51
|
Bhuria V, Baldauf CK, Schraven B, Fischer T. Thromboinflammation in Myeloproliferative Neoplasms (MPN)-A Puzzle Still to Be Solved. Int J Mol Sci 2022. [PMID: 35328626 DOI: 10.3390/ijms23063206.pmid:35328626;pmcid:pmc8954909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs), a group of malignant hematological disorders, occur as a consequence of somatic mutations in the hematopoietic stem cell compartment and show excessive accumulation of mature myeloid cells in the blood. A major cause of morbidity and mortality in these patients is the marked prothrombotic state leading to venous and arterial thrombosis, including myocardial infarction (MI), deep vein thrombosis (DVT), and strokes. Additionally, many MPN patients suffer from inflammation-mediated constitutional symptoms, such as fever, night sweats, fatigue, and cachexia. The chronic inflammatory syndrome in MPNs is associated with the up-regulation of various inflammatory cytokines in patients and is involved in the formation of the so-called MPN thromboinflammation. JAK2-V617F, the most prevalent mutation in MPNs, has been shown to activate a number of integrins on mature myeloid cells, including granulocytes and erythrocytes, which increase adhesion and drive venous thrombosis in murine knock-in/out models. This review aims to shed light on the current understanding of thromboinflammation, involvement of neutrophils in the prothrombotic state, plausible molecular mechanisms triggering the process of thrombosis, and potential novel therapeutic targets for developing effective strategies to reduce the MPN disease burden.
Collapse
Affiliation(s)
- Vikas Bhuria
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Conny K Baldauf
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas Fischer
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Health-Campus Immunology, Infectiology, and Inflammation, Medical Center, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention-ChaMP, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
52
|
Stojkov D, Gigon L, Peng S, Lukowski R, Ruth P, Karaulov A, Rizvanov A, Barlev NA, Yousefi S, Simon HU. Physiological and Pathophysiological Roles of Metabolic Pathways for NET Formation and Other Neutrophil Functions. Front Immunol 2022; 13:826515. [PMID: 35251008 PMCID: PMC8889909 DOI: 10.3389/fimmu.2022.826515] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Neutrophils are the most numerous cells in the leukocyte population and essential for innate immunity. To limit their effector functions, neutrophils are able to modulate glycolysis and other cellular metabolic pathways. These metabolic pathways are essential not only for energy usage, but also for specialized effector actions, such as the production of reactive oxygen species (ROS), chemotaxis, phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs). It has been demonstrated that activated viable neutrophils can produce NETs, which consists of a DNA scaffold able to bind granule proteins and microorganisms. The formation of NETs requires the availability of increased amounts of adenosine triphosphate (ATP) as it is an active cellular and therefore energy-dependent process. In this article, we discuss the glycolytic and other metabolic routes in association with neutrophil functions focusing on their role for building up NETs in the extracellular space. A better understanding of the requirements of metabolic pathways for neutrophil functions may lead to the discovery of molecular targets suitable to develop novel anti-infectious and/or anti-inflammatory drugs.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lea Gigon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shuang Peng
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.,Regulation of Cell Signaling Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
53
|
Lorey MB, Öörni K, Kovanen PT. Modified Lipoproteins Induce Arterial Wall Inflammation During Atherogenesis. Front Cardiovasc Med 2022; 9:841545. [PMID: 35310965 PMCID: PMC8927694 DOI: 10.3389/fcvm.2022.841545] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 12/15/2022] Open
Abstract
Circulating apolipoprotein B-containing lipoproteins, notably the low-density lipoproteins, enter the inner layer of the arterial wall, the intima, where a fraction of them is retained and modified by proteases, lipases, and oxidizing agents and enzymes. The modified lipoproteins and various modification products, such as fatty acids, ceramides, lysophospholipids, and oxidized lipids induce inflammatory reactions in the macrophages and the covering endothelial cells, initiating an increased leukocyte diapedesis. Lipolysis of the lipoproteins also induces the formation of cholesterol crystals with strong proinflammatory properties. Modified and aggregated lipoproteins, cholesterol crystals, and lipoproteins isolated from human atherosclerotic lesions, all can activate macrophages and thereby induce the secretion of proinflammatory cytokines, chemokines, and enzymes. The extent of lipoprotein retention, modification, and aggregation have been shown to depend largely on differences in the composition of the circulating lipoprotein particles. These properties can be modified by pharmacological means, and thereby provide opportunities for clinical interventions regarding the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Martina B. Lorey
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
- Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- *Correspondence: Katariina Öörni
| | - Petri T. Kovanen
- Atherosclerosis Research Laboratory, Wihuri Research Institute, Helsinki, Finland
| |
Collapse
|
54
|
Brandau A, Ibrahim N, Klopf J, Hayden H, Ozsvar-Kozma M, Afonyushkin T, Bleichert S, Fuchs L, Watzinger V, Nairz V, Manville E, Kessler V, Stangl H, Eilenberg W, Neumayer C, Brostjan C. Association of Lipoproteins with Neutrophil Extracellular Traps in Patients with Abdominal Aortic Aneurysm. Biomedicines 2022; 10:biomedicines10020217. [PMID: 35203427 PMCID: PMC8869298 DOI: 10.3390/biomedicines10020217] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are DNA–protein structures released by neutrophils in response to various stimuli, including oxidized, low-density lipoprotein (oxLDL). Accumulating evidence suggests a role for NETs in the pathogenesis of abdominal aortic aneurysm (AAA). In this study, we investigated the potential association of lipoprotein particles and NETs in AAA in comparison to non-AAA control groups. The concentrations of neutrophil myeloperoxidase (MPO), the NET parameters citrullinated histone H3 (citH3) and circulating cell-free DNA (cfDNA), as well as of blood lipids were determined in plasma or serum of patients with AAA (n = 40), peripheral artery occlusive disease (PAD; n = 40) and healthy donors (n = 29). A sandwich ELISA detecting oxidized phosphatidylcholine in association with apolipoprotein B-100 (oxPL/apoB) was applied to measure oxidized phospholipids in circulation. The effect of lipoparticles on NET formation was tested using a DNA release assay with isolated human neutrophils. Plasma MPO, citH3 and cfDNA levels were significantly increased in AAA patients in comparison to healthy donors and PAD patients. Plasma concentrations of citH3 positively correlated with serum oxPL/apoB in AAA patients. In functional in vitro assays, the addition of oxLDL induced NET formation in pre-stimulated neutrophils. In conclusion, our data suggest a promoting role of oxLDL on NET formation in AAA patients.
Collapse
Affiliation(s)
- Annika Brandau
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Nahla Ibrahim
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Johannes Klopf
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Hubert Hayden
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Maria Ozsvar-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (M.O.-K.); (T.A.)
| | - Taras Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (M.O.-K.); (T.A.)
| | - Sonja Bleichert
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Lukas Fuchs
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Viktoria Watzinger
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Verena Nairz
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Emely Manville
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Veronika Kessler
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Herbert Stangl
- Center for Pathobiochemistry and Genetics, Department of Medical Chemistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Wolf Eilenberg
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
| | - Christine Brostjan
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (A.B.); (N.I.); (J.K.); (H.H.); (S.B.); (L.F.); (V.W.); (V.N.); (E.M.); (V.K.); (W.E.); (C.N.)
- Correspondence: ; Tel.: +43-1-40400-73514
| |
Collapse
|
55
|
Dou H, Kotini A, Liu W, Fidler T, Endo-Umeda K, Sun X, Olszewska M, Xiao T, Abramowicz S, Yalcinkaya M, Hardaway B, Tsimikas S, Que X, Bick A, Emdin C, Natarajan P, Papapetrou EP, Witztum JL, Wang N, Tall AR. Oxidized Phospholipids Promote NETosis and Arterial Thrombosis in LNK(SH2B3) Deficiency. Circulation 2021; 144:1940-1954. [PMID: 34846914 PMCID: PMC8663540 DOI: 10.1161/circulationaha.121.056414] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supplemental Digital Content is available in the text. Background: LNK/SH2B3 inhibits Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling by hematopoietic cytokine receptors. Genome-wide association studies have shown association of a common single nucleotide polymorphism in LNK (R262W, T allele) with neutrophilia, thrombocytosis, and coronary artery disease. We have shown that LNK(TT) reduces LNK function and that LNK-deficient mice display prominent platelet–neutrophil aggregates, accelerated atherosclerosis, and thrombosis. Platelet–neutrophil interactions can promote neutrophil extracellular trap (NET) formation. The goals of this study were to assess the role of NETs in atherosclerosis and thrombosis in mice with hematopoietic Lnk deficiency. Methods: We bred mice with combined deficiency of Lnk and the NETosis-essential enzyme PAD4 (peptidyl arginine deiminase 4) and transplanted their bone marrow into Ldlr–/– mice. We evaluated the role of LNK in atherothrombosis in humans and mice bearing a gain of function variant in JAK2 (JAK2V617F). Results: Lnk-deficient mice displayed accelerated carotid artery thrombosis with prominent NETosis that was completely reversed by PAD4 deficiency. Thrombin-activated Lnk–/– platelets promoted increased NETosis when incubated with Lnk–/– neutrophils compared with wild-type platelets or wild-type neutrophils. This involved increased surface exposure and release of oxidized phospholipids (OxPL) from Lnk–/– platelets, as well as increased priming and response of Lnk–/– neutrophils to OxPL. To counteract the effects of OxPL, we introduced a transgene expressing the single-chain variable fragment of E06 (E06-scFv). E06-scFv reversed accelerated NETosis, atherosclerosis, and thrombosis in Lnk–/– mice. We also showed increased NETosis when human induced pluripotent stem cell–derived LNK(TT) neutrophils were incubated with LNK(TT) platelet/megakaryocytes, but not in isogenic LNK(CC) controls, confirming human relevance. Using data from the UK Biobank, we found that individuals with the JAK2VF mutation only showed increased risk of coronary artery disease when also carrying the LNK R262W allele. Mice with hematopoietic Lnk+/– and Jak2VF clonal hematopoiesis showed accelerated arterial thrombosis but not atherosclerosis compared with Jak2VFLnk+/+ controls. Conclusions: Hematopoietic Lnk deficiency promotes NETosis and arterial thrombosis in an OxPL-dependent fashion. LNK(R262W) reduces LNK function in human platelets and neutrophils, promoting NETosis, and increases coronary artery disease risk in humans carrying Jak2VF mutations. Therapies targeting OxPL may be beneficial for coronary artery disease in genetically defined human populations.
