51
|
Increase in gastric acid-induced afferent input to the brainstem in mice with gastritis. Neuroscience 2007; 145:1108-19. [PMID: 17303342 DOI: 10.1016/j.neuroscience.2006.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 11/25/2006] [Accepted: 12/12/2006] [Indexed: 01/17/2023]
Abstract
Acid challenge of the gastric mucosa is signaled to the brainstem. This study examined whether mild gastritis due to dextrane sulfate sodium (DSS) or iodoacetamide (IAA) enhances gastric acid-evoked input to the brainstem and whether this effect is related to gastric myeloperoxidase activity, gastric histology, gastric volume retention or cyclooxygenase stimulation. The stomach of conscious mice was challenged with NaCl (0.15 M) or HCl (0.15 and 0.25 M) administered via gastric gavage. Two hours later, activation of neurons in the nucleus tractus solitarii (NTS) was visualized by c-Fos immunocytochemistry. Gastritis was induced by DSS (molecular weight 8000; 5%) or IAA (0.1%) added to the drinking water for 7 days. Relative to NaCl, intragastric HCl increased the number of c-Fos protein-expressing cells in the NTS. Pretreatment with DSS or IAA for 1 week did not alter the c-Fos response to NaCl but significantly enhanced the response to HCl by 54 and 74%, respectively. Either pretreatment elevated gastric myeloperoxidase activity and induced histological injury of the mucosal surface. In addition, DSS caused dilation of the gastric glands and damage to the parietal cells. HCl-induced gastric volume retention was not altered by IAA but attenuated by DSS pretreatment. Indomethacin (5 mg/kg) failed to significantly alter HCl-evoked expression of c-Fos in the NTS of control, DSS-pretreated and IAA-pretreated mice. We conclude that the gastritis-evoked increase in the gastric acid-evoked c-Fos expression in the NTS is related to disruption of the gastric mucosal barrier, mucosal inflammation, mucosal acid influx and enhanced activation of the afferent stomach-NTS axis.
Collapse
|
52
|
Lamb K, Gebhart GF, Bielefeldt K. Luminal stimuli acutely sensitize visceromotor responses to distension of the rat stomach. Dig Dis Sci 2007; 52:488-94. [PMID: 17216335 DOI: 10.1007/s10620-006-9621-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 09/14/2006] [Indexed: 12/09/2022]
Abstract
Inflammation can enhance responses to different stimuli consistent with the development of hypersensitivity. To determine whether sequentially applied stimuli interact, we determined visceromotor responses (VMR) to gastric distension, measured at baseline and 60 min after instillation of saline, glycocholic acid (GCA) or ethanol through a gastrostomy in controls and rats with gastric ulcers. In another series of experiments, chemicals were administered before and 60 min after repeated distension of the stomach. Ethanol, but not saline or GCA, increased VMR in controls with a more significant rise in rats with gastric ulcerations. GCA increased responses to gastric distension in controls, whereas GCA and ethanol enhanced responses to gastric distensions in rats with gastric ulcers. Responses to saline, GCA, or ethanol were not affected by repeated noxious distension of the stomach. Luminal stimuli can trigger visceromotor responses and sensitize gastric afferents to mechanical stimulation, thus potentially contributing to dyspeptic symptoms.
Collapse
Affiliation(s)
- K Lamb
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
53
|
Morrison TC, Dmitrieva N, Winnard KP, Berkley KJ. Opposing viscerovisceral effects of surgically induced endometriosis and a control abdominal surgery on the rat bladder. Fertil Steril 2006; 86:1067-73. [PMID: 16962120 DOI: 10.1016/j.fertnstert.2006.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/20/2006] [Accepted: 03/20/2006] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To determine, in rats, how surgically induced endometriosis and a control surgery (partial hysterectomy; sutures in abdomen) affects micturition thresholds and bladder vascular permeability. DESIGN Two animal studies, each performed in three groups of urethane-anesthetized rats in proestrus. SETTING Academic facility. ANIMAL(S) Seventy-three female, regularly cycling Sprague-Dawley rats studied in proestrus. INTERVENTION(S) Surgical induction of endometriosis (ENDO), surgical control (shamENDO), intact control (NoSURG), and bladder inflammation via intravesicular turpentine in all three groups. MAIN OUTCOME MEASURE(S) [1] Micturition thresholds (MTs; volume voiding thresholds), as measured by repetitive transurethral cystometry before and after bladder inflammation and [2] bladder inflammation, as assessed by extravasation of Evans Blue dye. RESULT(S) In the uninflamed bladder, MTs were significantly lower and dye extravasation significantly higher in ENDO rats than in shamENDO and NoSURG rats. Bladder inflammation increased dye extravasation in all groups and reduced MTs in the NoSURG and ENDO rats, but not in the shamENDO rats. CONCLUSION(S) Endometriosis reduces MTs and produces signs of inflammation in the healthy bladder. Surprisingly, the control surgical procedure (partial hysterectomy; sutures on mesenteric blood vessels) protects bladder reflexes from the influence of bladder inflammation, a condition that is named silent bladder inflammation. Such cross-system inducing and masking effects have important clinical relevance.
