulphide isomerases (PDI), ER oxidoreductin-1 (ERO1) and peptidylprolyl cis-trans isomerases (PPIases)/cyclophilins, and their levels of expression are also reported. In particular, it was observed that the CtPDI genes formed plant-specific clusters among PDI genes as compared to those from other plant species. Collectively, this work provides insights into the biogenesis of the medicinally important cyclotides and establishes the expression of certain key enzymes participating in peptide biosynthesis. Also, several novel cyclotide sequences are reported and precursor sequences are analysed in detail. In the absence of a published reference genome, a comprehensive transcriptomics approach was adopted to provide an overview of diverse properties and constituents of C. ternatea.
Collapse
Affiliation(s)
- Neha V Kalmankar
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,The University of Trans-Disciplinary Health Sciences and Technology (TDU), #74/2, Jarakabande Kaval, Post Attur, Via Yelahanka, Bangalore, Karnataka, 560064, India
| | - Radhika Venkatesan
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Department of Biological Sciences, Indian Institute of Science, Education and Research, Kolkata, Mohanpur, West Bengal, 741246, India
| | - Padmanabhan Balaram
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.,Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences (TIFR), GKVK Campus, Bangalore, Karnataka, 560065, India.
| |
Collapse
|
67
|
Zhang J, Yang J, Lin C, Liu W, Huo Y, Yang M, Jiang SH, Sun Y, Hua R. Endoplasmic Reticulum stress-dependent expression of ERO1L promotes aerobic glycolysis in Pancreatic Cancer. Am J Cancer Res 2020; 10:8400-8414. [PMID: 32724477 PMCID: PMC7381747 DOI: 10.7150/thno.45124] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Endoplasmic reticulum oxidoreductase 1 alpha (ERO1L) is an endoplasmic reticulum (ER) luminal glycoprotein that has a role in the formation of disulfide bonds of secreted proteins and membrane proteins. Emerging data identify ERO1L as a tumor promoter in a wide spectrum of human malignancies. However, its molecular basis of oncogenic activities remains largely unknown. Methods: Pan-cancer analysis was performed to determine the expression profile and prognostic value of ERO1L in human cancers. The mechanism by which ERO1L promotes tumor growth and glycolysis in pancreatic ductal adenocarcinoma (PDAC) was investigated by cell biological, molecular, and biochemical approaches. Results: ERO1L was highly expressed in PDAC and its precursor pancreatic intraepithelial neoplasia and acts as an independent prognostic factor for patient survival. Hypoxia and ER stress contributed to the overexpression pattern of ERO1L in PDAC. ERO1L knockdown or pharmacological inhibition with EN460 suppressed PDAC cell proliferation in vitro and slowed tumor growth in vivo. Ectopic expression of wild type ERO1L but not its inactive mutant form EROL-C394A promoted tumor growth. Bioinformatics analyses and functional analyses confirmed a regulatory role of ERO1L on the Warburg effect. Notably, inhibition of tumor glycolysis partially abrogated the growth-promoting activity of ERO1L. Mechanistically, ERO1L-mediated ROS generation was essential for its oncogenic activities. In clinical samples, ERO1L expression was correlated with the maximum standard uptake value (SUVmax) in PDAC patients who received 18F-FDG PET/CT imaging preoperatively. Analysis of TCGA cohort revealed a specific glycolysis gene expression signature that is highly correlated with unfolded protein response-related gene signature. Conclusion: Our findings uncover a key function for ERO1L in Warburg metabolism and indicate that targeting this pathway may offer alternative therapeutic strategies for PDAC.
Collapse
|
68
|
Lai L, Liu Y, Liu Y, Zhang N, Cao S, Zhang X, Wu D. Role of endoplasmic reticulum oxidase 1α in H9C2 cardiomyocytes following hypoxia/reoxygenation injury. Mol Med Rep 2020; 22:1420-1428. [PMID: 32626998 PMCID: PMC7339728 DOI: 10.3892/mmr.2020.11217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/30/2020] [Indexed: 01/04/2023] Open
Abstract
Endoplasmic reticulum (ER) oxidase 1α (ERO1α) is a glycosylated flavoenzyme that is located on the luminal side of the ER membrane, which serves an important role in catalyzing the formation of protein disulfide bonds and ER redox homeostasis. However, the role of ERO1α in myocardial hypoxia/reoxygenation (H/R) injury remains largely unknown. In the present study, ERO1α expression levels in H9C2 cardiomyocytes increased following H/R, reaching their highest levels following 3 h of hypoxia and 6 h of reoxygenation. In addition, H/R induced apoptosis, and significantly increased expression levels of ER stress (ERS) markers 78 kDa glucose-regulated protein and C/EBP homologous protein. Moreover, the genetic knockdown of ERO1α using short hairpin RNA suppressed cell apoptosis, caspase-3 activity, expression levels of cleaved caspase-12 and cytochrome c in the cytoplasm. Overall, this suggested that ERO1α knockdown may protect against H/R injury. The ERS activator tunicamycin (TM) was used to counteract the ERO1α-induced reduction in ERS; however, the percentage of apoptotic cells and the level of mitochondrial damage did not change. In conclusion, the results from the present study suggested that ERO1α knockdown may protect H9C2 cardiomyocytes from H/R injury through inhibiting intracellular ROS production and increasing intracellular levels of Ca2+, suggesting that ERO1α may serve an important role in H/R.
Collapse
Affiliation(s)
- Lina Lai
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yue Liu
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yuanyuan Liu
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ni Zhang
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Shilu Cao
- Department of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Xiaojing Zhang
- Department of Pharmacology, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Di Wu
- Department of Surgery, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
69
|
Regulation of Vascular Function and Inflammation via Cross Talk of Reactive Oxygen and Nitrogen Species from Mitochondria or NADPH Oxidase-Implications for Diabetes Progression. Int J Mol Sci 2020; 21:ijms21103405. [PMID: 32408480 PMCID: PMC7279344 DOI: 10.3390/ijms21103405] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-mediated damage. Here, the pathways and potential mechanisms leading to this cross talk are analyzed in detail and highlighted by selected examples from the current literature and own data including hypoxia, angiotensin II (AT-II)-induced hypertension, nitrate tolerance, aging, and others. The general concept of redox-based activation of RONS sources via “kindling radicals” and enzyme-specific “redox switches” as well as the interaction with redox-sensitive inflammatory pathways are discussed. Here, we present evidence for the existence of such cross talk mechanisms in the setting of diabetes and critically assess their contribution to the severity of diabetic complications.
Collapse
|
70
|
The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165834. [PMID: 32437958 DOI: 10.1016/j.bbadis.2020.165834] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca2+) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca2+ flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies. In the present review, we summarize the current understanding of basic MAM biology, composition and function and discuss the possible role of MAM-resident oncogenes and tumor suppressors.