Collapse
Affiliation(s)
- Huijuan Dou
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Andriana Kotini
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (A.K., M.O., E.P.P.)
| | - Wenli Liu
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Trevor Fidler
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Kaori Endo-Umeda
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.).,Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan (K.E.-U.)
| | - Xiaoli Sun
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Malgorzata Olszewska
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (A.K., M.O., E.P.P.)
| | - Tong Xiao
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Sandra Abramowicz
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Mustafa Yalcinkaya
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Brian Hardaway
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Xuchu Que
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Alexander Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (A.B.)
| | - Conor Emdin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (C.E., P.N.).,Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (C.E., P.N.).,Department of Medicine, Harvard Medical School, Boston, MA (C.E., P.N.)
| | - Pradeep Natarajan
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (C.E., P.N.).,Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, MA (C.E., P.N.).,Department of Medicine, Harvard Medical School, Boston, MA (C.E., P.N.)
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York (A.K., M.O., E.P.P.)
| | - Joseph L Witztum
- Department of Medicine, University of California, San Diego (X.S., S.T., X.Q., J.L.W.)
| | - Nan Wang
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| | - Alan R Tall
- Molecular Medicine, Columbia University Medical Center, New York (H.D., W.L., T.F., K.E.-U., T.X., S.A., M.Y., B.H., N.W., A.R.T.)
| |
Collapse
|
56
|
Deep Sequencing of the Rat MCAO Cortexes Reveals Crucial circRNAs Involved in Early Stroke Events and Their Regulatory Networks. Neural Plast 2021; 2021:9942537. [PMID: 34868302 PMCID: PMC8635952 DOI: 10.1155/2021/9942537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/22/2021] [Accepted: 11/01/2021] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) are highly enriched in the central nervous system and significantly involved in a range of brain-related physiological and pathological processes. Ischemic stroke is a complex disorder caused by multiple factors; however, whether brain-derived circRNAs participate in the complex regulatory networks involved in stroke pathogenesis remains unknown. Here, we successfully constructed a cerebral ischemia-injury model of middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. Preliminary qualitative and quantitative analyses of poststroke cortical circRNAs were performed through deep sequencing, and RT-PCR and qRT-PCR were used for validation. Of the 24,858 circRNAs expressed in the rat cerebral cortex, 294 circRNAs were differentially expressed in the ipsilateral cerebral cortex between the MCAO and sham rat groups. Cluster, GO, and KEGG analyses showed enrichments of these circRNAs and their host genes in numerous biological processes and pathways closely related to stroke. We selected 106 of the 294 circRNAs and constructed a circRNA-miRNA-mRNA interaction network comprising 577 sponge miRNAs and 696 target mRNAs. In total, 15 key potential circRNAs were predicted to be involved in the posttranscriptional regulation of a series of downstream target genes, which are widely implicated in poststroke processes, such as oxidative stress, apoptosis, inflammatory response, and nerve regeneration, through the competing endogenous RNA mechanism. Thus, circRNAs appear to be involved in multilevel actions that regulate the vast network of multiple mechanisms and events that occur after a stroke. These results provide novel insights into the complex pathophysiological mechanisms of stroke.
Collapse
|
57
|
Chen T, Li Y, Sun R, Hu H, Liu Y, Herrmann M, Zhao Y, Muñoz LE. Receptor-Mediated NETosis on Neutrophils. Front Immunol 2021; 12:775267. [PMID: 34804066 PMCID: PMC8600110 DOI: 10.3389/fimmu.2021.775267] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/19/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophil extracellular traps (NETs), a web-like structures containing chromatin, have a significant role in assisting the capture and killing of microorganisms by neutrophils during infection. The specific engagement of cell-surface receptors by extracellular signaling molecules activates diverse intracellular signaling cascades and regulates neutrophil effector functions, including phagocytosis, reactive oxygen species release, degranulation, and NET formation. However, overproduction of NETs is closely related to the occurrence of inflammation, autoimmune disorders, non-canonical thrombosis and tumor metastasis. Therefore, it is necessary to understand neutrophil activation signals and the subsequent formation of NETs, as well as the related immune regulation. In this review, we provide an overview of the immunoreceptor-mediated regulation of NETosis. The pathways involved in the release of NETs during infection or stimulation by noninfectious substances are discussed in detail. The mechanisms by which neutrophils undergo NETosis help to refine our views on the roles of NETs in immune protection and autoimmune diseases, providing a theoretical basis for research on the immune regulation of NETs.
Collapse
Affiliation(s)
- Tao Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Sun
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Hu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China.,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Luis E Muñoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
58
|
Conforti A, Wahlers T, Paunel-Görgülü A. Neutrophil extracellular traps modulate inflammatory markers and uptake of oxidized LDL by human and murine macrophages. PLoS One 2021; 16:e0259894. [PMID: 34797846 PMCID: PMC8604363 DOI: 10.1371/journal.pone.0259894] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures, which are released upon neutrophil activation. It has previously been demonstrated that NETs are present in atherosclerotic lesions of both humans and animal models thus playing a decisive role in atherosclerosis. Besides, macrophages have a crucial role in disease progression, whereby classically activated M1 macrophages sustain inflammation and alternatively activated M2 macrophages display anti-inflammatory effects. Although NETs and macrophages were found to colocalize in atherosclerotic lesions, the impact of NETs on macrophage function is not fully understood. In the present study, we aimed to investigate the effect of NETs on human and murine macrophages in respect to the expression of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and uptake of oxidized LDL (oxLDL) in vitro. Human THP-1 and murine bone marrow-derived macrophages were cultured under M1 (LPS + IFN-γ)- and M2a (IL-4)-polarizing culture conditions and treated with NETs. To mimic intraplaque regions, cells were additionally cultured under hypoxic conditions. NETs significantly increased the expression of IL-1β, TNF-α and IL-6 in THP-M1 macrophages under normoxia but suppressed their expression in murine M1 macrophages under hypoxic conditions. Notably, NETs increased the number of oxLDL-positive M1 and M2 human and murine macrophages under normoxia, but did not influence formation of murine foam cells under hypoxia. However, oxLDL uptake did not strongly correlate with the expression of the LDL receptor CD36. Besides, upregulated MMP-9 expression and secretion by macrophages was detected in the presence of NETs. Again, hypoxic culture conditions dampened NETs effects. These results suggest that NETs may favor foam cell formation and plaque vulnerability, but exert opposite effects in respect to the inflammatory response of human and murine M1 macrophages. Moreover, effects of NETs on macrophages’ phenotype are altered under hypoxia.
Collapse
Affiliation(s)
- Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
59
|
Sollberger G. Approaching Neutrophil Pyroptosis. J Mol Biol 2021; 434:167335. [PMID: 34757055 DOI: 10.1016/j.jmb.2021.167335] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/21/2023]
Abstract
All cells must die at some point, and the dogma is that they do it either silently via apoptosis or via pro-inflammatory, lytic forms of death. Amongst these lytic cell death pathways, pyroptosis is one of the best characterized. Pyroptosis depends on inflammatory caspases which activate members of the gasdermin family of proteins, and it is associated with the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Pyroptosis is an essential component of innate immunity, it initiates and amplifies inflammation and it removes the replication niche for intracellular pathogens. Most of the literature on pyroptosis focuses on monocytes and macrophages. However, the most abundant phagocytes in humans are neutrophils. This review addresses whether neutrophils undergo pyroptosis and the underlying mechanisms. Furthermore, I discuss how and why neutrophils might be able to resist pyroptosis.