Collapse
Affiliation(s)
- Trevor C Morrison
- Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-1270, USA
| | | | | | | |
Collapse
|
54
|
Neuhuber WL, Raab M, Berthoud HR, Wörl J. Innervation of the mammalian esophagus. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2006. [PMID: 16573241 DOI: 10.1007/978-3-540-32948-0_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the innervation of the esophagus is a prerequisite for successful treatment of a variety of disorders, e.g., dysphagia, achalasia, gastroesophageal reflux disease (GERD) and non-cardiac chest pain. Although, at first glance, functions of the esophagus are relatively simple, their neuronal control is considerably complex. Vagal motor neurons of the nucleus ambiguus and preganglionic neurons of the dorsal motor nucleus innervate striated and smooth muscle, respectively. Myenteric neurons represent the interface between the dorsal motor nucleus and smooth muscle but they are also involved in striated muscle innervation. Intraganglionic laminar endings (IGLEs) represent mechanosensory vagal afferent terminals. They also establish intricate connections with enteric neurons. Afferent information is implemented by the swallowing central pattern generator in the brainstem, which generates and coordinates deglutitive activity in both striated and smooth esophageal muscle and orchestrates esophageal sphincters as well as gastric adaptive relaxation. Disturbed excitation/inhibition balance in the lower esophageal sphincter results in motility disorders, e.g., achalasia and GERD. Loss of mechanosensory afferents disrupts adaptation of deglutitive motor programs to bolus variables, eventually leading to megaesophagus. Both spinal and vagal afferents appear to contribute to painful sensations, e.g., non-cardiac chest pain. Extrinsic and intrinsic neurons may be involved in intramural reflexes using acetylcholine, nitric oxide, substance P, CGRP and glutamate as main transmitters. In addition, other molecules, e.g., ATP, GABA and probably also inflammatory cytokines, may modulate these neuronal functions.
Collapse
|
55
|
Yarushkina N, Bogdanov A, Filaretova L. Somatic pain sensitivity during formation and healing of acetic acid-induced gastric ulcers in conscious rats. Auton Neurosci 2006; 126-127:100-5. [PMID: 16580889 DOI: 10.1016/j.autneu.2006.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 02/20/2006] [Indexed: 02/08/2023]
Abstract
A classical feature of visceral pain is its referring to somatic locations. Gastric ulcer is a source of visceral pain. In the present study we investigated whether gastric ulcers may trigger the changes in somatic nociception. For this aim somatic pain sensitivity was estimated under conditions of gastric ulcer development and healing. Gastric ulcers were induced by luminal application of 60% acetic acid under surgical conditions. Control rats were subjected to the same surgical procedure, but with the application of saline instead of the acid. Somatic pain sensitivity (tail flick latency), plasma corticosterone level, adrenal and thymus weight were investigated under conditions of the formation and the healing of gastric ulcers. The application of the acid resulted in the formation of kissing gastric ulcers, the increase of somatic pain sensitivity (the decrease of tail flick latency) as well as the appearance of typical signs of chronic stress: long-lasting increase of plasma corticosterone level, adrenal gland hypertrophy and thymus gland involution. Natural healing of gastric ulcers was accompanied by restoration of pain sensitivity as well as attenuation of the signs of chronic stress. Delay of ulcer healing by the daily indomethacin administration (2 mg/kg, s.c.) prevented the restoration of somatic pain sensitivity. The results suggest that chronic gastric ulcers may trigger somatic hypersensitivity.