Collapse
|
71
|
Rojas-Franco P, Franco-Colín M, Torres-Manzo AP, Blas-Valdivia V, Thompson-Bonilla MDR, Kandir S, Cano-Europa E. Endoplasmic reticulum stress participates in the pathophysiology of mercury-caused acute kidney injury. Ren Fail 2020; 41:1001-1010. [PMID: 31736398 PMCID: PMC6882499 DOI: 10.1080/0886022x.2019.1686019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acute exposure to mercury chloride (HgCl2) causes acute kidney injury (AKI). Some metals interfere with protein folding, leading to endoplasmic reticulum stress (ERS), and the activation of cell death mechanisms, but in the case of mercury, there is no knowledge about whether the ERS mediates tubular damage. This study aimed to determinate if HgCl2 causes an AKI course with temporary activation of ERS and if this mechanism is involved in kidney cell death. Male mice were intoxicated with 5 mg/kg HgCl2 and sacrificed after 24, 48, 72, and 96 h of mercury administration. The kidneys of euthanized mice were used to assess the renal function, oxidative stress, redox environment, antioxidant enzymatic system, cell death, and reticulum stress markers (PERK, ATF-6, and IRE1α pathways). The results indicate temporary-dependent renal dysfunction, oxidative stress, and an increase of glutathione-dependent enzymes involved in the bioaccumulation process of mercury, as well as the enhancement of caspase 3 activity along with IRE1a, GADD-153, and caspase 12 expressions. Mercury activates the PERK/eIF2α branch during the first 48 h. Meanwhile, the activation of PERK/ATF-4 branch allowed for ATF-4, ATF-6, and IRE1α pathways to enhance GADD-153. It led to the activation of caspases 12 and 3, which mediated the deaths of the tubular and glomerular cells. This study revealed temporary-dependent ERS present during AKI caused by HgCl2, as well as how it plays a pivotal role in kidney cell damage.
Collapse
Affiliation(s)
- Plácido Rojas-Franco
- Laboratorio de Metabolismo I Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Margarita Franco-Colín
- Laboratorio de Metabolismo I Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Vanessa Blas-Valdivia
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Sinan Kandir
- Department of Physiology, Ceyhan Faculty of Veterinary Medicine, Cukurova University, Adana, Turkey
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
72
|
Boncompagni S, Pozzer D, Viscomi C, Ferreiro A, Zito E. Physical and Functional Cross Talk Between Endo-Sarcoplasmic Reticulum and Mitochondria in Skeletal Muscle. Antioxid Redox Signal 2020; 32:873-883. [PMID: 31825235 DOI: 10.1089/ars.2019.7934] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The physiological relevance of contacts between the sarcoplasmic reticulum (SR), a specialized domain of the endoplasmic reticulum (ER) in skeletal muscle, and mitochondria is still not clear. Recent Advances: An extensive close proximity of these two organelles is a late developmental event, which suggests that it does not have an essential function. Critical Issues: The intimate association of SR/mitochondria develops during murine postnatal differentiation and the recovery of denervated atrophic muscle, which suggests that this is a highly regulated process with a specific function. Analyses of mouse models for muscle diseases suggest that impaired ER/SR-mitochondrial contacts may be due to ER stress and lead to defective bioenergetics and insulin signaling. Future Directions: Future studies are necessary to identify the molecular determinants weakening insulin signaling upon impairment of ER/mitochondrial contacts in skeletal muscles as well as to analyze the distance between SR/ER and mitochondria in muscle diseases associated with ER stress.
Collapse
Affiliation(s)
- Simona Boncompagni
- CeSI-Met-Center for Research on Ageing and Translational Medicine, University G. d' Annunzio, Chieti, Italy.,DNICS-Department of Neuroscience, Imaging and Clinical Sciences, University G. d' Annunzio, Chieti, Italy
| | - Diego Pozzer
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Carlo Viscomi
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Ana Ferreiro
- Unit of Functional and Adaptive Biology, BFA, Pathophysiology of Striated Muscles Laboratory, University Paris Diderot/CNRS, Sorbonne Paris Cité, Paris, France.,AP-HP, Centre de Référence Maladies Neuromusculaires Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Ester Zito
- Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| |
Collapse
|
73
|
Wang BC, Zhang ST, Chen G. Research Progress of the UPR Mechanism and its Effect on Improving Foreign Protein Expression. Protein Pept Lett 2020; 27:831-840. [PMID: 32264804 DOI: 10.2174/0929866527666200407113549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/22/2022]
Abstract
The unfolded protein response (UPR) is a protective mechanism against endoplasmic reticulum (ER) stress that induces a series of signal transduction pathways to eliminate misfolded proteins. The UPR mechanism is highly conserved in fungi, higher organisms, plants and mammals. The UPR pathway is activated to stabilize ER functions when there are too many unfolded proteins or misfolded proteins in the ER. However, stress continues when ER proteins are stimulated by toxic substances that affect the balance of the UPR pathway, which causes changes in the structure and function of the ER and other organelles. These ultimately disrupt homeostasis in the body and cause pathological reactions that can be fatal. The UPR mechanism has clear effects on stabilizing the protein-folding environment. Dysfunction or disruption of the UPR mechanism is associated with numerous disorders, including neurodegenerative diseases, loss of control of protein secretion, cerebral ischemia and epilepsy, neuropsychiatric diseases, eye diseases, skin diseases, metabolic and inflammatory diseases, atherosclerosis, and heart disease. Thus, characterization of UPR function and its dysfunction has significant importance and has broad application prospects, which make research into the UPR a research hotspot.