Collapse
Affiliation(s)
- Gabriel Sollberger
- University of Dundee, School of Life Sciences, Division of Cell Signalling and Immunology, Dow Street, DD1 5EH Dundee, UK; Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
60
|
Wang Y, Wu J, Zhu J, Ding C, Xu W, Hao H, Zhang J, Wang G, Cao L. Ginsenosides regulation of lysophosphatidylcholine profiles underlies the mechanism of Shengmai Yin in attenuating atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2021; 277:114223. [PMID: 34044080 DOI: 10.1016/j.jep.2021.114223] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) preparation, Shengmai Yin (SMY), is widely applied in cardiovascular disease treatments. However, the pharmacological mechanism of its therapeutic effects has not been fully clarified. AIM OF THIS STUDY This study aimed to clearly define the efficacy and underlying mechanism of SMY and its active components in protecting against atherosclerosis. MATERIALS AND METHODS The pharmacological effects of SMY and its components were evaluated upon a mouse hypercholesteremia model induced by a high cholesterol diet (HCD) for 12 weeks and Apoe-/- mice, a mouse atherosclerosis model. Pathological indicators including serum cholesterol levels, cytokines and histological changes in aortic root plaques were assessed. Untargeted metabolomic, untargeted lipidomic and targeted lipidomic changing profiles were investigated to clarify pharmacological mechanisms. RESULTS SMY and red ginseng crude extracts (GE) significantly decreased the serum cholesterol levels in hypercholesteremia mice and reduced the aortic root plaque areas and exerted antiatherogenic efficacy in Apoe-/- mice. Moreover, total red ginseng saponin extracts (TGS) showed the most apparent improvement on maintaining lipid homeostasis, representing the effects of red ginseng in SMY on atherosclerosis treatment. Mechanically, TGS inhibited serum secreted phospholipase A2 (sPLA2) activity and lowered the serum levels of lysophosphatidylcholine (lysoPC), which is a risk factor for atherosclerosis. CONCLUSIONS Our findings revealed that ginsenosides from SMY exerted therapeutic effects on atherosclerosis by maintaining lipid homeostasis including cholesterol and lysoPCs.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Jiawei Wu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Jiaying Zhu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Chujie Ding
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Wanfeng Xu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Jun Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| | - Lijuan Cao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
61
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
62
|
Mozzini C, Pagani M. Cardiovascular Diseases: Consider Netosis. Curr Probl Cardiol 2021; 47:100929. [PMID: 34315622 DOI: 10.1016/j.cpcardiol.2021.100929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/21/2021] [Indexed: 01/18/2023]
Abstract
Neutrophil extracellular traps (NETs) are net-like chromatin fibers that are released from dying neutrophils during infections. NETs are a sort of scaffold, ideal to retain microbes. The main function of NETs is the trapping and killing pathogens, as such as bacteria, fungi, viruses (including SARS-CoV-2) and protozoa. The death of neutrophils via NETs formation is called "NETosis." Nevertheless, recent studies suggest that NETosis is involved in several diseases, other than infections. Very recently, it has been shown that NETs formation contributes to venous thromboembolism but also to atherosclerosis progression, creating a link between venous and arterial thrombosis. The presence of NETs in the luminal portion of human atherosclerotic vessels and coronary specimens obtained from patients after acute myocardial infarction has been detected. This review provides evidence of the most important updates about the role of NETs in myocardial infarction, in heart failure and in the process of atherosclerosis itself. The prognostic significance of NETs-related markers in cardiovascular diseases will be discussed, in order to assess targeted therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy
| |
Collapse
|
63
|
Xie L, Ma Y, Opsomer G, Pascottini OB, Guan Y, Dong Q. Neutrophil extracellular traps in cattle health and disease. Res Vet Sci 2021; 139:4-10. [PMID: 34217982 DOI: 10.1016/j.rvsc.2021.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022]
Abstract
Neutrophils largely contribute to the first line of defense against the invasion of pathogens. They kill pathogens basically by the following mechanisms: phagocytosis and proteolytic degradation, the release of enzymes with bactericidal activities, and the production of fibers to entrap pathogens, also known as neutrophil extracellular traps (NETs). NETs capture pathogens as a mechanism of immune protection and have been studied in-depth in various fields of human medicine. However, research about NETs in cattle is relatively scarce. The present article reviews the generation mechanisms, structural composition, signal pathways, advantages (and disadvantages) of NETs, and summarizes the latest findings of NETs in cattle health and disease.
Collapse
Affiliation(s)
- Lei Xie
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yixiong Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yandong Guan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
64
|
Elumalai S, Karunakaran U, Moon JS, Won KC. NADPH Oxidase (NOX) Targeting in Diabetes: A Special Emphasis on Pancreatic β-Cell Dysfunction. Cells 2021; 10:cells10071573. [PMID: 34206537 PMCID: PMC8307876 DOI: 10.3390/cells10071573] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
In type 2 diabetes, metabolic stress has a negative impact on pancreatic β-cell function and survival (T2D). Although the pathogenesis of metabolic stress is complex, an imbalance in redox homeostasis causes abnormal tissue damage and β-cell death due to low endogenous antioxidant expression levels in β-cells. Under diabetogenic conditions, the susceptibility of β-cells to oxidative damage by NADPH oxidase has been related to contributing to β-cell dysfunction. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions by NADPH oxidase, as well as the therapeutic benefits of NOX inhibitors, which may provide clues for understanding the pathomechanisms and developing strategies aimed at the treatment or prevention of metabolic stress associated with β-cell failure.
Collapse
Affiliation(s)
- Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
| | - Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
- Department of Internal Medicine, Yeungnam Universtiy College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.W.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (S.E.); (U.K.)
- Department of Internal Medicine, Yeungnam Universtiy College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.W.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
65
|
Mas-Bargues C, Escrivá C, Dromant M, Borrás C, Viña J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch Biochem Biophys 2021; 709:108941. [PMID: 34097903 DOI: 10.1016/j.abb.2021.108941] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/12/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Free radicals and oxidants are involved in physiological signaling pathways, although an imbalance between pro-oxidant and anti-oxidant systems in favor of the former leads to major biomolecular damage. This is the so-called oxidative stress, a complex process that affects us all and is responsible for the development of many diseases. Lipids are very sensitive to oxidant attack and to-date, malondialdehyde (MDA), 4-hydroxy-2-nonenal (4-HNE) and F2-isoprostane are the main biomarkers for lipid peroxidation assessment. They all derive from polyunsaturated fatty acids (PUFAs) either by enzyme-catalyzed reactions (physiological) or by non-enzyme reactions (pathological). The profile of PUFAs present in the tissue will determine the proportion of each biomarker. In this review we aim to discuss the proper method for MDA determination using HPLC. We also offer reference MDA values in humans in physiological and pathological conditions.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - Consuelo Escrivá
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES-ISCIII, INCLIVA, 46010, Valencia, Spain.
| |
Collapse
|
66
|
Zhao H, He Y. The Inhibitory Effect of Lysophosphatidylcholine on Proangiogenesis of Human CD34 + Cells Derived Endothelial Progenitor Cells. Front Mol Biosci 2021; 8:682367. [PMID: 34179086 PMCID: PMC8223510 DOI: 10.3389/fmolb.2021.682367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence reveals that lysophosphatidylcholine (LPC) is closely related to endothelial dysfunction. The present study aimed to investigate the mechanism of LPC in inhibiting the proangiogenesis and vascular inflammation of human endothelial progenitor cells (EPCs) derived from CD34+ cells. The early EPCs were derived from CD34+ hematopoietic stem cells whose purity was identified using flow cytometry analysis. The surface markers (CD34, KDR, CD31; VE-cadherin, vWF, eNOS) of EPCs were examined by flow cytometry analysis and immunofluorescence. RT-qPCR was used to detect the mRNA expression of inflammatory cytokines (CCL2, IL-8, CCL4) and genes associated with angiogenesis (VEGF, ANG-1, ANG-2) in early EPCs after treatment of LPC (10 μg/ml) or phosphatidylcholine (PC, 10 μg/ml, control). The angiogenesis of human umbilical vein endothelial cells (HUVECs) incubated with the supernatants of early EPCs was detected by a tube formation assay. The mRNA and protein levels of key factors on the PKC pathway (phosphorylated PKC, TGF-β1) were measured by RT-qPCR and western blot. The localization of PKC-β1 in EPCs was determined by immunofluorescence staining. We found that LPC suppressed the expression of CCL2, CCL4, ANG-1, ANG-2, promoted IL-8 expression and had no significant effects on VEGF expression in EPCs. EPCs promoted the angiogenesis of HUVECs, which was significantly inhibited by LPC treatment. Moreover, LPC was demonstrated to promote the activation of the PKC signaling pathway in EPCs. In conclusion, LPC inhibits proangiogenesis of human endothelial progenitor cells derived from CD34+ hematopoietic stem cells.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Pain, The First Hospital of Jilin University, Changchun, China
| | - Yanhui He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
67
|
Cholesterol metabolism: a new molecular switch to control inflammation. Clin Sci (Lond) 2021; 135:1389-1408. [PMID: 34086048 PMCID: PMC8187928 DOI: 10.1042/cs20201394] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/30/2022]
Abstract
The immune system protects the body against harm by inducing inflammation. During the immune response, cells of the immune system get activated, divided and differentiated in order to eliminate the danger signal. This process relies on the metabolic reprogramming of both catabolic and anabolic pathways not only to produce energy in the form of ATP but also to generate metabolites that exert key functions in controlling the response. Equally important to mounting an appropriate effector response is the process of immune resolution, as uncontrolled inflammation is implicated in the pathogenesis of many human diseases, including allergy, chronic inflammation and cancer. In this review, we aim to introduce the reader to the field of cholesterol immunometabolism and discuss how both metabolites arising from the pathway and cholesterol homeostasis are able to impact innate and adaptive immune cells, staging cholesterol homeostasis at the centre of an adequate immune response. We also review evidence that demonstrates the clear impact that cholesterol metabolism has in both the induction and the resolution of the inflammatory response. Finally, we propose that emerging data in this field not only increase our understanding of immunometabolism but also provide new tools for monitoring and intervening in human diseases, where controlling and/or modifying inflammation is desirable.
Collapse
|
68
|
Morales-Primo AU, Becker I, Zamora-Chimal J. Neutrophil extracellular trap-associated molecules: a review on their immunophysiological and inflammatory roles. Int Rev Immunol 2021; 41:253-274. [PMID: 34036897 DOI: 10.1080/08830185.2021.1921174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neutrophil extracellular traps (NETs) are a defense mechanism against pathogens. They are composed of DNA and various proteins and have the ability to hinder microbial spreading and survival. However, NETs are not only related to infections but also participate in sterile inflammatory events. In addition to DNA, NETs contain histones, serine proteases, cytoskeletal proteins and antimicrobial peptides, all of which have immunomodulatory properties that can augment or decrease the inflammatory response. Extracellular localization of these molecules alerts the immune system of cellular damage, which is triggered by recognition of damage-associated molecular patterns (DAMPs) through specific pattern recognition receptors. However, not all of these molecules are DAMPs and may have other immunophysiological properties in the extracellular space. The release of NETs can lead to production of pro-inflammatory cytokines (due to TLR2/4/9 and inflammasome activation), the destruction of the extracellular matrix, activation of serine proteases and of matrix metallopeptidases (MMPs), modulation of cellular proliferation, induction of cellular migration and adhesion, promotion of thrombogenesis and angiogenesis and disruption of epithelial and endothelial permeability. Understanding the dynamics of NET-associated molecules, either individually or synergically, will help to unravel their role in inflammatory events and open novel perspectives for potential therapeutic targets. We here review molecules contained within NETS and their immunophysiological roles.