Collapse
Affiliation(s)
- Natalya Yarushkina
- Laboratory of Experimental Endocrinology, Pavlov Institute of Physiology, Russian Academy of Sciences, nab. Makarova, 6, St. Petersburg 199034, Russia
| | | | | |
Collapse
|
56
|
Holzer P. Efferent-like roles of afferent neurons in the gut: Blood flow regulation and tissue protection. Auton Neurosci 2006; 125:70-5. [PMID: 16542883 PMCID: PMC4363547 DOI: 10.1016/j.autneu.2006.01.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 01/14/2006] [Accepted: 01/14/2006] [Indexed: 10/24/2022]
Abstract
The maintenance of gastrointestinal mucosal integrity depends on the rapid alarm of protective mechanisms in the face of pending injury. To this end, the gastric mucosa is innervated by intrinsic sensory neurons and two populations of extrinsic sensory neurons: vagal and spinal afferents. Extrinsic afferent neurons constitute an emergency system that is called into operation when the gastrointestinal mucosa is endangered by noxious chemicals. The function of these chemoceptive afferents can selectively be manipulated and explored with the use of capsaicin which acts via a cation channel termed TRPV1. Many of the homeostatic actions of spinal afferents are brought about by transmitter release from their peripheral endings. When stimulated by noxious chemicals, these afferents enhance gastrointestinal blood flow and activate hyperaemia-dependent and hyperaemia-independent mechanisms of protection and repair. In the rodent foregut these local regulatory roles of sensory neurons are mediated by calcitonin gene-related peptide and nitric oxide. The pathophysiological potential of the neural emergency system is best portrayed by the gastric hyperaemic response to acid back-diffusion, which is governed by spinal afferent nerve fibres. This mechanism limits damage to the surface of the mucosa and creates favourable conditions for rapid restitution and healing of the wounded mucosa. Other extrinsic afferent neurons, particularly in the vagus nerve, subserve gastrointestinal homeostasis by signalling noxious events in the foregut to the central nervous system and eliciting autonomic, emotional-affective and neuroendocrine reactions. Under conditions of inflammation and injury, chemoceptive afferents are sensitized to peripheral stimuli and in this functional state contribute to the hyperalgesia associated with functional dyspepsia and irritable bowel syndrome. Thus, if GI pain is to be treated by sensory neuron-directed drugs it needs to be considered that these drugs do not inhibit nociception at the expense of GI mucosal vulnerability.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
57
|
Sugiura T, Dang K, Lamb K, Bielefeldt K, Gebhart GF. Acid-sensing properties in rat gastric sensory neurons from normal and ulcerated stomach. J Neurosci 2006; 25:2617-27. [PMID: 15758172 PMCID: PMC6725180 DOI: 10.1523/jneurosci.2894-04.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gastric acid contributes to dyspeptic symptoms, including abdominal pain, in patients with disorders of the proximal gastrointestinal tract. To examine the molecular sensor(s) of gastric acid chemonociception, we characterized acid-elicited currents in dorsal root ganglion (DRG) and nodose ganglion (NG) neurons that innervate the stomach and examined their modulation after induction of gastric ulcers. A fluorescent dye (DiI) was injected into the stomach wall to retrogradely label gastric sensory neurons. After 1-2 weeks, gastric ulcers were induced by 45 s of luminal exposure of the stomach to 60% acetic acid injected into a clamped area of the distal stomach; control animals received saline. In whole-cell voltage-clamp recordings, all gastric DRG neurons and 55% of NG neurons exhibited transient, amiloride-sensitive, acid-sensing ion-channel (ASIC) currents. In the remaining 45% of NG neurons, protons activated a slow, sustained current that was attenuated by the transient receptor potential vanilloid subtype 1 antagonist, capsazepine. The kinetics and proton sensitivity of amiloride-sensitive ASIC currents differed between NG and DRG neurons. NG neurons had a lower proton sensitivity and faster kinetics, suggesting expression of specific subtypes of ASICs in the vagal and splanchnic innervation of the stomach. Effects of Zn2+ and N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine on acid-elicited currents suggest contributions of ASIC1a and ASIC2a subunits. Gastric ulcers altered the properties of acid-elicited currents by increasing pH sensitivity and current density and changing current kinetics in gastric DRG neurons. The distinct properties of NG and DRG neurons and their modulation after injury suggest differential contributions of vagal and spinal afferent neurons to chemosensation and chemonociception.
Collapse
Affiliation(s)
- Takeshi Sugiura
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
58
|
Abstract
BACKGROUND/AIM Non-erosive reflux disease (NERD) is a common and heterogeneous disorder. We hypothesized that changes in peripheral innervation may lead to hyperalgesia and contribute to the development of the disorder. METHODS Patients referred for evaluation of reflux symptoms with wireless pH monitoring were asked to provide demographic and clinical data and complete a survey related to severity of reflux symptoms. Endoscopies were performed to rule out macroscopic abnormalities of the esophageal mucosa. Biopsies obtained 2 cm above the gastroesophageal junction were stained for protein gene product 9.5 (PGP 9.5; general neuronal marker) and TRPV1 (capsaicin receptor) immunoreactivity. The density of immunoreactive fibers in the esophageal mucosa was determined morphometrically. RESULTS A total of 39 patients without evidence of Barrett's metaplasia, erosive or ulcerative esophagitis were enrolled. Most patients had daily symptoms. The total esophageal acid exposure time was 5.6+/-0.6%, with 16 patients (41%) having increased acid reflux. Immunoreactivity for PGP 9.5 or TRPV1 was detected in papillary structures as well as within the epithelium (free intra-epithelial endings). Total acid-exposure time, but not symptom score or duration correlated significantly with density of PGP 9.5 immunoreactivity and TRPV1 positive fibers. CONCLUSION Even in the absence of macroscopic injury, esophageal acid exposure is associated with changes in mucosal innervation of the esophagus, thus potentially further enhancing symptoms in patients with gastroesophageal reflux.