Collapse
Affiliation(s)
- Bao-Chen Wang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education Changchun City, Jilin Province 130118, China
| | - Si-Tong Zhang
- Key Laboratory of Straw Biology and Utilization, Ministry of Education Changchun City, Jilin Province 130118, China.,Jilin Agricultural University, College of Life Sciences Changchun City, Jilin Province 130118, China,Straw Biotransformation and Agricultural Utilization Engineering Research Center, Changchun City, Jilin Province 130118, China
| | - Guang Chen
- Key Laboratory of Straw Biology and Utilization, Ministry of Education Changchun City, Jilin Province 130118, China.,Jilin Agricultural University, College of Life Sciences Changchun City, Jilin Province 130118, China,Straw Biotransformation and Agricultural Utilization Engineering Research Center, Changchun City, Jilin Province 130118, China
| |
Collapse
|
74
|
Chamberlain N, Anathy V. Pathological consequences of the unfolded protein response and downstream protein disulphide isomerases in pulmonary viral infection and disease. J Biochem 2020; 167:173-184. [PMID: 31790139 PMCID: PMC6988748 DOI: 10.1093/jb/mvz101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Protein folding within the endoplasmic reticulum (ER) exists in a delicate balance; perturbations of this balance can overload the folding capacity of the ER and disruptions of ER homoeostasis is implicated in numerous diseases. The unfolded protein response (UPR), a complex adaptive stress response, attempts to restore normal proteostasis, in part, through the up-regulation of various foldases and chaperone proteins including redox-active protein disulphide isomerases (PDIs). There are currently over 20 members of the PDI family each consisting of varying numbers of thioredoxin-like domains which, generally, assist in oxidative folding and disulphide bond rearrangement of peptides. While there is a large amount of redundancy in client proteins of the various PDIs, the size of the family would indicate more nuanced roles for the individual PDIs. However, the role of individual PDIs in disease pathogenesis remains uncertain. The following review briefly discusses recent findings of ER stress, the UPR and the role of individual PDIs in various respiratory disease states.
Collapse
Affiliation(s)
- Nicolas Chamberlain
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, 149 Beaumont Ave, Burlington, VT 05405, USA
| |
Collapse
|
75
|
Liu C, Hao Y, Yin F, Liu J. Geniposide Balances the Redox Signaling to Mediate Glucose-Stimulated Insulin Secretion in Pancreatic β-Cells. Diabetes Metab Syndr Obes 2020; 13:509-520. [PMID: 32158246 PMCID: PMC7049278 DOI: 10.2147/dmso.s240794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To investigate the effect of geniposide on the biosynthesis of insulin and the expression protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductin 1 (ERO1) in the presence of low (5 mM) and high (25 mM) glucose in pancreatic β cells. METHODS The content of insulin was measured by ELISA, the number of SH groups was determined with the classical chromogenic reagent, 5,5'-dithiobis-(2-nitrobenzoic) acid (DTNB; also known as Ellman's reagent), the expressions of PDI and ERO1 were analyzed by Western blot. RESULTS Geniposide played contrary roles on the accumulation of H2O2, the ratio of GSH/GSSG and the thiol-disulfide balance in the presence of low (5 mM) and high (25 mM) glucose in rat pancreatic INS-1 cells. Geniposide also regulated the protein levels of protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductin1 (ERO1), the two key enzymes for the production of H2O2 during the biosynthesis of insulin in INS-1 cells. CONCLUSION Geniposide affects glucose-stimulated insulin secretion by modulating the thiol-disulfide balance that is controlled by the redox signaling in pancreatic β cells.
Collapse
Affiliation(s)
- Chunyan Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
| | - Yanan Hao
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
| | - Fei Yin
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
| | - Jianhui Liu
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing400054, People’s Republic of China
- Correspondence: Jianhui Liu; Fei Yin Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Hongguang Road 69, Ba’nan District, Chongqing400054, People’s Republic of China Tel/Fax +86-23-6256-3182 Email ;
| |
Collapse
|
76
|
Tsubata T. Involvement of Reactive Oxygen Species (ROS) in BCR Signaling as a Second Messenger. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1254:37-46. [PMID: 32323267 DOI: 10.1007/978-981-15-3532-1_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are not only toxic substances inducing oxidative stress but also play a role in receptor signaling as a second messenger, which augments signaling through various receptors by oxidizing ROS-sensitive signaling molecules. Among ROS, H2O2 is suggested to be an important second messenger because of its relative stability. H2O2 is generated by superoxide dismutase (SOD)-mediated conversion of superoxide produced by membrane-localized NADPH oxidases (NOXes). Superoxide and H2O2 are also produced as a by-product of mitochondrial respiratory chain and various other metabolic reactions. BCR ligation induces ROS production in two phases. ROS production starts immediately after BCR ligation and ceases in 1 h, then re-starts 2 h after BCR ligation and lasts 4-6 h. ROS production in the early phase is mediated by NOX2, a NOX isoform, but does not regulate BCR signaling. In contrast, ROS production at the late phase augments BCR signaling. Although the involvement of mitochondrial respiration was previously suggested in prolonged BCR ligation-induced ROS production, we recently demonstrated that NOX3, another NOX isoform, plays a central role in ROS production at the late phase. NOXes are shown to be a component of ROS-generating signaling endosome called redoxosome together with endocytosed receptors and receptor-associated signaling molecules. In redoxosome, ROS generated by NOXes augment signaling through the endocytosed receptor. The role of NOXes and redoxosome in BCR signaling needs to be further elucidated.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan.
| |
Collapse
|
77
|
Li X, Li Y, Jiang C, Chen L, Gan N. MicroRNA-144-3p Inhibits Tumorigenesis of Oral Squamous Cell Carcinoma by downregulating ERO1L. J Cancer 2020; 11:759-768. [PMID: 31942199 PMCID: PMC6959053 DOI: 10.7150/jca.33267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 09/07/2019] [Indexed: 02/02/2023] Open
Abstract
An increasing number of studies indicate that miR-144-3p is dysregulated in numerous cancers, but its role in oral squamous cell carcinoma (OSCC) remains largely unknown. Herein we demonstrated that miR-144-3p expression was significantly downregulated in OSCC tissues and cell lines. Moreover, the low level of miR-144-3p expression was associated with the clinical characteristics of OSCC patients. Furthermore, ectopic expression of miR-144-3p inhibited the proliferation, migration, and invasion of OSCC cells in vitro, and blunted the tumorigenic ability of OSCC cells in vivo. Additionally, the levels of miR-144-3p were negatively correlated with the expression status of endoplasmic reticulum oxidoreduction-1-like (ERO1L) in OSCC cell lines. Subsequently, we identified that ERO1L was a direct target of miR-144-3p. Intriguingly, we found that miR-144-3p downregulation of ERO1L inhibited the activity of signal transducer and activator of transcription 3 (STAT3) in OSCC cells. Therefore, miR-144-3p suppresses tumorigenesis by targeting ERO1L/STAT3 signaling pathway in OSCC. miR-144-3p may a candidate target for OSCC treatment.