Collapse
Affiliation(s)
- Abraham U Morales-Primo
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Ingeborg Becker
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Laboratory of Immunoparasitology, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Hospital General de México, Mexico City, Mexico
| |
Collapse
|
69
|
Zheng Y, Zhu Y, Liu X, Zheng H, Yang Y, Lu Y, Zhou H, Zheng J, Dong Z. The screening of albumin as a key serum component in preventing release of neutrophil extracellular traps by selectively inhibiting mitochondrial ROS generation. Can J Physiol Pharmacol 2021; 99:427-438. [PMID: 32799676 DOI: 10.1139/cjpp-2019-0670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neutrophil extracellular traps (NETs) are extracellular DNA webs released from neutrophils to mediate the host antimicrobial defense. As NETs could also induce thrombosis and cause organ injury, their release should be strictly controlled; however, the intrinsic mechanisms that prevent unfavorable NETs are not well understood. Herein, an accidental finding of NET release from human peripheral neutrophils was first described in a serum-free culture, which was later determined to be a conserved NET prevention effect of serum. In contrast to canonical NETs induced by phorbol-12-myristate-13-acetate (PMA), NET formation by serum-free culture was rapid and without prevalent NETosis. Next, albumin was screened out as a key serum component that mediated the suppression of NETs. Moreover, NETs induced upon serum or albumin deficiency were independent of the canonical pathway that involves NADPH oxidase 2 (NOX2) activation and cytosol reactive oxygen species (ROS) production. Instead, the generation of mitochondrial ROS (mtROS) was upregulated to promote NET release. Albumin exhibited mtROS scavenging activity and thus inhibited NETs. Serum-free culture also induced the release of NET-bound oxidized mtDNA, which stimulated interferon-β (IFN-β) production. Overall, our research provides new evidence that characterizes the NET production in serum-free culture and determines the mechanisms by which serum albumin inhibits NETs.
Collapse
Affiliation(s)
- Yue Zheng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hang Zheng
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Zhi Dong
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
70
|
Obermayer G, Afonyushkin T, Göderle L, Puhm F, Schrottmaier W, Taqi S, Schwameis M, Ay C, Pabinger I, Jilma B, Assinger A, Mackman N, Binder CJ. Natural IgM antibodies inhibit microvesicle-driven coagulation and thrombosis. Blood 2021; 137:1406-1415. [PMID: 33512411 DOI: 10.1182/blood.2020007155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Thrombosis and its associated complications are a major cause of morbidity and mortality worldwide. Microvesicles (MVs), a class of extracellular vesicles, are increasingly recognized as mediators of coagulation and biomarkers of thrombotic risk. Thus, identifying factors targeting MV-driven coagulation may help in the development of novel antithrombotic treatments. We have previously identified a subset of circulating MVs that is characterized by the presence of oxidation-specific epitopes and bound by natural immunoglobulin M (IgM) antibodies targeting these structures. This study investigated whether natural IgM antibodies, which are known to have important anti-inflammatory housekeeping functions, inhibit the procoagulatory properties of MVs. We found that the extent of plasma coagulation is inversely associated with the levels of both free and MV-bound endogenous IgM. Moreover, the oxidation epitope-specific natural IgM antibody LR04, which recognizes malondialdehyde adducts, reduced MV-dependent plasmatic coagulation and whole blood clotting without affecting thrombocyte aggregation. Intravenous injection of LR04 protected mice from MV-induced pulmonary thrombosis. Of note, LR04 competed the binding of coagulation factor X/Xa to MVs, providing a mechanistic explanation for its anticoagulatory effect. Thus, our data identify natural IgM antibodies as hitherto unknown modulators of MV-induced coagulation in vitro and in vivo and their prognostic and therapeutic potential in the management of thrombosis.
Collapse
Affiliation(s)
- Georg Obermayer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Taras Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian Puhm
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Soreen Taqi
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Schwameis
- Department of Clinical Pharmacology
- Department of Emergency Medicine, and
| | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Ingrid Pabinger
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
71
|
Singh AK, Awasthi D, Dubey M, Nagarkoti S, Chandra T, Barthwal MK, Tripathi AK, Dikshit M. Expression of inducible NOS is indispensable for the antiproliferative and proapoptotic effect of imatinib in BCR-ABL positive cells. J Leukoc Biol 2021; 110:853-866. [PMID: 33527482 DOI: 10.1002/jlb.1a0820-514r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 01/13/2021] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by constitutive BCR-ABL kinase activity, an aggressive proliferation of immature cells, and reduced differentiation. Targeting tyrosine kinase activity of BCR-ABL with imatinib is an effective therapy for the newly diagnosed CML patients; however, 20%-30% of the patients initially treated with imatinib eventually experience treatment failure. Therefore, early identification of these patients is of high clinical relevance. In the present study, we by undertaking a direct comparison of inducible NOS (iNOS) status in neutrophils from healthy volunteers, newly diagnosed, imatinib responder, and resistant CML patients as well as by conducting in vitro studies in K562 cells demonstrated that inhibition of BCR-ABL by imatinib or siRNA significantly enhanced NO generation and iNOS expression. Indeed, patients exhibiting treatment failure or imatinib resistance were less likely to induce NO generation/iNOS expression. Our findings further demonstrated that imatinib mediated antiproliferative and proapoptotic effect in BCR-ABL+ cells associated with enhanced iNOS expression, and it was significantly prevented in the presence of L-NAME, 1400W, or iNOS siRNA. Overexpression of iNOS in K562 cells expectedly enhanced imatinib sensitivity on cytostasis and apoptosis, even at lower concentration (0.1 μM) of imatinib. Mechanistically, imatinib or BCR-ABL siRNA following deglutathionylation of NF-κB, enhanced its binding to iNOS promoter and induced iNOS transcription. Deglutathionylation of procaspase-3 however associated with increased caspase-3 activity and cell apoptosis. Taken together, results obtained suggest that monitoring NO/iNOS level could be useful to identify patients likely to be responsive or resistant to imatinib and can be used to personalized alternative therapy.
Collapse
Affiliation(s)
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Megha Dubey
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, King George's Medical University, Lucknow, India
| | | | - Anil Kumar Tripathi
- Department of Clinical Hematology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
72
|
Ondracek AS, Lang IM. Neutrophil Extracellular Traps as Prognostic Markers in COVID-19: A Welcome Piece to the Puzzle. Arterioscler Thromb Vasc Biol 2021; 41:995-998. [PMID: 33955780 PMCID: PMC7837687 DOI: 10.1161/atvbaha.120.315633] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna S Ondracek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Austria
| | - Irene M Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Austria
| |
Collapse
|
73
|
Jeon JH, Hong CW, Kim EY, Lee JM. Current Understanding on the Metabolism of Neutrophils. Immune Netw 2020; 20:e46. [PMID: 33425431 PMCID: PMC7779868 DOI: 10.4110/in.2020.20.e46] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023] Open
Abstract
Neutrophils are innate immune cells that constitute the first line of defense against invading pathogens. Due to this characteristic, they are exposed to diverse immunological environments wherein sources for nutrients are often limited. Recent advances in the field of immunometabolism revealed that neutrophils utilize diverse metabolic pathways in response to immunological challenges. In particular, neutrophils adopt specific metabolic pathways for modulating their effector functions in contrast to other immune cells, which undergo metabolic reprogramming to ensure differentiation into distinct cell subtypes. Therefore, neutrophils utilize different metabolic pathways not only to fulfill their energy requirements, but also to support specialized effector functions, such as neutrophil extracellular trap formation, ROS generation, chemotaxis, and degranulation. In this review, we discuss the basic metabolic pathways used by neutrophils and how these metabolic alterations play a critical role in their effector functions.
Collapse
Affiliation(s)
- Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.,Kyungpook National University Hospital, Bio-Medical Research Institute, Daegu 41940, Korea
| | - Chang-Won Hong
- Kyungpook National University Hospital, Bio-Medical Research Institute, Daegu 41940, Korea.,Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Eun Young Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jae Man Lee
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
74
|
Xie T, Duan Z, Sun S, Chu C, Ding W. β-Lactams modulate neutrophil extracellular traps formation mediated by mTOR signaling pathway. Biochem Biophys Res Commun 2020; 534:408-414. [PMID: 33256982 DOI: 10.1016/j.bbrc.2020.11.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Some biotics, like β-Lactams, have shown immunomodulation effects during sepsis, but the detailed mechanism was still unclear. Here we postulated that neutrophils play an essential role and β-Lactams exert immunomodulation effects through modulating neutrophil extracellular traps (NETs) formation. METHODS NETs formation induced by two β-Lactams, Meropenem (MEM) and ceftazidime/tazobactam (CAZ/TB) in neutrophils from healthy donors and HL-60 cells was performed. Reactive oxygen species (ROS) generation and the activity of nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase were examined. Additionally, the upstream signal pathway of NETs formation, including protein kinase C (PKC), protein kinase B (Akt) and mammalian target of rapamycin (mTOR), were detected. RESULTS MEM and CAZ/TB modulate NETs formation in activated PMNs, not resting PMNs. Both reduced ROS generation in resting PMNs and increased in activated PMNs. To test the activity of NADPH oxidase, we detected NADPH in MEM and CAZ/TB pre-cultivated activated PMNs, which showed that MEM and CAZ/TB modulates NETs formation through activation of NADHP oxidase by affecting the subunits of key enzymes. However, MEM reduced levels of phosho-PKC-Akt-mTOR, with no changes in CAZ/TB. CONCLUSIONS We firstly demonstrate that β-Lactams showed the definitive immunomodulation effects through modulating NETs formation, which is depended on PKC-Akt-mTOR signal pathway.