Collapse
Affiliation(s)
- Yasser M Bhat
- Division of Gastroenterology, Hepatology & Nutrition, University of Pittsburgh School of Medicine, PA 15213, USA
| | | |
Collapse
|
59
|
Holzer P. Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opin Ther Targets 2006; 8:107-23. [PMID: 15102553 DOI: 10.1517/14728222.8.2.107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Functional bowel disorders (FBDs) are defined by symptoms of gastrointestinal (GI) dysfunction, discomfort and pain in the absence of a demonstrable organic cause. Since the prevalence of FBDs, particularly functional dyspepsia and irritable bowel syndrome, can be as high as 20%, FBDs represent a significant burden in terms of direct healthcare and productivity costs. There is emerging evidence that the discomfort and pain experienced by many FBD patients is due to persistent hypersensitivity of primary afferent neurons, which may develop in response to infection, inflammation or other insults. This concept identifies vagal and spinal sensory neurons as important targets for novel therapies of GI hyperalgesia. Sensory neuron-specific targets can be grouped into three categories: receptors and sensors at the peripheral nerve terminals, ion channels relevant to nerve excitability and conduction and transmitter receptors. Particular therapeutic potential is attributed to targets that are selectively expressed by afferent neurons, such as the transient receptor potential channel TRPV1, acid-sensing ion channels and tetrodotoxin-resistant Na + channels.
Collapse
Affiliation(s)
- Peter Holzer
- Medical University of Graz, Department of Experimental and Clinical Pharmacology, Austria.
| |
Collapse
|
60
|
Okabe S, Amagase K. An overview of acetic acid ulcer models--the history and state of the art of peptic ulcer research. Biol Pharm Bull 2005; 28:1321-41. [PMID: 16079471 DOI: 10.1248/bpb.28.1321] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Four types of experimental chronic ulcer models, named acetic acid ulcer models, have been developed to examine the healing process of peptic ulcers, screen anti-ulcer drugs, and better evaluate the adverse effects of various anti-inflammatory drugs on the gastrointestinal mucosa. The model easily and reliably produces round, deep ulcers in the stomach and duodenum, allowing acetic acid ulcer production in mice, rats, Mongolian gerbils, guinea pigs, cats, dogs, miniature pigs, and monkeys. These ulcer models highly resemble human ulcers in terms of both pathological features and healing process. The models have been established over the past 35 years and are now used throughout the world by basic and clinical scientists. One of the characteristic features of acetic acid ulcers in rats is the spontaneous relapse of healed ulcers >100 d after ulceration, an endoscopically confirmed phenomenon. Indomethacin significantly delays the healing of acetic acid ulcers, probably by reducing endogenous prostaglandins and inhibiting angiogenesis in ulcerated tissue. Helicobacter pylori significantly delays healing of acetic acid ulcers and causes relapse of healed ulcers at a high incidence in Mongolian gerbils. Anti-secretory drugs (e.g. omeprazole), prostaglandin analogs, mucosal defense agents (e.g. sucralfate), and various growth factors all significantly enhance healing of acetic acid ulcers. Gene therapy with epidermal growth factor and vascular endothelial growth factor applied to the base of acetic acid ulcers in rats is effective in enhancing ulcer healing. Since an inhibitor of nitric oxide syntase prevents ulcer healing, nitric oxide might be involved in the mechanism underlying ulcer healing. We conclude that acetic acid ulcer models are quite useful for various studies related to peptic ulcers.
Collapse
Affiliation(s)
- Susumu Okabe
- Department of Applied Pharmacology, Kyoto Pharmaceutical University, Misasagi, Yamashina, Kyoto 602-0897, Japan.
| | | |
Collapse
|
61
|
Wultsch T, Painsipp E, Thoeringer CK, Herzog H, Sperk G, Holzer P. Endogenous neuropeptide Y depresses the afferent signaling of gastric acid challenge to the mouse brainstem via neuropeptide Y type Y2 and Y4 receptors. Neuroscience 2005; 136:1097-107. [PMID: 16216428 PMCID: PMC4359901 DOI: 10.1016/j.neuroscience.2005.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/29/2005] [Accepted: 08/10/2005] [Indexed: 01/04/2023]
Abstract
Vagal afferents signal gastric acid challenge to the nucleus tractus solitarii of the rat brainstem. This study investigated whether nucleus tractus solitarii neurons in the mouse also respond to gastric acid challenge and whether this chemonociceptive input is modified by neuropeptide Y acting via neuropeptide Y receptors of type Y2 or Y4. The gastric mucosa of female mice was exposed to different concentrations of HCl or saline, excitation of neurons in the nucleus tractus solitarii visualized by c-Fos immunohistochemistry, gastric emptying deduced from the gastric volume recovery, and gastric lesion formation evaluated by planimetry. Relative to saline, intragastric HCl (0.15-0.35 M) increased the number of c-Fos-expressing cells in the nucleus tractus solitarii in a concentration-dependent manner, inhibited gastric emptying but failed to cause significant hemorrhagic injury in the stomach. Mice in which the Y2 or Y4 receptor gene had been deleted responded to gastric acid challenge with a significantly higher expression of c-Fos in the nucleus tractus solitarii, the increases amounting to 39 and 31%, respectively. The HCl-induced inhibition of gastric emptying was not altered by deletion of the Y2 or Y4 receptor gene. BIIE0246 ((S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e] azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl] acetyl]-N-[2-[1,2-dihydro-3,5 (4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]-argininamide; 0.03 mmol/kg s.c.), a Y2 receptor antagonist which does not cross the blood-brain barrier, did not modify the c-Fos response to gastric acid challenge. The Y2 receptor agonist peptide YY-(3-36) (0.1 mg/kg intraperitoneally) likewise failed to alter the gastric HCl-evoked expression of c-Fos in the nucleus tractus solitarii. BIIE0246, however, prevented the effect of peptide YY-(3-36) to inhibit gastric acid secretion as deduced from measurement of intragastric pH. The current data indicate that gastric challenge with acid concentrations that do not induce overt injury but inhibit gastric emptying is signaled to the mouse nucleus tractus solitarii. Endogenous neuropeptide Y acting via Y2 and Y4 receptors depresses the afferent input to the nucleus tractus solitarii by a presumably central site of action.