Collapse
Affiliation(s)
- Xian Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yong Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chao Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ning Gan
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
78
|
Endoplasmic Reticulum Protein Disulfide Isomerase Shapes T Cell Efficacy for Adoptive Cellular Therapy of Tumors. Cells 2019; 8:cells8121514. [PMID: 31779147 PMCID: PMC6953024 DOI: 10.3390/cells8121514] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022] Open
Abstract
Effective cancer therapies simultaneously restrict tumor cell growth and improve anti-tumor immune responses. Targeting redox-dependent protein folding enzymes within the endoplasmic reticulum (ER) is an alternative approach to activation of the unfolded protein response (UPR) and a novel therapeutic platform to induce malignant cell death. E64FC26 is a recently identified protein disulfide isomerase (PDI) inhibitor that activates the UPR, oxidative stress, and apoptosis in tumor cells, but not normal cell types. Given that targeting cellular redox homeostasis is a strategy to augment T cell tumor control, we tested the effect of E64FC26 on healthy and oncogenic T cells. In stark contrast to the pro-UPR and pro-death effects we observed in malignant T cells, we found that E64FC26 improved viability and limited the UPR in healthy T cells. E64FC26 treatment also diminished oxidative stress and decreased global PDI expression in normal T cells. Oxidative stress and cell death are limited in memory T cells and we found that PDI inhibition promoted memory traits and reshaped T cell metabolism. Using adoptive transfer of tumor antigen-specific CD8 T cells, we demonstrate that T cells activated and expanded in the presence of E64FC26 control tumor growth better than vehicle-matched controls. Our data indicate that PDI inhibitors are a new class of drug that may dually inhibit tumor cell growth and improve T cell tumor control.
Collapse
|
79
|
Granatiero V, Konrad C, Bredvik K, Manfredi G, Kawamata H. Nrf2 signaling links ER oxidative protein folding and calcium homeostasis in health and disease. Life Sci Alliance 2019; 2:2/5/e201900563. [PMID: 31658977 PMCID: PMC6819749 DOI: 10.26508/lsa.201900563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative protein folding in the ER generates ROS, leading to Nrf2-dependent feedback on protein folding via ER calcium level modulation. This feedback loop is suppressed in ALS-associated mutant astrocytes but can be rescued by dimethyl fumarate. We report a signaling pathway linking two fundamental functions of the ER, oxidative protein folding, and intracellular calcium regulation. Cells sense ER oxidative protein folding through H2O2, which induces Nrf2 nuclear translocation. Nrf2 regulates the expression of GPx8, an ER glutathione peroxidase that modulates ER calcium levels. Because ER protein folding is dependent on calcium, this pathway functions as rheostat of ER calcium levels. Protein misfolding and calcium dysregulation contribute to the pathophysiology of many diseases, including amyotrophic lateral sclerosis, in which astrocytic calcium dysregulation participates in causing motor neuron death. In human-derived astrocytes harboring mutant SOD1 causative of familial amyotrophic lateral sclerosis, we show that impaired ER redox signaling decreases Nrf2 nuclear translocation, resulting in ER calcium overload and increased calcium-dependent cell secretion, leading to motor neuron death. Nrf2 activation in SOD1 mutant astrocytes with dimethyl fumarate restores calcium homeostasis and ameliorates motor neuron death. These results highlight a regulatory mechanism of intracellular calcium homeostasis by ER redox signaling and suggest that this mechanism could be a therapeutic target in SOD1 mutant astrocytes.
Collapse
Affiliation(s)
- Veronica Granatiero
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kirsten Bredvik
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
80
|
Singh-Mallah G, Nair S, Sandberg M, Mallard C, Hagberg H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid Redox Signal 2019; 31:643-663. [PMID: 30957515 PMCID: PMC6657303 DOI: 10.1089/ars.2019.7779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Significance: Perinatal brain injury is caused by hypoxia-ischemia (HI) in term neonates, perinatal arterial stroke, and infection/inflammation leading to devastating long-term neurodevelopmental deficits. Therapeutic hypothermia is the only currently available treatment but is not successful in more than 50% of term neonates suffering from hypoxic-ischemic encephalopathy. Thus, there is an urgent unmet need for alternative or adjunct therapies. Reactive oxygen species (ROS) are important for physiological signaling, however, their overproduction/accumulation from mitochondria and endoplasmic reticulum (ER) during HI aggravate cell death. Recent Advances and Critical Issues: Mechanisms underlying ER stress-associated ROS production have been primarily elucidated using either non-neuronal cells or adult neurodegenerative experimental models. Findings from mature brain cannot be simply transferred to the immature brain. Therefore, age-specific studies investigating ER stress modulators may help investigate ER stress-associated ROS pathways in the immature brain. New therapeutics such as mitochondrial site-specific ROS inhibitors that selectively inhibit superoxide (O2•-)/hydrogen peroxide (H2O2) production are currently being developed. Future Directions: Because ER stress and oxidative stress accentuate each other, a combinatorial therapy utilizing both antioxidants and ER stress inhibitors may prove to be more protective against perinatal brain injury. Moreover, multiple relevant targets need to be identified for targeting ROS before they are formed. The role of organelle-specific ROS in brain repair needs investigation. Antioxid. Redox Signal. 31, 643-663.
Collapse
Affiliation(s)
- Gagandeep Singh-Mallah
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Department of Medical Biochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Neuroscience and Physiology, Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
81
|
ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6175804. [PMID: 31467634 PMCID: PMC6701375 DOI: 10.1155/2019/6175804] [Citation(s) in RCA: 444] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/24/2019] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are by-products of normal cell activity. They are produced in many cellular compartments and play a major role in signaling pathways. Overproduction of ROS is associated with the development of various human diseases (including cancer, cardiovascular, neurodegenerative, and metabolic disorders), inflammation, and aging. Tumors continuously generate ROS at increased levels that have a dual role in their development. Oxidative stress can promote tumor initiation, progression, and resistance to therapy through DNA damage, leading to the accumulation of mutations and genome instability, as well as reprogramming cell metabolism and signaling. On the contrary, elevated ROS levels can induce tumor cell death. This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Collapse
|
82
|
Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int J Mol Sci 2019; 20:ijms20153673. [PMID: 31357514 PMCID: PMC6695606 DOI: 10.3390/ijms20153673] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Hydrogen peroxide (H2O2), a non-radical reactive oxygen species generated during many (patho)physiological conditions, is currently universally recognized as an important mediator of redox-regulated processes. Depending on its spatiotemporal accumulation profile, this molecule may act as a signaling messenger or cause oxidative damage. The focus of this review is to comprehensively evaluate the evidence that peroxisomes, organelles best known for their role in cellular lipid metabolism, also serve as hubs in the H2O2 signaling network. We first briefly introduce the basic concepts of how H2O2 can drive cellular signaling events. Next, we outline the peroxisomal enzyme systems involved in H2O2 metabolism in mammals and reflect on how this oxidant can permeate across the organellar membrane. In addition, we provide an up-to-date overview of molecular targets and biological processes that can be affected by changes in peroxisomal H2O2 metabolism. Where possible, emphasis is placed on the molecular mechanisms and factors involved. From the data presented, it is clear that there are still numerous gaps in our knowledge. Therefore, gaining more insight into how peroxisomes are integrated in the cellular H2O2 signaling network is of key importance to unravel the precise role of peroxisomal H2O2 production and scavenging in normal and pathological conditions.