Collapse
Affiliation(s)
- Tian Xie
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Zehua Duan
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Shilong Sun
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Chengnan Chu
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China
| | - Weiwei Ding
- Division of Trauma and Surgical Intensive Care Unit, Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu Province, PR China.
| |
Collapse
|
75
|
Haritha VH, George A, Shaji BV, Anie Y. NET-associated citrullinated histones promote LDL aggregation and foam cell formation in vitro. Exp Cell Res 2020; 396:112320. [PMID: 33058833 DOI: 10.1016/j.yexcr.2020.112320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
Neutrophils have been recently identified in the atherosclerotic lesion and they can release neutrophil extracellular trap (NET) under the pro-inflammatory conditions prevailing in the lesion. Citrullinated histones (Cit-histones) are the major type of citrullinated proteins associated with NET release. Since elevated levels of citrullinated proteins have been detected in inflammatory diseases including atherosclerosis, this study analysed the role played by NET and Cit-histones in different atherogenic events in vitro. First, neutrophil recruitment and NET release in the presence of low-density lipoprotein (LDL) and oxidised LDL (Ox-LDL) were analysed by Boyden's chamber method and microscopy respectively. Then, LDL oxidation and LDL aggregation in the presence of NET and Cit-histones were analysed spectroscopically. Foam cell formation in the presence of NET or Cit-histone was studied by both microscopic and spectroscopic methods. While neutrophil recruitment was facilitated by Ox-LDL and not by LDL, the extent of NET release was significantly increased in the presence of both LDL and Ox-LDL. In the presence of NET, LDL oxidation, aggregation and foam cell formation were found to be increased. Cit-histones were found to accelerate LDL aggregation and foam cell formation at higher citrulline levels. Altogether, the results suggest that both NET and NET-associated Cit-histone released at the lesion can play major roles as pro-atherogenic mediators. Inhibiting the action of NET or Cit-histone would, therefore, be beneficial in slowing down atherosclerotic progression.
Collapse
Affiliation(s)
- V H Haritha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Anjana George
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Binchu V Shaji
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| | - Y Anie
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
76
|
Hofbauer TM, Ondracek AS, Mangold A, Scherz T, Nechvile J, Seidl V, Brostjan C, Lang IM. Neutrophil Extracellular Traps Induce MCP-1 at the Culprit Site in ST-Segment Elevation Myocardial Infarction. Front Cell Dev Biol 2020; 8:564169. [PMID: 33240874 PMCID: PMC7680894 DOI: 10.3389/fcell.2020.564169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Leukocyte-mediated inflammation is crucial in ST-segment elevation myocardial infarction (STEMI). We recently observed that neutrophil extracellular traps (NETs) are increased at the culprit site, promoting activation and differentiation of fibrocytes, cells with mesenchymal and leukocytic properties. Fibrocyte migration is mediated by monocyte chemoattractant protein (MCP)-1 and C-C chemokine receptor type 2 (CCR2). We investigated the interplay between NETs, fibrocyte function, and MCP-1 in STEMI. Methods Culprit site and peripheral blood samples of STEMI patients were drawn during primary percutaneous coronary intervention. MCP-1 and the NET marker citrullinated histone H3 (citH3) were measured by ELISA while double-stranded DNA was stained with a fluorescent dye. The influence of MCP-1 on NET formation in vitro was assessed using isolated healthy donor neutrophils. Human coronary artery endothelial cells (hCAECs) were stimulated with isolated NETs, and MCP-1 gene expression was measured by ELISA and qPCR. CCR2 expression of culprit site and peripheral blood fibrocytes was characterized by flow cytometry. Healthy donor fibrocyte receptor expression and chemotaxis were investigated in response to stimulation with MCP-1 and NETs in vitro. Results NETs and concentrations of MCP-1 were increased at the culprit site of 50 consecutive STEMI patients. NET stimulation of hCAECs induced transcription of ICAM-1, IL-6, and MCP-1, and secretion of MCP-1. MCP-1 promoted NET formation of healthy donor neutrophils in vitro. An increasing MCP-1 gradient correlated with fibrocyte accumulation at the culprit site. Locally increased MCP-1 levels were negatively correlated with CCR2 expression on fibrocytes. MCP-1 and NETs induced CCR2 downregulation on fibrocytes in vitro. NETs did not function as a chemotactic stimulus for fibrocytes or monocytes and could block migration in response to MCP-1 for both cell populations. Conclusion NETs function as signaling scaffolds at the culprit site of STEMI. NETs assist MCP-1 and ICAM-1 release from culprit site coronary artery endothelial cells. MCP-1 facilitates further NETosis. Monocytes enter the culprit site along an MCP-1 gradient, to transdifferentiate into fibrocytes in the presence of NETs.
Collapse
Affiliation(s)
- Thomas M Hofbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Anna S Ondracek
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Andreas Mangold
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherz
- Department of Dermatology and Venereology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
| | - Johanna Nechvile
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Veronika Seidl
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
77
|
Neutrophils as a Novel Target of Modified Low-Density Lipoproteins and an Accelerator of Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21218312. [PMID: 33167592 PMCID: PMC7664187 DOI: 10.3390/ijms21218312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) significantly contribute to various pathophysiological conditions, including cardiovascular diseases. NET formation in the vasculature exhibits inflammatory and thrombogenic activities on the endothelium. NETs are induced by various stimulants such as exogenous damage-associated molecular patterns (DAMPs). Oxidatively modified low-density lipoprotein (oxLDL) has been physiologically defined as a subpopulation of LDL that comprises various oxidative modifications in the protein components and oxidized lipids, which could act as DAMPs. oxLDL has been recognized as a crucial initiator and accelerator of atherosclerosis through foam cell formation by macrophages; however, recent studies have demonstrated that oxLDL stimulates neutrophils to induce NET formation and enhance NET-mediated inflammatory responses in vascular endothelial cells, thereby suggesting that oxLDL may be involved in cardiovascular diseases through neutrophil activation. As NETs comprise myeloperoxidase and proteases, they have the potential to mediate oxidative modification of LDL. This review summarizes recent updates on the analysis of NETs, their implications for cardiovascular diseases, and prospects for a possible link between NET formation and oxidative modification of lipoproteins.
Collapse
|
78
|
Yang Z, Wang S, Yin K, Zhang Q, Li S. MiR-1696/GPx3 axis is involved in oxidative stress mediated neutrophil extracellular traps inhibition in chicken neutrophils. J Cell Physiol 2020; 236:3688-3699. [PMID: 33044016 DOI: 10.1002/jcp.30105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/14/2023]
Abstract
As an important immune mechanism of neutrophils, the release of Web-like chromatin structures known as neutrophil extracellular traps (NETs) can rapidly locate and capture invading pathogens, which has received sustained attention. There are still some fundamental questions surrounding established studies on the mechanism of balance between reactive oxygen species (ROS) dependent release and neutrophil antioxidant response. Glutathione peroxidase 3 (GPx3) is an important antioxidant protein and has been identified can regulate the immune response. However, the effect of GPx3 on the NETs formation and microRNA in this process remain poorly understood. In the present study, we used chicken peripheral blood neutrophils treated with Phorbol-12-myristate-13-acetate (PMA) for 3 h as NETs formation model. The result of morphological observation showed that GPx3 inactivation compromised the release of NETs. Further analysis revealed that knockdown of GPx3 significantly disturbed oxidative balance by inhibiting antioxidant enzymes activity and increasing H2 O2 content. Quantitative analysis of NETs-related genes found that the phosphorylation level of mitogen-activated protein kinase (MAPK) pathway genes (ERK, JNK, and p38) and expression of phosphoinositide-3-kinase (PI3K)/AKT pathway genes (PI3K and AKT) were suppressed with the downregulation of GPx3. Meanwhile, we identified that miR-1696 can target GPx3 expression by using dual luciferase reporter system. Additionally, overexpression of miR-1696 can not only inhibit the formation of NETs by restraining the expression of GPx3, interfering with the generation of ROS and activation of the MAPK and PI3K/AKT pathways, but also reducing the release of PMA-induced NETs promoted by overexpression of GPx3. These results provide evidence that miR-1696 targeted GPx3 activities in neutrophils could be used to regulate the NETs formation stimulated by PMA.
Collapse
Affiliation(s)
- Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Qiaojian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
79
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
80
|
Mostafa MN, Osama M. The implications of neutrophil extracellular traps in the pathophysiology of atherosclerosis and atherothrombosis. Exp Biol Med (Maywood) 2020; 245:1376-1384. [PMID: 32727216 DOI: 10.1177/1535370220945989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPACT STATEMENT Fatal consequences of atherosclerosis and atherothrombosis give research in this field great importance. This review provides recent information about the implications of neutrophils in the pathophysiology of atherosclerosis and atherothrombosis via formation and release of neutrophil extracellular traps (NETs), thereby enhancing our understanding on how the process of atherosclerosis develops and how its consequences occur. Information provided in this review suggests NETs as a new therapeutic target and a rich point for research. This review gives answers to questions about the mechanisms of atherosclerosis and atherothrombosis progression through studying the implications of NETs in these processes.