Collapse
Affiliation(s)
- T Wultsch
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | | | | | | | | | | |
Collapse
|
62
|
Holzer P, Painsipp E, Schuligoi R. Differential effects of intragastric acid and capsaicin on gastric emptying and afferent input to the rat spinal cord and brainstem. BMC Neurosci 2005; 6:60. [PMID: 16162281 PMCID: PMC1239919 DOI: 10.1186/1471-2202-6-60] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 09/14/2005] [Indexed: 11/25/2022] Open
Abstract
Background Hydrochloric acid (HCl) is a potential threat to the integrity of the gastric mucosa and is known to contribute to upper abdominal pain. We have previously found that gastric mucosal challenge with excess HCl is signalled to the rat brainstem, but not spinal cord, as visualized by expression of c-fos messenger ribonucleic acid (mRNA), a surrogate marker of neuronal excitation. This study examined whether gastric mucosal exposure to capsaicin, a stimulant of nociceptive afferents that does not damage the gastric mucosa, is signalled to both brainstem and spinal cord and whether differences in the afferent signalling of gastric HCl and capsaicin challenge are related to different effects on gastric emptying. Results Rats were treated intragastrically with vehicle, HCl or capsaicin, activation of neurons in the brainstem and spinal cord was visualized by in situ hybridization autoradiography for c-fos mRNA, and gastric emptying deduced from the retention of intragastrically administered fluid. Relative to vehicle, HCl (0.5 M) and capsaicin (3.2 mM) increased c-fos transcription in the nucleus tractus solitarii by factors of 7.0 and 2.1, respectively. Capsaicin also caused a 5.2-fold rise of c-fos mRNA expression in lamina I of the caudal thoracic spinal cord, although the number of c-fos mRNA-positive cells in this lamina was very small. Thus, on average only 0.13 and 0.68 c-fos mRNA-positive cells were counted in 0.01 mm sections of the unilateral lamina I following intragastric administration of vehicle and capsaicin, respectively. In contrast, intragastric HCl failed to induce c-fos mRNA in the spinal cord. Measurement of gastric fluid retention revealed that HCl suppressed gastric emptying while capsaicin did not. Conclusion The findings of this study show that gastric mucosal exposure to HCl and capsaicin is differentially transmitted to the brainstem and spinal cord. Since only HCl blocks gastric emptying, it is hypothesized that the two stimuli are transduced by different afferent pathways. We infer that HCl is exclusively signalled by gastric vagal afferents whereas capsaicin is processed both by gastric vagal and intestinal spinal afferents.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Evelin Painsipp
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| | - Rufina Schuligoi
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria
| |
Collapse
|
63
|
Bielefeldt K, Christianson JA, Davis BM. Basic and clinical aspects of visceral sensation: transmission in the CNS. Neurogastroenterol Motil 2005; 17:488-99. [PMID: 16078937 DOI: 10.1111/j.1365-2982.2005.00671.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pain and discomfort are the leading cause for consultative visits to gastroenterologists. Acute pain should be considered a symptom of an underlying disease, thereby serving a physiologically important function. However, many patients experience chronic pain in the absence of potentially harmful stimuli or disorders, turning pain into the primary problem rather than a symptom. Vagal and spinal afferents both contribute to the sensory component of the gut-brain axis. Current evidence suggests that they convey different elements of the complex sensory experience. Spinal afferents play a key role in the discriminatory dimension, while vagal input primarily affects the strong emotional and autonomic reactions to noxious visceral stimuli. Drugs, surgical and non-pharmacological treatments can target these pathways and provide therapeutic options for patients with chronic visceral pain syndromes.