Collapse
|
83
|
Pohl SÖG, Pervaiz S, Dharmarajan A, Agostino M. Gene expression analysis of heat-shock proteins and redox regulators reveals combinatorial prognostic markers in carcinomas of the gastrointestinal tract. Redox Biol 2019; 25:101060. [PMID: 30578123 PMCID: PMC6859565 DOI: 10.1016/j.redox.2018.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 11/25/2018] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a large family of ubiquitously expressed proteins with diverse functions, including protein assembly and folding/unfolding. These proteins have been associated with the progression of various gastrointestinal tumours. Dysregulation of cellular redox has also been associated with gastrointestinal carcinogenesis, however, a link between HSPs and dysregulation of cellular redox in carcinogenesis remains unclear. In this study, we analysed mRNA co-expression and methylation patterns, as well as performed survival analysis and gene set enrichment analysis, on gastrointestinal cancer data sets (oesophageal, stomach and colorectal carcinomas) to determine whether HSP activity and cellular redox dysregulation are linked. A widespread relationship between HSPs and cellular redox was identified, with specific combinatorial co-expression patterns demonstrated to significantly alter patient survival outcomes. This comprehensive analysis provides the foundation for future studies aimed at deciphering the mechanisms of cooperativity between HSPs and redox regulatory enzymes, which may be a target for future therapeutic intervention for gastrointestinal tumours.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Shazib Pervaiz
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Department of Physiology and Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore; National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Arun Dharmarajan
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Mark Agostino
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA, Australia; School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia; Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; Curtin Institute for Computation, Curtin University, Perth, WA 6102, Australia.
| |
Collapse
|
84
|
Zito E. Targeting ER stress/ER stress response in myopathies. Redox Biol 2019; 26:101232. [PMID: 31181458 PMCID: PMC6556854 DOI: 10.1016/j.redox.2019.101232] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
There is more skeletal muscle tissue in the body than any other tissue and, as it is the organ of the majority of metabolic activity, muscle defect can affect the health of the entire body. Endoplasmic reticulum (ER) stress due to defects in protein folding/degradation balance, altered calcium and lipid levels and alterations in ER-mitochondria contacts has recently been recognised as the pathogenic cause of many different myopathies. In addition, a maladaptive ER stress response triggered by ER stress and mediated by three ER stress sensors (PERK, IRE1 and ATF6) is involved in a failure to relieve muscle tissue from this stress. Targeting ER stress and the ER stress response pathway offers a broad range of opportunities for treating myopathies but, as the inhibition of the three ER stress sensors may not be safe because it could lead to unexpected effects; it therefore calls for careful analysis of the changes in downstream signal transduction in the different myopathies so these sub-pathways can be pharmacologically targeted. This review summarises the known inhibitors of the ER stress response and the successful results obtained using some of them in mouse models of muscle diseases caused by ER stress/ER stress response. ER stress and the ER stress response are pathogenic causes of myopathies. Pre-clinical models improve our understanding of the safest branch or sub-branch of the ER stress response to inhibit. The inhibitors of signalling downstream of the three ER stress sensors is the safest pharmacological option. Chemical chaperones are promising pharmacological means of treating myopathies.
Collapse
Affiliation(s)
- Ester Zito
- Dulbecco Telethon Institute at IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
85
|
SELENON (SEPN1) protects skeletal muscle from saturated fatty acid-induced ER stress and insulin resistance. Redox Biol 2019; 24:101176. [PMID: 30921636 PMCID: PMC6438913 DOI: 10.1016/j.redox.2019.101176] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to a congenital myopathy associated with insulin resistance (SEPN1-related myopathy). The exact cause of the insulin resistance in patients with SELENON loss of function is not known. Skeletal muscle is the main contributor to insulin-mediated glucose uptake, and a defect in this muscle-related mechanism triggers insulin resistance and glucose intolerance. We have studied the chain of events that connect the loss of SELENON with defects in insulin-mediated glucose uptake in muscle cells and the effects of this on muscle performance. Here, we show that saturated fatty acids are more lipotoxic in SELENON-devoid cells, and blunt the insulin-mediated glucose uptake of SELENON-devoid myotubes by increasing ER stress and mounting a maladaptive ER stress response. Furthermore, the hind limb skeletal muscles of SELENON KO mice fed a high-fat diet mirrors the features of saturated fatty acid-treated myotubes, and show signs of myopathy with a compromised force production. These findings suggest that the absence of SELENON together with a high-fat dietary regimen increases susceptibility to insulin resistance by triggering a chronic ER stress in skeletal muscle and muscle weakness. Importantly, our findings suggest that environmental cues eliciting ER stress in skeletal muscle (such as a high-fat diet) affect the pathological phenotype of SEPN1-related myopathy and can therefore contribute to the assessment of prognosis beyond simple genotype-phenotype correlations.
Collapse
|
86
|
Wang Z, Yin F, Xu J, Zhang T, Wang G, Mao M, Wang Z, Sun W, Han J, Yang M, Jiang Y, Hua Y, Cai Z. CYT997(Lexibulin) induces apoptosis and autophagy through the activation of mutually reinforced ER stress and ROS in osteosarcoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:44. [PMID: 30704503 PMCID: PMC6357486 DOI: 10.1186/s13046-019-1047-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/16/2019] [Indexed: 11/18/2022]
Abstract
Background Osteosarcoma (OS) is a common malignant cancer in children and adolescents and has a cure rate that has not improved in the last two decades. CYT997 (lexibulin) is a novel potent microtubule-targeting agent with various anticancer activities, such as proliferation inhibition, vascular disruption, and cell cycle arrest and apoptosis induction, in multiple cancers. However, the direct cytotoxic mechanisms of CYT997 have not yet been fully characterized. Methods We evaluated apoptosis and autophagy in human osteosarcomas after treatment with CYT997 and investigated the underlying mechanisms. To explore relationships, we used the reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC), PERK inhibitor GSK2606414, ERO1 inhibitor EN460 and mitochondrial targeted protection peptide elamipretide. BALB/c-nu mice were inoculated with 143B tumor cells to investigate the in vivo effect of CYT997. Results We explored the efficacy and mechanism of CYT997 in osteosarcoma (OS) in vitro and in vivo and demonstrated that CYT997 potently suppresses cell viability and induces apoptosis and autophagy. CYT997 triggered production of ROS and exerted lethal effects via endoplasmic reticulum (ER) stress in OS cells. NAC attenuated these effects. The PERK inhibitor GSK2606414, which can block the ER stress pathway, reduced ROS production and enhanced cell viability. Moreover, activation of ERO1 in the ER stress pathway was responsible for inducing ROS production. ROS produced by the mitochondrial pathway also aggravate ER stress. Protection of mitochondria can reduce apoptosis and autophagy. Finally, CYT997 prominently reduced tumor growth in vivo. Conclusions This study suggests that CYT997 induces apoptosis and autophagy in OS cells by triggering mutually enhanced ER stress and ROS and may thus be a promising agent against OS. Electronic supplementary material The online version of this article (10.1186/s13046-019-1047-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zongyi Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Fei Yin
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Jing Xu
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Tao Zhang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Ming Mao
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Zhuoying Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Wei Sun
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Jing Han
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Mengkai Yang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Yafei Jiang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China.