Collapse
Affiliation(s)
| | - Mahmoud Osama
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
81
|
Neutrophil Extracellular Traps: Signaling Properties and Disease Relevance. Mediators Inflamm 2020; 2020:9254087. [PMID: 32774152 PMCID: PMC7407020 DOI: 10.1155/2020/9254087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are characterized as extracellular DNA fibers comprised of histone and cytoplasmic granule proteins. NETs were first described as a form of innate response against pathogen invasion, which can capture pathogens, degrade bacterial toxic factors, and kill bacteria. Additionally, NETs also provide a scaffold for protein and cell binding. Protein binding to NETs further activate the coagulation system which participates in thrombosis. In addition, NETs also can damage the tissues due to the proteins they carry. Many studies have suggested that the excessive formation of NETs may contribute to a range of diseases, including thrombosis, atherosclerosis, autoimmune diseases, and sepsis. In this review, we describe the structure and components of NETs, models of NET formation, and detection methods. We also discuss the molecular mechanism of NET formation and their disease relevance. Modulation of NET formation may provide a new route for the prevention and treatment of releated human diseases.
Collapse
|
82
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
83
|
Ząbczyk M, Natorska J, Janion-Sadowska A, Malinowski KP, Janion M, Undas A. Elevated Lactate Levels in Acute Pulmonary Embolism Are Associated with Prothrombotic Fibrin Clot Properties: Contribution of NETs Formation. J Clin Med 2020; 9:E953. [PMID: 32235490 PMCID: PMC7231195 DOI: 10.3390/jcm9040953] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Elevated plasma lactate levels correlate with high mortality rate in acute pulmonary embolism (PE) patients. We hypothesized that elevated lactate levels correlate with prothrombotic fibrin clot properties and enhanced neutrophil extracellular trap (NET) formation in acute PE. METHODS As many as 126 normotensive acute PE patients (aged 58 ± 14 years) were enrolled. Plasma fibrin clot permeability (Ks), clot lysis time (CLT), endogenous thrombin potential (ETP), citrullinated histone H3 (citH3), and plasminogen activator inhibitor-1 antigen (PAI-1), together with plasma L-lactate levels were evaluated on admission. RESULTS Lactate levels ≥2 mM were found in 70 (55.6%) patients in whom we observed 29% higher neutrophil count and 45% elevated plasma citH3 levels. Elevated lactate levels were associated with more prothrombotic fibrin properties as reflected by 11% reduced Ks, 13% longer CLT, along with 11% increased ETP. Lactate levels were positively associated with plasma citH3 concentrations, ETP, CLT, and PAI-1 (p < 0.05). An increase of lactate levels by 1 mM leading to the prolongation of CLT by 8.82 minutes was shown in the linear regression. CONCLUSIONS Our findings suggest a new mechanism contributing to a negative impact of elevated lactate levels on prognosis in acute PE patients, in particular hypofibrinolysis, associated with enhanced NET formation.
Collapse
Affiliation(s)
- Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland; (M.Z.); (J.N.)
- John Paul II Hospital, 31-202 Krakow, Poland
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland; (M.Z.); (J.N.)
- John Paul II Hospital, 31-202 Krakow, Poland
| | - Agnieszka Janion-Sadowska
- The Faculty of Medicine and Health Sciences, The Jan Kochanowski University, 25-317 Kielce, Poland; (A.J.-S.); (M.J.)
| | - Krzysztof P. Malinowski
- Institute of Public Health, Faculty of Health Sciences, Jagiellonian University Medical College, 31-126 Krakow, Poland;
| | - Marianna Janion
- The Faculty of Medicine and Health Sciences, The Jan Kochanowski University, 25-317 Kielce, Poland; (A.J.-S.); (M.J.)
| | - Anetta Undas
- Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland; (M.Z.); (J.N.)
- John Paul II Hospital, 31-202 Krakow, Poland
- The Faculty of Medicine and Health Sciences, The Jan Kochanowski University, 25-317 Kielce, Poland; (A.J.-S.); (M.J.)
| |
Collapse
|
84
|
Cinoku II, Mavragani CP, Moutsopoulos HM. Atherosclerosis: Beyond the lipid storage hypothesis. The role of autoimmunity. Eur J Clin Invest 2020; 50:e13195. [PMID: 31868918 DOI: 10.1111/eci.13195] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis has long been considered as a lipid storage disease. Recent data suggest that autoimmune mechanisms seem to be involved in the pathophysiology of atherosclerosis. The presence of activated endothelial vascular cells, neutrophils, macrophages, T and to a lesser extent B cells in atherosclerotic plaques, together with the proinflammatory cytokine burden suggest mobilization of both innate and adaptive immune pathways in atherosclerosis pathobiology. The development of antibodies to oxidized low-density lipoprotein (ox-LDL), the experimental induction of atherosclerosis either via the transfer of T cells or immunization with autoantigens such as β2 glycoprotein Ι (β2-GPI) and heat shock proteins (HSP) further support the autoimmune nature of atherosclerosis. However, classical immunosuppressive and immune-modulatory drugs, successfully used in the therapy of autoimmune rheumatic diseases have shown limited benefits so far in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ilir I Cinoku
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio P Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Haralampos M Moutsopoulos
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Academy of Athens, Athens, Greece
| |
Collapse
|
85
|
Sadaf S, Awasthi D, Singh AK, Nagarkoti S, Kumar S, Barthwal MK, Dikshit M. Pyroptotic and apoptotic cell death in iNOS and nNOS overexpressing K562 cells: A mechanistic insight. Biochem Pharmacol 2019; 176:113779. [PMID: 31881190 DOI: 10.1016/j.bcp.2019.113779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022]
Abstract
Previous studies from this lab and others have demonstrated that nitric oxide (NO) in a concentration dependent manner, modulated neutrophil and leukemic cell survival. Subsequent studies delineated importance of iNOS in neutrophil differentiation and leukemic cell death. On the contrary, role of nNOS in survival of these cells remains least understood. Present study was therefore undertaken to assess and compare the role of iNOS and nNOS in the survival of NOS overexpressing myelocytic K562 cells. Cells with almost similar iNOS and nNOS activities displayed comparable cell cycle perturbation, Annexin V positivity, mitochondrial dysfunction, augmented DCF fluorescence, and also attenuated expression of antioxidants. Moreover, induction in cell death was also accompanied by the activation of pJNK/p38MAPK/Erk1/2 and reduction in PI3K/Akt/mTOR signaling. Treatment of NOS isoform overexpressing K562 cells with NAC, a potent free radical scavenger prevented cell death and also the modulations in the signaling proteins. In addition, enhanced expression of CASP1 and CASP4 genes, along with increased Caspase-1 cleavage and increased IL-1β release were significantly more in K562iNOS cells, which indicate priming of these cells for pyroptotic cell death. On the other hand, K562nNOS cells, displayed much enhanced CASP3 gene expression, Caspase-3 cleavage and Caspase-3 activity. Results obtained indicate that similar level of iNOS or nNOS activation in K562 cells, preferred pyroptotic and apoptotic cell death respectively.
Collapse
Affiliation(s)
- Samreen Sadaf
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Deepika Awasthi
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Sheela Nagarkoti
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sachin Kumar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | | | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
86
|
Awasthi D, Nagarkoti S, Sadaf S, Chandra T, Kumar S, Dikshit M. Glycolysis dependent lactate formation in neutrophils: A metabolic link between NOX-dependent and independent NETosis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:165542. [DOI: 10.1016/j.bbadis.2019.165542] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
|
87
|
Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10:2536. [PMID: 31736963 PMCID: PMC6831555 DOI: 10.3389/fimmu.2019.02536] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/11/2019] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response to infection. Much has been focused on host response to pathogens mediated through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial, and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that are released from cells during sepsis. Some well described members of the DAMP family are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell through inflammasome activation or passively following cell death. Similarly, neutrophil extracellular traps (NETs) are released from neutrophils during inflammation. NETs are webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase. Although NETs contribute to pathogen clearance, excessive NET formation promotes inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their crosstalk in sepsis with respect to their sources, activation, release, and function. A clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the pathophysiology of sepsis and for the development of novel sepsis therapeutics.