Collapse
Affiliation(s)
- K Bielefeldt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
64
|
Römer M, Painsipp E, Schwetz I, Holzer P. Facilitation of gastric compliance and cardiovascular reaction by repeated isobaric distension of the rat stomach. Neurogastroenterol Motil 2005; 17:399-409. [PMID: 15916627 PMCID: PMC4370837 DOI: 10.1111/j.1365-2982.2005.00649.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gastric distension causes cardiovascular reactions and enhances gastric compliance. Here, we investigated how these responses are related to each other, whether they change upon repeated distension and which neural mechanisms are involved. Mean arterial blood pressure (MAP) in phenobarbital-anaesthetized rats was recorded from a carotid artery and gastric compliance determined with an electronic barostat. Runs of intermittent gastric distension were generated by stepwise increments (5 mmHg) of intragastric (IG) pressure. While gastric compliance peaked at IG pressures of 20 mmHg, the change in MAP (predominantly hypotension) was largest at IG pressures beyond 30 mmHg. Repeated distension enhanced the MAP response to IG pressures beyond 35 mmHg, whereas gastric compliance was facilitated primarily at IG pressures below 20 mmHg. This facilitation of gastric compliance depended on the magnitude of the preceding distension. The MAP response to distension was enhanced by nitric oxide synthase inhibition, inhibited by subdiaphragmatic vagotomy but hardly affected by coeliac ganglionectomy. The facilitation of gastric compliance was changed by vagotomy in a complex manner but left unaltered by the other interventions. These findings show that isobaric gastric distension elicits both MAP and gastric compliance responses whose characteristics, mechanisms and sensitization properties differ profoundly.
Collapse
Affiliation(s)
- M Römer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | |
Collapse
|
65
|
Kang YM, Lamb K, Gebhart GF, Bielefeldt K. Experimentally induced ulcers and gastric sensory-motor function in rats. Am J Physiol Gastrointest Liver Physiol 2005; 288:G284-91. [PMID: 15388487 DOI: 10.1152/ajpgi.00250.2004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prior studies have demonstrated that inflammation can sensitize visceral afferent neurons, contributing to the development of hyperalgesia. We hypothesized that both afferent and efferent pathways are affected, resulting in changes in motor and sensory function. Kissing ulcers (KU) were induced in the distal stomach by injecting 60% acetic acid for 45 s into a clamped area of the stomach. In controls, saline was injected into the stomach. A balloon catheter was surgically placed into the stomach, and electromyographic responses to gastric distension were recorded from the acromiotrapezius muscle at various times after ulcer induction. The accommodation reflex was assessed by slowly infusing saline into the distally occluded stomach. Gastric pressure changes in response to vagal stimulation were measured in anesthetized rats. Contractile function of circular muscle strips was examined in vitro using force-displacement transducers. KU caused gastric hypersensitivity that persisted for at least 14 days. Fluid distension of the stomach led to a rapid pressure increase in KU but not in control animals, consistent with an impaired accommodation reflex. Gastric ulcers enhanced the contractile response to vagal stimulation, whereas the effect of cholinergic stimulation on smooth muscle in vitro was not changed. These data suggest that inflammation directly alters gastric sensory and motor function. Increased activation of afferents will trigger vagovagal reflexes, thereby further changing motility and indirectly activating sensory neurons. Thus afferent and efferent pathways both contribute to the development of dyspeptic symptoms.
Collapse
Affiliation(s)
- Y M Kang
- Department of Pharmacology, University of Iowa, Iowa City, Iowa, USA
| | | | | | | |
Collapse
|
66
|
Dang K, Bielfeldt K, Lamb K, Gebhart GF. Gastric ulcers evoke hyperexcitability and enhance P2X receptor function in rat gastric sensory neurons. J Neurophysiol 2005; 93:3112-9. [PMID: 15673552 DOI: 10.1152/jn.01127.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tissue inflammation contributes to the development of hyperalgesia, which is at least in part due to altered properties of primary afferent neurons. We hypothesized that gastric ulcers enhance the excitability of gastric sensory neurons and increase their response to purinergic agonists. The rat stomach was surgically exposed, and a retrograde tracer [1.1'-dioctadecyl-3,3,3,'3-tetramethylindocarbocyanine methanesulfonate (DiI)] was injected into the wall of the distal stomach. Kissing ulcers (KUs) were produced by a single injection of acetic acid (0.1 ml for 45 s; 60%) into the clamped gastric lumen. Saline injection served as control. Gastric nodose ganglion (NG) or dorsal root ganglion (DRG) cells were harvested 7 days later and acutely dissociated for whole cell recordings. Based on whole cell capacitance, gastric DRG neurons exhibited larger cell size than NG neurons. Significantly more control gastric DRG neurons compared with NG counterparts had TTX-resistant action potentials. Almost all control NG neurons (90%) compared with significantly less DRG neurons (< or =38%) responded to ATP or alpha,beta-metATP. Whereas none of the control cells exhibited spontaneous activity, about 20% of the neurons from KU animals generated spontaneous action potentials. KUs enhanced excitability as shown by a decrease in threshold for action potential generation, which was in part due to an increased input resistance. This was associated with an increase in the fraction of neurons with TTX-resistant action potentials and cells responding to capsaicin and purinergic agonists. KU doubled the current density evoked by the P2X receptor agonist alpha,beta-metATP and slowed decay of the slowly desensitizing component of the current without affecting the concentration dependence of the response. These data show that KU sensitizes vagal and spinal gastric afferents by affecting both voltage- and ligand-gated channels, thereby potentially contributing to the development of dyspeptic symptoms.