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Poster address: 100 Haining Road Shanghai, Shanghai, 20160, China.
| |
Collapse
|
87
|
Lismont C, Nordgren M, Brees C, Knoops B, Van Veldhoven PP, Fransen M. Peroxisomes as Modulators of Cellular Protein Thiol Oxidation: A New Model System. Antioxid Redox Signal 2019; 30:22-39. [PMID: 28594286 DOI: 10.1089/ars.2017.6997] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Peroxisomes are ubiquitous, single-membrane-bounded organelles that contain considerable amounts of enzymes involved in the production or breakdown of hydrogen peroxide (H2O2), a key signaling molecule in multiple biological processes and disease states. Despite this, the role of this organelle in cross-compartmental H2O2 signaling remains largely unclear, mainly because of the difficulty to modulate peroxisomal H2O2 production in a selective manner. This study aimed at establishing and validating a cellular model suitable to decipher the complex signaling processes associated with peroxisomal H2O2 release. RESULTS Here, we report the development of a human cell line that can be used to selectively generate H2O2 inside peroxisomes in a time- and dose-controlled manner. In addition, we provide evidence that peroxisome-derived H2O2 can oxidize redox-sensitive cysteine residues in multiple proteins within (e.g., peroxiredoxin-5 [PRDX5]) and outside (e.g., nuclear factor kappa B subunit 1 [NFKB1] and subunit RELA proto-oncogene [RELA], phosphatase and tensin homolog [PTEN], forkhead box O3 [FOXO3], and peroxin 5 [PEX5]) the peroxisomal compartment. Furthermore, we show that the extent of protein oxidation depends on the subcellular location of the target protein and is inversely correlated to catalase activity and cellular glutathione content. Finally, we demonstrate that excessive H2O2 production inside peroxisomes does not induce their selective degradation, at least not under the conditions examined. INNOVATION This study describes for the first time a powerful model system that can be used to examine the role of peroxisome-derived H2O2 in redox-regulated (patho)physiological processes, a research area in need of further investigation and innovative approaches. CONCLUSION Our results provide unambiguous evidence that peroxisomes can serve as regulatory hubs in thiol-based signaling networks.
Collapse
Affiliation(s)
- Celien Lismont
- 1 Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Marcus Nordgren
- 1 Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Chantal Brees
- 1 Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Bernard Knoops
- 2 Group of Animal Molecular and Cellular Biology, Institut des Sciences de la Vie (ISV), Université catholique de Louvain , Louvain-la-Neuve, Belgium
| | - Paul P Van Veldhoven
- 1 Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Marc Fransen
- 1 Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
88
|
Fransen M, Lismont C. Redox Signaling from and to Peroxisomes: Progress, Challenges, and Prospects. Antioxid Redox Signal 2019; 30:95-112. [PMID: 29433327 DOI: 10.1089/ars.2018.7515] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Peroxisomes are organelles that are best known for their role in cellular lipid and hydrogen peroxide (H2O2) metabolism. Emerging evidence suggests that these organelles serve as guardians and modulators of cellular redox balance, and that alterations in their redox metabolism may contribute to aging and the development of chronic diseases such as neurodegeneration, diabetes, and cancer. Recent Advances: H2O2 is an important signaling messenger that controls many cellular processes by modulating protein activity through cysteine oxidation. Somewhat surprisingly, the potential involvement of peroxisomes in H2O2-mediated signaling processes has been overlooked for a long time. However, recent advances in the development of live-cell approaches to monitor and modulate spatiotemporal fluxes in redox species at the subcellular level have opened up new avenues for research in redox biology and boosted interest in the concept of peroxisomes as redox signaling platforms. CRITICAL ISSUES This review first introduces the reader to what is known about the role of peroxisomes in cellular H2O2 production and clearance, with a focus on mammalian cells. Next, it briefly describes the benefits and drawbacks of current strategies used to investigate the complex interplay between peroxisome metabolism and cellular redox state. Furthermore, it integrates and critically evaluates literature dealing with the interrelationship between peroxisomal redox metabolism, cell signaling, and human disease. FUTURE DIRECTIONS As the precise molecular mechanisms underlying many of these associations are still poorly understood, a key focus for future research should be the identification of primary targets for peroxisome-derived H2O2.
Collapse
Affiliation(s)
- Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| | - Celien Lismont
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Cellular and Molecular Medicine, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
89
|
Hauck AK, Huang Y, Hertzel AV, Bernlohr DA. Adipose oxidative stress and protein carbonylation. J Biol Chem 2018; 294:1083-1088. [PMID: 30563836 DOI: 10.1074/jbc.r118.003214] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Increased oxidative stress and abundance of reactive oxygen species (ROS) are positively correlated with a variety of pathophysiologies, including cardiovascular disease, type 2 diabetes, Alzheimer's disease, and neuroinflammation. In adipose biology, diabetic obesity is correlated with increased ROS in an age- and depot-specific manner and is mechanistically linked to mitochondrial dysfunction, endoplasmic reticulum (ER) stress, potentiated lipolysis, and insulin resistance. The cellular quality control systems that homeostatically regulate oxidative stress in the lean state are down-regulated in obesity as a consequence of inflammatory cytokine pressure leading to the accumulation of oxidized biomolecules. New findings have linked protein, DNA, and lipid oxidation at the biochemical level, and the structures and potential functions of protein adducts such as carbonylation that accumulate in stressed cells have been characterized. The sum total of such regulation and biochemical changes results in alteration of cellular metabolism and function in the obese state relative to the lean state and underlies metabolic disease progression. In this review, we discuss the molecular mechanisms and events underlying these processes and their implications for human health and disease.