Collapse
Affiliation(s)
- Naomi-Liza Denning
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Monowar Aziz
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States
| | - Steven D Gurien
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| | - Ping Wang
- Center for Immunology and Inflammation, Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, United States.,Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States.,Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, United States
| |
Collapse
|
88
|
Nagarkoti S, Dubey M, Sadaf S, Awasthi D, Chandra T, Jagavelu K, Kumar S, Dikshit M. Catalase S-Glutathionylation by NOX2 and Mitochondrial-Derived ROS Adversely Affects Mice and Human Neutrophil Survival. Inflammation 2019; 42:2286-2296. [DOI: 10.1007/s10753-019-01093-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
89
|
Moschonas IC, Tselepis AD. The pathway of neutrophil extracellular traps towards atherosclerosis and thrombosis. Atherosclerosis 2019; 288:9-16. [DOI: 10.1016/j.atherosclerosis.2019.06.919] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022]
|
90
|
Obama T, Ohinata H, Takaki T, Iwamoto S, Sawada N, Aiuchi T, Kato R, Itabe H. Cooperative Action of Oxidized Low-Density Lipoproteins and Neutrophils on Endothelial Inflammatory Responses Through Neutrophil Extracellular Trap Formation. Front Immunol 2019; 10:1899. [PMID: 31447863 PMCID: PMC6696608 DOI: 10.3389/fimmu.2019.01899] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The function of oxidatively modified low-density lipoprotein (oxLDL) in the progression of cardiovascular diseases has been extensively investigated and well-characterized with regards to the activation of multiple cellular responses in macrophages and endothelial cells. Although accumulated evidence has revealed the presence of neutrophils in vascular lesions, the effect of oxLDL on neutrophil function has not been properly investigated. In the present decade, neutrophil extracellular traps (NETs) gained immense attention not only as a primary response against pathogenic bacteria but also due to their pathological roles in tissue damage in various diseases, such as atherosclerosis and thrombosis. In this study, we investigated if oxLDL affects NET formation and if it is a risk factor for inflammatory reactions in endothelial cells. HL-60-derived neutrophils were stimulated with phorbol 12-myristate 13-acetate (PMA) for 30 min to induce NET formation, followed by incubation with 20 μg/mL native or oxidized LDL for additional 2 h. Culture media of the stimulated cells containing released NETs components were collected to evaluate NET formation by fluorometric quantitation of released DNA and detection of myeloperoxidase (MPO) by western blot analysis. NET formation of HL-60-derived neutrophils induced by PMA was significantly enhanced by additional incubation with oxLDL but not with native LDL. Treatment of HL-60-derived neutrophils with oxLDL alone in the absence of PMA did not induce NET formation. Furthermore, the culture media of HL-60-derived neutrophils after NET formation were then transferred to human aortic endothelial cell (HAECs) culture. Treatment of HAECs with the culture media containing NETs formed by HL-60-derived neutrophils increased the expression of metalloproteinase-1 protein in HAECs when HL-60-derived neutrophils were incubated with native LDL, and the expression was accelerated in the case of oxLDL. In addition, the culture media from NETs formed by HL-60-derived neutrophils caused the elongation of HAECs, which was immensely enhanced by coincubation with native LDL or oxLDL. These data suggest that oxLDL may act synergistically with neutrophils to form NETs and promote vascular endothelial inflammation.
Collapse
Affiliation(s)
- Takashi Obama
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Hitomi Ohinata
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Takashi Takaki
- Division of Electron Microscopy, Showa University School of Medicine, Tokyo, Japan
| | - Sanju Iwamoto
- Division of Physiology and Pathology, Department of Pharmacology, Toxicology and Therapeutics, Showa University School of Pharmacy, Tokyo, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo, Japan
| |
Collapse
|
91
|
Hule GP, Bargir UA, Kulkarni M, Kambli P, Taur P, Desai M, Madkaikar MR. Does Pioglitazone Lead to Neutrophil Extracellular Traps Formation in Chronic Granulomatous Disease Patients? Front Immunol 2019; 10:1739. [PMID: 31428088 PMCID: PMC6689990 DOI: 10.3389/fimmu.2019.01739] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/10/2019] [Indexed: 12/23/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the enzyme complex responsible for reactive oxygen species (ROS) production, is defective in chronic granulomatous disease (CGD) patients. This enzyme helps in antimicrobial host defense by phagocytes. CGD patients are unable to form neutrophil extracellular traps (NETs), which are composed of granule-derived proteins from neutrophils decorated with decondensed chromatin. Mitochondria have gained attention, being a rich source of flavochrome enzymes due to the presence of several sites for superoxide production. Recently, PPARγ agonists, a mitochondrial ROS inducer, induce mitochondrial ROS formation post-treatment in murine NADPH oxidase knockout models. Mitochondrial ROS is also essential for NOX-independent NETosis. Our study for the first time detects induction of NETosis independent of NADPH oxidase post-treatment with agonists such as pioglitazone and rosiglitazone in CGD subjects. Neutrophils isolated from CGD subjects were treated with pioglitazone and rosiglitazone. After treatment, qualitative analysis of NET formation was done using confocal microscopy after staining with DAPI. Quantitative estimation of extracellular DNA was performed using Sytox green. Mitochondrial ROS production with PPARγ agonist-treated/untreated neutrophils was detected using MitoSOX red. Pioglitazone and rosiglitazone induce significant NET formation in CGD patients. Our data clearly signify the effect of PPARγ agonists in induction of NET formation in CGD cases. Apart from the proposed experimental studies regarding the detailed mechanism of action, controlled trials could provide valuable information regarding the clinical use of pioglitazone in CGD patients as curative HSCT remains challenging in developing countries.
Collapse
Affiliation(s)
- Gouri P Hule
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Umair Ahmed Bargir
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Manasi Kulkarni
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Priyanka Kambli
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| | - Prasad Taur
- Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Mukesh Desai
- Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Manisha Rajan Madkaikar
- Department of Paediatric Immunology and Leukocyte Biology, National Institute of Immunohaematology (ICMR), Mumbai, India
| |
Collapse
|
92
|
Xue Y, Wu Y, Wang Q, Xue L, Su Z, Zhang C. Cellular Vehicles Based on Neutrophils Enable Targeting of Atherosclerosis. Mol Pharm 2019; 16:3109-3120. [PMID: 31082253 DOI: 10.1021/acs.molpharmaceut.9b00342] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Given the multiple interactions between neutrophils (NEs) and atherosclerosis (AS), in this study, we exploited NEs as cellular vehicles loaded with cationic liposomes for actively targeting atherosclerotic sites. The cellular vehicles based on NEs possess efficient internalization of cationic liposomes and sensitive response to the chemotaxis of atherosclerotic inflammatory cells, which ultimately realize the targeted delivery of the cargos into the target cells in vitro. Moreover, these effects also translated to significant enhancement of the accumulation of NEs' cargos into the atherosclerotic plaque in vivo after administering NE vehicles to the AS animal model. Consequently, cellular vehicles based on NEs could be a novel strategy for targeted delivery of payloads into atherosclerotic plaque, which would facilitate theranostics for AS and the development of anti-AS drugs to manage the disease.
Collapse
Affiliation(s)
- Yanan Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Yue Wu
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Qianqian Wang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Zhigui Su
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| | - Can Zhang
- State Key Laboratory of Natural Medicines Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases Center of Advanced Pharmaceuticals and Biomaterials , China Pharmaceutical University , No. 24 Tongjiaxiang , Nanjing 210009 , China
| |
Collapse
|
93
|
Zhou J, Yang Y, Gan T, Li Y, Hu F, Hao N, Yuan B, Chen Y, Zhang M. Lung cancer cells release high mobility group box 1 and promote the formation of neutrophil extracellular traps. Oncol Lett 2019; 18:181-188. [PMID: 31289487 PMCID: PMC6540031 DOI: 10.3892/ol.2019.10290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/22/2019] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality. Tumor-associated neutrophils represent a large portion of inflammatory cells within the lung tumor microenvironment. However, the roles of neutrophil extracellular traps (NETs) in lung cancer remain unclear. In the present study, it was identified that Lewis lung carcinoma cells actively released the danger-associated molecular pattern protein high mobility group box 1 (HMGB1). Furthermore, HMGB1 in lung cancer cell supernatants promoted the formation of neutrophil extracellular traps (NETs), which was dependent on Toll-like receptor 4 (TLR4). The downstream molecules of TLR4, including myeloid differentiation factor 88, TIR-domain-containing adapter-inducing interferon-β, p38 mitogen-activated protein kinases (p38 MAPKs) and extracellular signal-regulated kinases (ERKs), were activated during the formation of NETs. In addition, inhibition of p38 MAPKs or ERKs significantly decreased NETs. Morphine, an additional ligand for TLR4, aggravated the NETs induced by lung cancer cells. The present study revealed novel mechanisms in tumor-associated NET formation.
Collapse
Affiliation(s)
- Jiawei Zhou
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yonglin Yang
- Department of Infectious Diseases, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Tingting Gan
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fan Hu
- Analysis Center, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Nannan Hao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Baorui Yuan
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| | - Yu Chen
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingshun Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 210016, P.R. China
| |
Collapse
|
94
|
Chen W, Yu SX, Zhou FH, Zhang XJ, Gao WY, Li KY, Liu ZZ, Han WY, Yang YJ. DNA Sensor IFI204 Contributes to Host Defense Against Staphylococcus aureus Infection in Mice. Front Immunol 2019; 10:474. [PMID: 30936875 PMCID: PMC6431627 DOI: 10.3389/fimmu.2019.00474] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Interferon-inducible protein (IFI204) (p204, the murine homolog of human IFI16) is known as a cytosolic DNA sensor to recognize DNA viruses and intracellular bacteria. However, little is known about its role during extracellular bacterial infection. Here we show that IFI204 is required for host defense against the infection of Staphylococcus aureus, an extracellular bacterial pathogen. IFI204 deficiency results in decreased survival, increased bacterial loads, severe organs damage, and decreased recruitment of neutrophils and macrophages. Production of several inflammatory cytokines/chemokines including IFN-β and KC is markedly decreased, as well as the related STING-IRF3 and NF-κB pathways are impaired. However, exogenous administration of recombinant KC or IFN-β is unable to rescue the susceptibility of IFI204-deficient mice, suggesting that other mechanisms rather than KC and IFN-β account for IFI204-mediated host defense. IFI204 deficiency leads to a defect in extracellular bacterial killing in macrophages and neutrophils, although bacterial engulf, and intracellular killing activity are normal. Moreover, the defect of bactericidal activity is mediated by decreased extracellular trap formation in the absence of IFI204. Adoptively transferred WT bone marrow cells significantly protect WT and IFI204-deficient recipients against Staphylococcus infection compared with transferred IFI204-deficient bone marrow cells. Hence, this study suggests that IFI204 is essential for the host defense against Staphylococcus infection.