Collapse
Affiliation(s)
- K Dang
- Dept. of Pharmacology, Univ. of Iowa, Iowa City, IA, USA.
| | | | | | | |
Collapse
|
67
|
Yu S, Undem BJ, Kollarik M. Vagal afferent nerves with nociceptive properties in guinea-pig oesophagus. J Physiol 2005; 563:831-42. [PMID: 15649987 PMCID: PMC1665603 DOI: 10.1113/jphysiol.2004.079574] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Some vagal afferent nerves are thought to mediate autonomic responses evoked by noxious oesophageal stimuli and participate in the perception of pain originating in the oesophagus. However, the vagal nociceptive nerve phenotypes implicated in this function have yet to be identified. In this study, nociceptive fibres were defined by the capacity to discriminate noxious mechanical stimuli (wide range of oesophageal distension with pressure up to 100 mmHg) and detect noxious chemical stimuli (the activators of capsaicin receptor TRPV1). Using immunohistochemical techniques with retrogradely labelled oesophagus-specific neurones and performing extracellular recordings from the isolated vagally innervated oesophagus, we show that in the guinea-pig, the vagus nerves supply the oesophagus with a large population of nociceptive-like afferent nerve fibres. Vagal nociceptive-like fibres in the guinea-pig oesophagus are derived from two embryonically distinct sources: neurones situated in the nodose vagal ganglia and neurones situated in the jugular vagal ganglia. Nodose (placode-derived) nociceptive-like fibres are exclusively C-fibres sensitive to a P2X receptors agonist and rarely express the neuropeptide substance P. In contrast, jugular (neural crest-derived) nociceptive-like fibres include both A-fibres and C-fibres, are insensitive to P2X receptors agonist and mostly express substance P. The non-nociceptive vagal tension mechanoreceptors are distinguished from nociceptors by their saturable response to oesophageal distension and by the lack of TRPV1. These tension mechanoreceptors are exclusively A-fibres arising from the nodose ganglion. We conclude that the vagus nerves supply the guinea-pig oesophagus with nociceptors in addition to tension mechanoreceptors. The vagal nociceptive-like fibres in the oesophagus comprise two distinct subtypes dictated by the ganglionic location of their cell bodies.
Collapse
Affiliation(s)
- Shaoyong Yu
- Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
68
|
Holzer P. TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur J Pharmacol 2004; 500:231-41. [PMID: 15464036 DOI: 10.1016/j.ejphar.2004.07.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 12/26/2022]
Abstract
Capsaicin, the pungent ingredient in red pepper, has been used since ancient times as a spice, despite the burning sensation associated with its intake. More than 50 years ago, Nikolaus Jancso discovered that capsaicin can selectively stimulate nociceptive primary afferent neurons. The ensuing research established that the neuropharmacological properties of capsaicin are due to its activation of the transient receptor potential ion channel of the vanilloid type 1 (TRPV1). Expressed by primary afferent neurons innervating the gut and other organs, TRPV1 is gated not only by vanilloids such as capsaicin, but also by noxious heat, acidosis and intracellular lipid mediators such as anandamide and lipoxygenase products. Importantly, TRPV1 can be sensitized by acidosis and activation of various pro-algesic pathways. Upregulation of TRPV1 in inflammatory bowel disease and the beneficial effect of TRPV1 downregulation in functional dyspepsia and irritable bladder make this polymodal nociceptor an attractive target of novel therapies for chronic abdominal pain.
Collapse
Affiliation(s)
- Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
69
|
Schicho R, Florian W, Liebmann I, Holzer P, Lippe IT. Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur J Neurosci 2004; 19:1811-8. [PMID: 15078554 DOI: 10.1111/j.1460-9568.2004.03290.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is still unknown which receptors of peripheral sensory pathways encode and integrate an acid-induced nociceptive event in the gastric mucosa. The transient receptor potential vanilloid receptor 1 (TRPV1) and the acid-sensing ion channel 3 (ASIC3) are two nociception-related receptors. Here we investigated (i) to what extent these receptors are distributed in stomach-innervating neurons of dorsal root and nodose ganglia, using immunohistochemistry and retrograde tracing, and (ii) whether their expression is altered in response to a noxious acid challenge of the stomach. We also explored the presence of TRPV1 in the gastric enteric nervous system because of its possible expression by intrinsic sensory neurons. Most stomach-innervating neurons in nodose ganglia were immunoreactive for TRPV1 (80%) and ASIC3 (75%), these results being similar in the dorsal root ganglia (71 and 82%). RT-PCR and Western blotting were performed up to 6 h after oral application of 0.5 m HCl to conscious rats. TRPV1 protein was increased in dorsal root but not in nodose ganglia whereas TRPV1 and ASIC3 mRNAs remained unchanged. TRPV1 mRNA was detected in longitudinal muscle-myenteric plexus preparations of control stomachs and was not altered by the acid challenge. Combined vagotomy and ganglionectomy abolished expression of TRPV1, indicating that it may derive from an extrinsic source. In summary, noxious acid challenge of the stomach increased TRPV1 protein in spinal but not vagal or intrinsic sensory afferents. The TRPV1 receptor may be a key molecule in the transduction of acid-induced nociception of the gastric mucosa and a mediator of visceral hypersensitivity.