Collapse
Affiliation(s)
- Amy K Hauck
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Yimao Huang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455.
| |
Collapse
|
90
|
Angelos E, Brandizzi F. NADPH oxidase activity is required for ER stress survival in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1106-1120. [PMID: 30218537 PMCID: PMC6289879 DOI: 10.1111/tpj.14091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 05/13/2023]
Abstract
In all eukaryotes, the unfolded protein response (UPR) relieves endoplasmic reticulum (ER) stress, which is a potentially lethal condition caused by the accumulation of misfolded proteins in the ER. In mammalian and yeast cells, reactive oxygen species (ROS) generated during ER stress attenuate the UPR, negatively impacting cell survival. In plants, the relationship between the UPR and ROS is less clear. Although ROS develop during ER stress, the sources of ROS linked to ER stress responses and the physiological impact of ROS generation on the survival from proteotoxic stress are yet unknown. Here we show that in Arabidopsis thaliana the respiratory burst oxidase homologs, RBOHD and RBOHF, contribute to the production of ROS during ER stress. We also demonstrate that during ER stress RBOHD and RBOHF are necessary to properly mount the adaptive UPR and overcome temporary and chronic ER stress situations. These results ascribe a cytoprotective role to RBOH-generated ROS in the defense from proteotoxic stress in an essential organelle, and support a plant-specific feature of the UPR management among eukaryotes.
Collapse
Affiliation(s)
- Evan Angelos
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
91
|
O'Brien H, Kanemura S, Okumura M, Baskin RP, Bandyopadhyay PK, Olivera BM, Ellgaard L, Inaba K, Safavi-Hemami H. Ero1-Mediated Reoxidation of Protein Disulfide Isomerase Accelerates the Folding of Cone Snail Toxins. Int J Mol Sci 2018; 19:ijms19113418. [PMID: 30384459 PMCID: PMC6275033 DOI: 10.3390/ijms19113418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 01/09/2023] Open
Abstract
Disulfide-rich peptides are highly abundant in nature and their study has provided fascinating insight into protein folding, structure and function. Venomous cone snails belong to a group of organisms that express one of the largest sets of disulfide-rich peptides (conotoxins) found in nature. The diversity of structural scaffolds found for conotoxins suggests that specialized molecular adaptations have evolved to ensure their efficient folding and secretion. We recently showed that canonical protein disulfide isomerase (PDI) and a conotoxin-specific PDI (csPDI) are ubiquitously expressed in the venom gland of cone snails and play a major role in conotoxin folding. Here, we identify cone snail endoplasmic reticulum oxidoreductin-1 (Conus Ero1) and investigate its role in the oxidative folding of conotoxins through reoxidation of cone snail PDI and csPDI. We show that Conus Ero1 preferentially reoxidizes PDI over csPDI, suggesting that the reoxidation of csPDI may rely on an Ero1-independent molecular pathway. Despite the preferential reoxidation of PDI over csPDI, the combinatorial effect of Ero1 and csPDI provides higher folding yields than Ero1 and PDI. We further demonstrate that the highest in vitro folding rates of two model conotoxins are achieved when all three enzymes are present, indicating that these enzymes may act synergistically. Our findings provide new insight into the generation of one of the most diverse classes of disulfide-rich peptides and may improve current in vitro approaches for the production of venom peptides for pharmacological studies.
Collapse
Affiliation(s)
- Henrik O'Brien
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Shingo Kanemura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
| | - Masaki Okumura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
| | - Robert P Baskin
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, 2200 Copenhagen N., Denmark.
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan.
| | - Helena Safavi-Hemami
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
92
|
Pozzer D, Varone E, Chernorudskiy A, Schiarea S, Missiroli S, Giorgi C, Pinton P, Canato M, Germinario E, Nogara L, Blaauw B, Zito E. A maladaptive ER stress response triggers dysfunction in highly active muscles of mice with SELENON loss. Redox Biol 2018; 20:354-366. [PMID: 30391828 PMCID: PMC6223234 DOI: 10.1016/j.redox.2018.10.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022] Open
Abstract
Selenoprotein N (SELENON) is an endoplasmic reticulum (ER) protein whose loss of function leads to human SELENON-related myopathies. SelenoN knockout (KO) mouse limb muscles, however, are protected from the disease, and display no major alterations in muscle histology or contractile properties. Interestingly, we find that the highly active diaphragm muscle shows impaired force production, in line with the human phenotype. In addition, after repeated stimulation with a protocol which induces muscle fatigue, also hind limb muscles show altered relaxation times. Mechanistically, muscle SELENON loss alters activity-dependent calcium handling selectively impinging on the Ca2+ uptake of the sarcoplasmic reticulum and elicits an ER stress response, including the expression of the maladaptive CHOP-induced ERO1. In SELENON-devoid models, ERO1 shifts ER redox to a more oxidised poise, and further affects Ca2+ uptake. Importantly, CHOP ablation in SelenoN KO mice completely prevents diaphragm dysfunction, the prolonged limb muscle relaxation after fatigue, and restores Ca2+ uptake by attenuating the induction of ERO1. These findings suggest that SELENON is part of an ER stress-dependent antioxidant response and that the CHOP/ERO1 branch of the ER stress response is a novel pathogenic mechanism underlying SELENON-related myopathies.
Collapse
Affiliation(s)
- Diego Pozzer
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ersilia Varone
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alexander Chernorudskiy
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Silvia Schiarea
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sonia Missiroli
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, Ravenna, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy
| | - Bert Blaauw
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine, Padua, Italy.
| | - Ester Zito
- Dulbecco Telethon Institute at Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
93
|
Fujii J, Homma T, Kobayashi S, Seo HG. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease. World J Biol Chem 2018; 9:1-15. [PMID: 30364769 PMCID: PMC6198288 DOI: 10.4331/wjbc.v9.i1.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS) are produced during normal physiologic processes with the consumption of oxygen. While ROS play signaling roles, when they are produced in excess beyond normal antioxidative capacity this can cause pathogenic damage to cells. The majority of such oxidation occurs in polyunsaturated fatty acids and sulfhydryl group in proteins, resulting in lipid peroxidation and protein misfolding, respectively. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) is enhanced under conditions of oxidative stress and results in ER stress, which, together, leads to the malfunction of cellular homeostasis. Multiple types of defensive machinery are activated in unfolded protein response under ER stress to resolve this unfavorable situation. ER stress triggers the malfunction of protein secretion and is associated with a variety of pathogenic conditions including defective insulin secretion from pancreatic β-cells and accelerated lipid droplet formation in hepatocytes. Herein we use nonalcoholic fatty liver disease (NAFLD) as an illustration of such pathological liver conditions that result from ER stress in association with oxidative stress. Protecting the ER by eliminating excessive ROS via the administration of antioxidants or by enhancing lipid-metabolizing capacity via the activation of peroxisome proliferator-activated receptors represent promising therapeutics for NAFLD.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
94
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
95
|
Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol Aspects Med 2018; 63:59-69. [PMID: 30098327 DOI: 10.1016/j.mam.2018.08.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
The lung is a delicate organ with a large surface area that is continuously exposed to the external environment, and is therefore highly vulnerable to exogenous sources of oxidative stress. In addition, each of its approximately 40 cell types can also generate reactive oxygen species (ROS), as byproducts of cellular metabolism and in a more regulated manner by NOX enzymes with functions in host defense, immune regulation, and cell proliferation or differentiation. To effectively regulate the biological actions of exogenous and endogenous ROS, various enzymatic and non-enzymatic antioxidant defense systems are present in all lung cell types to provide adequate protection against their injurious effects and to allow for appropriate ROS-mediated biological signaling. Acute and chronic lung diseases are commonly thought to be associated with increased oxidative stress, evidenced by altered cellular or extracellular redox status, increased irreversible oxidative modifications in proteins or DNA, mitochondrial dysfunction, and altered expression or activity of NOX enzymes and antioxidant enzyme systems. However, supplementation strategies with generic antioxidants have been minimally successful in prevention or treatment of lung disease, most likely due to their inability to distinguish between harmful and beneficial actions of ROS. Recent studies have attempted to identify specific redox-based mechanisms that may mediate chronic lung disease, such as allergic asthma or pulmonary fibrosis, which provide opportunities for selective redox-based therapeutic strategies that may be useful in treatment of these diseases.