Collapse
Affiliation(s)
- Wei Chen
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Feng-Hua Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Jing Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Ying Gao
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Kun-Yu Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Yu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yong-Jun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
95
|
Zhu Y, Yang Y, Li F, Fan S, Chen X, Lu Y, Wei Y, Chen Q, Xia L, Tang J, Huang Q, Zhu Q, Zheng J, Liu X. Stimulation of the class-A scavenger receptor induces neutrophil extracellular traps (NETs) by ERK dependent NOX2 and ROMO1 activation. Biochem Biophys Res Commun 2019; 511:847-854. [PMID: 30850160 DOI: 10.1016/j.bbrc.2019.02.142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Neutrophil extracellular traps (NETs) play a critical role in host antimicrobial response whereas they are also implicated in the pathogenesis of inflammatory and autoimmunediseases. Generation of reactiveoxygen species (ROS) is key to NETs formation. A variety of stimulatory ligands have been found to enhance ROS production and thus trigger NETs. However, the mechanisms that connect receptor stimuli with ROS production and NETs formation remain unclear. In this study, we described a new mechanism of NETs generation in neutrophils triggered by stimulation of the class A scavenger receptor (SRA), a major subtype of scavenger receptors in response to various stimuli during infection and inflammatory disorders. By using polyinosinic acid (Poly I), a ribonucleotide ligand of SRA, we demonstrated that SRA stimulation lead to selective ERK phosphorylation, which upregulated cytosol ROS levels and induced canonical NETs formation by activating NADPH oxidase 2 (NOX2). Interestingly, our results showed that mitochondrial ROS (mtROS) production was also enhanced by the SRA dependent ERK activation through upregulation and activation of reactive oxygen species modulator 1(ROMO1), a mitochondrial membrane protein and a key mediator of mtROS. Moreover, inhibition of the SRA elicited ROMO1 activation dampened NETs release upon SRA stimulation. Overall, our study describes a new insight into the NETs release triggered by membrane SRA stimulation and mediated by ERK dependent NOX2 and ROMO1 activation.
Collapse
Affiliation(s)
- Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Fangfang Li
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Yan Wei
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Lin Xia
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Ju Tang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Qianying Huang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Qi Zhu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, 400038, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
96
|
Sadeghzadeh M, Shirpoor A, Naderi R, Kheradmand F, Gharalari FH, Samadi M, Khalaji N, Gharaaghaji R. Long‐term ethanol consumption promotes changes in β‐defensin isoform gene expression and induces structural changes and oxidative DNA damage to the epididymis of rats. Mol Reprod Dev 2019; 86:624-631. [DOI: 10.1002/mrd.23138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Maryam Sadeghzadeh
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Alireza Shirpoor
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Fatemeh Kheradmand
- Department of BiochemistryFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Farzaneh H. Gharalari
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Mahrokh Samadi
- Nephrology and Kidney Transplant Research CenterUrmia University of Medical SciencesUrmia Iran
| | - Naser Khalaji
- Department of PhysiologyFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| | - Rasool Gharaaghaji
- Department of Community MedicineFaculty of Medicine, Urmia University of Medical SciencesUrmia Iran
| |
Collapse
|
97
|
Ma F, Chang X, Wang G, Zhou H, Ma Z, Lin H, Fan H. Streptococcus Suis Serotype 2 Stimulates Neutrophil Extracellular Traps Formation via Activation of p38 MAPK and ERK1/2. Front Immunol 2018; 9:2854. [PMID: 30581435 PMCID: PMC6292872 DOI: 10.3389/fimmu.2018.02854] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Streptococcus suis serotype 2 is a major pathogen of swine streptococcicosis, which result in serious economic loss worldwide. SS2 is an important zoonosis causing meningitis and even death in humans. Neutrophil extracellular traps (NETs) constitute a significant bactericidal strategy of innate immune. The battle between SS2 and NETs may account for the pathogenicity of SS2. However, the molecular mechanism underlying release of SS2-induced NETs remains unclear. In this study, SS2 was found to induce NETs within 2–4 h, and was dependent on reactive oxygen species (ROS) from NADPH oxidase. Moreover, SS2 could activate neutrophil p38 MAPK and ERK1/2. Blockage of p38 MAPK or ERK1/2 activation decreased SS2-induced NETs formation by 65 and 85%, respectively. In addition, NADPH oxidase derived ROS inhibition negatively affected phosphorylation of p38 MAPK and ERK1/2 in SS2 induced neutrophils. Both TLR2 and TLR4 were significantly up-regulated by SS2 infection in blood cells in vivo and neutrophils in vitro, which indicates these two receptors are involved in SS2 recognition. Blocking TLR4 signaling could further inhibit the activation of ERK1/2, but not p38 MAPK; however, TLR4 signaling inhibition reduced NETs formation induced by SS2. In conclusion, SS2 could be recognized by TLR2 and/or TLR4, initiating NETs formation signaling pathways in a NADPH oxidase derived ROS dependent manner. ROS will activate p38 MAPK and ERK1/2, which ultimately induces NETs formation.
Collapse
Affiliation(s)
- Fang Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaojing Chang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Guangyu Wang
- National Center of Meat Quality and Safety Control, Nanjing Agriculture University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
98
|
Tatsiy O, McDonald PP. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways. Front Immunol 2018; 9:2036. [PMID: 30279690 PMCID: PMC6153332 DOI: 10.3389/fimmu.2018.02036] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/17/2018] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are known to extrude decondensed chromatin, thus forming NETs (neutrophil extracellular traps). These structures immobilize pathogens, thereby preventing their spreading, and are also adorned with antimicrobial molecules. NETs can also influence pathogenesis in chronic inflammation, autoimmunity, and cancer. Despite the importance of NETs, the molecular mechanisms underlying their formation, as well as the upstream signaling pathways involved, are only partially understood. Likewise, current methodological approaches to quantify NETs suffer from significant drawbacks, not the least being the inclusion of a significant non-specific signal. In this study, we used novel, fluorescent polymers that only bind extruded chromatin, allowing a specific and standardized quantification of NETosis. This allowed us to reliably rank the relative potency of various physiologic NET inducers. In neutrophils activated with such stimuli, inhibition of the Syk or PI3K pathways blocked NETosis by acting upon late events in NET formation. Inhibition of the TAK1, p38 MAPK, or MEK pathways also hindered NETosis, but by acting on early events. By contrast, inhibiting PKC, Src family kinases, or JNK failed to prevent NETosis; cycloheximide or actinomycin D were also ineffective. Expectedly, NET formation was deeply compromised following inhibition of the NADPH oxidase in PMA-activated neutrophils, but was found to be ROS-independent in response to physiological agonists. Conversely, we show for the first time in human neutrophils that selective inhibition of PAD4 potently prevents NETosis by all stimuli tested. Our data substantially extends current knowledge of the signaling pathways controlling NETosis, and reveals how they affect early or late stages of the phenomenon. In view of the involvement of NETs in several pathologies, our findings also identify molecular targets that could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Olga Tatsiy
- Pulmonary Division, Faculty of Medicine, Centre de recherche du CHUS and Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Patrick P McDonald
- Pulmonary Division, Faculty of Medicine, Centre de recherche du CHUS and Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
99
|
Damage-associated molecular pattern recognition is required for induction of retinal neuroprotective pathways in a sex-dependent manner. Sci Rep 2018; 8:9115. [PMID: 29904087 PMCID: PMC6002365 DOI: 10.1038/s41598-018-27479-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/04/2018] [Indexed: 12/29/2022] Open
Abstract
Retinal degeneration is a common cause of irreversible blindness and is caused by the death of retinal light-sensitive neurons called photoreceptors. At the onset of degeneration, stressed photoreceptors cause retinal glial cells to secrete neuroprotective factors that slow the pace of degeneration. Leukemia inhibitory factor (LIF) is one such factor that is required for endogenous neuroprotection. Photoreceptors are known to release signals of cellular stress, called damage-associated molecular patterns (DAMPs) early in degeneration, and we hypothesized that receptors for DAMPs or pattern recognition receptors (PRRs) play a key role in the induction of LIF and neuroprotective stress responses in retinal glial cells. Toll-like receptor 2 (TLR2) is a well-established DAMP receptor. In our experiments, activation of TLR2 protected both male and female mice from light damage, while the loss of TLR2 in female mice did not impact photoreceptor survival. In contrast, induction of protective stress responses, microglial phenotype and photoreceptor survival were strongly impacted in male TLR2−/− mice. Lastly, using publicly available gene expression data, we show that TLR2 is expressed highly in resting microglia prior to injury, but is also induced in Müller cells in inherited retinal degeneration.
Collapse
|
100
|
Obermayer G, Afonyushkin T, Binder CJ. Oxidized low-density lipoprotein in inflammation-driven thrombosis. J Thromb Haemost 2018; 16:418-428. [PMID: 29316215 DOI: 10.1111/jth.13925] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thrombosis is the defining feature of the most prevalent causes of cardiovascular mortality, such as myocardial infarction, stroke, and pulmonary artery embolism. Although platelet activation and activation of the plasmatic coagulation system are the hallmarks of thrombus formation, inflammatory processes and the cellular responses involved are increasingly being recognized as critical modulators of thrombosis. In the context of many chronic inflammatory diseases that are associated with a high thrombotic risk, oxidized lipoproteins represent a prominent sterile trigger of inflammation. Oxidized low-density lipoprotein and its components play a central role in the initiation and progression of atherosclerotic plaques, but also in other processes that lead to thrombotic events. Moreover, dying cells and microvesicles can be decorated with some of the same oxidized lipid components that are found on oxidized lipoproteins, and thereby similar mechanisms of thromboinflammation may also be active in venous thrombosis. In this review, we summarize the current knowledge on how oxidized lipoproteins and components thereof affect the cells and pathways involved in thrombosis.
Collapse
Affiliation(s)
- G Obermayer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - T Afonyushkin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - C J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|