Collapse
MESH Headings
- Acid Sensing Ion Channels
- Acids/pharmacology
- Animals
- Benzofurans/metabolism
- Blotting, Western/methods
- Cell Count/methods
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Ganglionectomy/methods
- Gastric Mucosa/cytology
- Gastric Mucosa/drug effects
- Immunohistochemistry/methods
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Nodose Ganglion/cytology
- Nodose Ganglion/drug effects
- Nodose Ganglion/metabolism
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sodium Channels/genetics
- Sodium Channels/metabolism
- Vagotomy/methods
Collapse
Affiliation(s)
- Rudolf Schicho
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria.
| | | | | | | | | |
Collapse
|
70
|
Kang YM, Bielefeldt K, Gebhart GF. Sensitization of Mechanosensitive Gastric Vagal Afferent Fibers in the Rat by Thermal and Chemical Stimuli and Gastric Ulcers. J Neurophysiol 2004; 91:1981-9. [PMID: 15069095 DOI: 10.1152/jn.01097.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the present study we examined the effects of acute thermal and chemical stimuli and gastric ulceration on mechanosensitive gastric vagal afferent fibers. Single-fiber recordings were made from the cervical vagus nerve. Mechanosensitive afferent fibers were identified by response to gastric distension (GD). Intragastric pressure was maintained below 3 mmHg during intragastric instillation of saline, heated saline, HCl, or glycocholic acid. Responses to graded GD (5–60 mmHg, 20 s, 4-min interval) were determined before and after 30-min exposure to thermal or chemical stimuli. All mechanosensitive fibers studied were C-fibers (mean CV: 1.07 ± 0.07 m/s). Saline (37°C) did not affect resting activity or alter responses to GD, but exposure to heated saline (46°C) significantly increased resting activity and sensitized responses to GD. The decrease in resting activity was hydrochloric acid concentration dependent (0.025–0.2 N), but responses to GD were sensitized after 30-min exposure to 0.1 N HCl ( n = 7). The bile acid glycocholic acid significantly increased resting activity and desensitized responses to GD at an intragastric pH of 7, and similarly increased resting activity but sensitized responses to GD ( n = 6) at an intragastric pH of 1.2. Vagal afferents recorded in rats with gastric ulcers had significantly greater resting activity and responses to GD than sham ulcer rats; intragastric instillation of glycocholic acid (pH 1.2) further increased afferent fiber excitability. These findings indicate that acute gastric thermal and chemical stimuli alter the response characteristics of mechanosensitive vagal afferents in the absence of inflammation or structural damage. Accordingly, acute sensitization of gastric afferents through different stimulus modalities may contribute to the development of dyspeptic symptoms. In the presence of gastric inflammation, mechanosensitive vagal afferents exhibit a further increase in excitability.
Collapse
Affiliation(s)
- Yu-Ming Kang
- Department of Pharmacology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
71
|
Holzer P, Danzer M, Schicho R, Samberger C, Painsipp E, Lippe IT. Vagal afferent input from the acid-challenged rat stomach to the brainstem: Enhancement by interleukin-1β. Neuroscience 2004; 129:439-45. [PMID: 15501601 DOI: 10.1016/j.neuroscience.2004.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2004] [Indexed: 11/18/2022]
Abstract
Exposure of the gastric mucosa to back-diffusing concentrations of HCl (0.25 M, pH 0.51) stimulates vagal afferent input to the brainstem. Here we have examined whether pretreatment of rats with the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha causes sensitization of vagal afferent pathways to HCl. Rats were pretreated i.p. with interleukin-1beta, tumor necrosis factor-alpha (10 microg/kg) or their vehicle (sterile saline) 24, 48 and 96 h before intragastric administration of HCl (0.25 M, 1 ml/100 g). Activation of neurons in the nucleus tractus solitarii was visualized by c-Fos immunohistochemistry 2 h after the HCl challenge. I.p. administration of interleukin-1beta and tumor necrosis factor-alpha alone induced c-Fos in the brainstem, an effect that was gone after 24 h. At this time, however, the effect of HCl to cause expression of c-Fos in the nucleus tractus solitarii was significantly enhanced by pretreatment with interleukin-1beta and tumor necrosis factor-alpha. The sensitizing effect of i.p.-administered interleukin-1beta was sustained for more than 48 h and prevented by the interleukin-1 receptor antagonist anakinra. Intracisternal administration of interleukin-1beta and tumor necrosis factor-alpha (100 ng) failed to amplify the HCl-evoked expression of c-Fos in the brainstem. These results show that peripheral administration of the proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha induces prolonged sensitization of vagal afferent pathways to gastric HCl challenge. This effect seems to arise from a peripheral action on vagal afferents and may be of relevance to gastric chemonociception.
Collapse
Affiliation(s)
- P Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| | | | | | | | | | | |
Collapse
|