Collapse
|
96
|
Abstract
SIGNIFICANCE Hydrogen peroxide (H2O2) is a powerful effector of redox signaling. It is able to oxidize cysteine residues, metal ion centers, and lipids. Understanding H2O2-mediated signaling requires, to some extent, measurement of H2O2 level. Recent Advances: Chemically and genetically encoded fluorescent probes for the detection of H2O2 are currently the most sensitive and popular. Novel probes are constantly being developed, with the latest progress particular with boronates and genetically encoded probes. CRITICAL ISSUES All currently available probes display limitations in terms of sensitivity, local and temporal resolution, and specificity in the detection of low H2O2 concentrations. In this review, we discuss the power of fluorescent probes and the systems in which they have been successfully employed. Moreover, we recommend approaches for overcoming probe limitations and for the avoidance of artifacts. FUTURE DIRECTIONS Constant improvements will lead to the generation of probes that are not only more sensitive but also specifically tailored to individual cellular compartments. Antioxid. Redox Signal. 29, 585-602.
Collapse
Affiliation(s)
- Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University , Frankfurt am Main, Germany
| |
Collapse
|
97
|
Barna J, Csermely P, Vellai T. Roles of heat shock factor 1 beyond the heat shock response. Cell Mol Life Sci 2018; 75:2897-2916. [PMID: 29774376 PMCID: PMC11105406 DOI: 10.1007/s00018-018-2836-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
Abstract
Various stress factors leading to protein damage induce the activation of an evolutionarily conserved cell protective mechanism, the heat shock response (HSR), to maintain protein homeostasis in virtually all eukaryotic cells. Heat shock factor 1 (HSF1) plays a central role in the HSR. HSF1 was initially known as a transcription factor that upregulates genes encoding heat shock proteins (HSPs), also called molecular chaperones, which assist in refolding or degrading injured intracellular proteins. However, recent accumulating evidence indicates multiple additional functions for HSF1 beyond the activation of HSPs. Here, we present a nearly comprehensive list of non-HSP-related target genes of HSF1 identified so far. Through controlling these targets, HSF1 acts in diverse stress-induced cellular processes and molecular mechanisms, including the endoplasmic reticulum unfolded protein response and ubiquitin-proteasome system, multidrug resistance, autophagy, apoptosis, immune response, cell growth arrest, differentiation underlying developmental diapause, chromatin remodelling, cancer development, and ageing. Hence, HSF1 emerges as a major orchestrator of cellular stress response pathways.
Collapse
Affiliation(s)
- János Barna
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Péter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter Stny. 1/C, Budapest, 1117, Hungary.
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
98
|
Xiong J, Ding N, Gao T, Wang Y, Guo W, Zhang H, Ma X, Li F, Sun J, Yang X, Wu K, Zhang H, Jiang Y. Hypermethylation of endoplasmic reticulum disulfide oxidase 1α leads to trophoblast cell apoptosis through endoplasmic reticulum stress in preeclampsia. J Cell Biochem 2018; 119:8588-8599. [PMID: 30058081 DOI: 10.1002/jcb.27101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/27/2018] [Indexed: 12/16/2022]
Abstract
Abnormal trophoblast cell apoptosis is implicated in the pathogenesis of pregnancy-related disorders including preeclampsia (PE), and endoplasmic reticulum (ER) stress has been considered as a novel pathway in the regulation of cell apoptosis. In this study, we observed that both apoptosis and ER stress are triggered in trophoblast cells under hypoxia as well as in the placenta of PE rats. Quantitative polymerase chain reaction and Western blot analysis showed that the expression of endoplasmic reticulum disulfide oxidase 1α (ERO1α) is suppressed in trophoblast cells under hypoxia due to the hypermethylation of the ERO1α promoter region, and the inhibition of ERO1α expression plays an important role in ER stress and trophoblast cell apoptosis. Furthermore, we found that DNA methyltransferase 1 (DNMT1) is a key methyltransferase for DNA methylation in the regulation of ERO1α expression, and the binding level of DNMT1 to the ERO1α promoter is markedly elevated under hypoxia although DNMT1 expression is inhibited by hypoxia, suggesting that the binding level of DNMT1 to the ERO1α promoter region rather than the DNMT1 expression level contributes to the hypermethylation of ERO1α. Taken together, these results demonstrate that the hypermethylation of ERO1α mediated by increased binding of DNMT1 to the ERO1α promoter leads to trophoblast cell apoptosis through ER stress in the placenta of PE rats, which shed insight into the etiology of PE and might present a validated therapeutic target for the treatment of PE.
Collapse
Affiliation(s)
- Jiantuan Xiong
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ning Ding
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tingting Gao
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yanhua Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wei Guo
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hui Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoli Ma
- Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fan Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Xiaoling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Kai Wu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huiping Zhang
- Department of Prenatal Diagnosis Center, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yideng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, China.,Ningxia Key Laboratory of Vascular Injury and Repair Research, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
99
|
Caillard A, Sadoune M, Cescau A, Meddour M, Gandon M, Polidano E, Delcayre C, Da Silva K, Manivet P, Gomez AM, Cohen-Solal A, Vodovar N, Li Z, Mebazaa A, Samuel JL. QSOX1, a novel actor of cardiac protection upon acute stress in mice. J Mol Cell Cardiol 2018; 119:75-86. [DOI: 10.1016/j.yjmcc.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/07/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
|
100
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|